xref: /openbmc/qemu/target/arm/cpu.h (revision 1538d763)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #ifdef TARGET_AARCH64
32 #define KVM_HAVE_MCE_INJECTION 1
33 #endif
34 
35 #define EXCP_UDEF            1   /* undefined instruction */
36 #define EXCP_SWI             2   /* software interrupt */
37 #define EXCP_PREFETCH_ABORT  3
38 #define EXCP_DATA_ABORT      4
39 #define EXCP_IRQ             5
40 #define EXCP_FIQ             6
41 #define EXCP_BKPT            7
42 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
43 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
44 #define EXCP_HVC            11   /* HyperVisor Call */
45 #define EXCP_HYP_TRAP       12
46 #define EXCP_SMC            13   /* Secure Monitor Call */
47 #define EXCP_VIRQ           14
48 #define EXCP_VFIQ           15
49 #define EXCP_SEMIHOST       16   /* semihosting call */
50 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
51 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
52 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
53 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
54 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
55 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
56 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
57 
58 #define ARMV7M_EXCP_RESET   1
59 #define ARMV7M_EXCP_NMI     2
60 #define ARMV7M_EXCP_HARD    3
61 #define ARMV7M_EXCP_MEM     4
62 #define ARMV7M_EXCP_BUS     5
63 #define ARMV7M_EXCP_USAGE   6
64 #define ARMV7M_EXCP_SECURE  7
65 #define ARMV7M_EXCP_SVC     11
66 #define ARMV7M_EXCP_DEBUG   12
67 #define ARMV7M_EXCP_PENDSV  14
68 #define ARMV7M_EXCP_SYSTICK 15
69 
70 /* For M profile, some registers are banked secure vs non-secure;
71  * these are represented as a 2-element array where the first element
72  * is the non-secure copy and the second is the secure copy.
73  * When the CPU does not have implement the security extension then
74  * only the first element is used.
75  * This means that the copy for the current security state can be
76  * accessed via env->registerfield[env->v7m.secure] (whether the security
77  * extension is implemented or not).
78  */
79 enum {
80     M_REG_NS = 0,
81     M_REG_S = 1,
82     M_REG_NUM_BANKS = 2,
83 };
84 
85 /* ARM-specific interrupt pending bits.  */
86 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
87 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
88 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
89 
90 /* The usual mapping for an AArch64 system register to its AArch32
91  * counterpart is for the 32 bit world to have access to the lower
92  * half only (with writes leaving the upper half untouched). It's
93  * therefore useful to be able to pass TCG the offset of the least
94  * significant half of a uint64_t struct member.
95  */
96 #ifdef HOST_WORDS_BIGENDIAN
97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #define offsetofhigh32(S, M) offsetof(S, M)
99 #else
100 #define offsetoflow32(S, M) offsetof(S, M)
101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #endif
103 
104 /* Meanings of the ARMCPU object's four inbound GPIO lines */
105 #define ARM_CPU_IRQ 0
106 #define ARM_CPU_FIQ 1
107 #define ARM_CPU_VIRQ 2
108 #define ARM_CPU_VFIQ 3
109 
110 /* ARM-specific extra insn start words:
111  * 1: Conditional execution bits
112  * 2: Partial exception syndrome for data aborts
113  */
114 #define TARGET_INSN_START_EXTRA_WORDS 2
115 
116 /* The 2nd extra word holding syndrome info for data aborts does not use
117  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118  * help the sleb128 encoder do a better job.
119  * When restoring the CPU state, we shift it back up.
120  */
121 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122 #define ARM_INSN_START_WORD2_SHIFT 14
123 
124 /* We currently assume float and double are IEEE single and double
125    precision respectively.
126    Doing runtime conversions is tricky because VFP registers may contain
127    integer values (eg. as the result of a FTOSI instruction).
128    s<2n> maps to the least significant half of d<n>
129    s<2n+1> maps to the most significant half of d<n>
130  */
131 
132 /**
133  * DynamicGDBXMLInfo:
134  * @desc: Contains the XML descriptions.
135  * @num: Number of the registers in this XML seen by GDB.
136  * @data: A union with data specific to the set of registers
137  *    @cpregs_keys: Array that contains the corresponding Key of
138  *                  a given cpreg with the same order of the cpreg
139  *                  in the XML description.
140  */
141 typedef struct DynamicGDBXMLInfo {
142     char *desc;
143     int num;
144     union {
145         struct {
146             uint32_t *keys;
147         } cpregs;
148     } data;
149 } DynamicGDBXMLInfo;
150 
151 /* CPU state for each instance of a generic timer (in cp15 c14) */
152 typedef struct ARMGenericTimer {
153     uint64_t cval; /* Timer CompareValue register */
154     uint64_t ctl; /* Timer Control register */
155 } ARMGenericTimer;
156 
157 #define GTIMER_PHYS     0
158 #define GTIMER_VIRT     1
159 #define GTIMER_HYP      2
160 #define GTIMER_SEC      3
161 #define GTIMER_HYPVIRT  4
162 #define NUM_GTIMERS     5
163 
164 typedef struct {
165     uint64_t raw_tcr;
166     uint32_t mask;
167     uint32_t base_mask;
168 } TCR;
169 
170 /* Define a maximum sized vector register.
171  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172  * For 64-bit, this is a 2048-bit SVE register.
173  *
174  * Note that the mapping between S, D, and Q views of the register bank
175  * differs between AArch64 and AArch32.
176  * In AArch32:
177  *  Qn = regs[n].d[1]:regs[n].d[0]
178  *  Dn = regs[n / 2].d[n & 1]
179  *  Sn = regs[n / 4].d[n % 4 / 2],
180  *       bits 31..0 for even n, and bits 63..32 for odd n
181  *       (and regs[16] to regs[31] are inaccessible)
182  * In AArch64:
183  *  Zn = regs[n].d[*]
184  *  Qn = regs[n].d[1]:regs[n].d[0]
185  *  Dn = regs[n].d[0]
186  *  Sn = regs[n].d[0] bits 31..0
187  *  Hn = regs[n].d[0] bits 15..0
188  *
189  * This corresponds to the architecturally defined mapping between
190  * the two execution states, and means we do not need to explicitly
191  * map these registers when changing states.
192  *
193  * Align the data for use with TCG host vector operations.
194  */
195 
196 #ifdef TARGET_AARCH64
197 # define ARM_MAX_VQ    16
198 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
199 #else
200 # define ARM_MAX_VQ    1
201 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
202 #endif
203 
204 typedef struct ARMVectorReg {
205     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206 } ARMVectorReg;
207 
208 #ifdef TARGET_AARCH64
209 /* In AArch32 mode, predicate registers do not exist at all.  */
210 typedef struct ARMPredicateReg {
211     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
212 } ARMPredicateReg;
213 
214 /* In AArch32 mode, PAC keys do not exist at all.  */
215 typedef struct ARMPACKey {
216     uint64_t lo, hi;
217 } ARMPACKey;
218 #endif
219 
220 
221 typedef struct CPUARMState {
222     /* Regs for current mode.  */
223     uint32_t regs[16];
224 
225     /* 32/64 switch only happens when taking and returning from
226      * exceptions so the overlap semantics are taken care of then
227      * instead of having a complicated union.
228      */
229     /* Regs for A64 mode.  */
230     uint64_t xregs[32];
231     uint64_t pc;
232     /* PSTATE isn't an architectural register for ARMv8. However, it is
233      * convenient for us to assemble the underlying state into a 32 bit format
234      * identical to the architectural format used for the SPSR. (This is also
235      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236      * 'pstate' register are.) Of the PSTATE bits:
237      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238      *    semantics as for AArch32, as described in the comments on each field)
239      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
240      *  DAIF (exception masks) are kept in env->daif
241      *  BTYPE is kept in env->btype
242      *  all other bits are stored in their correct places in env->pstate
243      */
244     uint32_t pstate;
245     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246 
247     /* Cached TBFLAGS state.  See below for which bits are included.  */
248     uint32_t hflags;
249 
250     /* Frequently accessed CPSR bits are stored separately for efficiency.
251        This contains all the other bits.  Use cpsr_{read,write} to access
252        the whole CPSR.  */
253     uint32_t uncached_cpsr;
254     uint32_t spsr;
255 
256     /* Banked registers.  */
257     uint64_t banked_spsr[8];
258     uint32_t banked_r13[8];
259     uint32_t banked_r14[8];
260 
261     /* These hold r8-r12.  */
262     uint32_t usr_regs[5];
263     uint32_t fiq_regs[5];
264 
265     /* cpsr flag cache for faster execution */
266     uint32_t CF; /* 0 or 1 */
267     uint32_t VF; /* V is the bit 31. All other bits are undefined */
268     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
269     uint32_t ZF; /* Z set if zero.  */
270     uint32_t QF; /* 0 or 1 */
271     uint32_t GE; /* cpsr[19:16] */
272     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
273     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
274     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
275     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
276 
277     uint64_t elr_el[4]; /* AArch64 exception link regs  */
278     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
279 
280     /* System control coprocessor (cp15) */
281     struct {
282         uint32_t c0_cpuid;
283         union { /* Cache size selection */
284             struct {
285                 uint64_t _unused_csselr0;
286                 uint64_t csselr_ns;
287                 uint64_t _unused_csselr1;
288                 uint64_t csselr_s;
289             };
290             uint64_t csselr_el[4];
291         };
292         union { /* System control register. */
293             struct {
294                 uint64_t _unused_sctlr;
295                 uint64_t sctlr_ns;
296                 uint64_t hsctlr;
297                 uint64_t sctlr_s;
298             };
299             uint64_t sctlr_el[4];
300         };
301         uint64_t cpacr_el1; /* Architectural feature access control register */
302         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
303         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
304         uint64_t sder; /* Secure debug enable register. */
305         uint32_t nsacr; /* Non-secure access control register. */
306         union { /* MMU translation table base 0. */
307             struct {
308                 uint64_t _unused_ttbr0_0;
309                 uint64_t ttbr0_ns;
310                 uint64_t _unused_ttbr0_1;
311                 uint64_t ttbr0_s;
312             };
313             uint64_t ttbr0_el[4];
314         };
315         union { /* MMU translation table base 1. */
316             struct {
317                 uint64_t _unused_ttbr1_0;
318                 uint64_t ttbr1_ns;
319                 uint64_t _unused_ttbr1_1;
320                 uint64_t ttbr1_s;
321             };
322             uint64_t ttbr1_el[4];
323         };
324         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
325         /* MMU translation table base control. */
326         TCR tcr_el[4];
327         TCR vtcr_el2; /* Virtualization Translation Control.  */
328         uint32_t c2_data; /* MPU data cacheable bits.  */
329         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
330         union { /* MMU domain access control register
331                  * MPU write buffer control.
332                  */
333             struct {
334                 uint64_t dacr_ns;
335                 uint64_t dacr_s;
336             };
337             struct {
338                 uint64_t dacr32_el2;
339             };
340         };
341         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
343         uint64_t hcr_el2; /* Hypervisor configuration register */
344         uint64_t scr_el3; /* Secure configuration register.  */
345         union { /* Fault status registers.  */
346             struct {
347                 uint64_t ifsr_ns;
348                 uint64_t ifsr_s;
349             };
350             struct {
351                 uint64_t ifsr32_el2;
352             };
353         };
354         union {
355             struct {
356                 uint64_t _unused_dfsr;
357                 uint64_t dfsr_ns;
358                 uint64_t hsr;
359                 uint64_t dfsr_s;
360             };
361             uint64_t esr_el[4];
362         };
363         uint32_t c6_region[8]; /* MPU base/size registers.  */
364         union { /* Fault address registers. */
365             struct {
366                 uint64_t _unused_far0;
367 #ifdef HOST_WORDS_BIGENDIAN
368                 uint32_t ifar_ns;
369                 uint32_t dfar_ns;
370                 uint32_t ifar_s;
371                 uint32_t dfar_s;
372 #else
373                 uint32_t dfar_ns;
374                 uint32_t ifar_ns;
375                 uint32_t dfar_s;
376                 uint32_t ifar_s;
377 #endif
378                 uint64_t _unused_far3;
379             };
380             uint64_t far_el[4];
381         };
382         uint64_t hpfar_el2;
383         uint64_t hstr_el2;
384         union { /* Translation result. */
385             struct {
386                 uint64_t _unused_par_0;
387                 uint64_t par_ns;
388                 uint64_t _unused_par_1;
389                 uint64_t par_s;
390             };
391             uint64_t par_el[4];
392         };
393 
394         uint32_t c9_insn; /* Cache lockdown registers.  */
395         uint32_t c9_data;
396         uint64_t c9_pmcr; /* performance monitor control register */
397         uint64_t c9_pmcnten; /* perf monitor counter enables */
398         uint64_t c9_pmovsr; /* perf monitor overflow status */
399         uint64_t c9_pmuserenr; /* perf monitor user enable */
400         uint64_t c9_pmselr; /* perf monitor counter selection register */
401         uint64_t c9_pminten; /* perf monitor interrupt enables */
402         union { /* Memory attribute redirection */
403             struct {
404 #ifdef HOST_WORDS_BIGENDIAN
405                 uint64_t _unused_mair_0;
406                 uint32_t mair1_ns;
407                 uint32_t mair0_ns;
408                 uint64_t _unused_mair_1;
409                 uint32_t mair1_s;
410                 uint32_t mair0_s;
411 #else
412                 uint64_t _unused_mair_0;
413                 uint32_t mair0_ns;
414                 uint32_t mair1_ns;
415                 uint64_t _unused_mair_1;
416                 uint32_t mair0_s;
417                 uint32_t mair1_s;
418 #endif
419             };
420             uint64_t mair_el[4];
421         };
422         union { /* vector base address register */
423             struct {
424                 uint64_t _unused_vbar;
425                 uint64_t vbar_ns;
426                 uint64_t hvbar;
427                 uint64_t vbar_s;
428             };
429             uint64_t vbar_el[4];
430         };
431         uint32_t mvbar; /* (monitor) vector base address register */
432         struct { /* FCSE PID. */
433             uint32_t fcseidr_ns;
434             uint32_t fcseidr_s;
435         };
436         union { /* Context ID. */
437             struct {
438                 uint64_t _unused_contextidr_0;
439                 uint64_t contextidr_ns;
440                 uint64_t _unused_contextidr_1;
441                 uint64_t contextidr_s;
442             };
443             uint64_t contextidr_el[4];
444         };
445         union { /* User RW Thread register. */
446             struct {
447                 uint64_t tpidrurw_ns;
448                 uint64_t tpidrprw_ns;
449                 uint64_t htpidr;
450                 uint64_t _tpidr_el3;
451             };
452             uint64_t tpidr_el[4];
453         };
454         /* The secure banks of these registers don't map anywhere */
455         uint64_t tpidrurw_s;
456         uint64_t tpidrprw_s;
457         uint64_t tpidruro_s;
458 
459         union { /* User RO Thread register. */
460             uint64_t tpidruro_ns;
461             uint64_t tpidrro_el[1];
462         };
463         uint64_t c14_cntfrq; /* Counter Frequency register */
464         uint64_t c14_cntkctl; /* Timer Control register */
465         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
466         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
467         ARMGenericTimer c14_timer[NUM_GTIMERS];
468         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
469         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
470         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
471         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
472         uint32_t c15_threadid; /* TI debugger thread-ID.  */
473         uint32_t c15_config_base_address; /* SCU base address.  */
474         uint32_t c15_diagnostic; /* diagnostic register */
475         uint32_t c15_power_diagnostic;
476         uint32_t c15_power_control; /* power control */
477         uint64_t dbgbvr[16]; /* breakpoint value registers */
478         uint64_t dbgbcr[16]; /* breakpoint control registers */
479         uint64_t dbgwvr[16]; /* watchpoint value registers */
480         uint64_t dbgwcr[16]; /* watchpoint control registers */
481         uint64_t mdscr_el1;
482         uint64_t oslsr_el1; /* OS Lock Status */
483         uint64_t mdcr_el2;
484         uint64_t mdcr_el3;
485         /* Stores the architectural value of the counter *the last time it was
486          * updated* by pmccntr_op_start. Accesses should always be surrounded
487          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488          * architecturally-correct value is being read/set.
489          */
490         uint64_t c15_ccnt;
491         /* Stores the delta between the architectural value and the underlying
492          * cycle count during normal operation. It is used to update c15_ccnt
493          * to be the correct architectural value before accesses. During
494          * accesses, c15_ccnt_delta contains the underlying count being used
495          * for the access, after which it reverts to the delta value in
496          * pmccntr_op_finish.
497          */
498         uint64_t c15_ccnt_delta;
499         uint64_t c14_pmevcntr[31];
500         uint64_t c14_pmevcntr_delta[31];
501         uint64_t c14_pmevtyper[31];
502         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
503         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
504         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
505         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
506         uint64_t gcr_el1;
507         uint64_t rgsr_el1;
508     } cp15;
509 
510     struct {
511         /* M profile has up to 4 stack pointers:
512          * a Main Stack Pointer and a Process Stack Pointer for each
513          * of the Secure and Non-Secure states. (If the CPU doesn't support
514          * the security extension then it has only two SPs.)
515          * In QEMU we always store the currently active SP in regs[13],
516          * and the non-active SP for the current security state in
517          * v7m.other_sp. The stack pointers for the inactive security state
518          * are stored in other_ss_msp and other_ss_psp.
519          * switch_v7m_security_state() is responsible for rearranging them
520          * when we change security state.
521          */
522         uint32_t other_sp;
523         uint32_t other_ss_msp;
524         uint32_t other_ss_psp;
525         uint32_t vecbase[M_REG_NUM_BANKS];
526         uint32_t basepri[M_REG_NUM_BANKS];
527         uint32_t control[M_REG_NUM_BANKS];
528         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
529         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
530         uint32_t hfsr; /* HardFault Status */
531         uint32_t dfsr; /* Debug Fault Status Register */
532         uint32_t sfsr; /* Secure Fault Status Register */
533         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
534         uint32_t bfar; /* BusFault Address */
535         uint32_t sfar; /* Secure Fault Address Register */
536         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
537         int exception;
538         uint32_t primask[M_REG_NUM_BANKS];
539         uint32_t faultmask[M_REG_NUM_BANKS];
540         uint32_t aircr; /* only holds r/w state if security extn implemented */
541         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
542         uint32_t csselr[M_REG_NUM_BANKS];
543         uint32_t scr[M_REG_NUM_BANKS];
544         uint32_t msplim[M_REG_NUM_BANKS];
545         uint32_t psplim[M_REG_NUM_BANKS];
546         uint32_t fpcar[M_REG_NUM_BANKS];
547         uint32_t fpccr[M_REG_NUM_BANKS];
548         uint32_t fpdscr[M_REG_NUM_BANKS];
549         uint32_t cpacr[M_REG_NUM_BANKS];
550         uint32_t nsacr;
551     } v7m;
552 
553     /* Information associated with an exception about to be taken:
554      * code which raises an exception must set cs->exception_index and
555      * the relevant parts of this structure; the cpu_do_interrupt function
556      * will then set the guest-visible registers as part of the exception
557      * entry process.
558      */
559     struct {
560         uint32_t syndrome; /* AArch64 format syndrome register */
561         uint32_t fsr; /* AArch32 format fault status register info */
562         uint64_t vaddress; /* virtual addr associated with exception, if any */
563         uint32_t target_el; /* EL the exception should be targeted for */
564         /* If we implement EL2 we will also need to store information
565          * about the intermediate physical address for stage 2 faults.
566          */
567     } exception;
568 
569     /* Information associated with an SError */
570     struct {
571         uint8_t pending;
572         uint8_t has_esr;
573         uint64_t esr;
574     } serror;
575 
576     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
577 
578     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
579     uint32_t irq_line_state;
580 
581     /* Thumb-2 EE state.  */
582     uint32_t teecr;
583     uint32_t teehbr;
584 
585     /* VFP coprocessor state.  */
586     struct {
587         ARMVectorReg zregs[32];
588 
589 #ifdef TARGET_AARCH64
590         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
591 #define FFR_PRED_NUM 16
592         ARMPredicateReg pregs[17];
593         /* Scratch space for aa64 sve predicate temporary.  */
594         ARMPredicateReg preg_tmp;
595 #endif
596 
597         /* We store these fpcsr fields separately for convenience.  */
598         uint32_t qc[4] QEMU_ALIGNED(16);
599         int vec_len;
600         int vec_stride;
601 
602         uint32_t xregs[16];
603 
604         /* Scratch space for aa32 neon expansion.  */
605         uint32_t scratch[8];
606 
607         /* There are a number of distinct float control structures:
608          *
609          *  fp_status: is the "normal" fp status.
610          *  fp_status_fp16: used for half-precision calculations
611          *  standard_fp_status : the ARM "Standard FPSCR Value"
612          *  standard_fp_status_fp16 : used for half-precision
613          *       calculations with the ARM "Standard FPSCR Value"
614          *
615          * Half-precision operations are governed by a separate
616          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
617          * status structure to control this.
618          *
619          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
620          * round-to-nearest and is used by any operations (generally
621          * Neon) which the architecture defines as controlled by the
622          * standard FPSCR value rather than the FPSCR.
623          *
624          * The "standard FPSCR but for fp16 ops" is needed because
625          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
626          * using a fixed value for it.
627          *
628          * To avoid having to transfer exception bits around, we simply
629          * say that the FPSCR cumulative exception flags are the logical
630          * OR of the flags in the four fp statuses. This relies on the
631          * only thing which needs to read the exception flags being
632          * an explicit FPSCR read.
633          */
634         float_status fp_status;
635         float_status fp_status_f16;
636         float_status standard_fp_status;
637         float_status standard_fp_status_f16;
638 
639         /* ZCR_EL[1-3] */
640         uint64_t zcr_el[4];
641     } vfp;
642     uint64_t exclusive_addr;
643     uint64_t exclusive_val;
644     uint64_t exclusive_high;
645 
646     /* iwMMXt coprocessor state.  */
647     struct {
648         uint64_t regs[16];
649         uint64_t val;
650 
651         uint32_t cregs[16];
652     } iwmmxt;
653 
654 #ifdef TARGET_AARCH64
655     struct {
656         ARMPACKey apia;
657         ARMPACKey apib;
658         ARMPACKey apda;
659         ARMPACKey apdb;
660         ARMPACKey apga;
661     } keys;
662 #endif
663 
664 #if defined(CONFIG_USER_ONLY)
665     /* For usermode syscall translation.  */
666     int eabi;
667 #endif
668 
669     struct CPUBreakpoint *cpu_breakpoint[16];
670     struct CPUWatchpoint *cpu_watchpoint[16];
671 
672     /* Fields up to this point are cleared by a CPU reset */
673     struct {} end_reset_fields;
674 
675     /* Fields after this point are preserved across CPU reset. */
676 
677     /* Internal CPU feature flags.  */
678     uint64_t features;
679 
680     /* PMSAv7 MPU */
681     struct {
682         uint32_t *drbar;
683         uint32_t *drsr;
684         uint32_t *dracr;
685         uint32_t rnr[M_REG_NUM_BANKS];
686     } pmsav7;
687 
688     /* PMSAv8 MPU */
689     struct {
690         /* The PMSAv8 implementation also shares some PMSAv7 config
691          * and state:
692          *  pmsav7.rnr (region number register)
693          *  pmsav7_dregion (number of configured regions)
694          */
695         uint32_t *rbar[M_REG_NUM_BANKS];
696         uint32_t *rlar[M_REG_NUM_BANKS];
697         uint32_t mair0[M_REG_NUM_BANKS];
698         uint32_t mair1[M_REG_NUM_BANKS];
699     } pmsav8;
700 
701     /* v8M SAU */
702     struct {
703         uint32_t *rbar;
704         uint32_t *rlar;
705         uint32_t rnr;
706         uint32_t ctrl;
707     } sau;
708 
709     void *nvic;
710     const struct arm_boot_info *boot_info;
711     /* Store GICv3CPUState to access from this struct */
712     void *gicv3state;
713 } CPUARMState;
714 
715 static inline void set_feature(CPUARMState *env, int feature)
716 {
717     env->features |= 1ULL << feature;
718 }
719 
720 static inline void unset_feature(CPUARMState *env, int feature)
721 {
722     env->features &= ~(1ULL << feature);
723 }
724 
725 /**
726  * ARMELChangeHookFn:
727  * type of a function which can be registered via arm_register_el_change_hook()
728  * to get callbacks when the CPU changes its exception level or mode.
729  */
730 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
731 typedef struct ARMELChangeHook ARMELChangeHook;
732 struct ARMELChangeHook {
733     ARMELChangeHookFn *hook;
734     void *opaque;
735     QLIST_ENTRY(ARMELChangeHook) node;
736 };
737 
738 /* These values map onto the return values for
739  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
740 typedef enum ARMPSCIState {
741     PSCI_ON = 0,
742     PSCI_OFF = 1,
743     PSCI_ON_PENDING = 2
744 } ARMPSCIState;
745 
746 typedef struct ARMISARegisters ARMISARegisters;
747 
748 /**
749  * ARMCPU:
750  * @env: #CPUARMState
751  *
752  * An ARM CPU core.
753  */
754 struct ARMCPU {
755     /*< private >*/
756     CPUState parent_obj;
757     /*< public >*/
758 
759     CPUNegativeOffsetState neg;
760     CPUARMState env;
761 
762     /* Coprocessor information */
763     GHashTable *cp_regs;
764     /* For marshalling (mostly coprocessor) register state between the
765      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
766      * we use these arrays.
767      */
768     /* List of register indexes managed via these arrays; (full KVM style
769      * 64 bit indexes, not CPRegInfo 32 bit indexes)
770      */
771     uint64_t *cpreg_indexes;
772     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
773     uint64_t *cpreg_values;
774     /* Length of the indexes, values, reset_values arrays */
775     int32_t cpreg_array_len;
776     /* These are used only for migration: incoming data arrives in
777      * these fields and is sanity checked in post_load before copying
778      * to the working data structures above.
779      */
780     uint64_t *cpreg_vmstate_indexes;
781     uint64_t *cpreg_vmstate_values;
782     int32_t cpreg_vmstate_array_len;
783 
784     DynamicGDBXMLInfo dyn_sysreg_xml;
785     DynamicGDBXMLInfo dyn_svereg_xml;
786 
787     /* Timers used by the generic (architected) timer */
788     QEMUTimer *gt_timer[NUM_GTIMERS];
789     /*
790      * Timer used by the PMU. Its state is restored after migration by
791      * pmu_op_finish() - it does not need other handling during migration
792      */
793     QEMUTimer *pmu_timer;
794     /* GPIO outputs for generic timer */
795     qemu_irq gt_timer_outputs[NUM_GTIMERS];
796     /* GPIO output for GICv3 maintenance interrupt signal */
797     qemu_irq gicv3_maintenance_interrupt;
798     /* GPIO output for the PMU interrupt */
799     qemu_irq pmu_interrupt;
800 
801     /* MemoryRegion to use for secure physical accesses */
802     MemoryRegion *secure_memory;
803 
804     /* MemoryRegion to use for allocation tag accesses */
805     MemoryRegion *tag_memory;
806     MemoryRegion *secure_tag_memory;
807 
808     /* For v8M, pointer to the IDAU interface provided by board/SoC */
809     Object *idau;
810 
811     /* 'compatible' string for this CPU for Linux device trees */
812     const char *dtb_compatible;
813 
814     /* PSCI version for this CPU
815      * Bits[31:16] = Major Version
816      * Bits[15:0] = Minor Version
817      */
818     uint32_t psci_version;
819 
820     /* Should CPU start in PSCI powered-off state? */
821     bool start_powered_off;
822 
823     /* Current power state, access guarded by BQL */
824     ARMPSCIState power_state;
825 
826     /* CPU has virtualization extension */
827     bool has_el2;
828     /* CPU has security extension */
829     bool has_el3;
830     /* CPU has PMU (Performance Monitor Unit) */
831     bool has_pmu;
832     /* CPU has VFP */
833     bool has_vfp;
834     /* CPU has Neon */
835     bool has_neon;
836     /* CPU has M-profile DSP extension */
837     bool has_dsp;
838 
839     /* CPU has memory protection unit */
840     bool has_mpu;
841     /* PMSAv7 MPU number of supported regions */
842     uint32_t pmsav7_dregion;
843     /* v8M SAU number of supported regions */
844     uint32_t sau_sregion;
845 
846     /* PSCI conduit used to invoke PSCI methods
847      * 0 - disabled, 1 - smc, 2 - hvc
848      */
849     uint32_t psci_conduit;
850 
851     /* For v8M, initial value of the Secure VTOR */
852     uint32_t init_svtor;
853 
854     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
855      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
856      */
857     uint32_t kvm_target;
858 
859     /* KVM init features for this CPU */
860     uint32_t kvm_init_features[7];
861 
862     /* KVM CPU state */
863 
864     /* KVM virtual time adjustment */
865     bool kvm_adjvtime;
866     bool kvm_vtime_dirty;
867     uint64_t kvm_vtime;
868 
869     /* Uniprocessor system with MP extensions */
870     bool mp_is_up;
871 
872     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
873      * and the probe failed (so we need to report the error in realize)
874      */
875     bool host_cpu_probe_failed;
876 
877     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
878      * register.
879      */
880     int32_t core_count;
881 
882     /* The instance init functions for implementation-specific subclasses
883      * set these fields to specify the implementation-dependent values of
884      * various constant registers and reset values of non-constant
885      * registers.
886      * Some of these might become QOM properties eventually.
887      * Field names match the official register names as defined in the
888      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
889      * is used for reset values of non-constant registers; no reset_
890      * prefix means a constant register.
891      * Some of these registers are split out into a substructure that
892      * is shared with the translators to control the ISA.
893      *
894      * Note that if you add an ID register to the ARMISARegisters struct
895      * you need to also update the 32-bit and 64-bit versions of the
896      * kvm_arm_get_host_cpu_features() function to correctly populate the
897      * field by reading the value from the KVM vCPU.
898      */
899     struct ARMISARegisters {
900         uint32_t id_isar0;
901         uint32_t id_isar1;
902         uint32_t id_isar2;
903         uint32_t id_isar3;
904         uint32_t id_isar4;
905         uint32_t id_isar5;
906         uint32_t id_isar6;
907         uint32_t id_mmfr0;
908         uint32_t id_mmfr1;
909         uint32_t id_mmfr2;
910         uint32_t id_mmfr3;
911         uint32_t id_mmfr4;
912         uint32_t mvfr0;
913         uint32_t mvfr1;
914         uint32_t mvfr2;
915         uint32_t id_dfr0;
916         uint32_t dbgdidr;
917         uint64_t id_aa64isar0;
918         uint64_t id_aa64isar1;
919         uint64_t id_aa64pfr0;
920         uint64_t id_aa64pfr1;
921         uint64_t id_aa64mmfr0;
922         uint64_t id_aa64mmfr1;
923         uint64_t id_aa64mmfr2;
924         uint64_t id_aa64dfr0;
925         uint64_t id_aa64dfr1;
926     } isar;
927     uint64_t midr;
928     uint32_t revidr;
929     uint32_t reset_fpsid;
930     uint32_t ctr;
931     uint32_t reset_sctlr;
932     uint32_t id_pfr0;
933     uint32_t id_pfr1;
934     uint64_t pmceid0;
935     uint64_t pmceid1;
936     uint32_t id_afr0;
937     uint64_t id_aa64afr0;
938     uint64_t id_aa64afr1;
939     uint32_t clidr;
940     uint64_t mp_affinity; /* MP ID without feature bits */
941     /* The elements of this array are the CCSIDR values for each cache,
942      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
943      */
944     uint64_t ccsidr[16];
945     uint64_t reset_cbar;
946     uint32_t reset_auxcr;
947     bool reset_hivecs;
948     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
949     uint32_t dcz_blocksize;
950     uint64_t rvbar;
951 
952     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
953     int gic_num_lrs; /* number of list registers */
954     int gic_vpribits; /* number of virtual priority bits */
955     int gic_vprebits; /* number of virtual preemption bits */
956 
957     /* Whether the cfgend input is high (i.e. this CPU should reset into
958      * big-endian mode).  This setting isn't used directly: instead it modifies
959      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
960      * architecture version.
961      */
962     bool cfgend;
963 
964     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
965     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
966 
967     int32_t node_id; /* NUMA node this CPU belongs to */
968 
969     /* Used to synchronize KVM and QEMU in-kernel device levels */
970     uint8_t device_irq_level;
971 
972     /* Used to set the maximum vector length the cpu will support.  */
973     uint32_t sve_max_vq;
974 
975     /*
976      * In sve_vq_map each set bit is a supported vector length of
977      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
978      * length in quadwords.
979      *
980      * While processing properties during initialization, corresponding
981      * sve_vq_init bits are set for bits in sve_vq_map that have been
982      * set by properties.
983      */
984     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
985     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
986 
987     /* Generic timer counter frequency, in Hz */
988     uint64_t gt_cntfrq_hz;
989 };
990 
991 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
992 
993 void arm_cpu_post_init(Object *obj);
994 
995 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
996 
997 #ifndef CONFIG_USER_ONLY
998 extern const VMStateDescription vmstate_arm_cpu;
999 #endif
1000 
1001 void arm_cpu_do_interrupt(CPUState *cpu);
1002 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1003 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1004 
1005 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1006                                          MemTxAttrs *attrs);
1007 
1008 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1009 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1010 
1011 /*
1012  * Helpers to dynamically generates XML descriptions of the sysregs
1013  * and SVE registers. Returns the number of registers in each set.
1014  */
1015 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1016 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1017 
1018 /* Returns the dynamically generated XML for the gdb stub.
1019  * Returns a pointer to the XML contents for the specified XML file or NULL
1020  * if the XML name doesn't match the predefined one.
1021  */
1022 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1023 
1024 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1025                              int cpuid, void *opaque);
1026 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1027                              int cpuid, void *opaque);
1028 
1029 #ifdef TARGET_AARCH64
1030 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1031 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1032 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1033 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1034                            int new_el, bool el0_a64);
1035 void aarch64_add_sve_properties(Object *obj);
1036 
1037 /*
1038  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1039  * The byte at offset i from the start of the in-memory representation contains
1040  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1041  * lowest offsets are stored in the lowest memory addresses, then that nearly
1042  * matches QEMU's representation, which is to use an array of host-endian
1043  * uint64_t's, where the lower offsets are at the lower indices. To complete
1044  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1045  */
1046 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1047 {
1048 #ifdef HOST_WORDS_BIGENDIAN
1049     int i;
1050 
1051     for (i = 0; i < nr; ++i) {
1052         dst[i] = bswap64(src[i]);
1053     }
1054 
1055     return dst;
1056 #else
1057     return src;
1058 #endif
1059 }
1060 
1061 #else
1062 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1063 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1064                                          int n, bool a)
1065 { }
1066 static inline void aarch64_add_sve_properties(Object *obj) { }
1067 #endif
1068 
1069 #if !defined(CONFIG_TCG)
1070 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1071 {
1072     g_assert_not_reached();
1073 }
1074 #else
1075 target_ulong do_arm_semihosting(CPUARMState *env);
1076 #endif
1077 void aarch64_sync_32_to_64(CPUARMState *env);
1078 void aarch64_sync_64_to_32(CPUARMState *env);
1079 
1080 int fp_exception_el(CPUARMState *env, int cur_el);
1081 int sve_exception_el(CPUARMState *env, int cur_el);
1082 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1083 
1084 static inline bool is_a64(CPUARMState *env)
1085 {
1086     return env->aarch64;
1087 }
1088 
1089 /* you can call this signal handler from your SIGBUS and SIGSEGV
1090    signal handlers to inform the virtual CPU of exceptions. non zero
1091    is returned if the signal was handled by the virtual CPU.  */
1092 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1093                            void *puc);
1094 
1095 /**
1096  * pmu_op_start/finish
1097  * @env: CPUARMState
1098  *
1099  * Convert all PMU counters between their delta form (the typical mode when
1100  * they are enabled) and the guest-visible values. These two calls must
1101  * surround any action which might affect the counters.
1102  */
1103 void pmu_op_start(CPUARMState *env);
1104 void pmu_op_finish(CPUARMState *env);
1105 
1106 /*
1107  * Called when a PMU counter is due to overflow
1108  */
1109 void arm_pmu_timer_cb(void *opaque);
1110 
1111 /**
1112  * Functions to register as EL change hooks for PMU mode filtering
1113  */
1114 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1115 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1116 
1117 /*
1118  * pmu_init
1119  * @cpu: ARMCPU
1120  *
1121  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1122  * for the current configuration
1123  */
1124 void pmu_init(ARMCPU *cpu);
1125 
1126 /* SCTLR bit meanings. Several bits have been reused in newer
1127  * versions of the architecture; in that case we define constants
1128  * for both old and new bit meanings. Code which tests against those
1129  * bits should probably check or otherwise arrange that the CPU
1130  * is the architectural version it expects.
1131  */
1132 #define SCTLR_M       (1U << 0)
1133 #define SCTLR_A       (1U << 1)
1134 #define SCTLR_C       (1U << 2)
1135 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1136 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1137 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1138 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1139 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1140 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1141 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1142 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1143 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1144 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1145 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1146 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1147 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1148 #define SCTLR_SED     (1U << 8) /* v8 onward */
1149 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1150 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1151 #define SCTLR_F       (1U << 10) /* up to v6 */
1152 #define SCTLR_SW      (1U << 10) /* v7 */
1153 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1154 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1155 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1156 #define SCTLR_I       (1U << 12)
1157 #define SCTLR_V       (1U << 13) /* AArch32 only */
1158 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1159 #define SCTLR_RR      (1U << 14) /* up to v7 */
1160 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1161 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1162 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1163 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1164 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1165 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1166 #define SCTLR_BR      (1U << 17) /* PMSA only */
1167 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1168 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1169 #define SCTLR_WXN     (1U << 19)
1170 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1171 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1172 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1173 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1174 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1175 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1176 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1177 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1178 #define SCTLR_VE      (1U << 24) /* up to v7 */
1179 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1180 #define SCTLR_EE      (1U << 25)
1181 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1182 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1183 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1184 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1185 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1186 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1187 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1188 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1189 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1190 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1191 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1192 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1193 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1194 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1195 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1196 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1197 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1198 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1199 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1200 
1201 #define CPTR_TCPAC    (1U << 31)
1202 #define CPTR_TTA      (1U << 20)
1203 #define CPTR_TFP      (1U << 10)
1204 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1205 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1206 
1207 #define MDCR_EPMAD    (1U << 21)
1208 #define MDCR_EDAD     (1U << 20)
1209 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1210 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1211 #define MDCR_SDD      (1U << 16)
1212 #define MDCR_SPD      (3U << 14)
1213 #define MDCR_TDRA     (1U << 11)
1214 #define MDCR_TDOSA    (1U << 10)
1215 #define MDCR_TDA      (1U << 9)
1216 #define MDCR_TDE      (1U << 8)
1217 #define MDCR_HPME     (1U << 7)
1218 #define MDCR_TPM      (1U << 6)
1219 #define MDCR_TPMCR    (1U << 5)
1220 #define MDCR_HPMN     (0x1fU)
1221 
1222 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1223 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1224 
1225 #define CPSR_M (0x1fU)
1226 #define CPSR_T (1U << 5)
1227 #define CPSR_F (1U << 6)
1228 #define CPSR_I (1U << 7)
1229 #define CPSR_A (1U << 8)
1230 #define CPSR_E (1U << 9)
1231 #define CPSR_IT_2_7 (0xfc00U)
1232 #define CPSR_GE (0xfU << 16)
1233 #define CPSR_IL (1U << 20)
1234 #define CPSR_PAN (1U << 22)
1235 #define CPSR_J (1U << 24)
1236 #define CPSR_IT_0_1 (3U << 25)
1237 #define CPSR_Q (1U << 27)
1238 #define CPSR_V (1U << 28)
1239 #define CPSR_C (1U << 29)
1240 #define CPSR_Z (1U << 30)
1241 #define CPSR_N (1U << 31)
1242 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1243 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1244 
1245 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1246 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1247     | CPSR_NZCV)
1248 /* Bits writable in user mode.  */
1249 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1250 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1251 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1252 
1253 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1254 #define XPSR_EXCP 0x1ffU
1255 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1256 #define XPSR_IT_2_7 CPSR_IT_2_7
1257 #define XPSR_GE CPSR_GE
1258 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1259 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1260 #define XPSR_IT_0_1 CPSR_IT_0_1
1261 #define XPSR_Q CPSR_Q
1262 #define XPSR_V CPSR_V
1263 #define XPSR_C CPSR_C
1264 #define XPSR_Z CPSR_Z
1265 #define XPSR_N CPSR_N
1266 #define XPSR_NZCV CPSR_NZCV
1267 #define XPSR_IT CPSR_IT
1268 
1269 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1270 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1271 #define TTBCR_PD0    (1U << 4)
1272 #define TTBCR_PD1    (1U << 5)
1273 #define TTBCR_EPD0   (1U << 7)
1274 #define TTBCR_IRGN0  (3U << 8)
1275 #define TTBCR_ORGN0  (3U << 10)
1276 #define TTBCR_SH0    (3U << 12)
1277 #define TTBCR_T1SZ   (3U << 16)
1278 #define TTBCR_A1     (1U << 22)
1279 #define TTBCR_EPD1   (1U << 23)
1280 #define TTBCR_IRGN1  (3U << 24)
1281 #define TTBCR_ORGN1  (3U << 26)
1282 #define TTBCR_SH1    (1U << 28)
1283 #define TTBCR_EAE    (1U << 31)
1284 
1285 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1286  * Only these are valid when in AArch64 mode; in
1287  * AArch32 mode SPSRs are basically CPSR-format.
1288  */
1289 #define PSTATE_SP (1U)
1290 #define PSTATE_M (0xFU)
1291 #define PSTATE_nRW (1U << 4)
1292 #define PSTATE_F (1U << 6)
1293 #define PSTATE_I (1U << 7)
1294 #define PSTATE_A (1U << 8)
1295 #define PSTATE_D (1U << 9)
1296 #define PSTATE_BTYPE (3U << 10)
1297 #define PSTATE_IL (1U << 20)
1298 #define PSTATE_SS (1U << 21)
1299 #define PSTATE_PAN (1U << 22)
1300 #define PSTATE_UAO (1U << 23)
1301 #define PSTATE_TCO (1U << 25)
1302 #define PSTATE_V (1U << 28)
1303 #define PSTATE_C (1U << 29)
1304 #define PSTATE_Z (1U << 30)
1305 #define PSTATE_N (1U << 31)
1306 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1307 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1308 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1309 /* Mode values for AArch64 */
1310 #define PSTATE_MODE_EL3h 13
1311 #define PSTATE_MODE_EL3t 12
1312 #define PSTATE_MODE_EL2h 9
1313 #define PSTATE_MODE_EL2t 8
1314 #define PSTATE_MODE_EL1h 5
1315 #define PSTATE_MODE_EL1t 4
1316 #define PSTATE_MODE_EL0t 0
1317 
1318 /* Write a new value to v7m.exception, thus transitioning into or out
1319  * of Handler mode; this may result in a change of active stack pointer.
1320  */
1321 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1322 
1323 /* Map EL and handler into a PSTATE_MODE.  */
1324 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1325 {
1326     return (el << 2) | handler;
1327 }
1328 
1329 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1330  * interprocessing, so we don't attempt to sync with the cpsr state used by
1331  * the 32 bit decoder.
1332  */
1333 static inline uint32_t pstate_read(CPUARMState *env)
1334 {
1335     int ZF;
1336 
1337     ZF = (env->ZF == 0);
1338     return (env->NF & 0x80000000) | (ZF << 30)
1339         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1340         | env->pstate | env->daif | (env->btype << 10);
1341 }
1342 
1343 static inline void pstate_write(CPUARMState *env, uint32_t val)
1344 {
1345     env->ZF = (~val) & PSTATE_Z;
1346     env->NF = val;
1347     env->CF = (val >> 29) & 1;
1348     env->VF = (val << 3) & 0x80000000;
1349     env->daif = val & PSTATE_DAIF;
1350     env->btype = (val >> 10) & 3;
1351     env->pstate = val & ~CACHED_PSTATE_BITS;
1352 }
1353 
1354 /* Return the current CPSR value.  */
1355 uint32_t cpsr_read(CPUARMState *env);
1356 
1357 typedef enum CPSRWriteType {
1358     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1359     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1360     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1361     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1362 } CPSRWriteType;
1363 
1364 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1365 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1366                 CPSRWriteType write_type);
1367 
1368 /* Return the current xPSR value.  */
1369 static inline uint32_t xpsr_read(CPUARMState *env)
1370 {
1371     int ZF;
1372     ZF = (env->ZF == 0);
1373     return (env->NF & 0x80000000) | (ZF << 30)
1374         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1375         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1376         | ((env->condexec_bits & 0xfc) << 8)
1377         | (env->GE << 16)
1378         | env->v7m.exception;
1379 }
1380 
1381 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1382 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1383 {
1384     if (mask & XPSR_NZCV) {
1385         env->ZF = (~val) & XPSR_Z;
1386         env->NF = val;
1387         env->CF = (val >> 29) & 1;
1388         env->VF = (val << 3) & 0x80000000;
1389     }
1390     if (mask & XPSR_Q) {
1391         env->QF = ((val & XPSR_Q) != 0);
1392     }
1393     if (mask & XPSR_GE) {
1394         env->GE = (val & XPSR_GE) >> 16;
1395     }
1396 #ifndef CONFIG_USER_ONLY
1397     if (mask & XPSR_T) {
1398         env->thumb = ((val & XPSR_T) != 0);
1399     }
1400     if (mask & XPSR_IT_0_1) {
1401         env->condexec_bits &= ~3;
1402         env->condexec_bits |= (val >> 25) & 3;
1403     }
1404     if (mask & XPSR_IT_2_7) {
1405         env->condexec_bits &= 3;
1406         env->condexec_bits |= (val >> 8) & 0xfc;
1407     }
1408     if (mask & XPSR_EXCP) {
1409         /* Note that this only happens on exception exit */
1410         write_v7m_exception(env, val & XPSR_EXCP);
1411     }
1412 #endif
1413 }
1414 
1415 #define HCR_VM        (1ULL << 0)
1416 #define HCR_SWIO      (1ULL << 1)
1417 #define HCR_PTW       (1ULL << 2)
1418 #define HCR_FMO       (1ULL << 3)
1419 #define HCR_IMO       (1ULL << 4)
1420 #define HCR_AMO       (1ULL << 5)
1421 #define HCR_VF        (1ULL << 6)
1422 #define HCR_VI        (1ULL << 7)
1423 #define HCR_VSE       (1ULL << 8)
1424 #define HCR_FB        (1ULL << 9)
1425 #define HCR_BSU_MASK  (3ULL << 10)
1426 #define HCR_DC        (1ULL << 12)
1427 #define HCR_TWI       (1ULL << 13)
1428 #define HCR_TWE       (1ULL << 14)
1429 #define HCR_TID0      (1ULL << 15)
1430 #define HCR_TID1      (1ULL << 16)
1431 #define HCR_TID2      (1ULL << 17)
1432 #define HCR_TID3      (1ULL << 18)
1433 #define HCR_TSC       (1ULL << 19)
1434 #define HCR_TIDCP     (1ULL << 20)
1435 #define HCR_TACR      (1ULL << 21)
1436 #define HCR_TSW       (1ULL << 22)
1437 #define HCR_TPCP      (1ULL << 23)
1438 #define HCR_TPU       (1ULL << 24)
1439 #define HCR_TTLB      (1ULL << 25)
1440 #define HCR_TVM       (1ULL << 26)
1441 #define HCR_TGE       (1ULL << 27)
1442 #define HCR_TDZ       (1ULL << 28)
1443 #define HCR_HCD       (1ULL << 29)
1444 #define HCR_TRVM      (1ULL << 30)
1445 #define HCR_RW        (1ULL << 31)
1446 #define HCR_CD        (1ULL << 32)
1447 #define HCR_ID        (1ULL << 33)
1448 #define HCR_E2H       (1ULL << 34)
1449 #define HCR_TLOR      (1ULL << 35)
1450 #define HCR_TERR      (1ULL << 36)
1451 #define HCR_TEA       (1ULL << 37)
1452 #define HCR_MIOCNCE   (1ULL << 38)
1453 /* RES0 bit 39 */
1454 #define HCR_APK       (1ULL << 40)
1455 #define HCR_API       (1ULL << 41)
1456 #define HCR_NV        (1ULL << 42)
1457 #define HCR_NV1       (1ULL << 43)
1458 #define HCR_AT        (1ULL << 44)
1459 #define HCR_NV2       (1ULL << 45)
1460 #define HCR_FWB       (1ULL << 46)
1461 #define HCR_FIEN      (1ULL << 47)
1462 /* RES0 bit 48 */
1463 #define HCR_TID4      (1ULL << 49)
1464 #define HCR_TICAB     (1ULL << 50)
1465 #define HCR_AMVOFFEN  (1ULL << 51)
1466 #define HCR_TOCU      (1ULL << 52)
1467 #define HCR_ENSCXT    (1ULL << 53)
1468 #define HCR_TTLBIS    (1ULL << 54)
1469 #define HCR_TTLBOS    (1ULL << 55)
1470 #define HCR_ATA       (1ULL << 56)
1471 #define HCR_DCT       (1ULL << 57)
1472 #define HCR_TID5      (1ULL << 58)
1473 #define HCR_TWEDEN    (1ULL << 59)
1474 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1475 
1476 #define SCR_NS                (1U << 0)
1477 #define SCR_IRQ               (1U << 1)
1478 #define SCR_FIQ               (1U << 2)
1479 #define SCR_EA                (1U << 3)
1480 #define SCR_FW                (1U << 4)
1481 #define SCR_AW                (1U << 5)
1482 #define SCR_NET               (1U << 6)
1483 #define SCR_SMD               (1U << 7)
1484 #define SCR_HCE               (1U << 8)
1485 #define SCR_SIF               (1U << 9)
1486 #define SCR_RW                (1U << 10)
1487 #define SCR_ST                (1U << 11)
1488 #define SCR_TWI               (1U << 12)
1489 #define SCR_TWE               (1U << 13)
1490 #define SCR_TLOR              (1U << 14)
1491 #define SCR_TERR              (1U << 15)
1492 #define SCR_APK               (1U << 16)
1493 #define SCR_API               (1U << 17)
1494 #define SCR_EEL2              (1U << 18)
1495 #define SCR_EASE              (1U << 19)
1496 #define SCR_NMEA              (1U << 20)
1497 #define SCR_FIEN              (1U << 21)
1498 #define SCR_ENSCXT            (1U << 25)
1499 #define SCR_ATA               (1U << 26)
1500 
1501 /* Return the current FPSCR value.  */
1502 uint32_t vfp_get_fpscr(CPUARMState *env);
1503 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1504 
1505 /* FPCR, Floating Point Control Register
1506  * FPSR, Floating Poiht Status Register
1507  *
1508  * For A64 the FPSCR is split into two logically distinct registers,
1509  * FPCR and FPSR. However since they still use non-overlapping bits
1510  * we store the underlying state in fpscr and just mask on read/write.
1511  */
1512 #define FPSR_MASK 0xf800009f
1513 #define FPCR_MASK 0x07ff9f00
1514 
1515 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1516 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1517 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1518 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1519 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1520 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1521 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1522 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1523 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1524 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1525 
1526 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1527 {
1528     return vfp_get_fpscr(env) & FPSR_MASK;
1529 }
1530 
1531 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1532 {
1533     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1534     vfp_set_fpscr(env, new_fpscr);
1535 }
1536 
1537 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1538 {
1539     return vfp_get_fpscr(env) & FPCR_MASK;
1540 }
1541 
1542 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1543 {
1544     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1545     vfp_set_fpscr(env, new_fpscr);
1546 }
1547 
1548 enum arm_cpu_mode {
1549   ARM_CPU_MODE_USR = 0x10,
1550   ARM_CPU_MODE_FIQ = 0x11,
1551   ARM_CPU_MODE_IRQ = 0x12,
1552   ARM_CPU_MODE_SVC = 0x13,
1553   ARM_CPU_MODE_MON = 0x16,
1554   ARM_CPU_MODE_ABT = 0x17,
1555   ARM_CPU_MODE_HYP = 0x1a,
1556   ARM_CPU_MODE_UND = 0x1b,
1557   ARM_CPU_MODE_SYS = 0x1f
1558 };
1559 
1560 /* VFP system registers.  */
1561 #define ARM_VFP_FPSID   0
1562 #define ARM_VFP_FPSCR   1
1563 #define ARM_VFP_MVFR2   5
1564 #define ARM_VFP_MVFR1   6
1565 #define ARM_VFP_MVFR0   7
1566 #define ARM_VFP_FPEXC   8
1567 #define ARM_VFP_FPINST  9
1568 #define ARM_VFP_FPINST2 10
1569 
1570 /* iwMMXt coprocessor control registers.  */
1571 #define ARM_IWMMXT_wCID  0
1572 #define ARM_IWMMXT_wCon  1
1573 #define ARM_IWMMXT_wCSSF 2
1574 #define ARM_IWMMXT_wCASF 3
1575 #define ARM_IWMMXT_wCGR0 8
1576 #define ARM_IWMMXT_wCGR1 9
1577 #define ARM_IWMMXT_wCGR2 10
1578 #define ARM_IWMMXT_wCGR3 11
1579 
1580 /* V7M CCR bits */
1581 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1582 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1583 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1584 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1585 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1586 FIELD(V7M_CCR, STKALIGN, 9, 1)
1587 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1588 FIELD(V7M_CCR, DC, 16, 1)
1589 FIELD(V7M_CCR, IC, 17, 1)
1590 FIELD(V7M_CCR, BP, 18, 1)
1591 
1592 /* V7M SCR bits */
1593 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1594 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1595 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1596 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1597 
1598 /* V7M AIRCR bits */
1599 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1600 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1601 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1602 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1603 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1604 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1605 FIELD(V7M_AIRCR, PRIS, 14, 1)
1606 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1607 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1608 
1609 /* V7M CFSR bits for MMFSR */
1610 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1611 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1612 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1613 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1614 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1615 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1616 
1617 /* V7M CFSR bits for BFSR */
1618 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1619 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1620 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1621 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1622 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1623 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1624 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1625 
1626 /* V7M CFSR bits for UFSR */
1627 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1628 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1629 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1630 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1631 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1632 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1633 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1634 
1635 /* V7M CFSR bit masks covering all of the subregister bits */
1636 FIELD(V7M_CFSR, MMFSR, 0, 8)
1637 FIELD(V7M_CFSR, BFSR, 8, 8)
1638 FIELD(V7M_CFSR, UFSR, 16, 16)
1639 
1640 /* V7M HFSR bits */
1641 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1642 FIELD(V7M_HFSR, FORCED, 30, 1)
1643 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1644 
1645 /* V7M DFSR bits */
1646 FIELD(V7M_DFSR, HALTED, 0, 1)
1647 FIELD(V7M_DFSR, BKPT, 1, 1)
1648 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1649 FIELD(V7M_DFSR, VCATCH, 3, 1)
1650 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1651 
1652 /* V7M SFSR bits */
1653 FIELD(V7M_SFSR, INVEP, 0, 1)
1654 FIELD(V7M_SFSR, INVIS, 1, 1)
1655 FIELD(V7M_SFSR, INVER, 2, 1)
1656 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1657 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1658 FIELD(V7M_SFSR, LSPERR, 5, 1)
1659 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1660 FIELD(V7M_SFSR, LSERR, 7, 1)
1661 
1662 /* v7M MPU_CTRL bits */
1663 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1664 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1665 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1666 
1667 /* v7M CLIDR bits */
1668 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1669 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1670 FIELD(V7M_CLIDR, LOC, 24, 3)
1671 FIELD(V7M_CLIDR, LOUU, 27, 3)
1672 FIELD(V7M_CLIDR, ICB, 30, 2)
1673 
1674 FIELD(V7M_CSSELR, IND, 0, 1)
1675 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1676 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1677  * define a mask for this and check that it doesn't permit running off
1678  * the end of the array.
1679  */
1680 FIELD(V7M_CSSELR, INDEX, 0, 4)
1681 
1682 /* v7M FPCCR bits */
1683 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1684 FIELD(V7M_FPCCR, USER, 1, 1)
1685 FIELD(V7M_FPCCR, S, 2, 1)
1686 FIELD(V7M_FPCCR, THREAD, 3, 1)
1687 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1688 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1689 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1690 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1691 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1692 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1693 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1694 FIELD(V7M_FPCCR, RES0, 11, 15)
1695 FIELD(V7M_FPCCR, TS, 26, 1)
1696 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1697 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1698 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1699 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1700 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1701 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1702 #define R_V7M_FPCCR_BANKED_MASK                 \
1703     (R_V7M_FPCCR_LSPACT_MASK |                  \
1704      R_V7M_FPCCR_USER_MASK |                    \
1705      R_V7M_FPCCR_THREAD_MASK |                  \
1706      R_V7M_FPCCR_MMRDY_MASK |                   \
1707      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1708      R_V7M_FPCCR_UFRDY_MASK |                   \
1709      R_V7M_FPCCR_ASPEN_MASK)
1710 
1711 /*
1712  * System register ID fields.
1713  */
1714 FIELD(MIDR_EL1, REVISION, 0, 4)
1715 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1716 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1717 FIELD(MIDR_EL1, VARIANT, 20, 4)
1718 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1719 
1720 FIELD(ID_ISAR0, SWAP, 0, 4)
1721 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1722 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1723 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1724 FIELD(ID_ISAR0, COPROC, 16, 4)
1725 FIELD(ID_ISAR0, DEBUG, 20, 4)
1726 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1727 
1728 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1729 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1730 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1731 FIELD(ID_ISAR1, EXTEND, 12, 4)
1732 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1733 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1734 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1735 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1736 
1737 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1738 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1739 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1740 FIELD(ID_ISAR2, MULT, 12, 4)
1741 FIELD(ID_ISAR2, MULTS, 16, 4)
1742 FIELD(ID_ISAR2, MULTU, 20, 4)
1743 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1744 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1745 
1746 FIELD(ID_ISAR3, SATURATE, 0, 4)
1747 FIELD(ID_ISAR3, SIMD, 4, 4)
1748 FIELD(ID_ISAR3, SVC, 8, 4)
1749 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1750 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1751 FIELD(ID_ISAR3, T32COPY, 20, 4)
1752 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1753 FIELD(ID_ISAR3, T32EE, 28, 4)
1754 
1755 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1756 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1757 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1758 FIELD(ID_ISAR4, SMC, 12, 4)
1759 FIELD(ID_ISAR4, BARRIER, 16, 4)
1760 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1761 FIELD(ID_ISAR4, PSR_M, 24, 4)
1762 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1763 
1764 FIELD(ID_ISAR5, SEVL, 0, 4)
1765 FIELD(ID_ISAR5, AES, 4, 4)
1766 FIELD(ID_ISAR5, SHA1, 8, 4)
1767 FIELD(ID_ISAR5, SHA2, 12, 4)
1768 FIELD(ID_ISAR5, CRC32, 16, 4)
1769 FIELD(ID_ISAR5, RDM, 24, 4)
1770 FIELD(ID_ISAR5, VCMA, 28, 4)
1771 
1772 FIELD(ID_ISAR6, JSCVT, 0, 4)
1773 FIELD(ID_ISAR6, DP, 4, 4)
1774 FIELD(ID_ISAR6, FHM, 8, 4)
1775 FIELD(ID_ISAR6, SB, 12, 4)
1776 FIELD(ID_ISAR6, SPECRES, 16, 4)
1777 
1778 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1779 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1780 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1781 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1782 FIELD(ID_MMFR3, PAN, 16, 4)
1783 FIELD(ID_MMFR3, COHWALK, 20, 4)
1784 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1785 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1786 
1787 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1788 FIELD(ID_MMFR4, AC2, 4, 4)
1789 FIELD(ID_MMFR4, XNX, 8, 4)
1790 FIELD(ID_MMFR4, CNP, 12, 4)
1791 FIELD(ID_MMFR4, HPDS, 16, 4)
1792 FIELD(ID_MMFR4, LSM, 20, 4)
1793 FIELD(ID_MMFR4, CCIDX, 24, 4)
1794 FIELD(ID_MMFR4, EVT, 28, 4)
1795 
1796 FIELD(ID_AA64ISAR0, AES, 4, 4)
1797 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1798 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1799 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1800 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1801 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1802 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1803 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1804 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1805 FIELD(ID_AA64ISAR0, DP, 44, 4)
1806 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1807 FIELD(ID_AA64ISAR0, TS, 52, 4)
1808 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1809 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1810 
1811 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1812 FIELD(ID_AA64ISAR1, APA, 4, 4)
1813 FIELD(ID_AA64ISAR1, API, 8, 4)
1814 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1815 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1816 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1817 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1818 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1819 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1820 FIELD(ID_AA64ISAR1, SB, 36, 4)
1821 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1822 
1823 FIELD(ID_AA64PFR0, EL0, 0, 4)
1824 FIELD(ID_AA64PFR0, EL1, 4, 4)
1825 FIELD(ID_AA64PFR0, EL2, 8, 4)
1826 FIELD(ID_AA64PFR0, EL3, 12, 4)
1827 FIELD(ID_AA64PFR0, FP, 16, 4)
1828 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1829 FIELD(ID_AA64PFR0, GIC, 24, 4)
1830 FIELD(ID_AA64PFR0, RAS, 28, 4)
1831 FIELD(ID_AA64PFR0, SVE, 32, 4)
1832 
1833 FIELD(ID_AA64PFR1, BT, 0, 4)
1834 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1835 FIELD(ID_AA64PFR1, MTE, 8, 4)
1836 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1837 
1838 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1839 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1840 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1841 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1842 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1843 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1844 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1845 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1846 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1847 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1848 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1849 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1850 
1851 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1852 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1853 FIELD(ID_AA64MMFR1, VH, 8, 4)
1854 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1855 FIELD(ID_AA64MMFR1, LO, 16, 4)
1856 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1857 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1858 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1859 
1860 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1861 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1862 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1863 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1864 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1865 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1866 FIELD(ID_AA64MMFR2, NV, 24, 4)
1867 FIELD(ID_AA64MMFR2, ST, 28, 4)
1868 FIELD(ID_AA64MMFR2, AT, 32, 4)
1869 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1870 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1871 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1872 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1873 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1874 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1875 
1876 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1877 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1878 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1879 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1880 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1881 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1882 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1883 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1884 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1885 
1886 FIELD(ID_DFR0, COPDBG, 0, 4)
1887 FIELD(ID_DFR0, COPSDBG, 4, 4)
1888 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1889 FIELD(ID_DFR0, COPTRC, 12, 4)
1890 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1891 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1892 FIELD(ID_DFR0, PERFMON, 24, 4)
1893 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1894 
1895 FIELD(DBGDIDR, SE_IMP, 12, 1)
1896 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1897 FIELD(DBGDIDR, VERSION, 16, 4)
1898 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1899 FIELD(DBGDIDR, BRPS, 24, 4)
1900 FIELD(DBGDIDR, WRPS, 28, 4)
1901 
1902 FIELD(MVFR0, SIMDREG, 0, 4)
1903 FIELD(MVFR0, FPSP, 4, 4)
1904 FIELD(MVFR0, FPDP, 8, 4)
1905 FIELD(MVFR0, FPTRAP, 12, 4)
1906 FIELD(MVFR0, FPDIVIDE, 16, 4)
1907 FIELD(MVFR0, FPSQRT, 20, 4)
1908 FIELD(MVFR0, FPSHVEC, 24, 4)
1909 FIELD(MVFR0, FPROUND, 28, 4)
1910 
1911 FIELD(MVFR1, FPFTZ, 0, 4)
1912 FIELD(MVFR1, FPDNAN, 4, 4)
1913 FIELD(MVFR1, SIMDLS, 8, 4)
1914 FIELD(MVFR1, SIMDINT, 12, 4)
1915 FIELD(MVFR1, SIMDSP, 16, 4)
1916 FIELD(MVFR1, SIMDHP, 20, 4)
1917 FIELD(MVFR1, FPHP, 24, 4)
1918 FIELD(MVFR1, SIMDFMAC, 28, 4)
1919 
1920 FIELD(MVFR2, SIMDMISC, 0, 4)
1921 FIELD(MVFR2, FPMISC, 4, 4)
1922 
1923 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1924 
1925 /* If adding a feature bit which corresponds to a Linux ELF
1926  * HWCAP bit, remember to update the feature-bit-to-hwcap
1927  * mapping in linux-user/elfload.c:get_elf_hwcap().
1928  */
1929 enum arm_features {
1930     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1931     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1932     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1933     ARM_FEATURE_V6,
1934     ARM_FEATURE_V6K,
1935     ARM_FEATURE_V7,
1936     ARM_FEATURE_THUMB2,
1937     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1938     ARM_FEATURE_NEON,
1939     ARM_FEATURE_M, /* Microcontroller profile.  */
1940     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1941     ARM_FEATURE_THUMB2EE,
1942     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1943     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1944     ARM_FEATURE_V4T,
1945     ARM_FEATURE_V5,
1946     ARM_FEATURE_STRONGARM,
1947     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1948     ARM_FEATURE_GENERIC_TIMER,
1949     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1950     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1951     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1952     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1953     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1954     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1955     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1956     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1957     ARM_FEATURE_V8,
1958     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1959     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1960     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1961     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1962     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1963     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1964     ARM_FEATURE_PMU, /* has PMU support */
1965     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1966     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1967     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1968 };
1969 
1970 static inline int arm_feature(CPUARMState *env, int feature)
1971 {
1972     return (env->features & (1ULL << feature)) != 0;
1973 }
1974 
1975 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1976 
1977 #if !defined(CONFIG_USER_ONLY)
1978 /* Return true if exception levels below EL3 are in secure state,
1979  * or would be following an exception return to that level.
1980  * Unlike arm_is_secure() (which is always a question about the
1981  * _current_ state of the CPU) this doesn't care about the current
1982  * EL or mode.
1983  */
1984 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1985 {
1986     if (arm_feature(env, ARM_FEATURE_EL3)) {
1987         return !(env->cp15.scr_el3 & SCR_NS);
1988     } else {
1989         /* If EL3 is not supported then the secure state is implementation
1990          * defined, in which case QEMU defaults to non-secure.
1991          */
1992         return false;
1993     }
1994 }
1995 
1996 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1997 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1998 {
1999     if (arm_feature(env, ARM_FEATURE_EL3)) {
2000         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2001             /* CPU currently in AArch64 state and EL3 */
2002             return true;
2003         } else if (!is_a64(env) &&
2004                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2005             /* CPU currently in AArch32 state and monitor mode */
2006             return true;
2007         }
2008     }
2009     return false;
2010 }
2011 
2012 /* Return true if the processor is in secure state */
2013 static inline bool arm_is_secure(CPUARMState *env)
2014 {
2015     if (arm_is_el3_or_mon(env)) {
2016         return true;
2017     }
2018     return arm_is_secure_below_el3(env);
2019 }
2020 
2021 #else
2022 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2023 {
2024     return false;
2025 }
2026 
2027 static inline bool arm_is_secure(CPUARMState *env)
2028 {
2029     return false;
2030 }
2031 #endif
2032 
2033 /**
2034  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2035  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2036  * "for all purposes other than a direct read or write access of HCR_EL2."
2037  * Not included here is HCR_RW.
2038  */
2039 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2040 
2041 /* Return true if the specified exception level is running in AArch64 state. */
2042 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2043 {
2044     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2045      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2046      */
2047     assert(el >= 1 && el <= 3);
2048     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2049 
2050     /* The highest exception level is always at the maximum supported
2051      * register width, and then lower levels have a register width controlled
2052      * by bits in the SCR or HCR registers.
2053      */
2054     if (el == 3) {
2055         return aa64;
2056     }
2057 
2058     if (arm_feature(env, ARM_FEATURE_EL3)) {
2059         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2060     }
2061 
2062     if (el == 2) {
2063         return aa64;
2064     }
2065 
2066     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2067         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2068     }
2069 
2070     return aa64;
2071 }
2072 
2073 /* Function for determing whether guest cp register reads and writes should
2074  * access the secure or non-secure bank of a cp register.  When EL3 is
2075  * operating in AArch32 state, the NS-bit determines whether the secure
2076  * instance of a cp register should be used. When EL3 is AArch64 (or if
2077  * it doesn't exist at all) then there is no register banking, and all
2078  * accesses are to the non-secure version.
2079  */
2080 static inline bool access_secure_reg(CPUARMState *env)
2081 {
2082     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2083                 !arm_el_is_aa64(env, 3) &&
2084                 !(env->cp15.scr_el3 & SCR_NS));
2085 
2086     return ret;
2087 }
2088 
2089 /* Macros for accessing a specified CP register bank */
2090 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2091     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2092 
2093 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2094     do {                                                \
2095         if (_secure) {                                   \
2096             (_env)->cp15._regname##_s = (_val);            \
2097         } else {                                        \
2098             (_env)->cp15._regname##_ns = (_val);           \
2099         }                                               \
2100     } while (0)
2101 
2102 /* Macros for automatically accessing a specific CP register bank depending on
2103  * the current secure state of the system.  These macros are not intended for
2104  * supporting instruction translation reads/writes as these are dependent
2105  * solely on the SCR.NS bit and not the mode.
2106  */
2107 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2108     A32_BANKED_REG_GET((_env), _regname,                \
2109                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2110 
2111 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2112     A32_BANKED_REG_SET((_env), _regname,                                    \
2113                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2114                        (_val))
2115 
2116 void arm_cpu_list(void);
2117 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2118                                  uint32_t cur_el, bool secure);
2119 
2120 /* Interface between CPU and Interrupt controller.  */
2121 #ifndef CONFIG_USER_ONLY
2122 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2123 #else
2124 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2125 {
2126     return true;
2127 }
2128 #endif
2129 /**
2130  * armv7m_nvic_set_pending: mark the specified exception as pending
2131  * @opaque: the NVIC
2132  * @irq: the exception number to mark pending
2133  * @secure: false for non-banked exceptions or for the nonsecure
2134  * version of a banked exception, true for the secure version of a banked
2135  * exception.
2136  *
2137  * Marks the specified exception as pending. Note that we will assert()
2138  * if @secure is true and @irq does not specify one of the fixed set
2139  * of architecturally banked exceptions.
2140  */
2141 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2142 /**
2143  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2144  * @opaque: the NVIC
2145  * @irq: the exception number to mark pending
2146  * @secure: false for non-banked exceptions or for the nonsecure
2147  * version of a banked exception, true for the secure version of a banked
2148  * exception.
2149  *
2150  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2151  * exceptions (exceptions generated in the course of trying to take
2152  * a different exception).
2153  */
2154 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2155 /**
2156  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2157  * @opaque: the NVIC
2158  * @irq: the exception number to mark pending
2159  * @secure: false for non-banked exceptions or for the nonsecure
2160  * version of a banked exception, true for the secure version of a banked
2161  * exception.
2162  *
2163  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2164  * generated in the course of lazy stacking of FP registers.
2165  */
2166 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2167 /**
2168  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2169  *    exception, and whether it targets Secure state
2170  * @opaque: the NVIC
2171  * @pirq: set to pending exception number
2172  * @ptargets_secure: set to whether pending exception targets Secure
2173  *
2174  * This function writes the number of the highest priority pending
2175  * exception (the one which would be made active by
2176  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2177  * to true if the current highest priority pending exception should
2178  * be taken to Secure state, false for NS.
2179  */
2180 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2181                                       bool *ptargets_secure);
2182 /**
2183  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2184  * @opaque: the NVIC
2185  *
2186  * Move the current highest priority pending exception from the pending
2187  * state to the active state, and update v7m.exception to indicate that
2188  * it is the exception currently being handled.
2189  */
2190 void armv7m_nvic_acknowledge_irq(void *opaque);
2191 /**
2192  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2193  * @opaque: the NVIC
2194  * @irq: the exception number to complete
2195  * @secure: true if this exception was secure
2196  *
2197  * Returns: -1 if the irq was not active
2198  *           1 if completing this irq brought us back to base (no active irqs)
2199  *           0 if there is still an irq active after this one was completed
2200  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2201  */
2202 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2203 /**
2204  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2205  * @opaque: the NVIC
2206  * @irq: the exception number to mark pending
2207  * @secure: false for non-banked exceptions or for the nonsecure
2208  * version of a banked exception, true for the secure version of a banked
2209  * exception.
2210  *
2211  * Return whether an exception is "ready", i.e. whether the exception is
2212  * enabled and is configured at a priority which would allow it to
2213  * interrupt the current execution priority. This controls whether the
2214  * RDY bit for it in the FPCCR is set.
2215  */
2216 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2217 /**
2218  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2219  * @opaque: the NVIC
2220  *
2221  * Returns: the raw execution priority as defined by the v8M architecture.
2222  * This is the execution priority minus the effects of AIRCR.PRIS,
2223  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2224  * (v8M ARM ARM I_PKLD.)
2225  */
2226 int armv7m_nvic_raw_execution_priority(void *opaque);
2227 /**
2228  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2229  * priority is negative for the specified security state.
2230  * @opaque: the NVIC
2231  * @secure: the security state to test
2232  * This corresponds to the pseudocode IsReqExecPriNeg().
2233  */
2234 #ifndef CONFIG_USER_ONLY
2235 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2236 #else
2237 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2238 {
2239     return false;
2240 }
2241 #endif
2242 
2243 /* Interface for defining coprocessor registers.
2244  * Registers are defined in tables of arm_cp_reginfo structs
2245  * which are passed to define_arm_cp_regs().
2246  */
2247 
2248 /* When looking up a coprocessor register we look for it
2249  * via an integer which encodes all of:
2250  *  coprocessor number
2251  *  Crn, Crm, opc1, opc2 fields
2252  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2253  *    or via MRRC/MCRR?)
2254  *  non-secure/secure bank (AArch32 only)
2255  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2256  * (In this case crn and opc2 should be zero.)
2257  * For AArch64, there is no 32/64 bit size distinction;
2258  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2259  * and 4 bit CRn and CRm. The encoding patterns are chosen
2260  * to be easy to convert to and from the KVM encodings, and also
2261  * so that the hashtable can contain both AArch32 and AArch64
2262  * registers (to allow for interprocessing where we might run
2263  * 32 bit code on a 64 bit core).
2264  */
2265 /* This bit is private to our hashtable cpreg; in KVM register
2266  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2267  * in the upper bits of the 64 bit ID.
2268  */
2269 #define CP_REG_AA64_SHIFT 28
2270 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2271 
2272 /* To enable banking of coprocessor registers depending on ns-bit we
2273  * add a bit to distinguish between secure and non-secure cpregs in the
2274  * hashtable.
2275  */
2276 #define CP_REG_NS_SHIFT 29
2277 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2278 
2279 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2280     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2281      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2282 
2283 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2284     (CP_REG_AA64_MASK |                                 \
2285      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2286      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2287      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2288      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2289      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2290      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2291 
2292 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2293  * version used as a key for the coprocessor register hashtable
2294  */
2295 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2296 {
2297     uint32_t cpregid = kvmid;
2298     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2299         cpregid |= CP_REG_AA64_MASK;
2300     } else {
2301         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2302             cpregid |= (1 << 15);
2303         }
2304 
2305         /* KVM is always non-secure so add the NS flag on AArch32 register
2306          * entries.
2307          */
2308          cpregid |= 1 << CP_REG_NS_SHIFT;
2309     }
2310     return cpregid;
2311 }
2312 
2313 /* Convert a truncated 32 bit hashtable key into the full
2314  * 64 bit KVM register ID.
2315  */
2316 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2317 {
2318     uint64_t kvmid;
2319 
2320     if (cpregid & CP_REG_AA64_MASK) {
2321         kvmid = cpregid & ~CP_REG_AA64_MASK;
2322         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2323     } else {
2324         kvmid = cpregid & ~(1 << 15);
2325         if (cpregid & (1 << 15)) {
2326             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2327         } else {
2328             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2329         }
2330     }
2331     return kvmid;
2332 }
2333 
2334 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2335  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2336  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2337  * TCG can assume the value to be constant (ie load at translate time)
2338  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2339  * indicates that the TB should not be ended after a write to this register
2340  * (the default is that the TB ends after cp writes). OVERRIDE permits
2341  * a register definition to override a previous definition for the
2342  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2343  * old must have the OVERRIDE bit set.
2344  * ALIAS indicates that this register is an alias view of some underlying
2345  * state which is also visible via another register, and that the other
2346  * register is handling migration and reset; registers marked ALIAS will not be
2347  * migrated but may have their state set by syncing of register state from KVM.
2348  * NO_RAW indicates that this register has no underlying state and does not
2349  * support raw access for state saving/loading; it will not be used for either
2350  * migration or KVM state synchronization. (Typically this is for "registers"
2351  * which are actually used as instructions for cache maintenance and so on.)
2352  * IO indicates that this register does I/O and therefore its accesses
2353  * need to be marked with gen_io_start() and also end the TB. In particular,
2354  * registers which implement clocks or timers require this.
2355  * RAISES_EXC is for when the read or write hook might raise an exception;
2356  * the generated code will synchronize the CPU state before calling the hook
2357  * so that it is safe for the hook to call raise_exception().
2358  * NEWEL is for writes to registers that might change the exception
2359  * level - typically on older ARM chips. For those cases we need to
2360  * re-read the new el when recomputing the translation flags.
2361  */
2362 #define ARM_CP_SPECIAL           0x0001
2363 #define ARM_CP_CONST             0x0002
2364 #define ARM_CP_64BIT             0x0004
2365 #define ARM_CP_SUPPRESS_TB_END   0x0008
2366 #define ARM_CP_OVERRIDE          0x0010
2367 #define ARM_CP_ALIAS             0x0020
2368 #define ARM_CP_IO                0x0040
2369 #define ARM_CP_NO_RAW            0x0080
2370 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2371 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2372 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2373 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2374 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2375 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2376 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2377 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2378 #define ARM_CP_FPU               0x1000
2379 #define ARM_CP_SVE               0x2000
2380 #define ARM_CP_NO_GDB            0x4000
2381 #define ARM_CP_RAISES_EXC        0x8000
2382 #define ARM_CP_NEWEL             0x10000
2383 /* Used only as a terminator for ARMCPRegInfo lists */
2384 #define ARM_CP_SENTINEL          0xfffff
2385 /* Mask of only the flag bits in a type field */
2386 #define ARM_CP_FLAG_MASK         0x1f0ff
2387 
2388 /* Valid values for ARMCPRegInfo state field, indicating which of
2389  * the AArch32 and AArch64 execution states this register is visible in.
2390  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2391  * If the reginfo is declared to be visible in both states then a second
2392  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2393  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2394  * Note that we rely on the values of these enums as we iterate through
2395  * the various states in some places.
2396  */
2397 enum {
2398     ARM_CP_STATE_AA32 = 0,
2399     ARM_CP_STATE_AA64 = 1,
2400     ARM_CP_STATE_BOTH = 2,
2401 };
2402 
2403 /* ARM CP register secure state flags.  These flags identify security state
2404  * attributes for a given CP register entry.
2405  * The existence of both or neither secure and non-secure flags indicates that
2406  * the register has both a secure and non-secure hash entry.  A single one of
2407  * these flags causes the register to only be hashed for the specified
2408  * security state.
2409  * Although definitions may have any combination of the S/NS bits, each
2410  * registered entry will only have one to identify whether the entry is secure
2411  * or non-secure.
2412  */
2413 enum {
2414     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2415     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2416 };
2417 
2418 /* Return true if cptype is a valid type field. This is used to try to
2419  * catch errors where the sentinel has been accidentally left off the end
2420  * of a list of registers.
2421  */
2422 static inline bool cptype_valid(int cptype)
2423 {
2424     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2425         || ((cptype & ARM_CP_SPECIAL) &&
2426             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2427 }
2428 
2429 /* Access rights:
2430  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2431  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2432  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2433  * (ie any of the privileged modes in Secure state, or Monitor mode).
2434  * If a register is accessible in one privilege level it's always accessible
2435  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2436  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2437  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2438  * terminology a little and call this PL3.
2439  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2440  * with the ELx exception levels.
2441  *
2442  * If access permissions for a register are more complex than can be
2443  * described with these bits, then use a laxer set of restrictions, and
2444  * do the more restrictive/complex check inside a helper function.
2445  */
2446 #define PL3_R 0x80
2447 #define PL3_W 0x40
2448 #define PL2_R (0x20 | PL3_R)
2449 #define PL2_W (0x10 | PL3_W)
2450 #define PL1_R (0x08 | PL2_R)
2451 #define PL1_W (0x04 | PL2_W)
2452 #define PL0_R (0x02 | PL1_R)
2453 #define PL0_W (0x01 | PL1_W)
2454 
2455 /*
2456  * For user-mode some registers are accessible to EL0 via a kernel
2457  * trap-and-emulate ABI. In this case we define the read permissions
2458  * as actually being PL0_R. However some bits of any given register
2459  * may still be masked.
2460  */
2461 #ifdef CONFIG_USER_ONLY
2462 #define PL0U_R PL0_R
2463 #else
2464 #define PL0U_R PL1_R
2465 #endif
2466 
2467 #define PL3_RW (PL3_R | PL3_W)
2468 #define PL2_RW (PL2_R | PL2_W)
2469 #define PL1_RW (PL1_R | PL1_W)
2470 #define PL0_RW (PL0_R | PL0_W)
2471 
2472 /* Return the highest implemented Exception Level */
2473 static inline int arm_highest_el(CPUARMState *env)
2474 {
2475     if (arm_feature(env, ARM_FEATURE_EL3)) {
2476         return 3;
2477     }
2478     if (arm_feature(env, ARM_FEATURE_EL2)) {
2479         return 2;
2480     }
2481     return 1;
2482 }
2483 
2484 /* Return true if a v7M CPU is in Handler mode */
2485 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2486 {
2487     return env->v7m.exception != 0;
2488 }
2489 
2490 /* Return the current Exception Level (as per ARMv8; note that this differs
2491  * from the ARMv7 Privilege Level).
2492  */
2493 static inline int arm_current_el(CPUARMState *env)
2494 {
2495     if (arm_feature(env, ARM_FEATURE_M)) {
2496         return arm_v7m_is_handler_mode(env) ||
2497             !(env->v7m.control[env->v7m.secure] & 1);
2498     }
2499 
2500     if (is_a64(env)) {
2501         return extract32(env->pstate, 2, 2);
2502     }
2503 
2504     switch (env->uncached_cpsr & 0x1f) {
2505     case ARM_CPU_MODE_USR:
2506         return 0;
2507     case ARM_CPU_MODE_HYP:
2508         return 2;
2509     case ARM_CPU_MODE_MON:
2510         return 3;
2511     default:
2512         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2513             /* If EL3 is 32-bit then all secure privileged modes run in
2514              * EL3
2515              */
2516             return 3;
2517         }
2518 
2519         return 1;
2520     }
2521 }
2522 
2523 typedef struct ARMCPRegInfo ARMCPRegInfo;
2524 
2525 typedef enum CPAccessResult {
2526     /* Access is permitted */
2527     CP_ACCESS_OK = 0,
2528     /* Access fails due to a configurable trap or enable which would
2529      * result in a categorized exception syndrome giving information about
2530      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2531      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2532      * PL1 if in EL0, otherwise to the current EL).
2533      */
2534     CP_ACCESS_TRAP = 1,
2535     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2536      * Note that this is not a catch-all case -- the set of cases which may
2537      * result in this failure is specifically defined by the architecture.
2538      */
2539     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2540     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2541     CP_ACCESS_TRAP_EL2 = 3,
2542     CP_ACCESS_TRAP_EL3 = 4,
2543     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2544     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2545     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2546     /* Access fails and results in an exception syndrome for an FP access,
2547      * trapped directly to EL2 or EL3
2548      */
2549     CP_ACCESS_TRAP_FP_EL2 = 7,
2550     CP_ACCESS_TRAP_FP_EL3 = 8,
2551 } CPAccessResult;
2552 
2553 /* Access functions for coprocessor registers. These cannot fail and
2554  * may not raise exceptions.
2555  */
2556 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2557 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2558                        uint64_t value);
2559 /* Access permission check functions for coprocessor registers. */
2560 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2561                                   const ARMCPRegInfo *opaque,
2562                                   bool isread);
2563 /* Hook function for register reset */
2564 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2565 
2566 #define CP_ANY 0xff
2567 
2568 /* Definition of an ARM coprocessor register */
2569 struct ARMCPRegInfo {
2570     /* Name of register (useful mainly for debugging, need not be unique) */
2571     const char *name;
2572     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2573      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2574      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2575      * will be decoded to this register. The register read and write
2576      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2577      * used by the program, so it is possible to register a wildcard and
2578      * then behave differently on read/write if necessary.
2579      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2580      * must both be zero.
2581      * For AArch64-visible registers, opc0 is also used.
2582      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2583      * way to distinguish (for KVM's benefit) guest-visible system registers
2584      * from demuxed ones provided to preserve the "no side effects on
2585      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2586      * visible (to match KVM's encoding); cp==0 will be converted to
2587      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2588      */
2589     uint8_t cp;
2590     uint8_t crn;
2591     uint8_t crm;
2592     uint8_t opc0;
2593     uint8_t opc1;
2594     uint8_t opc2;
2595     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2596     int state;
2597     /* Register type: ARM_CP_* bits/values */
2598     int type;
2599     /* Access rights: PL*_[RW] */
2600     int access;
2601     /* Security state: ARM_CP_SECSTATE_* bits/values */
2602     int secure;
2603     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2604      * this register was defined: can be used to hand data through to the
2605      * register read/write functions, since they are passed the ARMCPRegInfo*.
2606      */
2607     void *opaque;
2608     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2609      * fieldoffset is non-zero, the reset value of the register.
2610      */
2611     uint64_t resetvalue;
2612     /* Offset of the field in CPUARMState for this register.
2613      *
2614      * This is not needed if either:
2615      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2616      *  2. both readfn and writefn are specified
2617      */
2618     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2619 
2620     /* Offsets of the secure and non-secure fields in CPUARMState for the
2621      * register if it is banked.  These fields are only used during the static
2622      * registration of a register.  During hashing the bank associated
2623      * with a given security state is copied to fieldoffset which is used from
2624      * there on out.
2625      *
2626      * It is expected that register definitions use either fieldoffset or
2627      * bank_fieldoffsets in the definition but not both.  It is also expected
2628      * that both bank offsets are set when defining a banked register.  This
2629      * use indicates that a register is banked.
2630      */
2631     ptrdiff_t bank_fieldoffsets[2];
2632 
2633     /* Function for making any access checks for this register in addition to
2634      * those specified by the 'access' permissions bits. If NULL, no extra
2635      * checks required. The access check is performed at runtime, not at
2636      * translate time.
2637      */
2638     CPAccessFn *accessfn;
2639     /* Function for handling reads of this register. If NULL, then reads
2640      * will be done by loading from the offset into CPUARMState specified
2641      * by fieldoffset.
2642      */
2643     CPReadFn *readfn;
2644     /* Function for handling writes of this register. If NULL, then writes
2645      * will be done by writing to the offset into CPUARMState specified
2646      * by fieldoffset.
2647      */
2648     CPWriteFn *writefn;
2649     /* Function for doing a "raw" read; used when we need to copy
2650      * coprocessor state to the kernel for KVM or out for
2651      * migration. This only needs to be provided if there is also a
2652      * readfn and it has side effects (for instance clear-on-read bits).
2653      */
2654     CPReadFn *raw_readfn;
2655     /* Function for doing a "raw" write; used when we need to copy KVM
2656      * kernel coprocessor state into userspace, or for inbound
2657      * migration. This only needs to be provided if there is also a
2658      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2659      * or similar behaviour.
2660      */
2661     CPWriteFn *raw_writefn;
2662     /* Function for resetting the register. If NULL, then reset will be done
2663      * by writing resetvalue to the field specified in fieldoffset. If
2664      * fieldoffset is 0 then no reset will be done.
2665      */
2666     CPResetFn *resetfn;
2667 
2668     /*
2669      * "Original" writefn and readfn.
2670      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2671      * accessor functions of various EL1/EL0 to perform the runtime
2672      * check for which sysreg should actually be modified, and then
2673      * forwards the operation.  Before overwriting the accessors,
2674      * the original function is copied here, so that accesses that
2675      * really do go to the EL1/EL0 version proceed normally.
2676      * (The corresponding EL2 register is linked via opaque.)
2677      */
2678     CPReadFn *orig_readfn;
2679     CPWriteFn *orig_writefn;
2680 };
2681 
2682 /* Macros which are lvalues for the field in CPUARMState for the
2683  * ARMCPRegInfo *ri.
2684  */
2685 #define CPREG_FIELD32(env, ri) \
2686     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2687 #define CPREG_FIELD64(env, ri) \
2688     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2689 
2690 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2691 
2692 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2693                                     const ARMCPRegInfo *regs, void *opaque);
2694 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2695                                        const ARMCPRegInfo *regs, void *opaque);
2696 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2697 {
2698     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2699 }
2700 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2701 {
2702     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2703 }
2704 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2705 
2706 /*
2707  * Definition of an ARM co-processor register as viewed from
2708  * userspace. This is used for presenting sanitised versions of
2709  * registers to userspace when emulating the Linux AArch64 CPU
2710  * ID/feature ABI (advertised as HWCAP_CPUID).
2711  */
2712 typedef struct ARMCPRegUserSpaceInfo {
2713     /* Name of register */
2714     const char *name;
2715 
2716     /* Is the name actually a glob pattern */
2717     bool is_glob;
2718 
2719     /* Only some bits are exported to user space */
2720     uint64_t exported_bits;
2721 
2722     /* Fixed bits are applied after the mask */
2723     uint64_t fixed_bits;
2724 } ARMCPRegUserSpaceInfo;
2725 
2726 #define REGUSERINFO_SENTINEL { .name = NULL }
2727 
2728 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2729 
2730 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2731 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2732                          uint64_t value);
2733 /* CPReadFn that can be used for read-as-zero behaviour */
2734 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2735 
2736 /* CPResetFn that does nothing, for use if no reset is required even
2737  * if fieldoffset is non zero.
2738  */
2739 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2740 
2741 /* Return true if this reginfo struct's field in the cpu state struct
2742  * is 64 bits wide.
2743  */
2744 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2745 {
2746     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2747 }
2748 
2749 static inline bool cp_access_ok(int current_el,
2750                                 const ARMCPRegInfo *ri, int isread)
2751 {
2752     return (ri->access >> ((current_el * 2) + isread)) & 1;
2753 }
2754 
2755 /* Raw read of a coprocessor register (as needed for migration, etc) */
2756 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2757 
2758 /**
2759  * write_list_to_cpustate
2760  * @cpu: ARMCPU
2761  *
2762  * For each register listed in the ARMCPU cpreg_indexes list, write
2763  * its value from the cpreg_values list into the ARMCPUState structure.
2764  * This updates TCG's working data structures from KVM data or
2765  * from incoming migration state.
2766  *
2767  * Returns: true if all register values were updated correctly,
2768  * false if some register was unknown or could not be written.
2769  * Note that we do not stop early on failure -- we will attempt
2770  * writing all registers in the list.
2771  */
2772 bool write_list_to_cpustate(ARMCPU *cpu);
2773 
2774 /**
2775  * write_cpustate_to_list:
2776  * @cpu: ARMCPU
2777  * @kvm_sync: true if this is for syncing back to KVM
2778  *
2779  * For each register listed in the ARMCPU cpreg_indexes list, write
2780  * its value from the ARMCPUState structure into the cpreg_values list.
2781  * This is used to copy info from TCG's working data structures into
2782  * KVM or for outbound migration.
2783  *
2784  * @kvm_sync is true if we are doing this in order to sync the
2785  * register state back to KVM. In this case we will only update
2786  * values in the list if the previous list->cpustate sync actually
2787  * successfully wrote the CPU state. Otherwise we will keep the value
2788  * that is in the list.
2789  *
2790  * Returns: true if all register values were read correctly,
2791  * false if some register was unknown or could not be read.
2792  * Note that we do not stop early on failure -- we will attempt
2793  * reading all registers in the list.
2794  */
2795 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2796 
2797 #define ARM_CPUID_TI915T      0x54029152
2798 #define ARM_CPUID_TI925T      0x54029252
2799 
2800 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2801 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2802 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2803 
2804 #define cpu_signal_handler cpu_arm_signal_handler
2805 #define cpu_list arm_cpu_list
2806 
2807 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2808  *
2809  * If EL3 is 64-bit:
2810  *  + NonSecure EL1 & 0 stage 1
2811  *  + NonSecure EL1 & 0 stage 2
2812  *  + NonSecure EL2
2813  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2814  *  + Secure EL1 & 0
2815  *  + Secure EL3
2816  * If EL3 is 32-bit:
2817  *  + NonSecure PL1 & 0 stage 1
2818  *  + NonSecure PL1 & 0 stage 2
2819  *  + NonSecure PL2
2820  *  + Secure PL0
2821  *  + Secure PL1
2822  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2823  *
2824  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2825  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2826  *     because they may differ in access permissions even if the VA->PA map is
2827  *     the same
2828  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2829  *     translation, which means that we have one mmu_idx that deals with two
2830  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2831  *     architecturally permitted]
2832  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2833  *     handling via the TLB. The only way to do a stage 1 translation without
2834  *     the immediate stage 2 translation is via the ATS or AT system insns,
2835  *     which can be slow-pathed and always do a page table walk.
2836  *     The only use of stage 2 translations is either as part of an s1+2
2837  *     lookup or when loading the descriptors during a stage 1 page table walk,
2838  *     and in both those cases we don't use the TLB.
2839  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2840  *     translation regimes, because they map reasonably well to each other
2841  *     and they can't both be active at the same time.
2842  *  5. we want to be able to use the TLB for accesses done as part of a
2843  *     stage1 page table walk, rather than having to walk the stage2 page
2844  *     table over and over.
2845  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2846  *     Never (PAN) bit within PSTATE.
2847  *
2848  * This gives us the following list of cases:
2849  *
2850  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2851  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2852  * NS EL1 EL1&0 stage 1+2 +PAN
2853  * NS EL0 EL2&0
2854  * NS EL2 EL2&0
2855  * NS EL2 EL2&0 +PAN
2856  * NS EL2 (aka NS PL2)
2857  * S EL0 EL1&0 (aka S PL0)
2858  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2859  * S EL1 EL1&0 +PAN
2860  * S EL3 (aka S PL1)
2861  *
2862  * for a total of 11 different mmu_idx.
2863  *
2864  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2865  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2866  * NS EL2 if we ever model a Cortex-R52).
2867  *
2868  * M profile CPUs are rather different as they do not have a true MMU.
2869  * They have the following different MMU indexes:
2870  *  User
2871  *  Privileged
2872  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2873  *  Privileged, execution priority negative (ditto)
2874  * If the CPU supports the v8M Security Extension then there are also:
2875  *  Secure User
2876  *  Secure Privileged
2877  *  Secure User, execution priority negative
2878  *  Secure Privileged, execution priority negative
2879  *
2880  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2881  * are not quite the same -- different CPU types (most notably M profile
2882  * vs A/R profile) would like to use MMU indexes with different semantics,
2883  * but since we don't ever need to use all of those in a single CPU we
2884  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2885  * modes + total number of M profile MMU modes". The lower bits of
2886  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2887  * the same for any particular CPU.
2888  * Variables of type ARMMUIdx are always full values, and the core
2889  * index values are in variables of type 'int'.
2890  *
2891  * Our enumeration includes at the end some entries which are not "true"
2892  * mmu_idx values in that they don't have corresponding TLBs and are only
2893  * valid for doing slow path page table walks.
2894  *
2895  * The constant names here are patterned after the general style of the names
2896  * of the AT/ATS operations.
2897  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2898  * For M profile we arrange them to have a bit for priv, a bit for negpri
2899  * and a bit for secure.
2900  */
2901 #define ARM_MMU_IDX_A     0x10  /* A profile */
2902 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2903 #define ARM_MMU_IDX_M     0x40  /* M profile */
2904 
2905 /* Meanings of the bits for M profile mmu idx values */
2906 #define ARM_MMU_IDX_M_PRIV   0x1
2907 #define ARM_MMU_IDX_M_NEGPRI 0x2
2908 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2909 
2910 #define ARM_MMU_IDX_TYPE_MASK \
2911     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2912 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2913 
2914 typedef enum ARMMMUIdx {
2915     /*
2916      * A-profile.
2917      */
2918     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2919     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2920 
2921     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2922     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2923 
2924     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2925     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2926     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2927 
2928     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2929     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2930     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2931     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2932 
2933     /*
2934      * These are not allocated TLBs and are used only for AT system
2935      * instructions or for the first stage of an S12 page table walk.
2936      */
2937     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2938     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2939     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2940     /*
2941      * Not allocated a TLB: used only for second stage of an S12 page
2942      * table walk, or for descriptor loads during first stage of an S1
2943      * page table walk. Note that if we ever want to have a TLB for this
2944      * then various TLB flush insns which currently are no-ops or flush
2945      * only stage 1 MMU indexes will need to change to flush stage 2.
2946      */
2947     ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2948 
2949     /*
2950      * M-profile.
2951      */
2952     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2953     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2954     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2955     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2956     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2957     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2958     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2959     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2960 } ARMMMUIdx;
2961 
2962 /*
2963  * Bit macros for the core-mmu-index values for each index,
2964  * for use when calling tlb_flush_by_mmuidx() and friends.
2965  */
2966 #define TO_CORE_BIT(NAME) \
2967     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2968 
2969 typedef enum ARMMMUIdxBit {
2970     TO_CORE_BIT(E10_0),
2971     TO_CORE_BIT(E20_0),
2972     TO_CORE_BIT(E10_1),
2973     TO_CORE_BIT(E10_1_PAN),
2974     TO_CORE_BIT(E2),
2975     TO_CORE_BIT(E20_2),
2976     TO_CORE_BIT(E20_2_PAN),
2977     TO_CORE_BIT(SE10_0),
2978     TO_CORE_BIT(SE10_1),
2979     TO_CORE_BIT(SE10_1_PAN),
2980     TO_CORE_BIT(SE3),
2981 
2982     TO_CORE_BIT(MUser),
2983     TO_CORE_BIT(MPriv),
2984     TO_CORE_BIT(MUserNegPri),
2985     TO_CORE_BIT(MPrivNegPri),
2986     TO_CORE_BIT(MSUser),
2987     TO_CORE_BIT(MSPriv),
2988     TO_CORE_BIT(MSUserNegPri),
2989     TO_CORE_BIT(MSPrivNegPri),
2990 } ARMMMUIdxBit;
2991 
2992 #undef TO_CORE_BIT
2993 
2994 #define MMU_USER_IDX 0
2995 
2996 /* Indexes used when registering address spaces with cpu_address_space_init */
2997 typedef enum ARMASIdx {
2998     ARMASIdx_NS = 0,
2999     ARMASIdx_S = 1,
3000     ARMASIdx_TagNS = 2,
3001     ARMASIdx_TagS = 3,
3002 } ARMASIdx;
3003 
3004 /* Return the Exception Level targeted by debug exceptions. */
3005 static inline int arm_debug_target_el(CPUARMState *env)
3006 {
3007     bool secure = arm_is_secure(env);
3008     bool route_to_el2 = false;
3009 
3010     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3011         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3012                        env->cp15.mdcr_el2 & MDCR_TDE;
3013     }
3014 
3015     if (route_to_el2) {
3016         return 2;
3017     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3018                !arm_el_is_aa64(env, 3) && secure) {
3019         return 3;
3020     } else {
3021         return 1;
3022     }
3023 }
3024 
3025 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3026 {
3027     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3028      * CSSELR is RAZ/WI.
3029      */
3030     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3031 }
3032 
3033 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3034 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3035 {
3036     int cur_el = arm_current_el(env);
3037     int debug_el;
3038 
3039     if (cur_el == 3) {
3040         return false;
3041     }
3042 
3043     /* MDCR_EL3.SDD disables debug events from Secure state */
3044     if (arm_is_secure_below_el3(env)
3045         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3046         return false;
3047     }
3048 
3049     /*
3050      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3051      * while not masking the (D)ebug bit in DAIF.
3052      */
3053     debug_el = arm_debug_target_el(env);
3054 
3055     if (cur_el == debug_el) {
3056         return extract32(env->cp15.mdscr_el1, 13, 1)
3057             && !(env->daif & PSTATE_D);
3058     }
3059 
3060     /* Otherwise the debug target needs to be a higher EL */
3061     return debug_el > cur_el;
3062 }
3063 
3064 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3065 {
3066     int el = arm_current_el(env);
3067 
3068     if (el == 0 && arm_el_is_aa64(env, 1)) {
3069         return aa64_generate_debug_exceptions(env);
3070     }
3071 
3072     if (arm_is_secure(env)) {
3073         int spd;
3074 
3075         if (el == 0 && (env->cp15.sder & 1)) {
3076             /* SDER.SUIDEN means debug exceptions from Secure EL0
3077              * are always enabled. Otherwise they are controlled by
3078              * SDCR.SPD like those from other Secure ELs.
3079              */
3080             return true;
3081         }
3082 
3083         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3084         switch (spd) {
3085         case 1:
3086             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3087         case 0:
3088             /* For 0b00 we return true if external secure invasive debug
3089              * is enabled. On real hardware this is controlled by external
3090              * signals to the core. QEMU always permits debug, and behaves
3091              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3092              */
3093             return true;
3094         case 2:
3095             return false;
3096         case 3:
3097             return true;
3098         }
3099     }
3100 
3101     return el != 2;
3102 }
3103 
3104 /* Return true if debugging exceptions are currently enabled.
3105  * This corresponds to what in ARM ARM pseudocode would be
3106  *    if UsingAArch32() then
3107  *        return AArch32.GenerateDebugExceptions()
3108  *    else
3109  *        return AArch64.GenerateDebugExceptions()
3110  * We choose to push the if() down into this function for clarity,
3111  * since the pseudocode has it at all callsites except for the one in
3112  * CheckSoftwareStep(), where it is elided because both branches would
3113  * always return the same value.
3114  */
3115 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3116 {
3117     if (env->aarch64) {
3118         return aa64_generate_debug_exceptions(env);
3119     } else {
3120         return aa32_generate_debug_exceptions(env);
3121     }
3122 }
3123 
3124 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3125  * implicitly means this always returns false in pre-v8 CPUs.)
3126  */
3127 static inline bool arm_singlestep_active(CPUARMState *env)
3128 {
3129     return extract32(env->cp15.mdscr_el1, 0, 1)
3130         && arm_el_is_aa64(env, arm_debug_target_el(env))
3131         && arm_generate_debug_exceptions(env);
3132 }
3133 
3134 static inline bool arm_sctlr_b(CPUARMState *env)
3135 {
3136     return
3137         /* We need not implement SCTLR.ITD in user-mode emulation, so
3138          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3139          * This lets people run BE32 binaries with "-cpu any".
3140          */
3141 #ifndef CONFIG_USER_ONLY
3142         !arm_feature(env, ARM_FEATURE_V7) &&
3143 #endif
3144         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3145 }
3146 
3147 uint64_t arm_sctlr(CPUARMState *env, int el);
3148 
3149 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3150                                                   bool sctlr_b)
3151 {
3152 #ifdef CONFIG_USER_ONLY
3153     /*
3154      * In system mode, BE32 is modelled in line with the
3155      * architecture (as word-invariant big-endianness), where loads
3156      * and stores are done little endian but from addresses which
3157      * are adjusted by XORing with the appropriate constant. So the
3158      * endianness to use for the raw data access is not affected by
3159      * SCTLR.B.
3160      * In user mode, however, we model BE32 as byte-invariant
3161      * big-endianness (because user-only code cannot tell the
3162      * difference), and so we need to use a data access endianness
3163      * that depends on SCTLR.B.
3164      */
3165     if (sctlr_b) {
3166         return true;
3167     }
3168 #endif
3169     /* In 32bit endianness is determined by looking at CPSR's E bit */
3170     return env->uncached_cpsr & CPSR_E;
3171 }
3172 
3173 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3174 {
3175     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3176 }
3177 
3178 /* Return true if the processor is in big-endian mode. */
3179 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3180 {
3181     if (!is_a64(env)) {
3182         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3183     } else {
3184         int cur_el = arm_current_el(env);
3185         uint64_t sctlr = arm_sctlr(env, cur_el);
3186         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3187     }
3188 }
3189 
3190 typedef CPUARMState CPUArchState;
3191 typedef ARMCPU ArchCPU;
3192 
3193 #include "exec/cpu-all.h"
3194 
3195 /*
3196  * Bit usage in the TB flags field: bit 31 indicates whether we are
3197  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3198  * We put flags which are shared between 32 and 64 bit mode at the top
3199  * of the word, and flags which apply to only one mode at the bottom.
3200  *
3201  *  31          20    18    14          9              0
3202  * +--------------+-----+-----+----------+--------------+
3203  * |              |     |   TBFLAG_A32   |              |
3204  * |              |     +-----+----------+  TBFLAG_AM32 |
3205  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3206  * |              +-----------+----------+--------------|
3207  * |              |            TBFLAG_A64               |
3208  * +--------------+-------------------------------------+
3209  *  31          20                                     0
3210  *
3211  * Unless otherwise noted, these bits are cached in env->hflags.
3212  */
3213 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3214 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3215 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3216 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3217 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3218 /* Target EL if we take a floating-point-disabled exception */
3219 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3220 /* For A-profile only, target EL for debug exceptions.  */
3221 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3222 
3223 /*
3224  * Bit usage when in AArch32 state, both A- and M-profile.
3225  */
3226 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3227 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3228 
3229 /*
3230  * Bit usage when in AArch32 state, for A-profile only.
3231  */
3232 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3233 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3234 /*
3235  * We store the bottom two bits of the CPAR as TB flags and handle
3236  * checks on the other bits at runtime. This shares the same bits as
3237  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3238  * Not cached, because VECLEN+VECSTRIDE are not cached.
3239  */
3240 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3241 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3242 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3243 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3244 /*
3245  * Indicates whether cp register reads and writes by guest code should access
3246  * the secure or nonsecure bank of banked registers; note that this is not
3247  * the same thing as the current security state of the processor!
3248  */
3249 FIELD(TBFLAG_A32, NS, 17, 1)
3250 
3251 /*
3252  * Bit usage when in AArch32 state, for M-profile only.
3253  */
3254 /* Handler (ie not Thread) mode */
3255 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3256 /* Whether we should generate stack-limit checks */
3257 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3258 /* Set if FPCCR.LSPACT is set */
3259 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3260 /* Set if we must create a new FP context */
3261 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3262 /* Set if FPCCR.S does not match current security state */
3263 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3264 
3265 /*
3266  * Bit usage when in AArch64 state
3267  */
3268 FIELD(TBFLAG_A64, TBII, 0, 2)
3269 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3270 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3271 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3272 FIELD(TBFLAG_A64, BT, 9, 1)
3273 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3274 FIELD(TBFLAG_A64, TBID, 12, 2)
3275 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3276 FIELD(TBFLAG_A64, ATA, 15, 1)
3277 FIELD(TBFLAG_A64, TCMA, 16, 2)
3278 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3279 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3280 
3281 /**
3282  * cpu_mmu_index:
3283  * @env: The cpu environment
3284  * @ifetch: True for code access, false for data access.
3285  *
3286  * Return the core mmu index for the current translation regime.
3287  * This function is used by generic TCG code paths.
3288  */
3289 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3290 {
3291     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3292 }
3293 
3294 static inline bool bswap_code(bool sctlr_b)
3295 {
3296 #ifdef CONFIG_USER_ONLY
3297     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3298      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3299      * would also end up as a mixed-endian mode with BE code, LE data.
3300      */
3301     return
3302 #ifdef TARGET_WORDS_BIGENDIAN
3303         1 ^
3304 #endif
3305         sctlr_b;
3306 #else
3307     /* All code access in ARM is little endian, and there are no loaders
3308      * doing swaps that need to be reversed
3309      */
3310     return 0;
3311 #endif
3312 }
3313 
3314 #ifdef CONFIG_USER_ONLY
3315 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3316 {
3317     return
3318 #ifdef TARGET_WORDS_BIGENDIAN
3319        1 ^
3320 #endif
3321        arm_cpu_data_is_big_endian(env);
3322 }
3323 #endif
3324 
3325 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3326                           target_ulong *cs_base, uint32_t *flags);
3327 
3328 enum {
3329     QEMU_PSCI_CONDUIT_DISABLED = 0,
3330     QEMU_PSCI_CONDUIT_SMC = 1,
3331     QEMU_PSCI_CONDUIT_HVC = 2,
3332 };
3333 
3334 #ifndef CONFIG_USER_ONLY
3335 /* Return the address space index to use for a memory access */
3336 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3337 {
3338     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3339 }
3340 
3341 /* Return the AddressSpace to use for a memory access
3342  * (which depends on whether the access is S or NS, and whether
3343  * the board gave us a separate AddressSpace for S accesses).
3344  */
3345 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3346 {
3347     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3348 }
3349 #endif
3350 
3351 /**
3352  * arm_register_pre_el_change_hook:
3353  * Register a hook function which will be called immediately before this
3354  * CPU changes exception level or mode. The hook function will be
3355  * passed a pointer to the ARMCPU and the opaque data pointer passed
3356  * to this function when the hook was registered.
3357  *
3358  * Note that if a pre-change hook is called, any registered post-change hooks
3359  * are guaranteed to subsequently be called.
3360  */
3361 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3362                                  void *opaque);
3363 /**
3364  * arm_register_el_change_hook:
3365  * Register a hook function which will be called immediately after this
3366  * CPU changes exception level or mode. The hook function will be
3367  * passed a pointer to the ARMCPU and the opaque data pointer passed
3368  * to this function when the hook was registered.
3369  *
3370  * Note that any registered hooks registered here are guaranteed to be called
3371  * if pre-change hooks have been.
3372  */
3373 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3374         *opaque);
3375 
3376 /**
3377  * arm_rebuild_hflags:
3378  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3379  */
3380 void arm_rebuild_hflags(CPUARMState *env);
3381 
3382 /**
3383  * aa32_vfp_dreg:
3384  * Return a pointer to the Dn register within env in 32-bit mode.
3385  */
3386 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3387 {
3388     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3389 }
3390 
3391 /**
3392  * aa32_vfp_qreg:
3393  * Return a pointer to the Qn register within env in 32-bit mode.
3394  */
3395 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3396 {
3397     return &env->vfp.zregs[regno].d[0];
3398 }
3399 
3400 /**
3401  * aa64_vfp_qreg:
3402  * Return a pointer to the Qn register within env in 64-bit mode.
3403  */
3404 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3405 {
3406     return &env->vfp.zregs[regno].d[0];
3407 }
3408 
3409 /* Shared between translate-sve.c and sve_helper.c.  */
3410 extern const uint64_t pred_esz_masks[4];
3411 
3412 /* Helper for the macros below, validating the argument type. */
3413 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3414 {
3415     return x;
3416 }
3417 
3418 /*
3419  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3420  * Using these should be a bit more self-documenting than using the
3421  * generic target bits directly.
3422  */
3423 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3424 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3425 
3426 /*
3427  * Naming convention for isar_feature functions:
3428  * Functions which test 32-bit ID registers should have _aa32_ in
3429  * their name. Functions which test 64-bit ID registers should have
3430  * _aa64_ in their name. These must only be used in code where we
3431  * know for certain that the CPU has AArch32 or AArch64 respectively
3432  * or where the correct answer for a CPU which doesn't implement that
3433  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3434  * system registers that are specific to that CPU state, for "should
3435  * we let this system register bit be set" tests where the 32-bit
3436  * flavour of the register doesn't have the bit, and so on).
3437  * Functions which simply ask "does this feature exist at all" have
3438  * _any_ in their name, and always return the logical OR of the _aa64_
3439  * and the _aa32_ function.
3440  */
3441 
3442 /*
3443  * 32-bit feature tests via id registers.
3444  */
3445 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3446 {
3447     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3448 }
3449 
3450 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3451 {
3452     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3453 }
3454 
3455 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3456 {
3457     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3458 }
3459 
3460 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3461 {
3462     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3463 }
3464 
3465 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3466 {
3467     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3468 }
3469 
3470 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3471 {
3472     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3473 }
3474 
3475 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3478 }
3479 
3480 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3481 {
3482     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3483 }
3484 
3485 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3486 {
3487     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3488 }
3489 
3490 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3491 {
3492     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3493 }
3494 
3495 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3496 {
3497     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3498 }
3499 
3500 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3501 {
3502     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3503 }
3504 
3505 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3506 {
3507     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3508 }
3509 
3510 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3511 {
3512     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3513 }
3514 
3515 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3516 {
3517     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3518 }
3519 
3520 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3521 {
3522     /*
3523      * This is a placeholder for use by VCMA until the rest of
3524      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3525      * At which point we can properly set and check MVFR1.FPHP.
3526      */
3527     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3528 }
3529 
3530 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3531 {
3532     /*
3533      * Return true if either VFP or SIMD is implemented.
3534      * In this case, a minimum of VFP w/ D0-D15.
3535      */
3536     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3537 }
3538 
3539 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3540 {
3541     /* Return true if D16-D31 are implemented */
3542     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3543 }
3544 
3545 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3546 {
3547     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3548 }
3549 
3550 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3551 {
3552     /* Return true if CPU supports single precision floating point, VFPv2 */
3553     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3554 }
3555 
3556 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3557 {
3558     /* Return true if CPU supports single precision floating point, VFPv3 */
3559     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3560 }
3561 
3562 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3563 {
3564     /* Return true if CPU supports double precision floating point, VFPv2 */
3565     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3566 }
3567 
3568 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3569 {
3570     /* Return true if CPU supports double precision floating point, VFPv3 */
3571     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3572 }
3573 
3574 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3575 {
3576     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3577 }
3578 
3579 /*
3580  * We always set the FP and SIMD FP16 fields to indicate identical
3581  * levels of support (assuming SIMD is implemented at all), so
3582  * we only need one set of accessors.
3583  */
3584 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3585 {
3586     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3587 }
3588 
3589 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3590 {
3591     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3592 }
3593 
3594 /*
3595  * Note that this ID register field covers both VFP and Neon FMAC,
3596  * so should usually be tested in combination with some other
3597  * check that confirms the presence of whichever of VFP or Neon is
3598  * relevant, to avoid accidentally enabling a Neon feature on
3599  * a VFP-no-Neon core or vice-versa.
3600  */
3601 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3602 {
3603     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3604 }
3605 
3606 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3607 {
3608     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3609 }
3610 
3611 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3612 {
3613     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3614 }
3615 
3616 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3617 {
3618     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3619 }
3620 
3621 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3622 {
3623     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3624 }
3625 
3626 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3629 }
3630 
3631 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3632 {
3633     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3634 }
3635 
3636 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3637 {
3638     /* 0xf means "non-standard IMPDEF PMU" */
3639     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3640         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3641 }
3642 
3643 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3644 {
3645     /* 0xf means "non-standard IMPDEF PMU" */
3646     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3647         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3648 }
3649 
3650 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3651 {
3652     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3653 }
3654 
3655 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3656 {
3657     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3658 }
3659 
3660 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3661 {
3662     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3663 }
3664 
3665 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3666 {
3667     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3668 }
3669 
3670 /*
3671  * 64-bit feature tests via id registers.
3672  */
3673 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3674 {
3675     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3676 }
3677 
3678 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3679 {
3680     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3681 }
3682 
3683 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3684 {
3685     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3686 }
3687 
3688 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3689 {
3690     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3691 }
3692 
3693 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3694 {
3695     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3696 }
3697 
3698 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3699 {
3700     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3701 }
3702 
3703 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3706 }
3707 
3708 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3709 {
3710     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3711 }
3712 
3713 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3714 {
3715     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3716 }
3717 
3718 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3719 {
3720     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3721 }
3722 
3723 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3724 {
3725     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3726 }
3727 
3728 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3729 {
3730     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3731 }
3732 
3733 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3734 {
3735     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3736 }
3737 
3738 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3739 {
3740     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3741 }
3742 
3743 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3744 {
3745     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3746 }
3747 
3748 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3751 }
3752 
3753 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3754 {
3755     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3756 }
3757 
3758 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3759 {
3760     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3761 }
3762 
3763 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3764 {
3765     /*
3766      * Note that while QEMU will only implement the architected algorithm
3767      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3768      * defined algorithms, and thus API+GPI, and this predicate controls
3769      * migration of the 128-bit keys.
3770      */
3771     return (id->id_aa64isar1 &
3772             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3773              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3774              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3775              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3776 }
3777 
3778 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3779 {
3780     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3781 }
3782 
3783 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3784 {
3785     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3786 }
3787 
3788 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3789 {
3790     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3791 }
3792 
3793 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3794 {
3795     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3796 }
3797 
3798 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3799 {
3800     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3801 }
3802 
3803 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3804 {
3805     /* We always set the AdvSIMD and FP fields identically.  */
3806     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3807 }
3808 
3809 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3810 {
3811     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3812     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3813 }
3814 
3815 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3816 {
3817     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3818 }
3819 
3820 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3823 }
3824 
3825 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3828 }
3829 
3830 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3833 }
3834 
3835 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3843 }
3844 
3845 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3848 }
3849 
3850 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3853 }
3854 
3855 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3858 }
3859 
3860 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3863 }
3864 
3865 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3868         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3869 }
3870 
3871 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3872 {
3873     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3874         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3875 }
3876 
3877 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3878 {
3879     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3880 }
3881 
3882 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3883 {
3884     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3885 }
3886 
3887 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3888 {
3889     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3890 }
3891 
3892 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3893 {
3894     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3895 }
3896 
3897 /*
3898  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3899  */
3900 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3901 {
3902     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3903 }
3904 
3905 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3906 {
3907     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3908 }
3909 
3910 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3911 {
3912     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3913 }
3914 
3915 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3916 {
3917     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3918 }
3919 
3920 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3921 {
3922     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3923 }
3924 
3925 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3926 {
3927     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3928 }
3929 
3930 /*
3931  * Forward to the above feature tests given an ARMCPU pointer.
3932  */
3933 #define cpu_isar_feature(name, cpu) \
3934     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3935 
3936 #endif
3937