1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 #include "qapi/qapi-types-common.h" 28 29 /* ARM processors have a weak memory model */ 30 #define TCG_GUEST_DEFAULT_MO (0) 31 32 #ifdef TARGET_AARCH64 33 #define KVM_HAVE_MCE_INJECTION 1 34 #endif 35 36 #define EXCP_UDEF 1 /* undefined instruction */ 37 #define EXCP_SWI 2 /* software interrupt */ 38 #define EXCP_PREFETCH_ABORT 3 39 #define EXCP_DATA_ABORT 4 40 #define EXCP_IRQ 5 41 #define EXCP_FIQ 6 42 #define EXCP_BKPT 7 43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 45 #define EXCP_HVC 11 /* HyperVisor Call */ 46 #define EXCP_HYP_TRAP 12 47 #define EXCP_SMC 13 /* Secure Monitor Call */ 48 #define EXCP_VIRQ 14 49 #define EXCP_VFIQ 15 50 #define EXCP_SEMIHOST 16 /* semihosting call */ 51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 58 59 #define ARMV7M_EXCP_RESET 1 60 #define ARMV7M_EXCP_NMI 2 61 #define ARMV7M_EXCP_HARD 3 62 #define ARMV7M_EXCP_MEM 4 63 #define ARMV7M_EXCP_BUS 5 64 #define ARMV7M_EXCP_USAGE 6 65 #define ARMV7M_EXCP_SECURE 7 66 #define ARMV7M_EXCP_SVC 11 67 #define ARMV7M_EXCP_DEBUG 12 68 #define ARMV7M_EXCP_PENDSV 14 69 #define ARMV7M_EXCP_SYSTICK 15 70 71 /* For M profile, some registers are banked secure vs non-secure; 72 * these are represented as a 2-element array where the first element 73 * is the non-secure copy and the second is the secure copy. 74 * When the CPU does not have implement the security extension then 75 * only the first element is used. 76 * This means that the copy for the current security state can be 77 * accessed via env->registerfield[env->v7m.secure] (whether the security 78 * extension is implemented or not). 79 */ 80 enum { 81 M_REG_NS = 0, 82 M_REG_S = 1, 83 M_REG_NUM_BANKS = 2, 84 }; 85 86 /* ARM-specific interrupt pending bits. */ 87 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 88 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 89 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 90 91 /* The usual mapping for an AArch64 system register to its AArch32 92 * counterpart is for the 32 bit world to have access to the lower 93 * half only (with writes leaving the upper half untouched). It's 94 * therefore useful to be able to pass TCG the offset of the least 95 * significant half of a uint64_t struct member. 96 */ 97 #ifdef HOST_WORDS_BIGENDIAN 98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 99 #define offsetofhigh32(S, M) offsetof(S, M) 100 #else 101 #define offsetoflow32(S, M) offsetof(S, M) 102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #endif 104 105 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 106 #define ARM_CPU_IRQ 0 107 #define ARM_CPU_FIQ 1 108 #define ARM_CPU_VIRQ 2 109 #define ARM_CPU_VFIQ 3 110 111 /* ARM-specific extra insn start words: 112 * 1: Conditional execution bits 113 * 2: Partial exception syndrome for data aborts 114 */ 115 #define TARGET_INSN_START_EXTRA_WORDS 2 116 117 /* The 2nd extra word holding syndrome info for data aborts does not use 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 119 * help the sleb128 encoder do a better job. 120 * When restoring the CPU state, we shift it back up. 121 */ 122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 123 #define ARM_INSN_START_WORD2_SHIFT 14 124 125 /* We currently assume float and double are IEEE single and double 126 precision respectively. 127 Doing runtime conversions is tricky because VFP registers may contain 128 integer values (eg. as the result of a FTOSI instruction). 129 s<2n> maps to the least significant half of d<n> 130 s<2n+1> maps to the most significant half of d<n> 131 */ 132 133 /** 134 * DynamicGDBXMLInfo: 135 * @desc: Contains the XML descriptions. 136 * @num: Number of the registers in this XML seen by GDB. 137 * @data: A union with data specific to the set of registers 138 * @cpregs_keys: Array that contains the corresponding Key of 139 * a given cpreg with the same order of the cpreg 140 * in the XML description. 141 */ 142 typedef struct DynamicGDBXMLInfo { 143 char *desc; 144 int num; 145 union { 146 struct { 147 uint32_t *keys; 148 } cpregs; 149 } data; 150 } DynamicGDBXMLInfo; 151 152 /* CPU state for each instance of a generic timer (in cp15 c14) */ 153 typedef struct ARMGenericTimer { 154 uint64_t cval; /* Timer CompareValue register */ 155 uint64_t ctl; /* Timer Control register */ 156 } ARMGenericTimer; 157 158 #define GTIMER_PHYS 0 159 #define GTIMER_VIRT 1 160 #define GTIMER_HYP 2 161 #define GTIMER_SEC 3 162 #define GTIMER_HYPVIRT 4 163 #define NUM_GTIMERS 5 164 165 typedef struct { 166 uint64_t raw_tcr; 167 uint32_t mask; 168 uint32_t base_mask; 169 } TCR; 170 171 /* Define a maximum sized vector register. 172 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 173 * For 64-bit, this is a 2048-bit SVE register. 174 * 175 * Note that the mapping between S, D, and Q views of the register bank 176 * differs between AArch64 and AArch32. 177 * In AArch32: 178 * Qn = regs[n].d[1]:regs[n].d[0] 179 * Dn = regs[n / 2].d[n & 1] 180 * Sn = regs[n / 4].d[n % 4 / 2], 181 * bits 31..0 for even n, and bits 63..32 for odd n 182 * (and regs[16] to regs[31] are inaccessible) 183 * In AArch64: 184 * Zn = regs[n].d[*] 185 * Qn = regs[n].d[1]:regs[n].d[0] 186 * Dn = regs[n].d[0] 187 * Sn = regs[n].d[0] bits 31..0 188 * Hn = regs[n].d[0] bits 15..0 189 * 190 * This corresponds to the architecturally defined mapping between 191 * the two execution states, and means we do not need to explicitly 192 * map these registers when changing states. 193 * 194 * Align the data for use with TCG host vector operations. 195 */ 196 197 #ifdef TARGET_AARCH64 198 # define ARM_MAX_VQ 16 199 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 200 #else 201 # define ARM_MAX_VQ 1 202 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 203 #endif 204 205 typedef struct ARMVectorReg { 206 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 207 } ARMVectorReg; 208 209 #ifdef TARGET_AARCH64 210 /* In AArch32 mode, predicate registers do not exist at all. */ 211 typedef struct ARMPredicateReg { 212 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 213 } ARMPredicateReg; 214 215 /* In AArch32 mode, PAC keys do not exist at all. */ 216 typedef struct ARMPACKey { 217 uint64_t lo, hi; 218 } ARMPACKey; 219 #endif 220 221 222 typedef struct CPUARMState { 223 /* Regs for current mode. */ 224 uint32_t regs[16]; 225 226 /* 32/64 switch only happens when taking and returning from 227 * exceptions so the overlap semantics are taken care of then 228 * instead of having a complicated union. 229 */ 230 /* Regs for A64 mode. */ 231 uint64_t xregs[32]; 232 uint64_t pc; 233 /* PSTATE isn't an architectural register for ARMv8. However, it is 234 * convenient for us to assemble the underlying state into a 32 bit format 235 * identical to the architectural format used for the SPSR. (This is also 236 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 237 * 'pstate' register are.) Of the PSTATE bits: 238 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 239 * semantics as for AArch32, as described in the comments on each field) 240 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 241 * DAIF (exception masks) are kept in env->daif 242 * BTYPE is kept in env->btype 243 * all other bits are stored in their correct places in env->pstate 244 */ 245 uint32_t pstate; 246 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 247 248 /* Cached TBFLAGS state. See below for which bits are included. */ 249 uint32_t hflags; 250 251 /* Frequently accessed CPSR bits are stored separately for efficiency. 252 This contains all the other bits. Use cpsr_{read,write} to access 253 the whole CPSR. */ 254 uint32_t uncached_cpsr; 255 uint32_t spsr; 256 257 /* Banked registers. */ 258 uint64_t banked_spsr[8]; 259 uint32_t banked_r13[8]; 260 uint32_t banked_r14[8]; 261 262 /* These hold r8-r12. */ 263 uint32_t usr_regs[5]; 264 uint32_t fiq_regs[5]; 265 266 /* cpsr flag cache for faster execution */ 267 uint32_t CF; /* 0 or 1 */ 268 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 269 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 270 uint32_t ZF; /* Z set if zero. */ 271 uint32_t QF; /* 0 or 1 */ 272 uint32_t GE; /* cpsr[19:16] */ 273 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 274 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 275 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 276 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 277 278 uint64_t elr_el[4]; /* AArch64 exception link regs */ 279 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 280 281 /* System control coprocessor (cp15) */ 282 struct { 283 uint32_t c0_cpuid; 284 union { /* Cache size selection */ 285 struct { 286 uint64_t _unused_csselr0; 287 uint64_t csselr_ns; 288 uint64_t _unused_csselr1; 289 uint64_t csselr_s; 290 }; 291 uint64_t csselr_el[4]; 292 }; 293 union { /* System control register. */ 294 struct { 295 uint64_t _unused_sctlr; 296 uint64_t sctlr_ns; 297 uint64_t hsctlr; 298 uint64_t sctlr_s; 299 }; 300 uint64_t sctlr_el[4]; 301 }; 302 uint64_t cpacr_el1; /* Architectural feature access control register */ 303 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 304 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 305 uint64_t sder; /* Secure debug enable register. */ 306 uint32_t nsacr; /* Non-secure access control register. */ 307 union { /* MMU translation table base 0. */ 308 struct { 309 uint64_t _unused_ttbr0_0; 310 uint64_t ttbr0_ns; 311 uint64_t _unused_ttbr0_1; 312 uint64_t ttbr0_s; 313 }; 314 uint64_t ttbr0_el[4]; 315 }; 316 union { /* MMU translation table base 1. */ 317 struct { 318 uint64_t _unused_ttbr1_0; 319 uint64_t ttbr1_ns; 320 uint64_t _unused_ttbr1_1; 321 uint64_t ttbr1_s; 322 }; 323 uint64_t ttbr1_el[4]; 324 }; 325 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 326 /* MMU translation table base control. */ 327 TCR tcr_el[4]; 328 TCR vtcr_el2; /* Virtualization Translation Control. */ 329 uint32_t c2_data; /* MPU data cacheable bits. */ 330 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 331 union { /* MMU domain access control register 332 * MPU write buffer control. 333 */ 334 struct { 335 uint64_t dacr_ns; 336 uint64_t dacr_s; 337 }; 338 struct { 339 uint64_t dacr32_el2; 340 }; 341 }; 342 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 343 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 344 uint64_t hcr_el2; /* Hypervisor configuration register */ 345 uint64_t scr_el3; /* Secure configuration register. */ 346 union { /* Fault status registers. */ 347 struct { 348 uint64_t ifsr_ns; 349 uint64_t ifsr_s; 350 }; 351 struct { 352 uint64_t ifsr32_el2; 353 }; 354 }; 355 union { 356 struct { 357 uint64_t _unused_dfsr; 358 uint64_t dfsr_ns; 359 uint64_t hsr; 360 uint64_t dfsr_s; 361 }; 362 uint64_t esr_el[4]; 363 }; 364 uint32_t c6_region[8]; /* MPU base/size registers. */ 365 union { /* Fault address registers. */ 366 struct { 367 uint64_t _unused_far0; 368 #ifdef HOST_WORDS_BIGENDIAN 369 uint32_t ifar_ns; 370 uint32_t dfar_ns; 371 uint32_t ifar_s; 372 uint32_t dfar_s; 373 #else 374 uint32_t dfar_ns; 375 uint32_t ifar_ns; 376 uint32_t dfar_s; 377 uint32_t ifar_s; 378 #endif 379 uint64_t _unused_far3; 380 }; 381 uint64_t far_el[4]; 382 }; 383 uint64_t hpfar_el2; 384 uint64_t hstr_el2; 385 union { /* Translation result. */ 386 struct { 387 uint64_t _unused_par_0; 388 uint64_t par_ns; 389 uint64_t _unused_par_1; 390 uint64_t par_s; 391 }; 392 uint64_t par_el[4]; 393 }; 394 395 uint32_t c9_insn; /* Cache lockdown registers. */ 396 uint32_t c9_data; 397 uint64_t c9_pmcr; /* performance monitor control register */ 398 uint64_t c9_pmcnten; /* perf monitor counter enables */ 399 uint64_t c9_pmovsr; /* perf monitor overflow status */ 400 uint64_t c9_pmuserenr; /* perf monitor user enable */ 401 uint64_t c9_pmselr; /* perf monitor counter selection register */ 402 uint64_t c9_pminten; /* perf monitor interrupt enables */ 403 union { /* Memory attribute redirection */ 404 struct { 405 #ifdef HOST_WORDS_BIGENDIAN 406 uint64_t _unused_mair_0; 407 uint32_t mair1_ns; 408 uint32_t mair0_ns; 409 uint64_t _unused_mair_1; 410 uint32_t mair1_s; 411 uint32_t mair0_s; 412 #else 413 uint64_t _unused_mair_0; 414 uint32_t mair0_ns; 415 uint32_t mair1_ns; 416 uint64_t _unused_mair_1; 417 uint32_t mair0_s; 418 uint32_t mair1_s; 419 #endif 420 }; 421 uint64_t mair_el[4]; 422 }; 423 union { /* vector base address register */ 424 struct { 425 uint64_t _unused_vbar; 426 uint64_t vbar_ns; 427 uint64_t hvbar; 428 uint64_t vbar_s; 429 }; 430 uint64_t vbar_el[4]; 431 }; 432 uint32_t mvbar; /* (monitor) vector base address register */ 433 struct { /* FCSE PID. */ 434 uint32_t fcseidr_ns; 435 uint32_t fcseidr_s; 436 }; 437 union { /* Context ID. */ 438 struct { 439 uint64_t _unused_contextidr_0; 440 uint64_t contextidr_ns; 441 uint64_t _unused_contextidr_1; 442 uint64_t contextidr_s; 443 }; 444 uint64_t contextidr_el[4]; 445 }; 446 union { /* User RW Thread register. */ 447 struct { 448 uint64_t tpidrurw_ns; 449 uint64_t tpidrprw_ns; 450 uint64_t htpidr; 451 uint64_t _tpidr_el3; 452 }; 453 uint64_t tpidr_el[4]; 454 }; 455 /* The secure banks of these registers don't map anywhere */ 456 uint64_t tpidrurw_s; 457 uint64_t tpidrprw_s; 458 uint64_t tpidruro_s; 459 460 union { /* User RO Thread register. */ 461 uint64_t tpidruro_ns; 462 uint64_t tpidrro_el[1]; 463 }; 464 uint64_t c14_cntfrq; /* Counter Frequency register */ 465 uint64_t c14_cntkctl; /* Timer Control register */ 466 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 467 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 468 ARMGenericTimer c14_timer[NUM_GTIMERS]; 469 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 470 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 471 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 472 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 473 uint32_t c15_threadid; /* TI debugger thread-ID. */ 474 uint32_t c15_config_base_address; /* SCU base address. */ 475 uint32_t c15_diagnostic; /* diagnostic register */ 476 uint32_t c15_power_diagnostic; 477 uint32_t c15_power_control; /* power control */ 478 uint64_t dbgbvr[16]; /* breakpoint value registers */ 479 uint64_t dbgbcr[16]; /* breakpoint control registers */ 480 uint64_t dbgwvr[16]; /* watchpoint value registers */ 481 uint64_t dbgwcr[16]; /* watchpoint control registers */ 482 uint64_t mdscr_el1; 483 uint64_t oslsr_el1; /* OS Lock Status */ 484 uint64_t mdcr_el2; 485 uint64_t mdcr_el3; 486 /* Stores the architectural value of the counter *the last time it was 487 * updated* by pmccntr_op_start. Accesses should always be surrounded 488 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 489 * architecturally-correct value is being read/set. 490 */ 491 uint64_t c15_ccnt; 492 /* Stores the delta between the architectural value and the underlying 493 * cycle count during normal operation. It is used to update c15_ccnt 494 * to be the correct architectural value before accesses. During 495 * accesses, c15_ccnt_delta contains the underlying count being used 496 * for the access, after which it reverts to the delta value in 497 * pmccntr_op_finish. 498 */ 499 uint64_t c15_ccnt_delta; 500 uint64_t c14_pmevcntr[31]; 501 uint64_t c14_pmevcntr_delta[31]; 502 uint64_t c14_pmevtyper[31]; 503 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 504 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 505 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 506 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 507 uint64_t gcr_el1; 508 uint64_t rgsr_el1; 509 } cp15; 510 511 struct { 512 /* M profile has up to 4 stack pointers: 513 * a Main Stack Pointer and a Process Stack Pointer for each 514 * of the Secure and Non-Secure states. (If the CPU doesn't support 515 * the security extension then it has only two SPs.) 516 * In QEMU we always store the currently active SP in regs[13], 517 * and the non-active SP for the current security state in 518 * v7m.other_sp. The stack pointers for the inactive security state 519 * are stored in other_ss_msp and other_ss_psp. 520 * switch_v7m_security_state() is responsible for rearranging them 521 * when we change security state. 522 */ 523 uint32_t other_sp; 524 uint32_t other_ss_msp; 525 uint32_t other_ss_psp; 526 uint32_t vecbase[M_REG_NUM_BANKS]; 527 uint32_t basepri[M_REG_NUM_BANKS]; 528 uint32_t control[M_REG_NUM_BANKS]; 529 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 530 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 531 uint32_t hfsr; /* HardFault Status */ 532 uint32_t dfsr; /* Debug Fault Status Register */ 533 uint32_t sfsr; /* Secure Fault Status Register */ 534 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 535 uint32_t bfar; /* BusFault Address */ 536 uint32_t sfar; /* Secure Fault Address Register */ 537 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 538 int exception; 539 uint32_t primask[M_REG_NUM_BANKS]; 540 uint32_t faultmask[M_REG_NUM_BANKS]; 541 uint32_t aircr; /* only holds r/w state if security extn implemented */ 542 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 543 uint32_t csselr[M_REG_NUM_BANKS]; 544 uint32_t scr[M_REG_NUM_BANKS]; 545 uint32_t msplim[M_REG_NUM_BANKS]; 546 uint32_t psplim[M_REG_NUM_BANKS]; 547 uint32_t fpcar[M_REG_NUM_BANKS]; 548 uint32_t fpccr[M_REG_NUM_BANKS]; 549 uint32_t fpdscr[M_REG_NUM_BANKS]; 550 uint32_t cpacr[M_REG_NUM_BANKS]; 551 uint32_t nsacr; 552 int ltpsize; 553 } v7m; 554 555 /* Information associated with an exception about to be taken: 556 * code which raises an exception must set cs->exception_index and 557 * the relevant parts of this structure; the cpu_do_interrupt function 558 * will then set the guest-visible registers as part of the exception 559 * entry process. 560 */ 561 struct { 562 uint32_t syndrome; /* AArch64 format syndrome register */ 563 uint32_t fsr; /* AArch32 format fault status register info */ 564 uint64_t vaddress; /* virtual addr associated with exception, if any */ 565 uint32_t target_el; /* EL the exception should be targeted for */ 566 /* If we implement EL2 we will also need to store information 567 * about the intermediate physical address for stage 2 faults. 568 */ 569 } exception; 570 571 /* Information associated with an SError */ 572 struct { 573 uint8_t pending; 574 uint8_t has_esr; 575 uint64_t esr; 576 } serror; 577 578 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 579 580 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 581 uint32_t irq_line_state; 582 583 /* Thumb-2 EE state. */ 584 uint32_t teecr; 585 uint32_t teehbr; 586 587 /* VFP coprocessor state. */ 588 struct { 589 ARMVectorReg zregs[32]; 590 591 #ifdef TARGET_AARCH64 592 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 593 #define FFR_PRED_NUM 16 594 ARMPredicateReg pregs[17]; 595 /* Scratch space for aa64 sve predicate temporary. */ 596 ARMPredicateReg preg_tmp; 597 #endif 598 599 /* We store these fpcsr fields separately for convenience. */ 600 uint32_t qc[4] QEMU_ALIGNED(16); 601 int vec_len; 602 int vec_stride; 603 604 uint32_t xregs[16]; 605 606 /* Scratch space for aa32 neon expansion. */ 607 uint32_t scratch[8]; 608 609 /* There are a number of distinct float control structures: 610 * 611 * fp_status: is the "normal" fp status. 612 * fp_status_fp16: used for half-precision calculations 613 * standard_fp_status : the ARM "Standard FPSCR Value" 614 * standard_fp_status_fp16 : used for half-precision 615 * calculations with the ARM "Standard FPSCR Value" 616 * 617 * Half-precision operations are governed by a separate 618 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 619 * status structure to control this. 620 * 621 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 622 * round-to-nearest and is used by any operations (generally 623 * Neon) which the architecture defines as controlled by the 624 * standard FPSCR value rather than the FPSCR. 625 * 626 * The "standard FPSCR but for fp16 ops" is needed because 627 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 628 * using a fixed value for it. 629 * 630 * To avoid having to transfer exception bits around, we simply 631 * say that the FPSCR cumulative exception flags are the logical 632 * OR of the flags in the four fp statuses. This relies on the 633 * only thing which needs to read the exception flags being 634 * an explicit FPSCR read. 635 */ 636 float_status fp_status; 637 float_status fp_status_f16; 638 float_status standard_fp_status; 639 float_status standard_fp_status_f16; 640 641 /* ZCR_EL[1-3] */ 642 uint64_t zcr_el[4]; 643 } vfp; 644 uint64_t exclusive_addr; 645 uint64_t exclusive_val; 646 uint64_t exclusive_high; 647 648 /* iwMMXt coprocessor state. */ 649 struct { 650 uint64_t regs[16]; 651 uint64_t val; 652 653 uint32_t cregs[16]; 654 } iwmmxt; 655 656 #ifdef TARGET_AARCH64 657 struct { 658 ARMPACKey apia; 659 ARMPACKey apib; 660 ARMPACKey apda; 661 ARMPACKey apdb; 662 ARMPACKey apga; 663 } keys; 664 #endif 665 666 #if defined(CONFIG_USER_ONLY) 667 /* For usermode syscall translation. */ 668 int eabi; 669 #endif 670 671 struct CPUBreakpoint *cpu_breakpoint[16]; 672 struct CPUWatchpoint *cpu_watchpoint[16]; 673 674 /* Fields up to this point are cleared by a CPU reset */ 675 struct {} end_reset_fields; 676 677 /* Fields after this point are preserved across CPU reset. */ 678 679 /* Internal CPU feature flags. */ 680 uint64_t features; 681 682 /* PMSAv7 MPU */ 683 struct { 684 uint32_t *drbar; 685 uint32_t *drsr; 686 uint32_t *dracr; 687 uint32_t rnr[M_REG_NUM_BANKS]; 688 } pmsav7; 689 690 /* PMSAv8 MPU */ 691 struct { 692 /* The PMSAv8 implementation also shares some PMSAv7 config 693 * and state: 694 * pmsav7.rnr (region number register) 695 * pmsav7_dregion (number of configured regions) 696 */ 697 uint32_t *rbar[M_REG_NUM_BANKS]; 698 uint32_t *rlar[M_REG_NUM_BANKS]; 699 uint32_t mair0[M_REG_NUM_BANKS]; 700 uint32_t mair1[M_REG_NUM_BANKS]; 701 } pmsav8; 702 703 /* v8M SAU */ 704 struct { 705 uint32_t *rbar; 706 uint32_t *rlar; 707 uint32_t rnr; 708 uint32_t ctrl; 709 } sau; 710 711 void *nvic; 712 const struct arm_boot_info *boot_info; 713 /* Store GICv3CPUState to access from this struct */ 714 void *gicv3state; 715 } CPUARMState; 716 717 static inline void set_feature(CPUARMState *env, int feature) 718 { 719 env->features |= 1ULL << feature; 720 } 721 722 static inline void unset_feature(CPUARMState *env, int feature) 723 { 724 env->features &= ~(1ULL << feature); 725 } 726 727 /** 728 * ARMELChangeHookFn: 729 * type of a function which can be registered via arm_register_el_change_hook() 730 * to get callbacks when the CPU changes its exception level or mode. 731 */ 732 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 733 typedef struct ARMELChangeHook ARMELChangeHook; 734 struct ARMELChangeHook { 735 ARMELChangeHookFn *hook; 736 void *opaque; 737 QLIST_ENTRY(ARMELChangeHook) node; 738 }; 739 740 /* These values map onto the return values for 741 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 742 typedef enum ARMPSCIState { 743 PSCI_ON = 0, 744 PSCI_OFF = 1, 745 PSCI_ON_PENDING = 2 746 } ARMPSCIState; 747 748 typedef struct ARMISARegisters ARMISARegisters; 749 750 /** 751 * ARMCPU: 752 * @env: #CPUARMState 753 * 754 * An ARM CPU core. 755 */ 756 struct ARMCPU { 757 /*< private >*/ 758 CPUState parent_obj; 759 /*< public >*/ 760 761 CPUNegativeOffsetState neg; 762 CPUARMState env; 763 764 /* Coprocessor information */ 765 GHashTable *cp_regs; 766 /* For marshalling (mostly coprocessor) register state between the 767 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 768 * we use these arrays. 769 */ 770 /* List of register indexes managed via these arrays; (full KVM style 771 * 64 bit indexes, not CPRegInfo 32 bit indexes) 772 */ 773 uint64_t *cpreg_indexes; 774 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 775 uint64_t *cpreg_values; 776 /* Length of the indexes, values, reset_values arrays */ 777 int32_t cpreg_array_len; 778 /* These are used only for migration: incoming data arrives in 779 * these fields and is sanity checked in post_load before copying 780 * to the working data structures above. 781 */ 782 uint64_t *cpreg_vmstate_indexes; 783 uint64_t *cpreg_vmstate_values; 784 int32_t cpreg_vmstate_array_len; 785 786 DynamicGDBXMLInfo dyn_sysreg_xml; 787 DynamicGDBXMLInfo dyn_svereg_xml; 788 789 /* Timers used by the generic (architected) timer */ 790 QEMUTimer *gt_timer[NUM_GTIMERS]; 791 /* 792 * Timer used by the PMU. Its state is restored after migration by 793 * pmu_op_finish() - it does not need other handling during migration 794 */ 795 QEMUTimer *pmu_timer; 796 /* GPIO outputs for generic timer */ 797 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 798 /* GPIO output for GICv3 maintenance interrupt signal */ 799 qemu_irq gicv3_maintenance_interrupt; 800 /* GPIO output for the PMU interrupt */ 801 qemu_irq pmu_interrupt; 802 803 /* MemoryRegion to use for secure physical accesses */ 804 MemoryRegion *secure_memory; 805 806 /* MemoryRegion to use for allocation tag accesses */ 807 MemoryRegion *tag_memory; 808 MemoryRegion *secure_tag_memory; 809 810 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 811 Object *idau; 812 813 /* 'compatible' string for this CPU for Linux device trees */ 814 const char *dtb_compatible; 815 816 /* PSCI version for this CPU 817 * Bits[31:16] = Major Version 818 * Bits[15:0] = Minor Version 819 */ 820 uint32_t psci_version; 821 822 /* Current power state, access guarded by BQL */ 823 ARMPSCIState power_state; 824 825 /* CPU has virtualization extension */ 826 bool has_el2; 827 /* CPU has security extension */ 828 bool has_el3; 829 /* CPU has PMU (Performance Monitor Unit) */ 830 bool has_pmu; 831 /* CPU has VFP */ 832 bool has_vfp; 833 /* CPU has Neon */ 834 bool has_neon; 835 /* CPU has M-profile DSP extension */ 836 bool has_dsp; 837 838 /* CPU has memory protection unit */ 839 bool has_mpu; 840 /* PMSAv7 MPU number of supported regions */ 841 uint32_t pmsav7_dregion; 842 /* v8M SAU number of supported regions */ 843 uint32_t sau_sregion; 844 845 /* PSCI conduit used to invoke PSCI methods 846 * 0 - disabled, 1 - smc, 2 - hvc 847 */ 848 uint32_t psci_conduit; 849 850 /* For v8M, initial value of the Secure VTOR */ 851 uint32_t init_svtor; 852 853 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 854 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 855 */ 856 uint32_t kvm_target; 857 858 /* KVM init features for this CPU */ 859 uint32_t kvm_init_features[7]; 860 861 /* KVM CPU state */ 862 863 /* KVM virtual time adjustment */ 864 bool kvm_adjvtime; 865 bool kvm_vtime_dirty; 866 uint64_t kvm_vtime; 867 868 /* KVM steal time */ 869 OnOffAuto kvm_steal_time; 870 871 /* Uniprocessor system with MP extensions */ 872 bool mp_is_up; 873 874 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 875 * and the probe failed (so we need to report the error in realize) 876 */ 877 bool host_cpu_probe_failed; 878 879 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 880 * register. 881 */ 882 int32_t core_count; 883 884 /* The instance init functions for implementation-specific subclasses 885 * set these fields to specify the implementation-dependent values of 886 * various constant registers and reset values of non-constant 887 * registers. 888 * Some of these might become QOM properties eventually. 889 * Field names match the official register names as defined in the 890 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 891 * is used for reset values of non-constant registers; no reset_ 892 * prefix means a constant register. 893 * Some of these registers are split out into a substructure that 894 * is shared with the translators to control the ISA. 895 * 896 * Note that if you add an ID register to the ARMISARegisters struct 897 * you need to also update the 32-bit and 64-bit versions of the 898 * kvm_arm_get_host_cpu_features() function to correctly populate the 899 * field by reading the value from the KVM vCPU. 900 */ 901 struct ARMISARegisters { 902 uint32_t id_isar0; 903 uint32_t id_isar1; 904 uint32_t id_isar2; 905 uint32_t id_isar3; 906 uint32_t id_isar4; 907 uint32_t id_isar5; 908 uint32_t id_isar6; 909 uint32_t id_mmfr0; 910 uint32_t id_mmfr1; 911 uint32_t id_mmfr2; 912 uint32_t id_mmfr3; 913 uint32_t id_mmfr4; 914 uint32_t id_pfr0; 915 uint32_t id_pfr1; 916 uint32_t mvfr0; 917 uint32_t mvfr1; 918 uint32_t mvfr2; 919 uint32_t id_dfr0; 920 uint32_t dbgdidr; 921 uint64_t id_aa64isar0; 922 uint64_t id_aa64isar1; 923 uint64_t id_aa64pfr0; 924 uint64_t id_aa64pfr1; 925 uint64_t id_aa64mmfr0; 926 uint64_t id_aa64mmfr1; 927 uint64_t id_aa64mmfr2; 928 uint64_t id_aa64dfr0; 929 uint64_t id_aa64dfr1; 930 } isar; 931 uint64_t midr; 932 uint32_t revidr; 933 uint32_t reset_fpsid; 934 uint32_t ctr; 935 uint32_t reset_sctlr; 936 uint64_t pmceid0; 937 uint64_t pmceid1; 938 uint32_t id_afr0; 939 uint64_t id_aa64afr0; 940 uint64_t id_aa64afr1; 941 uint32_t clidr; 942 uint64_t mp_affinity; /* MP ID without feature bits */ 943 /* The elements of this array are the CCSIDR values for each cache, 944 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 945 */ 946 uint64_t ccsidr[16]; 947 uint64_t reset_cbar; 948 uint32_t reset_auxcr; 949 bool reset_hivecs; 950 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 951 uint32_t dcz_blocksize; 952 uint64_t rvbar; 953 954 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 955 int gic_num_lrs; /* number of list registers */ 956 int gic_vpribits; /* number of virtual priority bits */ 957 int gic_vprebits; /* number of virtual preemption bits */ 958 959 /* Whether the cfgend input is high (i.e. this CPU should reset into 960 * big-endian mode). This setting isn't used directly: instead it modifies 961 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 962 * architecture version. 963 */ 964 bool cfgend; 965 966 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 967 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 968 969 int32_t node_id; /* NUMA node this CPU belongs to */ 970 971 /* Used to synchronize KVM and QEMU in-kernel device levels */ 972 uint8_t device_irq_level; 973 974 /* Used to set the maximum vector length the cpu will support. */ 975 uint32_t sve_max_vq; 976 977 /* 978 * In sve_vq_map each set bit is a supported vector length of 979 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 980 * length in quadwords. 981 * 982 * While processing properties during initialization, corresponding 983 * sve_vq_init bits are set for bits in sve_vq_map that have been 984 * set by properties. 985 */ 986 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 987 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 988 989 /* Generic timer counter frequency, in Hz */ 990 uint64_t gt_cntfrq_hz; 991 }; 992 993 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 994 995 void arm_cpu_post_init(Object *obj); 996 997 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 998 999 #ifndef CONFIG_USER_ONLY 1000 extern const VMStateDescription vmstate_arm_cpu; 1001 #endif 1002 1003 void arm_cpu_do_interrupt(CPUState *cpu); 1004 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1005 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 1006 1007 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1008 MemTxAttrs *attrs); 1009 1010 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1011 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1012 1013 /* 1014 * Helpers to dynamically generates XML descriptions of the sysregs 1015 * and SVE registers. Returns the number of registers in each set. 1016 */ 1017 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1018 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1019 1020 /* Returns the dynamically generated XML for the gdb stub. 1021 * Returns a pointer to the XML contents for the specified XML file or NULL 1022 * if the XML name doesn't match the predefined one. 1023 */ 1024 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1025 1026 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1027 int cpuid, void *opaque); 1028 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1029 int cpuid, void *opaque); 1030 1031 #ifdef TARGET_AARCH64 1032 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1033 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1034 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1035 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1036 int new_el, bool el0_a64); 1037 void aarch64_add_sve_properties(Object *obj); 1038 1039 /* 1040 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1041 * The byte at offset i from the start of the in-memory representation contains 1042 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1043 * lowest offsets are stored in the lowest memory addresses, then that nearly 1044 * matches QEMU's representation, which is to use an array of host-endian 1045 * uint64_t's, where the lower offsets are at the lower indices. To complete 1046 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1047 */ 1048 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1049 { 1050 #ifdef HOST_WORDS_BIGENDIAN 1051 int i; 1052 1053 for (i = 0; i < nr; ++i) { 1054 dst[i] = bswap64(src[i]); 1055 } 1056 1057 return dst; 1058 #else 1059 return src; 1060 #endif 1061 } 1062 1063 #else 1064 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1065 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1066 int n, bool a) 1067 { } 1068 static inline void aarch64_add_sve_properties(Object *obj) { } 1069 #endif 1070 1071 #if !defined(CONFIG_TCG) 1072 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1073 { 1074 g_assert_not_reached(); 1075 } 1076 #else 1077 target_ulong do_arm_semihosting(CPUARMState *env); 1078 #endif 1079 void aarch64_sync_32_to_64(CPUARMState *env); 1080 void aarch64_sync_64_to_32(CPUARMState *env); 1081 1082 int fp_exception_el(CPUARMState *env, int cur_el); 1083 int sve_exception_el(CPUARMState *env, int cur_el); 1084 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1085 1086 static inline bool is_a64(CPUARMState *env) 1087 { 1088 return env->aarch64; 1089 } 1090 1091 /* you can call this signal handler from your SIGBUS and SIGSEGV 1092 signal handlers to inform the virtual CPU of exceptions. non zero 1093 is returned if the signal was handled by the virtual CPU. */ 1094 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1095 void *puc); 1096 1097 /** 1098 * pmu_op_start/finish 1099 * @env: CPUARMState 1100 * 1101 * Convert all PMU counters between their delta form (the typical mode when 1102 * they are enabled) and the guest-visible values. These two calls must 1103 * surround any action which might affect the counters. 1104 */ 1105 void pmu_op_start(CPUARMState *env); 1106 void pmu_op_finish(CPUARMState *env); 1107 1108 /* 1109 * Called when a PMU counter is due to overflow 1110 */ 1111 void arm_pmu_timer_cb(void *opaque); 1112 1113 /** 1114 * Functions to register as EL change hooks for PMU mode filtering 1115 */ 1116 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1117 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1118 1119 /* 1120 * pmu_init 1121 * @cpu: ARMCPU 1122 * 1123 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1124 * for the current configuration 1125 */ 1126 void pmu_init(ARMCPU *cpu); 1127 1128 /* SCTLR bit meanings. Several bits have been reused in newer 1129 * versions of the architecture; in that case we define constants 1130 * for both old and new bit meanings. Code which tests against those 1131 * bits should probably check or otherwise arrange that the CPU 1132 * is the architectural version it expects. 1133 */ 1134 #define SCTLR_M (1U << 0) 1135 #define SCTLR_A (1U << 1) 1136 #define SCTLR_C (1U << 2) 1137 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1138 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1139 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1140 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1141 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1142 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1143 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1144 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1145 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1146 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1147 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1148 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1149 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1150 #define SCTLR_SED (1U << 8) /* v8 onward */ 1151 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1152 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1153 #define SCTLR_F (1U << 10) /* up to v6 */ 1154 #define SCTLR_SW (1U << 10) /* v7 */ 1155 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1156 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1157 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1158 #define SCTLR_I (1U << 12) 1159 #define SCTLR_V (1U << 13) /* AArch32 only */ 1160 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1161 #define SCTLR_RR (1U << 14) /* up to v7 */ 1162 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1163 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1164 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1165 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1166 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1167 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1168 #define SCTLR_BR (1U << 17) /* PMSA only */ 1169 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1170 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1171 #define SCTLR_WXN (1U << 19) 1172 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1173 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1174 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1175 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1176 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1177 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1178 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1179 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1180 #define SCTLR_VE (1U << 24) /* up to v7 */ 1181 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1182 #define SCTLR_EE (1U << 25) 1183 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1184 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1185 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1186 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1187 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1188 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1189 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1190 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1191 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1192 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1193 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1194 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1195 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1196 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1197 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1198 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1199 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1200 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1201 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1202 1203 #define CPTR_TCPAC (1U << 31) 1204 #define CPTR_TTA (1U << 20) 1205 #define CPTR_TFP (1U << 10) 1206 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1207 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1208 1209 #define MDCR_EPMAD (1U << 21) 1210 #define MDCR_EDAD (1U << 20) 1211 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1212 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1213 #define MDCR_SDD (1U << 16) 1214 #define MDCR_SPD (3U << 14) 1215 #define MDCR_TDRA (1U << 11) 1216 #define MDCR_TDOSA (1U << 10) 1217 #define MDCR_TDA (1U << 9) 1218 #define MDCR_TDE (1U << 8) 1219 #define MDCR_HPME (1U << 7) 1220 #define MDCR_TPM (1U << 6) 1221 #define MDCR_TPMCR (1U << 5) 1222 #define MDCR_HPMN (0x1fU) 1223 1224 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1225 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1226 1227 #define CPSR_M (0x1fU) 1228 #define CPSR_T (1U << 5) 1229 #define CPSR_F (1U << 6) 1230 #define CPSR_I (1U << 7) 1231 #define CPSR_A (1U << 8) 1232 #define CPSR_E (1U << 9) 1233 #define CPSR_IT_2_7 (0xfc00U) 1234 #define CPSR_GE (0xfU << 16) 1235 #define CPSR_IL (1U << 20) 1236 #define CPSR_PAN (1U << 22) 1237 #define CPSR_J (1U << 24) 1238 #define CPSR_IT_0_1 (3U << 25) 1239 #define CPSR_Q (1U << 27) 1240 #define CPSR_V (1U << 28) 1241 #define CPSR_C (1U << 29) 1242 #define CPSR_Z (1U << 30) 1243 #define CPSR_N (1U << 31) 1244 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1245 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1246 1247 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1248 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1249 | CPSR_NZCV) 1250 /* Bits writable in user mode. */ 1251 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1252 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1253 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1254 1255 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1256 #define XPSR_EXCP 0x1ffU 1257 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1258 #define XPSR_IT_2_7 CPSR_IT_2_7 1259 #define XPSR_GE CPSR_GE 1260 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1261 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1262 #define XPSR_IT_0_1 CPSR_IT_0_1 1263 #define XPSR_Q CPSR_Q 1264 #define XPSR_V CPSR_V 1265 #define XPSR_C CPSR_C 1266 #define XPSR_Z CPSR_Z 1267 #define XPSR_N CPSR_N 1268 #define XPSR_NZCV CPSR_NZCV 1269 #define XPSR_IT CPSR_IT 1270 1271 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1272 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1273 #define TTBCR_PD0 (1U << 4) 1274 #define TTBCR_PD1 (1U << 5) 1275 #define TTBCR_EPD0 (1U << 7) 1276 #define TTBCR_IRGN0 (3U << 8) 1277 #define TTBCR_ORGN0 (3U << 10) 1278 #define TTBCR_SH0 (3U << 12) 1279 #define TTBCR_T1SZ (3U << 16) 1280 #define TTBCR_A1 (1U << 22) 1281 #define TTBCR_EPD1 (1U << 23) 1282 #define TTBCR_IRGN1 (3U << 24) 1283 #define TTBCR_ORGN1 (3U << 26) 1284 #define TTBCR_SH1 (1U << 28) 1285 #define TTBCR_EAE (1U << 31) 1286 1287 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1288 * Only these are valid when in AArch64 mode; in 1289 * AArch32 mode SPSRs are basically CPSR-format. 1290 */ 1291 #define PSTATE_SP (1U) 1292 #define PSTATE_M (0xFU) 1293 #define PSTATE_nRW (1U << 4) 1294 #define PSTATE_F (1U << 6) 1295 #define PSTATE_I (1U << 7) 1296 #define PSTATE_A (1U << 8) 1297 #define PSTATE_D (1U << 9) 1298 #define PSTATE_BTYPE (3U << 10) 1299 #define PSTATE_IL (1U << 20) 1300 #define PSTATE_SS (1U << 21) 1301 #define PSTATE_PAN (1U << 22) 1302 #define PSTATE_UAO (1U << 23) 1303 #define PSTATE_TCO (1U << 25) 1304 #define PSTATE_V (1U << 28) 1305 #define PSTATE_C (1U << 29) 1306 #define PSTATE_Z (1U << 30) 1307 #define PSTATE_N (1U << 31) 1308 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1309 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1310 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1311 /* Mode values for AArch64 */ 1312 #define PSTATE_MODE_EL3h 13 1313 #define PSTATE_MODE_EL3t 12 1314 #define PSTATE_MODE_EL2h 9 1315 #define PSTATE_MODE_EL2t 8 1316 #define PSTATE_MODE_EL1h 5 1317 #define PSTATE_MODE_EL1t 4 1318 #define PSTATE_MODE_EL0t 0 1319 1320 /* Write a new value to v7m.exception, thus transitioning into or out 1321 * of Handler mode; this may result in a change of active stack pointer. 1322 */ 1323 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1324 1325 /* Map EL and handler into a PSTATE_MODE. */ 1326 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1327 { 1328 return (el << 2) | handler; 1329 } 1330 1331 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1332 * interprocessing, so we don't attempt to sync with the cpsr state used by 1333 * the 32 bit decoder. 1334 */ 1335 static inline uint32_t pstate_read(CPUARMState *env) 1336 { 1337 int ZF; 1338 1339 ZF = (env->ZF == 0); 1340 return (env->NF & 0x80000000) | (ZF << 30) 1341 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1342 | env->pstate | env->daif | (env->btype << 10); 1343 } 1344 1345 static inline void pstate_write(CPUARMState *env, uint32_t val) 1346 { 1347 env->ZF = (~val) & PSTATE_Z; 1348 env->NF = val; 1349 env->CF = (val >> 29) & 1; 1350 env->VF = (val << 3) & 0x80000000; 1351 env->daif = val & PSTATE_DAIF; 1352 env->btype = (val >> 10) & 3; 1353 env->pstate = val & ~CACHED_PSTATE_BITS; 1354 } 1355 1356 /* Return the current CPSR value. */ 1357 uint32_t cpsr_read(CPUARMState *env); 1358 1359 typedef enum CPSRWriteType { 1360 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1361 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1362 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1363 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1364 } CPSRWriteType; 1365 1366 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1367 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1368 CPSRWriteType write_type); 1369 1370 /* Return the current xPSR value. */ 1371 static inline uint32_t xpsr_read(CPUARMState *env) 1372 { 1373 int ZF; 1374 ZF = (env->ZF == 0); 1375 return (env->NF & 0x80000000) | (ZF << 30) 1376 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1377 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1378 | ((env->condexec_bits & 0xfc) << 8) 1379 | (env->GE << 16) 1380 | env->v7m.exception; 1381 } 1382 1383 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1384 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1385 { 1386 if (mask & XPSR_NZCV) { 1387 env->ZF = (~val) & XPSR_Z; 1388 env->NF = val; 1389 env->CF = (val >> 29) & 1; 1390 env->VF = (val << 3) & 0x80000000; 1391 } 1392 if (mask & XPSR_Q) { 1393 env->QF = ((val & XPSR_Q) != 0); 1394 } 1395 if (mask & XPSR_GE) { 1396 env->GE = (val & XPSR_GE) >> 16; 1397 } 1398 #ifndef CONFIG_USER_ONLY 1399 if (mask & XPSR_T) { 1400 env->thumb = ((val & XPSR_T) != 0); 1401 } 1402 if (mask & XPSR_IT_0_1) { 1403 env->condexec_bits &= ~3; 1404 env->condexec_bits |= (val >> 25) & 3; 1405 } 1406 if (mask & XPSR_IT_2_7) { 1407 env->condexec_bits &= 3; 1408 env->condexec_bits |= (val >> 8) & 0xfc; 1409 } 1410 if (mask & XPSR_EXCP) { 1411 /* Note that this only happens on exception exit */ 1412 write_v7m_exception(env, val & XPSR_EXCP); 1413 } 1414 #endif 1415 } 1416 1417 #define HCR_VM (1ULL << 0) 1418 #define HCR_SWIO (1ULL << 1) 1419 #define HCR_PTW (1ULL << 2) 1420 #define HCR_FMO (1ULL << 3) 1421 #define HCR_IMO (1ULL << 4) 1422 #define HCR_AMO (1ULL << 5) 1423 #define HCR_VF (1ULL << 6) 1424 #define HCR_VI (1ULL << 7) 1425 #define HCR_VSE (1ULL << 8) 1426 #define HCR_FB (1ULL << 9) 1427 #define HCR_BSU_MASK (3ULL << 10) 1428 #define HCR_DC (1ULL << 12) 1429 #define HCR_TWI (1ULL << 13) 1430 #define HCR_TWE (1ULL << 14) 1431 #define HCR_TID0 (1ULL << 15) 1432 #define HCR_TID1 (1ULL << 16) 1433 #define HCR_TID2 (1ULL << 17) 1434 #define HCR_TID3 (1ULL << 18) 1435 #define HCR_TSC (1ULL << 19) 1436 #define HCR_TIDCP (1ULL << 20) 1437 #define HCR_TACR (1ULL << 21) 1438 #define HCR_TSW (1ULL << 22) 1439 #define HCR_TPCP (1ULL << 23) 1440 #define HCR_TPU (1ULL << 24) 1441 #define HCR_TTLB (1ULL << 25) 1442 #define HCR_TVM (1ULL << 26) 1443 #define HCR_TGE (1ULL << 27) 1444 #define HCR_TDZ (1ULL << 28) 1445 #define HCR_HCD (1ULL << 29) 1446 #define HCR_TRVM (1ULL << 30) 1447 #define HCR_RW (1ULL << 31) 1448 #define HCR_CD (1ULL << 32) 1449 #define HCR_ID (1ULL << 33) 1450 #define HCR_E2H (1ULL << 34) 1451 #define HCR_TLOR (1ULL << 35) 1452 #define HCR_TERR (1ULL << 36) 1453 #define HCR_TEA (1ULL << 37) 1454 #define HCR_MIOCNCE (1ULL << 38) 1455 /* RES0 bit 39 */ 1456 #define HCR_APK (1ULL << 40) 1457 #define HCR_API (1ULL << 41) 1458 #define HCR_NV (1ULL << 42) 1459 #define HCR_NV1 (1ULL << 43) 1460 #define HCR_AT (1ULL << 44) 1461 #define HCR_NV2 (1ULL << 45) 1462 #define HCR_FWB (1ULL << 46) 1463 #define HCR_FIEN (1ULL << 47) 1464 /* RES0 bit 48 */ 1465 #define HCR_TID4 (1ULL << 49) 1466 #define HCR_TICAB (1ULL << 50) 1467 #define HCR_AMVOFFEN (1ULL << 51) 1468 #define HCR_TOCU (1ULL << 52) 1469 #define HCR_ENSCXT (1ULL << 53) 1470 #define HCR_TTLBIS (1ULL << 54) 1471 #define HCR_TTLBOS (1ULL << 55) 1472 #define HCR_ATA (1ULL << 56) 1473 #define HCR_DCT (1ULL << 57) 1474 #define HCR_TID5 (1ULL << 58) 1475 #define HCR_TWEDEN (1ULL << 59) 1476 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1477 1478 #define SCR_NS (1U << 0) 1479 #define SCR_IRQ (1U << 1) 1480 #define SCR_FIQ (1U << 2) 1481 #define SCR_EA (1U << 3) 1482 #define SCR_FW (1U << 4) 1483 #define SCR_AW (1U << 5) 1484 #define SCR_NET (1U << 6) 1485 #define SCR_SMD (1U << 7) 1486 #define SCR_HCE (1U << 8) 1487 #define SCR_SIF (1U << 9) 1488 #define SCR_RW (1U << 10) 1489 #define SCR_ST (1U << 11) 1490 #define SCR_TWI (1U << 12) 1491 #define SCR_TWE (1U << 13) 1492 #define SCR_TLOR (1U << 14) 1493 #define SCR_TERR (1U << 15) 1494 #define SCR_APK (1U << 16) 1495 #define SCR_API (1U << 17) 1496 #define SCR_EEL2 (1U << 18) 1497 #define SCR_EASE (1U << 19) 1498 #define SCR_NMEA (1U << 20) 1499 #define SCR_FIEN (1U << 21) 1500 #define SCR_ENSCXT (1U << 25) 1501 #define SCR_ATA (1U << 26) 1502 1503 /* Return the current FPSCR value. */ 1504 uint32_t vfp_get_fpscr(CPUARMState *env); 1505 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1506 1507 /* FPCR, Floating Point Control Register 1508 * FPSR, Floating Poiht Status Register 1509 * 1510 * For A64 the FPSCR is split into two logically distinct registers, 1511 * FPCR and FPSR. However since they still use non-overlapping bits 1512 * we store the underlying state in fpscr and just mask on read/write. 1513 */ 1514 #define FPSR_MASK 0xf800009f 1515 #define FPCR_MASK 0x07ff9f00 1516 1517 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1518 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1519 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1520 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1521 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1522 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1523 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1524 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1525 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1526 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1527 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1528 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1529 #define FPCR_V (1 << 28) /* FP overflow flag */ 1530 #define FPCR_C (1 << 29) /* FP carry flag */ 1531 #define FPCR_Z (1 << 30) /* FP zero flag */ 1532 #define FPCR_N (1 << 31) /* FP negative flag */ 1533 1534 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1535 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1536 1537 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1538 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1539 1540 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1541 { 1542 return vfp_get_fpscr(env) & FPSR_MASK; 1543 } 1544 1545 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1546 { 1547 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1548 vfp_set_fpscr(env, new_fpscr); 1549 } 1550 1551 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1552 { 1553 return vfp_get_fpscr(env) & FPCR_MASK; 1554 } 1555 1556 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1557 { 1558 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1559 vfp_set_fpscr(env, new_fpscr); 1560 } 1561 1562 enum arm_cpu_mode { 1563 ARM_CPU_MODE_USR = 0x10, 1564 ARM_CPU_MODE_FIQ = 0x11, 1565 ARM_CPU_MODE_IRQ = 0x12, 1566 ARM_CPU_MODE_SVC = 0x13, 1567 ARM_CPU_MODE_MON = 0x16, 1568 ARM_CPU_MODE_ABT = 0x17, 1569 ARM_CPU_MODE_HYP = 0x1a, 1570 ARM_CPU_MODE_UND = 0x1b, 1571 ARM_CPU_MODE_SYS = 0x1f 1572 }; 1573 1574 /* VFP system registers. */ 1575 #define ARM_VFP_FPSID 0 1576 #define ARM_VFP_FPSCR 1 1577 #define ARM_VFP_MVFR2 5 1578 #define ARM_VFP_MVFR1 6 1579 #define ARM_VFP_MVFR0 7 1580 #define ARM_VFP_FPEXC 8 1581 #define ARM_VFP_FPINST 9 1582 #define ARM_VFP_FPINST2 10 1583 /* These ones are M-profile only */ 1584 #define ARM_VFP_FPSCR_NZCVQC 2 1585 #define ARM_VFP_VPR 12 1586 #define ARM_VFP_P0 13 1587 #define ARM_VFP_FPCXT_NS 14 1588 #define ARM_VFP_FPCXT_S 15 1589 1590 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1591 #define QEMU_VFP_FPSCR_NZCV 0xffff 1592 1593 /* iwMMXt coprocessor control registers. */ 1594 #define ARM_IWMMXT_wCID 0 1595 #define ARM_IWMMXT_wCon 1 1596 #define ARM_IWMMXT_wCSSF 2 1597 #define ARM_IWMMXT_wCASF 3 1598 #define ARM_IWMMXT_wCGR0 8 1599 #define ARM_IWMMXT_wCGR1 9 1600 #define ARM_IWMMXT_wCGR2 10 1601 #define ARM_IWMMXT_wCGR3 11 1602 1603 /* V7M CCR bits */ 1604 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1605 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1606 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1607 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1608 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1609 FIELD(V7M_CCR, STKALIGN, 9, 1) 1610 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1611 FIELD(V7M_CCR, DC, 16, 1) 1612 FIELD(V7M_CCR, IC, 17, 1) 1613 FIELD(V7M_CCR, BP, 18, 1) 1614 FIELD(V7M_CCR, LOB, 19, 1) 1615 FIELD(V7M_CCR, TRD, 20, 1) 1616 1617 /* V7M SCR bits */ 1618 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1619 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1620 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1621 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1622 1623 /* V7M AIRCR bits */ 1624 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1625 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1626 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1627 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1628 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1629 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1630 FIELD(V7M_AIRCR, PRIS, 14, 1) 1631 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1632 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1633 1634 /* V7M CFSR bits for MMFSR */ 1635 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1636 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1637 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1638 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1639 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1640 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1641 1642 /* V7M CFSR bits for BFSR */ 1643 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1644 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1645 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1646 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1647 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1648 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1649 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1650 1651 /* V7M CFSR bits for UFSR */ 1652 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1653 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1654 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1655 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1656 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1657 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1658 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1659 1660 /* V7M CFSR bit masks covering all of the subregister bits */ 1661 FIELD(V7M_CFSR, MMFSR, 0, 8) 1662 FIELD(V7M_CFSR, BFSR, 8, 8) 1663 FIELD(V7M_CFSR, UFSR, 16, 16) 1664 1665 /* V7M HFSR bits */ 1666 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1667 FIELD(V7M_HFSR, FORCED, 30, 1) 1668 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1669 1670 /* V7M DFSR bits */ 1671 FIELD(V7M_DFSR, HALTED, 0, 1) 1672 FIELD(V7M_DFSR, BKPT, 1, 1) 1673 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1674 FIELD(V7M_DFSR, VCATCH, 3, 1) 1675 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1676 1677 /* V7M SFSR bits */ 1678 FIELD(V7M_SFSR, INVEP, 0, 1) 1679 FIELD(V7M_SFSR, INVIS, 1, 1) 1680 FIELD(V7M_SFSR, INVER, 2, 1) 1681 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1682 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1683 FIELD(V7M_SFSR, LSPERR, 5, 1) 1684 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1685 FIELD(V7M_SFSR, LSERR, 7, 1) 1686 1687 /* v7M MPU_CTRL bits */ 1688 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1689 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1690 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1691 1692 /* v7M CLIDR bits */ 1693 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1694 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1695 FIELD(V7M_CLIDR, LOC, 24, 3) 1696 FIELD(V7M_CLIDR, LOUU, 27, 3) 1697 FIELD(V7M_CLIDR, ICB, 30, 2) 1698 1699 FIELD(V7M_CSSELR, IND, 0, 1) 1700 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1701 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1702 * define a mask for this and check that it doesn't permit running off 1703 * the end of the array. 1704 */ 1705 FIELD(V7M_CSSELR, INDEX, 0, 4) 1706 1707 /* v7M FPCCR bits */ 1708 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1709 FIELD(V7M_FPCCR, USER, 1, 1) 1710 FIELD(V7M_FPCCR, S, 2, 1) 1711 FIELD(V7M_FPCCR, THREAD, 3, 1) 1712 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1713 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1714 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1715 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1716 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1717 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1718 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1719 FIELD(V7M_FPCCR, RES0, 11, 15) 1720 FIELD(V7M_FPCCR, TS, 26, 1) 1721 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1722 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1723 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1724 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1725 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1726 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1727 #define R_V7M_FPCCR_BANKED_MASK \ 1728 (R_V7M_FPCCR_LSPACT_MASK | \ 1729 R_V7M_FPCCR_USER_MASK | \ 1730 R_V7M_FPCCR_THREAD_MASK | \ 1731 R_V7M_FPCCR_MMRDY_MASK | \ 1732 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1733 R_V7M_FPCCR_UFRDY_MASK | \ 1734 R_V7M_FPCCR_ASPEN_MASK) 1735 1736 /* 1737 * System register ID fields. 1738 */ 1739 FIELD(MIDR_EL1, REVISION, 0, 4) 1740 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1741 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1742 FIELD(MIDR_EL1, VARIANT, 20, 4) 1743 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1744 1745 FIELD(ID_ISAR0, SWAP, 0, 4) 1746 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1747 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1748 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1749 FIELD(ID_ISAR0, COPROC, 16, 4) 1750 FIELD(ID_ISAR0, DEBUG, 20, 4) 1751 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1752 1753 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1754 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1755 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1756 FIELD(ID_ISAR1, EXTEND, 12, 4) 1757 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1758 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1759 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1760 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1761 1762 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1763 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1764 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1765 FIELD(ID_ISAR2, MULT, 12, 4) 1766 FIELD(ID_ISAR2, MULTS, 16, 4) 1767 FIELD(ID_ISAR2, MULTU, 20, 4) 1768 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1769 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1770 1771 FIELD(ID_ISAR3, SATURATE, 0, 4) 1772 FIELD(ID_ISAR3, SIMD, 4, 4) 1773 FIELD(ID_ISAR3, SVC, 8, 4) 1774 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1775 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1776 FIELD(ID_ISAR3, T32COPY, 20, 4) 1777 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1778 FIELD(ID_ISAR3, T32EE, 28, 4) 1779 1780 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1781 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1782 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1783 FIELD(ID_ISAR4, SMC, 12, 4) 1784 FIELD(ID_ISAR4, BARRIER, 16, 4) 1785 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1786 FIELD(ID_ISAR4, PSR_M, 24, 4) 1787 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1788 1789 FIELD(ID_ISAR5, SEVL, 0, 4) 1790 FIELD(ID_ISAR5, AES, 4, 4) 1791 FIELD(ID_ISAR5, SHA1, 8, 4) 1792 FIELD(ID_ISAR5, SHA2, 12, 4) 1793 FIELD(ID_ISAR5, CRC32, 16, 4) 1794 FIELD(ID_ISAR5, RDM, 24, 4) 1795 FIELD(ID_ISAR5, VCMA, 28, 4) 1796 1797 FIELD(ID_ISAR6, JSCVT, 0, 4) 1798 FIELD(ID_ISAR6, DP, 4, 4) 1799 FIELD(ID_ISAR6, FHM, 8, 4) 1800 FIELD(ID_ISAR6, SB, 12, 4) 1801 FIELD(ID_ISAR6, SPECRES, 16, 4) 1802 1803 FIELD(ID_MMFR0, VMSA, 0, 4) 1804 FIELD(ID_MMFR0, PMSA, 4, 4) 1805 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 1806 FIELD(ID_MMFR0, SHARELVL, 12, 4) 1807 FIELD(ID_MMFR0, TCM, 16, 4) 1808 FIELD(ID_MMFR0, AUXREG, 20, 4) 1809 FIELD(ID_MMFR0, FCSE, 24, 4) 1810 FIELD(ID_MMFR0, INNERSHR, 28, 4) 1811 1812 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1813 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1814 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1815 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1816 FIELD(ID_MMFR3, PAN, 16, 4) 1817 FIELD(ID_MMFR3, COHWALK, 20, 4) 1818 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1819 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1820 1821 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1822 FIELD(ID_MMFR4, AC2, 4, 4) 1823 FIELD(ID_MMFR4, XNX, 8, 4) 1824 FIELD(ID_MMFR4, CNP, 12, 4) 1825 FIELD(ID_MMFR4, HPDS, 16, 4) 1826 FIELD(ID_MMFR4, LSM, 20, 4) 1827 FIELD(ID_MMFR4, CCIDX, 24, 4) 1828 FIELD(ID_MMFR4, EVT, 28, 4) 1829 1830 FIELD(ID_PFR0, STATE0, 0, 4) 1831 FIELD(ID_PFR0, STATE1, 4, 4) 1832 FIELD(ID_PFR0, STATE2, 8, 4) 1833 FIELD(ID_PFR0, STATE3, 12, 4) 1834 FIELD(ID_PFR0, CSV2, 16, 4) 1835 FIELD(ID_PFR0, AMU, 20, 4) 1836 FIELD(ID_PFR0, DIT, 24, 4) 1837 FIELD(ID_PFR0, RAS, 28, 4) 1838 1839 FIELD(ID_PFR1, PROGMOD, 0, 4) 1840 FIELD(ID_PFR1, SECURITY, 4, 4) 1841 FIELD(ID_PFR1, MPROGMOD, 8, 4) 1842 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 1843 FIELD(ID_PFR1, GENTIMER, 16, 4) 1844 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 1845 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 1846 FIELD(ID_PFR1, GIC, 28, 4) 1847 1848 FIELD(ID_AA64ISAR0, AES, 4, 4) 1849 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1850 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1851 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1852 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1853 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1854 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1855 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1856 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1857 FIELD(ID_AA64ISAR0, DP, 44, 4) 1858 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1859 FIELD(ID_AA64ISAR0, TS, 52, 4) 1860 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1861 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1862 1863 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1864 FIELD(ID_AA64ISAR1, APA, 4, 4) 1865 FIELD(ID_AA64ISAR1, API, 8, 4) 1866 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1867 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1868 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1869 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1870 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1871 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1872 FIELD(ID_AA64ISAR1, SB, 36, 4) 1873 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1874 1875 FIELD(ID_AA64PFR0, EL0, 0, 4) 1876 FIELD(ID_AA64PFR0, EL1, 4, 4) 1877 FIELD(ID_AA64PFR0, EL2, 8, 4) 1878 FIELD(ID_AA64PFR0, EL3, 12, 4) 1879 FIELD(ID_AA64PFR0, FP, 16, 4) 1880 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1881 FIELD(ID_AA64PFR0, GIC, 24, 4) 1882 FIELD(ID_AA64PFR0, RAS, 28, 4) 1883 FIELD(ID_AA64PFR0, SVE, 32, 4) 1884 1885 FIELD(ID_AA64PFR1, BT, 0, 4) 1886 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1887 FIELD(ID_AA64PFR1, MTE, 8, 4) 1888 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1889 1890 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1891 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1892 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1893 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1894 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1895 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1896 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1897 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1898 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1899 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1900 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1901 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1902 1903 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1904 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1905 FIELD(ID_AA64MMFR1, VH, 8, 4) 1906 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1907 FIELD(ID_AA64MMFR1, LO, 16, 4) 1908 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1909 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1910 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1911 1912 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1913 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1914 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1915 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1916 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1917 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1918 FIELD(ID_AA64MMFR2, NV, 24, 4) 1919 FIELD(ID_AA64MMFR2, ST, 28, 4) 1920 FIELD(ID_AA64MMFR2, AT, 32, 4) 1921 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1922 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1923 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1924 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1925 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1926 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1927 1928 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 1929 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 1930 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 1931 FIELD(ID_AA64DFR0, BRPS, 12, 4) 1932 FIELD(ID_AA64DFR0, WRPS, 20, 4) 1933 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 1934 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 1935 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 1936 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 1937 1938 FIELD(ID_DFR0, COPDBG, 0, 4) 1939 FIELD(ID_DFR0, COPSDBG, 4, 4) 1940 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1941 FIELD(ID_DFR0, COPTRC, 12, 4) 1942 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1943 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1944 FIELD(ID_DFR0, PERFMON, 24, 4) 1945 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1946 1947 FIELD(DBGDIDR, SE_IMP, 12, 1) 1948 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 1949 FIELD(DBGDIDR, VERSION, 16, 4) 1950 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 1951 FIELD(DBGDIDR, BRPS, 24, 4) 1952 FIELD(DBGDIDR, WRPS, 28, 4) 1953 1954 FIELD(MVFR0, SIMDREG, 0, 4) 1955 FIELD(MVFR0, FPSP, 4, 4) 1956 FIELD(MVFR0, FPDP, 8, 4) 1957 FIELD(MVFR0, FPTRAP, 12, 4) 1958 FIELD(MVFR0, FPDIVIDE, 16, 4) 1959 FIELD(MVFR0, FPSQRT, 20, 4) 1960 FIELD(MVFR0, FPSHVEC, 24, 4) 1961 FIELD(MVFR0, FPROUND, 28, 4) 1962 1963 FIELD(MVFR1, FPFTZ, 0, 4) 1964 FIELD(MVFR1, FPDNAN, 4, 4) 1965 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 1966 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 1967 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 1968 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 1969 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 1970 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 1971 FIELD(MVFR1, FPHP, 24, 4) 1972 FIELD(MVFR1, SIMDFMAC, 28, 4) 1973 1974 FIELD(MVFR2, SIMDMISC, 0, 4) 1975 FIELD(MVFR2, FPMISC, 4, 4) 1976 1977 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1978 1979 /* If adding a feature bit which corresponds to a Linux ELF 1980 * HWCAP bit, remember to update the feature-bit-to-hwcap 1981 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1982 */ 1983 enum arm_features { 1984 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1985 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1986 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1987 ARM_FEATURE_V6, 1988 ARM_FEATURE_V6K, 1989 ARM_FEATURE_V7, 1990 ARM_FEATURE_THUMB2, 1991 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1992 ARM_FEATURE_NEON, 1993 ARM_FEATURE_M, /* Microcontroller profile. */ 1994 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1995 ARM_FEATURE_THUMB2EE, 1996 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1997 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1998 ARM_FEATURE_V4T, 1999 ARM_FEATURE_V5, 2000 ARM_FEATURE_STRONGARM, 2001 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2002 ARM_FEATURE_GENERIC_TIMER, 2003 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2004 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2005 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2006 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2007 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2008 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2009 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2010 ARM_FEATURE_V8, 2011 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2012 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2013 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2014 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2015 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2016 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2017 ARM_FEATURE_PMU, /* has PMU support */ 2018 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2019 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2020 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2021 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2022 }; 2023 2024 static inline int arm_feature(CPUARMState *env, int feature) 2025 { 2026 return (env->features & (1ULL << feature)) != 0; 2027 } 2028 2029 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2030 2031 #if !defined(CONFIG_USER_ONLY) 2032 /* Return true if exception levels below EL3 are in secure state, 2033 * or would be following an exception return to that level. 2034 * Unlike arm_is_secure() (which is always a question about the 2035 * _current_ state of the CPU) this doesn't care about the current 2036 * EL or mode. 2037 */ 2038 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2039 { 2040 if (arm_feature(env, ARM_FEATURE_EL3)) { 2041 return !(env->cp15.scr_el3 & SCR_NS); 2042 } else { 2043 /* If EL3 is not supported then the secure state is implementation 2044 * defined, in which case QEMU defaults to non-secure. 2045 */ 2046 return false; 2047 } 2048 } 2049 2050 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2051 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2052 { 2053 if (arm_feature(env, ARM_FEATURE_EL3)) { 2054 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2055 /* CPU currently in AArch64 state and EL3 */ 2056 return true; 2057 } else if (!is_a64(env) && 2058 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2059 /* CPU currently in AArch32 state and monitor mode */ 2060 return true; 2061 } 2062 } 2063 return false; 2064 } 2065 2066 /* Return true if the processor is in secure state */ 2067 static inline bool arm_is_secure(CPUARMState *env) 2068 { 2069 if (arm_is_el3_or_mon(env)) { 2070 return true; 2071 } 2072 return arm_is_secure_below_el3(env); 2073 } 2074 2075 #else 2076 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2077 { 2078 return false; 2079 } 2080 2081 static inline bool arm_is_secure(CPUARMState *env) 2082 { 2083 return false; 2084 } 2085 #endif 2086 2087 /** 2088 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2089 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2090 * "for all purposes other than a direct read or write access of HCR_EL2." 2091 * Not included here is HCR_RW. 2092 */ 2093 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2094 2095 /* Return true if the specified exception level is running in AArch64 state. */ 2096 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2097 { 2098 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2099 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2100 */ 2101 assert(el >= 1 && el <= 3); 2102 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2103 2104 /* The highest exception level is always at the maximum supported 2105 * register width, and then lower levels have a register width controlled 2106 * by bits in the SCR or HCR registers. 2107 */ 2108 if (el == 3) { 2109 return aa64; 2110 } 2111 2112 if (arm_feature(env, ARM_FEATURE_EL3)) { 2113 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2114 } 2115 2116 if (el == 2) { 2117 return aa64; 2118 } 2119 2120 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2121 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2122 } 2123 2124 return aa64; 2125 } 2126 2127 /* Function for determing whether guest cp register reads and writes should 2128 * access the secure or non-secure bank of a cp register. When EL3 is 2129 * operating in AArch32 state, the NS-bit determines whether the secure 2130 * instance of a cp register should be used. When EL3 is AArch64 (or if 2131 * it doesn't exist at all) then there is no register banking, and all 2132 * accesses are to the non-secure version. 2133 */ 2134 static inline bool access_secure_reg(CPUARMState *env) 2135 { 2136 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2137 !arm_el_is_aa64(env, 3) && 2138 !(env->cp15.scr_el3 & SCR_NS)); 2139 2140 return ret; 2141 } 2142 2143 /* Macros for accessing a specified CP register bank */ 2144 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2145 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2146 2147 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2148 do { \ 2149 if (_secure) { \ 2150 (_env)->cp15._regname##_s = (_val); \ 2151 } else { \ 2152 (_env)->cp15._regname##_ns = (_val); \ 2153 } \ 2154 } while (0) 2155 2156 /* Macros for automatically accessing a specific CP register bank depending on 2157 * the current secure state of the system. These macros are not intended for 2158 * supporting instruction translation reads/writes as these are dependent 2159 * solely on the SCR.NS bit and not the mode. 2160 */ 2161 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2162 A32_BANKED_REG_GET((_env), _regname, \ 2163 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2164 2165 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2166 A32_BANKED_REG_SET((_env), _regname, \ 2167 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2168 (_val)) 2169 2170 void arm_cpu_list(void); 2171 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2172 uint32_t cur_el, bool secure); 2173 2174 /* Interface between CPU and Interrupt controller. */ 2175 #ifndef CONFIG_USER_ONLY 2176 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2177 #else 2178 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2179 { 2180 return true; 2181 } 2182 #endif 2183 /** 2184 * armv7m_nvic_set_pending: mark the specified exception as pending 2185 * @opaque: the NVIC 2186 * @irq: the exception number to mark pending 2187 * @secure: false for non-banked exceptions or for the nonsecure 2188 * version of a banked exception, true for the secure version of a banked 2189 * exception. 2190 * 2191 * Marks the specified exception as pending. Note that we will assert() 2192 * if @secure is true and @irq does not specify one of the fixed set 2193 * of architecturally banked exceptions. 2194 */ 2195 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2196 /** 2197 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2198 * @opaque: the NVIC 2199 * @irq: the exception number to mark pending 2200 * @secure: false for non-banked exceptions or for the nonsecure 2201 * version of a banked exception, true for the secure version of a banked 2202 * exception. 2203 * 2204 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2205 * exceptions (exceptions generated in the course of trying to take 2206 * a different exception). 2207 */ 2208 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2209 /** 2210 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2211 * @opaque: the NVIC 2212 * @irq: the exception number to mark pending 2213 * @secure: false for non-banked exceptions or for the nonsecure 2214 * version of a banked exception, true for the secure version of a banked 2215 * exception. 2216 * 2217 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2218 * generated in the course of lazy stacking of FP registers. 2219 */ 2220 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2221 /** 2222 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2223 * exception, and whether it targets Secure state 2224 * @opaque: the NVIC 2225 * @pirq: set to pending exception number 2226 * @ptargets_secure: set to whether pending exception targets Secure 2227 * 2228 * This function writes the number of the highest priority pending 2229 * exception (the one which would be made active by 2230 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2231 * to true if the current highest priority pending exception should 2232 * be taken to Secure state, false for NS. 2233 */ 2234 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2235 bool *ptargets_secure); 2236 /** 2237 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2238 * @opaque: the NVIC 2239 * 2240 * Move the current highest priority pending exception from the pending 2241 * state to the active state, and update v7m.exception to indicate that 2242 * it is the exception currently being handled. 2243 */ 2244 void armv7m_nvic_acknowledge_irq(void *opaque); 2245 /** 2246 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2247 * @opaque: the NVIC 2248 * @irq: the exception number to complete 2249 * @secure: true if this exception was secure 2250 * 2251 * Returns: -1 if the irq was not active 2252 * 1 if completing this irq brought us back to base (no active irqs) 2253 * 0 if there is still an irq active after this one was completed 2254 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2255 */ 2256 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2257 /** 2258 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2259 * @opaque: the NVIC 2260 * @irq: the exception number to mark pending 2261 * @secure: false for non-banked exceptions or for the nonsecure 2262 * version of a banked exception, true for the secure version of a banked 2263 * exception. 2264 * 2265 * Return whether an exception is "ready", i.e. whether the exception is 2266 * enabled and is configured at a priority which would allow it to 2267 * interrupt the current execution priority. This controls whether the 2268 * RDY bit for it in the FPCCR is set. 2269 */ 2270 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2271 /** 2272 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2273 * @opaque: the NVIC 2274 * 2275 * Returns: the raw execution priority as defined by the v8M architecture. 2276 * This is the execution priority minus the effects of AIRCR.PRIS, 2277 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2278 * (v8M ARM ARM I_PKLD.) 2279 */ 2280 int armv7m_nvic_raw_execution_priority(void *opaque); 2281 /** 2282 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2283 * priority is negative for the specified security state. 2284 * @opaque: the NVIC 2285 * @secure: the security state to test 2286 * This corresponds to the pseudocode IsReqExecPriNeg(). 2287 */ 2288 #ifndef CONFIG_USER_ONLY 2289 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2290 #else 2291 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2292 { 2293 return false; 2294 } 2295 #endif 2296 2297 /* Interface for defining coprocessor registers. 2298 * Registers are defined in tables of arm_cp_reginfo structs 2299 * which are passed to define_arm_cp_regs(). 2300 */ 2301 2302 /* When looking up a coprocessor register we look for it 2303 * via an integer which encodes all of: 2304 * coprocessor number 2305 * Crn, Crm, opc1, opc2 fields 2306 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2307 * or via MRRC/MCRR?) 2308 * non-secure/secure bank (AArch32 only) 2309 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2310 * (In this case crn and opc2 should be zero.) 2311 * For AArch64, there is no 32/64 bit size distinction; 2312 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2313 * and 4 bit CRn and CRm. The encoding patterns are chosen 2314 * to be easy to convert to and from the KVM encodings, and also 2315 * so that the hashtable can contain both AArch32 and AArch64 2316 * registers (to allow for interprocessing where we might run 2317 * 32 bit code on a 64 bit core). 2318 */ 2319 /* This bit is private to our hashtable cpreg; in KVM register 2320 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2321 * in the upper bits of the 64 bit ID. 2322 */ 2323 #define CP_REG_AA64_SHIFT 28 2324 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2325 2326 /* To enable banking of coprocessor registers depending on ns-bit we 2327 * add a bit to distinguish between secure and non-secure cpregs in the 2328 * hashtable. 2329 */ 2330 #define CP_REG_NS_SHIFT 29 2331 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2332 2333 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2334 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2335 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2336 2337 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2338 (CP_REG_AA64_MASK | \ 2339 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2340 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2341 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2342 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2343 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2344 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2345 2346 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2347 * version used as a key for the coprocessor register hashtable 2348 */ 2349 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2350 { 2351 uint32_t cpregid = kvmid; 2352 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2353 cpregid |= CP_REG_AA64_MASK; 2354 } else { 2355 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2356 cpregid |= (1 << 15); 2357 } 2358 2359 /* KVM is always non-secure so add the NS flag on AArch32 register 2360 * entries. 2361 */ 2362 cpregid |= 1 << CP_REG_NS_SHIFT; 2363 } 2364 return cpregid; 2365 } 2366 2367 /* Convert a truncated 32 bit hashtable key into the full 2368 * 64 bit KVM register ID. 2369 */ 2370 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2371 { 2372 uint64_t kvmid; 2373 2374 if (cpregid & CP_REG_AA64_MASK) { 2375 kvmid = cpregid & ~CP_REG_AA64_MASK; 2376 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2377 } else { 2378 kvmid = cpregid & ~(1 << 15); 2379 if (cpregid & (1 << 15)) { 2380 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2381 } else { 2382 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2383 } 2384 } 2385 return kvmid; 2386 } 2387 2388 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2389 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2390 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2391 * TCG can assume the value to be constant (ie load at translate time) 2392 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2393 * indicates that the TB should not be ended after a write to this register 2394 * (the default is that the TB ends after cp writes). OVERRIDE permits 2395 * a register definition to override a previous definition for the 2396 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2397 * old must have the OVERRIDE bit set. 2398 * ALIAS indicates that this register is an alias view of some underlying 2399 * state which is also visible via another register, and that the other 2400 * register is handling migration and reset; registers marked ALIAS will not be 2401 * migrated but may have their state set by syncing of register state from KVM. 2402 * NO_RAW indicates that this register has no underlying state and does not 2403 * support raw access for state saving/loading; it will not be used for either 2404 * migration or KVM state synchronization. (Typically this is for "registers" 2405 * which are actually used as instructions for cache maintenance and so on.) 2406 * IO indicates that this register does I/O and therefore its accesses 2407 * need to be marked with gen_io_start() and also end the TB. In particular, 2408 * registers which implement clocks or timers require this. 2409 * RAISES_EXC is for when the read or write hook might raise an exception; 2410 * the generated code will synchronize the CPU state before calling the hook 2411 * so that it is safe for the hook to call raise_exception(). 2412 * NEWEL is for writes to registers that might change the exception 2413 * level - typically on older ARM chips. For those cases we need to 2414 * re-read the new el when recomputing the translation flags. 2415 */ 2416 #define ARM_CP_SPECIAL 0x0001 2417 #define ARM_CP_CONST 0x0002 2418 #define ARM_CP_64BIT 0x0004 2419 #define ARM_CP_SUPPRESS_TB_END 0x0008 2420 #define ARM_CP_OVERRIDE 0x0010 2421 #define ARM_CP_ALIAS 0x0020 2422 #define ARM_CP_IO 0x0040 2423 #define ARM_CP_NO_RAW 0x0080 2424 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2425 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2426 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2427 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2428 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2429 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2430 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2431 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2432 #define ARM_CP_FPU 0x1000 2433 #define ARM_CP_SVE 0x2000 2434 #define ARM_CP_NO_GDB 0x4000 2435 #define ARM_CP_RAISES_EXC 0x8000 2436 #define ARM_CP_NEWEL 0x10000 2437 /* Used only as a terminator for ARMCPRegInfo lists */ 2438 #define ARM_CP_SENTINEL 0xfffff 2439 /* Mask of only the flag bits in a type field */ 2440 #define ARM_CP_FLAG_MASK 0x1f0ff 2441 2442 /* Valid values for ARMCPRegInfo state field, indicating which of 2443 * the AArch32 and AArch64 execution states this register is visible in. 2444 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2445 * If the reginfo is declared to be visible in both states then a second 2446 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2447 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2448 * Note that we rely on the values of these enums as we iterate through 2449 * the various states in some places. 2450 */ 2451 enum { 2452 ARM_CP_STATE_AA32 = 0, 2453 ARM_CP_STATE_AA64 = 1, 2454 ARM_CP_STATE_BOTH = 2, 2455 }; 2456 2457 /* ARM CP register secure state flags. These flags identify security state 2458 * attributes for a given CP register entry. 2459 * The existence of both or neither secure and non-secure flags indicates that 2460 * the register has both a secure and non-secure hash entry. A single one of 2461 * these flags causes the register to only be hashed for the specified 2462 * security state. 2463 * Although definitions may have any combination of the S/NS bits, each 2464 * registered entry will only have one to identify whether the entry is secure 2465 * or non-secure. 2466 */ 2467 enum { 2468 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2469 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2470 }; 2471 2472 /* Return true if cptype is a valid type field. This is used to try to 2473 * catch errors where the sentinel has been accidentally left off the end 2474 * of a list of registers. 2475 */ 2476 static inline bool cptype_valid(int cptype) 2477 { 2478 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2479 || ((cptype & ARM_CP_SPECIAL) && 2480 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2481 } 2482 2483 /* Access rights: 2484 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2485 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2486 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2487 * (ie any of the privileged modes in Secure state, or Monitor mode). 2488 * If a register is accessible in one privilege level it's always accessible 2489 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2490 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2491 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2492 * terminology a little and call this PL3. 2493 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2494 * with the ELx exception levels. 2495 * 2496 * If access permissions for a register are more complex than can be 2497 * described with these bits, then use a laxer set of restrictions, and 2498 * do the more restrictive/complex check inside a helper function. 2499 */ 2500 #define PL3_R 0x80 2501 #define PL3_W 0x40 2502 #define PL2_R (0x20 | PL3_R) 2503 #define PL2_W (0x10 | PL3_W) 2504 #define PL1_R (0x08 | PL2_R) 2505 #define PL1_W (0x04 | PL2_W) 2506 #define PL0_R (0x02 | PL1_R) 2507 #define PL0_W (0x01 | PL1_W) 2508 2509 /* 2510 * For user-mode some registers are accessible to EL0 via a kernel 2511 * trap-and-emulate ABI. In this case we define the read permissions 2512 * as actually being PL0_R. However some bits of any given register 2513 * may still be masked. 2514 */ 2515 #ifdef CONFIG_USER_ONLY 2516 #define PL0U_R PL0_R 2517 #else 2518 #define PL0U_R PL1_R 2519 #endif 2520 2521 #define PL3_RW (PL3_R | PL3_W) 2522 #define PL2_RW (PL2_R | PL2_W) 2523 #define PL1_RW (PL1_R | PL1_W) 2524 #define PL0_RW (PL0_R | PL0_W) 2525 2526 /* Return the highest implemented Exception Level */ 2527 static inline int arm_highest_el(CPUARMState *env) 2528 { 2529 if (arm_feature(env, ARM_FEATURE_EL3)) { 2530 return 3; 2531 } 2532 if (arm_feature(env, ARM_FEATURE_EL2)) { 2533 return 2; 2534 } 2535 return 1; 2536 } 2537 2538 /* Return true if a v7M CPU is in Handler mode */ 2539 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2540 { 2541 return env->v7m.exception != 0; 2542 } 2543 2544 /* Return the current Exception Level (as per ARMv8; note that this differs 2545 * from the ARMv7 Privilege Level). 2546 */ 2547 static inline int arm_current_el(CPUARMState *env) 2548 { 2549 if (arm_feature(env, ARM_FEATURE_M)) { 2550 return arm_v7m_is_handler_mode(env) || 2551 !(env->v7m.control[env->v7m.secure] & 1); 2552 } 2553 2554 if (is_a64(env)) { 2555 return extract32(env->pstate, 2, 2); 2556 } 2557 2558 switch (env->uncached_cpsr & 0x1f) { 2559 case ARM_CPU_MODE_USR: 2560 return 0; 2561 case ARM_CPU_MODE_HYP: 2562 return 2; 2563 case ARM_CPU_MODE_MON: 2564 return 3; 2565 default: 2566 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2567 /* If EL3 is 32-bit then all secure privileged modes run in 2568 * EL3 2569 */ 2570 return 3; 2571 } 2572 2573 return 1; 2574 } 2575 } 2576 2577 typedef struct ARMCPRegInfo ARMCPRegInfo; 2578 2579 typedef enum CPAccessResult { 2580 /* Access is permitted */ 2581 CP_ACCESS_OK = 0, 2582 /* Access fails due to a configurable trap or enable which would 2583 * result in a categorized exception syndrome giving information about 2584 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2585 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2586 * PL1 if in EL0, otherwise to the current EL). 2587 */ 2588 CP_ACCESS_TRAP = 1, 2589 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2590 * Note that this is not a catch-all case -- the set of cases which may 2591 * result in this failure is specifically defined by the architecture. 2592 */ 2593 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2594 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2595 CP_ACCESS_TRAP_EL2 = 3, 2596 CP_ACCESS_TRAP_EL3 = 4, 2597 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2598 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2599 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2600 /* Access fails and results in an exception syndrome for an FP access, 2601 * trapped directly to EL2 or EL3 2602 */ 2603 CP_ACCESS_TRAP_FP_EL2 = 7, 2604 CP_ACCESS_TRAP_FP_EL3 = 8, 2605 } CPAccessResult; 2606 2607 /* Access functions for coprocessor registers. These cannot fail and 2608 * may not raise exceptions. 2609 */ 2610 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2611 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2612 uint64_t value); 2613 /* Access permission check functions for coprocessor registers. */ 2614 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2615 const ARMCPRegInfo *opaque, 2616 bool isread); 2617 /* Hook function for register reset */ 2618 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2619 2620 #define CP_ANY 0xff 2621 2622 /* Definition of an ARM coprocessor register */ 2623 struct ARMCPRegInfo { 2624 /* Name of register (useful mainly for debugging, need not be unique) */ 2625 const char *name; 2626 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2627 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2628 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2629 * will be decoded to this register. The register read and write 2630 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2631 * used by the program, so it is possible to register a wildcard and 2632 * then behave differently on read/write if necessary. 2633 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2634 * must both be zero. 2635 * For AArch64-visible registers, opc0 is also used. 2636 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2637 * way to distinguish (for KVM's benefit) guest-visible system registers 2638 * from demuxed ones provided to preserve the "no side effects on 2639 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2640 * visible (to match KVM's encoding); cp==0 will be converted to 2641 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2642 */ 2643 uint8_t cp; 2644 uint8_t crn; 2645 uint8_t crm; 2646 uint8_t opc0; 2647 uint8_t opc1; 2648 uint8_t opc2; 2649 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2650 int state; 2651 /* Register type: ARM_CP_* bits/values */ 2652 int type; 2653 /* Access rights: PL*_[RW] */ 2654 int access; 2655 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2656 int secure; 2657 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2658 * this register was defined: can be used to hand data through to the 2659 * register read/write functions, since they are passed the ARMCPRegInfo*. 2660 */ 2661 void *opaque; 2662 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2663 * fieldoffset is non-zero, the reset value of the register. 2664 */ 2665 uint64_t resetvalue; 2666 /* Offset of the field in CPUARMState for this register. 2667 * 2668 * This is not needed if either: 2669 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2670 * 2. both readfn and writefn are specified 2671 */ 2672 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2673 2674 /* Offsets of the secure and non-secure fields in CPUARMState for the 2675 * register if it is banked. These fields are only used during the static 2676 * registration of a register. During hashing the bank associated 2677 * with a given security state is copied to fieldoffset which is used from 2678 * there on out. 2679 * 2680 * It is expected that register definitions use either fieldoffset or 2681 * bank_fieldoffsets in the definition but not both. It is also expected 2682 * that both bank offsets are set when defining a banked register. This 2683 * use indicates that a register is banked. 2684 */ 2685 ptrdiff_t bank_fieldoffsets[2]; 2686 2687 /* Function for making any access checks for this register in addition to 2688 * those specified by the 'access' permissions bits. If NULL, no extra 2689 * checks required. The access check is performed at runtime, not at 2690 * translate time. 2691 */ 2692 CPAccessFn *accessfn; 2693 /* Function for handling reads of this register. If NULL, then reads 2694 * will be done by loading from the offset into CPUARMState specified 2695 * by fieldoffset. 2696 */ 2697 CPReadFn *readfn; 2698 /* Function for handling writes of this register. If NULL, then writes 2699 * will be done by writing to the offset into CPUARMState specified 2700 * by fieldoffset. 2701 */ 2702 CPWriteFn *writefn; 2703 /* Function for doing a "raw" read; used when we need to copy 2704 * coprocessor state to the kernel for KVM or out for 2705 * migration. This only needs to be provided if there is also a 2706 * readfn and it has side effects (for instance clear-on-read bits). 2707 */ 2708 CPReadFn *raw_readfn; 2709 /* Function for doing a "raw" write; used when we need to copy KVM 2710 * kernel coprocessor state into userspace, or for inbound 2711 * migration. This only needs to be provided if there is also a 2712 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2713 * or similar behaviour. 2714 */ 2715 CPWriteFn *raw_writefn; 2716 /* Function for resetting the register. If NULL, then reset will be done 2717 * by writing resetvalue to the field specified in fieldoffset. If 2718 * fieldoffset is 0 then no reset will be done. 2719 */ 2720 CPResetFn *resetfn; 2721 2722 /* 2723 * "Original" writefn and readfn. 2724 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2725 * accessor functions of various EL1/EL0 to perform the runtime 2726 * check for which sysreg should actually be modified, and then 2727 * forwards the operation. Before overwriting the accessors, 2728 * the original function is copied here, so that accesses that 2729 * really do go to the EL1/EL0 version proceed normally. 2730 * (The corresponding EL2 register is linked via opaque.) 2731 */ 2732 CPReadFn *orig_readfn; 2733 CPWriteFn *orig_writefn; 2734 }; 2735 2736 /* Macros which are lvalues for the field in CPUARMState for the 2737 * ARMCPRegInfo *ri. 2738 */ 2739 #define CPREG_FIELD32(env, ri) \ 2740 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2741 #define CPREG_FIELD64(env, ri) \ 2742 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2743 2744 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2745 2746 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2747 const ARMCPRegInfo *regs, void *opaque); 2748 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2749 const ARMCPRegInfo *regs, void *opaque); 2750 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2751 { 2752 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2753 } 2754 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2755 { 2756 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2757 } 2758 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2759 2760 /* 2761 * Definition of an ARM co-processor register as viewed from 2762 * userspace. This is used for presenting sanitised versions of 2763 * registers to userspace when emulating the Linux AArch64 CPU 2764 * ID/feature ABI (advertised as HWCAP_CPUID). 2765 */ 2766 typedef struct ARMCPRegUserSpaceInfo { 2767 /* Name of register */ 2768 const char *name; 2769 2770 /* Is the name actually a glob pattern */ 2771 bool is_glob; 2772 2773 /* Only some bits are exported to user space */ 2774 uint64_t exported_bits; 2775 2776 /* Fixed bits are applied after the mask */ 2777 uint64_t fixed_bits; 2778 } ARMCPRegUserSpaceInfo; 2779 2780 #define REGUSERINFO_SENTINEL { .name = NULL } 2781 2782 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2783 2784 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2785 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2786 uint64_t value); 2787 /* CPReadFn that can be used for read-as-zero behaviour */ 2788 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2789 2790 /* CPResetFn that does nothing, for use if no reset is required even 2791 * if fieldoffset is non zero. 2792 */ 2793 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2794 2795 /* Return true if this reginfo struct's field in the cpu state struct 2796 * is 64 bits wide. 2797 */ 2798 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2799 { 2800 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2801 } 2802 2803 static inline bool cp_access_ok(int current_el, 2804 const ARMCPRegInfo *ri, int isread) 2805 { 2806 return (ri->access >> ((current_el * 2) + isread)) & 1; 2807 } 2808 2809 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2810 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2811 2812 /** 2813 * write_list_to_cpustate 2814 * @cpu: ARMCPU 2815 * 2816 * For each register listed in the ARMCPU cpreg_indexes list, write 2817 * its value from the cpreg_values list into the ARMCPUState structure. 2818 * This updates TCG's working data structures from KVM data or 2819 * from incoming migration state. 2820 * 2821 * Returns: true if all register values were updated correctly, 2822 * false if some register was unknown or could not be written. 2823 * Note that we do not stop early on failure -- we will attempt 2824 * writing all registers in the list. 2825 */ 2826 bool write_list_to_cpustate(ARMCPU *cpu); 2827 2828 /** 2829 * write_cpustate_to_list: 2830 * @cpu: ARMCPU 2831 * @kvm_sync: true if this is for syncing back to KVM 2832 * 2833 * For each register listed in the ARMCPU cpreg_indexes list, write 2834 * its value from the ARMCPUState structure into the cpreg_values list. 2835 * This is used to copy info from TCG's working data structures into 2836 * KVM or for outbound migration. 2837 * 2838 * @kvm_sync is true if we are doing this in order to sync the 2839 * register state back to KVM. In this case we will only update 2840 * values in the list if the previous list->cpustate sync actually 2841 * successfully wrote the CPU state. Otherwise we will keep the value 2842 * that is in the list. 2843 * 2844 * Returns: true if all register values were read correctly, 2845 * false if some register was unknown or could not be read. 2846 * Note that we do not stop early on failure -- we will attempt 2847 * reading all registers in the list. 2848 */ 2849 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2850 2851 #define ARM_CPUID_TI915T 0x54029152 2852 #define ARM_CPUID_TI925T 0x54029252 2853 2854 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2855 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2856 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2857 2858 #define cpu_signal_handler cpu_arm_signal_handler 2859 #define cpu_list arm_cpu_list 2860 2861 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2862 * 2863 * If EL3 is 64-bit: 2864 * + NonSecure EL1 & 0 stage 1 2865 * + NonSecure EL1 & 0 stage 2 2866 * + NonSecure EL2 2867 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2868 * + Secure EL1 & 0 2869 * + Secure EL3 2870 * If EL3 is 32-bit: 2871 * + NonSecure PL1 & 0 stage 1 2872 * + NonSecure PL1 & 0 stage 2 2873 * + NonSecure PL2 2874 * + Secure PL0 2875 * + Secure PL1 2876 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2877 * 2878 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2879 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2880 * because they may differ in access permissions even if the VA->PA map is 2881 * the same 2882 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2883 * translation, which means that we have one mmu_idx that deals with two 2884 * concatenated translation regimes [this sort of combined s1+2 TLB is 2885 * architecturally permitted] 2886 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2887 * handling via the TLB. The only way to do a stage 1 translation without 2888 * the immediate stage 2 translation is via the ATS or AT system insns, 2889 * which can be slow-pathed and always do a page table walk. 2890 * The only use of stage 2 translations is either as part of an s1+2 2891 * lookup or when loading the descriptors during a stage 1 page table walk, 2892 * and in both those cases we don't use the TLB. 2893 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2894 * translation regimes, because they map reasonably well to each other 2895 * and they can't both be active at the same time. 2896 * 5. we want to be able to use the TLB for accesses done as part of a 2897 * stage1 page table walk, rather than having to walk the stage2 page 2898 * table over and over. 2899 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2900 * Never (PAN) bit within PSTATE. 2901 * 2902 * This gives us the following list of cases: 2903 * 2904 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2905 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2906 * NS EL1 EL1&0 stage 1+2 +PAN 2907 * NS EL0 EL2&0 2908 * NS EL2 EL2&0 2909 * NS EL2 EL2&0 +PAN 2910 * NS EL2 (aka NS PL2) 2911 * S EL0 EL1&0 (aka S PL0) 2912 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2913 * S EL1 EL1&0 +PAN 2914 * S EL3 (aka S PL1) 2915 * 2916 * for a total of 11 different mmu_idx. 2917 * 2918 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2919 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2920 * NS EL2 if we ever model a Cortex-R52). 2921 * 2922 * M profile CPUs are rather different as they do not have a true MMU. 2923 * They have the following different MMU indexes: 2924 * User 2925 * Privileged 2926 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2927 * Privileged, execution priority negative (ditto) 2928 * If the CPU supports the v8M Security Extension then there are also: 2929 * Secure User 2930 * Secure Privileged 2931 * Secure User, execution priority negative 2932 * Secure Privileged, execution priority negative 2933 * 2934 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2935 * are not quite the same -- different CPU types (most notably M profile 2936 * vs A/R profile) would like to use MMU indexes with different semantics, 2937 * but since we don't ever need to use all of those in a single CPU we 2938 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2939 * modes + total number of M profile MMU modes". The lower bits of 2940 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2941 * the same for any particular CPU. 2942 * Variables of type ARMMUIdx are always full values, and the core 2943 * index values are in variables of type 'int'. 2944 * 2945 * Our enumeration includes at the end some entries which are not "true" 2946 * mmu_idx values in that they don't have corresponding TLBs and are only 2947 * valid for doing slow path page table walks. 2948 * 2949 * The constant names here are patterned after the general style of the names 2950 * of the AT/ATS operations. 2951 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2952 * For M profile we arrange them to have a bit for priv, a bit for negpri 2953 * and a bit for secure. 2954 */ 2955 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2956 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2957 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2958 2959 /* Meanings of the bits for M profile mmu idx values */ 2960 #define ARM_MMU_IDX_M_PRIV 0x1 2961 #define ARM_MMU_IDX_M_NEGPRI 0x2 2962 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2963 2964 #define ARM_MMU_IDX_TYPE_MASK \ 2965 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2966 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2967 2968 typedef enum ARMMMUIdx { 2969 /* 2970 * A-profile. 2971 */ 2972 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2973 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2974 2975 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2976 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 2977 2978 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 2979 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 2980 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 2981 2982 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 2983 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 2984 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 2985 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 2986 2987 /* 2988 * These are not allocated TLBs and are used only for AT system 2989 * instructions or for the first stage of an S12 page table walk. 2990 */ 2991 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2992 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2993 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2994 /* 2995 * Not allocated a TLB: used only for second stage of an S12 page 2996 * table walk, or for descriptor loads during first stage of an S1 2997 * page table walk. Note that if we ever want to have a TLB for this 2998 * then various TLB flush insns which currently are no-ops or flush 2999 * only stage 1 MMU indexes will need to change to flush stage 2. 3000 */ 3001 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB, 3002 3003 /* 3004 * M-profile. 3005 */ 3006 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 3007 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 3008 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 3009 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 3010 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 3011 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 3012 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 3013 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 3014 } ARMMMUIdx; 3015 3016 /* 3017 * Bit macros for the core-mmu-index values for each index, 3018 * for use when calling tlb_flush_by_mmuidx() and friends. 3019 */ 3020 #define TO_CORE_BIT(NAME) \ 3021 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 3022 3023 typedef enum ARMMMUIdxBit { 3024 TO_CORE_BIT(E10_0), 3025 TO_CORE_BIT(E20_0), 3026 TO_CORE_BIT(E10_1), 3027 TO_CORE_BIT(E10_1_PAN), 3028 TO_CORE_BIT(E2), 3029 TO_CORE_BIT(E20_2), 3030 TO_CORE_BIT(E20_2_PAN), 3031 TO_CORE_BIT(SE10_0), 3032 TO_CORE_BIT(SE10_1), 3033 TO_CORE_BIT(SE10_1_PAN), 3034 TO_CORE_BIT(SE3), 3035 3036 TO_CORE_BIT(MUser), 3037 TO_CORE_BIT(MPriv), 3038 TO_CORE_BIT(MUserNegPri), 3039 TO_CORE_BIT(MPrivNegPri), 3040 TO_CORE_BIT(MSUser), 3041 TO_CORE_BIT(MSPriv), 3042 TO_CORE_BIT(MSUserNegPri), 3043 TO_CORE_BIT(MSPrivNegPri), 3044 } ARMMMUIdxBit; 3045 3046 #undef TO_CORE_BIT 3047 3048 #define MMU_USER_IDX 0 3049 3050 /* Indexes used when registering address spaces with cpu_address_space_init */ 3051 typedef enum ARMASIdx { 3052 ARMASIdx_NS = 0, 3053 ARMASIdx_S = 1, 3054 ARMASIdx_TagNS = 2, 3055 ARMASIdx_TagS = 3, 3056 } ARMASIdx; 3057 3058 /* Return the Exception Level targeted by debug exceptions. */ 3059 static inline int arm_debug_target_el(CPUARMState *env) 3060 { 3061 bool secure = arm_is_secure(env); 3062 bool route_to_el2 = false; 3063 3064 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3065 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3066 env->cp15.mdcr_el2 & MDCR_TDE; 3067 } 3068 3069 if (route_to_el2) { 3070 return 2; 3071 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3072 !arm_el_is_aa64(env, 3) && secure) { 3073 return 3; 3074 } else { 3075 return 1; 3076 } 3077 } 3078 3079 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3080 { 3081 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3082 * CSSELR is RAZ/WI. 3083 */ 3084 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3085 } 3086 3087 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3088 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3089 { 3090 int cur_el = arm_current_el(env); 3091 int debug_el; 3092 3093 if (cur_el == 3) { 3094 return false; 3095 } 3096 3097 /* MDCR_EL3.SDD disables debug events from Secure state */ 3098 if (arm_is_secure_below_el3(env) 3099 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3100 return false; 3101 } 3102 3103 /* 3104 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3105 * while not masking the (D)ebug bit in DAIF. 3106 */ 3107 debug_el = arm_debug_target_el(env); 3108 3109 if (cur_el == debug_el) { 3110 return extract32(env->cp15.mdscr_el1, 13, 1) 3111 && !(env->daif & PSTATE_D); 3112 } 3113 3114 /* Otherwise the debug target needs to be a higher EL */ 3115 return debug_el > cur_el; 3116 } 3117 3118 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3119 { 3120 int el = arm_current_el(env); 3121 3122 if (el == 0 && arm_el_is_aa64(env, 1)) { 3123 return aa64_generate_debug_exceptions(env); 3124 } 3125 3126 if (arm_is_secure(env)) { 3127 int spd; 3128 3129 if (el == 0 && (env->cp15.sder & 1)) { 3130 /* SDER.SUIDEN means debug exceptions from Secure EL0 3131 * are always enabled. Otherwise they are controlled by 3132 * SDCR.SPD like those from other Secure ELs. 3133 */ 3134 return true; 3135 } 3136 3137 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3138 switch (spd) { 3139 case 1: 3140 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3141 case 0: 3142 /* For 0b00 we return true if external secure invasive debug 3143 * is enabled. On real hardware this is controlled by external 3144 * signals to the core. QEMU always permits debug, and behaves 3145 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3146 */ 3147 return true; 3148 case 2: 3149 return false; 3150 case 3: 3151 return true; 3152 } 3153 } 3154 3155 return el != 2; 3156 } 3157 3158 /* Return true if debugging exceptions are currently enabled. 3159 * This corresponds to what in ARM ARM pseudocode would be 3160 * if UsingAArch32() then 3161 * return AArch32.GenerateDebugExceptions() 3162 * else 3163 * return AArch64.GenerateDebugExceptions() 3164 * We choose to push the if() down into this function for clarity, 3165 * since the pseudocode has it at all callsites except for the one in 3166 * CheckSoftwareStep(), where it is elided because both branches would 3167 * always return the same value. 3168 */ 3169 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3170 { 3171 if (env->aarch64) { 3172 return aa64_generate_debug_exceptions(env); 3173 } else { 3174 return aa32_generate_debug_exceptions(env); 3175 } 3176 } 3177 3178 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3179 * implicitly means this always returns false in pre-v8 CPUs.) 3180 */ 3181 static inline bool arm_singlestep_active(CPUARMState *env) 3182 { 3183 return extract32(env->cp15.mdscr_el1, 0, 1) 3184 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3185 && arm_generate_debug_exceptions(env); 3186 } 3187 3188 static inline bool arm_sctlr_b(CPUARMState *env) 3189 { 3190 return 3191 /* We need not implement SCTLR.ITD in user-mode emulation, so 3192 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3193 * This lets people run BE32 binaries with "-cpu any". 3194 */ 3195 #ifndef CONFIG_USER_ONLY 3196 !arm_feature(env, ARM_FEATURE_V7) && 3197 #endif 3198 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3199 } 3200 3201 uint64_t arm_sctlr(CPUARMState *env, int el); 3202 3203 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3204 bool sctlr_b) 3205 { 3206 #ifdef CONFIG_USER_ONLY 3207 /* 3208 * In system mode, BE32 is modelled in line with the 3209 * architecture (as word-invariant big-endianness), where loads 3210 * and stores are done little endian but from addresses which 3211 * are adjusted by XORing with the appropriate constant. So the 3212 * endianness to use for the raw data access is not affected by 3213 * SCTLR.B. 3214 * In user mode, however, we model BE32 as byte-invariant 3215 * big-endianness (because user-only code cannot tell the 3216 * difference), and so we need to use a data access endianness 3217 * that depends on SCTLR.B. 3218 */ 3219 if (sctlr_b) { 3220 return true; 3221 } 3222 #endif 3223 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3224 return env->uncached_cpsr & CPSR_E; 3225 } 3226 3227 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3228 { 3229 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3230 } 3231 3232 /* Return true if the processor is in big-endian mode. */ 3233 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3234 { 3235 if (!is_a64(env)) { 3236 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3237 } else { 3238 int cur_el = arm_current_el(env); 3239 uint64_t sctlr = arm_sctlr(env, cur_el); 3240 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3241 } 3242 } 3243 3244 typedef CPUARMState CPUArchState; 3245 typedef ARMCPU ArchCPU; 3246 3247 #include "exec/cpu-all.h" 3248 3249 /* 3250 * Bit usage in the TB flags field: bit 31 indicates whether we are 3251 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3252 * We put flags which are shared between 32 and 64 bit mode at the top 3253 * of the word, and flags which apply to only one mode at the bottom. 3254 * 3255 * 31 20 18 14 9 0 3256 * +--------------+-----+-----+----------+--------------+ 3257 * | | | TBFLAG_A32 | | 3258 * | | +-----+----------+ TBFLAG_AM32 | 3259 * | TBFLAG_ANY | |TBFLAG_M32| | 3260 * | +-----------+----------+--------------| 3261 * | | TBFLAG_A64 | 3262 * +--------------+-------------------------------------+ 3263 * 31 20 0 3264 * 3265 * Unless otherwise noted, these bits are cached in env->hflags. 3266 */ 3267 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3268 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3269 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3270 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3271 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3272 /* Target EL if we take a floating-point-disabled exception */ 3273 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3274 /* For A-profile only, target EL for debug exceptions. */ 3275 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3276 3277 /* 3278 * Bit usage when in AArch32 state, both A- and M-profile. 3279 */ 3280 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3281 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3282 3283 /* 3284 * Bit usage when in AArch32 state, for A-profile only. 3285 */ 3286 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3287 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3288 /* 3289 * We store the bottom two bits of the CPAR as TB flags and handle 3290 * checks on the other bits at runtime. This shares the same bits as 3291 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3292 * Not cached, because VECLEN+VECSTRIDE are not cached. 3293 */ 3294 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3295 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3296 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3297 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3298 /* 3299 * Indicates whether cp register reads and writes by guest code should access 3300 * the secure or nonsecure bank of banked registers; note that this is not 3301 * the same thing as the current security state of the processor! 3302 */ 3303 FIELD(TBFLAG_A32, NS, 17, 1) 3304 3305 /* 3306 * Bit usage when in AArch32 state, for M-profile only. 3307 */ 3308 /* Handler (ie not Thread) mode */ 3309 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3310 /* Whether we should generate stack-limit checks */ 3311 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3312 /* Set if FPCCR.LSPACT is set */ 3313 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3314 /* Set if we must create a new FP context */ 3315 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3316 /* Set if FPCCR.S does not match current security state */ 3317 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3318 3319 /* 3320 * Bit usage when in AArch64 state 3321 */ 3322 FIELD(TBFLAG_A64, TBII, 0, 2) 3323 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3324 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3325 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3326 FIELD(TBFLAG_A64, BT, 9, 1) 3327 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3328 FIELD(TBFLAG_A64, TBID, 12, 2) 3329 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3330 FIELD(TBFLAG_A64, ATA, 15, 1) 3331 FIELD(TBFLAG_A64, TCMA, 16, 2) 3332 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3333 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3334 3335 /** 3336 * cpu_mmu_index: 3337 * @env: The cpu environment 3338 * @ifetch: True for code access, false for data access. 3339 * 3340 * Return the core mmu index for the current translation regime. 3341 * This function is used by generic TCG code paths. 3342 */ 3343 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3344 { 3345 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3346 } 3347 3348 static inline bool bswap_code(bool sctlr_b) 3349 { 3350 #ifdef CONFIG_USER_ONLY 3351 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3352 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3353 * would also end up as a mixed-endian mode with BE code, LE data. 3354 */ 3355 return 3356 #ifdef TARGET_WORDS_BIGENDIAN 3357 1 ^ 3358 #endif 3359 sctlr_b; 3360 #else 3361 /* All code access in ARM is little endian, and there are no loaders 3362 * doing swaps that need to be reversed 3363 */ 3364 return 0; 3365 #endif 3366 } 3367 3368 #ifdef CONFIG_USER_ONLY 3369 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3370 { 3371 return 3372 #ifdef TARGET_WORDS_BIGENDIAN 3373 1 ^ 3374 #endif 3375 arm_cpu_data_is_big_endian(env); 3376 } 3377 #endif 3378 3379 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3380 target_ulong *cs_base, uint32_t *flags); 3381 3382 enum { 3383 QEMU_PSCI_CONDUIT_DISABLED = 0, 3384 QEMU_PSCI_CONDUIT_SMC = 1, 3385 QEMU_PSCI_CONDUIT_HVC = 2, 3386 }; 3387 3388 #ifndef CONFIG_USER_ONLY 3389 /* Return the address space index to use for a memory access */ 3390 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3391 { 3392 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3393 } 3394 3395 /* Return the AddressSpace to use for a memory access 3396 * (which depends on whether the access is S or NS, and whether 3397 * the board gave us a separate AddressSpace for S accesses). 3398 */ 3399 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3400 { 3401 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3402 } 3403 #endif 3404 3405 /** 3406 * arm_register_pre_el_change_hook: 3407 * Register a hook function which will be called immediately before this 3408 * CPU changes exception level or mode. The hook function will be 3409 * passed a pointer to the ARMCPU and the opaque data pointer passed 3410 * to this function when the hook was registered. 3411 * 3412 * Note that if a pre-change hook is called, any registered post-change hooks 3413 * are guaranteed to subsequently be called. 3414 */ 3415 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3416 void *opaque); 3417 /** 3418 * arm_register_el_change_hook: 3419 * Register a hook function which will be called immediately after this 3420 * CPU changes exception level or mode. The hook function will be 3421 * passed a pointer to the ARMCPU and the opaque data pointer passed 3422 * to this function when the hook was registered. 3423 * 3424 * Note that any registered hooks registered here are guaranteed to be called 3425 * if pre-change hooks have been. 3426 */ 3427 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3428 *opaque); 3429 3430 /** 3431 * arm_rebuild_hflags: 3432 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3433 */ 3434 void arm_rebuild_hflags(CPUARMState *env); 3435 3436 /** 3437 * aa32_vfp_dreg: 3438 * Return a pointer to the Dn register within env in 32-bit mode. 3439 */ 3440 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3441 { 3442 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3443 } 3444 3445 /** 3446 * aa32_vfp_qreg: 3447 * Return a pointer to the Qn register within env in 32-bit mode. 3448 */ 3449 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3450 { 3451 return &env->vfp.zregs[regno].d[0]; 3452 } 3453 3454 /** 3455 * aa64_vfp_qreg: 3456 * Return a pointer to the Qn register within env in 64-bit mode. 3457 */ 3458 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3459 { 3460 return &env->vfp.zregs[regno].d[0]; 3461 } 3462 3463 /* Shared between translate-sve.c and sve_helper.c. */ 3464 extern const uint64_t pred_esz_masks[4]; 3465 3466 /* Helper for the macros below, validating the argument type. */ 3467 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3468 { 3469 return x; 3470 } 3471 3472 /* 3473 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3474 * Using these should be a bit more self-documenting than using the 3475 * generic target bits directly. 3476 */ 3477 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3478 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3479 3480 /* 3481 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3482 */ 3483 #define PAGE_BTI PAGE_TARGET_1 3484 3485 /* 3486 * Naming convention for isar_feature functions: 3487 * Functions which test 32-bit ID registers should have _aa32_ in 3488 * their name. Functions which test 64-bit ID registers should have 3489 * _aa64_ in their name. These must only be used in code where we 3490 * know for certain that the CPU has AArch32 or AArch64 respectively 3491 * or where the correct answer for a CPU which doesn't implement that 3492 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3493 * system registers that are specific to that CPU state, for "should 3494 * we let this system register bit be set" tests where the 32-bit 3495 * flavour of the register doesn't have the bit, and so on). 3496 * Functions which simply ask "does this feature exist at all" have 3497 * _any_ in their name, and always return the logical OR of the _aa64_ 3498 * and the _aa32_ function. 3499 */ 3500 3501 /* 3502 * 32-bit feature tests via id registers. 3503 */ 3504 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3505 { 3506 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3507 } 3508 3509 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3510 { 3511 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3512 } 3513 3514 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3515 { 3516 /* (M-profile) low-overhead loops and branch future */ 3517 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3518 } 3519 3520 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3521 { 3522 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3523 } 3524 3525 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3526 { 3527 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3528 } 3529 3530 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3531 { 3532 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3533 } 3534 3535 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3536 { 3537 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3538 } 3539 3540 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3541 { 3542 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3543 } 3544 3545 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3546 { 3547 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3548 } 3549 3550 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3551 { 3552 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3553 } 3554 3555 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3556 { 3557 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3558 } 3559 3560 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3561 { 3562 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3563 } 3564 3565 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3566 { 3567 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3568 } 3569 3570 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3571 { 3572 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3573 } 3574 3575 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3576 { 3577 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3578 } 3579 3580 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3581 { 3582 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3583 } 3584 3585 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3586 { 3587 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3588 } 3589 3590 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3591 { 3592 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3593 } 3594 3595 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3596 { 3597 /* 3598 * Return true if M-profile state handling insns 3599 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3600 */ 3601 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3602 } 3603 3604 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3605 { 3606 /* Sadly this is encoded differently for A-profile and M-profile */ 3607 if (isar_feature_aa32_mprofile(id)) { 3608 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3609 } else { 3610 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3611 } 3612 } 3613 3614 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3615 { 3616 /* 3617 * Return true if either VFP or SIMD is implemented. 3618 * In this case, a minimum of VFP w/ D0-D15. 3619 */ 3620 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3621 } 3622 3623 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3624 { 3625 /* Return true if D16-D31 are implemented */ 3626 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3627 } 3628 3629 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3630 { 3631 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3632 } 3633 3634 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3635 { 3636 /* Return true if CPU supports single precision floating point, VFPv2 */ 3637 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3638 } 3639 3640 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3641 { 3642 /* Return true if CPU supports single precision floating point, VFPv3 */ 3643 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3644 } 3645 3646 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3647 { 3648 /* Return true if CPU supports double precision floating point, VFPv2 */ 3649 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3650 } 3651 3652 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3653 { 3654 /* Return true if CPU supports double precision floating point, VFPv3 */ 3655 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3656 } 3657 3658 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3659 { 3660 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3661 } 3662 3663 /* 3664 * We always set the FP and SIMD FP16 fields to indicate identical 3665 * levels of support (assuming SIMD is implemented at all), so 3666 * we only need one set of accessors. 3667 */ 3668 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3669 { 3670 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3671 } 3672 3673 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3674 { 3675 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3676 } 3677 3678 /* 3679 * Note that this ID register field covers both VFP and Neon FMAC, 3680 * so should usually be tested in combination with some other 3681 * check that confirms the presence of whichever of VFP or Neon is 3682 * relevant, to avoid accidentally enabling a Neon feature on 3683 * a VFP-no-Neon core or vice-versa. 3684 */ 3685 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3686 { 3687 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3688 } 3689 3690 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3691 { 3692 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3693 } 3694 3695 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3696 { 3697 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3698 } 3699 3700 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3701 { 3702 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3703 } 3704 3705 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3706 { 3707 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3708 } 3709 3710 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3711 { 3712 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3713 } 3714 3715 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3716 { 3717 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3718 } 3719 3720 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3721 { 3722 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3723 } 3724 3725 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3726 { 3727 /* 0xf means "non-standard IMPDEF PMU" */ 3728 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3729 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3730 } 3731 3732 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3733 { 3734 /* 0xf means "non-standard IMPDEF PMU" */ 3735 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3736 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3737 } 3738 3739 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3740 { 3741 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3742 } 3743 3744 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3745 { 3746 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3747 } 3748 3749 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3750 { 3751 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3752 } 3753 3754 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3755 { 3756 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3757 } 3758 3759 /* 3760 * 64-bit feature tests via id registers. 3761 */ 3762 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3763 { 3764 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3765 } 3766 3767 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3768 { 3769 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3770 } 3771 3772 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3773 { 3774 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3775 } 3776 3777 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3778 { 3779 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3780 } 3781 3782 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3783 { 3784 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3785 } 3786 3787 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3788 { 3789 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3790 } 3791 3792 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3793 { 3794 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3795 } 3796 3797 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3798 { 3799 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3800 } 3801 3802 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3803 { 3804 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3805 } 3806 3807 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3808 { 3809 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3810 } 3811 3812 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3813 { 3814 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3815 } 3816 3817 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3818 { 3819 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3820 } 3821 3822 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3823 { 3824 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3825 } 3826 3827 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3828 { 3829 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3830 } 3831 3832 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3833 { 3834 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3835 } 3836 3837 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3838 { 3839 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3840 } 3841 3842 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3843 { 3844 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3845 } 3846 3847 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3848 { 3849 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3850 } 3851 3852 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3853 { 3854 /* 3855 * Note that while QEMU will only implement the architected algorithm 3856 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3857 * defined algorithms, and thus API+GPI, and this predicate controls 3858 * migration of the 128-bit keys. 3859 */ 3860 return (id->id_aa64isar1 & 3861 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3862 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3863 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3864 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3865 } 3866 3867 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3868 { 3869 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3870 } 3871 3872 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3873 { 3874 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3875 } 3876 3877 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3878 { 3879 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3880 } 3881 3882 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3883 { 3884 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3885 } 3886 3887 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3888 { 3889 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3890 } 3891 3892 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3893 { 3894 /* We always set the AdvSIMD and FP fields identically. */ 3895 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3896 } 3897 3898 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3899 { 3900 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3901 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3902 } 3903 3904 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3905 { 3906 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3907 } 3908 3909 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3910 { 3911 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3912 } 3913 3914 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3915 { 3916 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3917 } 3918 3919 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3920 { 3921 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3922 } 3923 3924 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3925 { 3926 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3927 } 3928 3929 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3930 { 3931 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3932 } 3933 3934 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3935 { 3936 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3937 } 3938 3939 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3940 { 3941 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3942 } 3943 3944 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3945 { 3946 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3947 } 3948 3949 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3950 { 3951 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3952 } 3953 3954 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 3955 { 3956 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3957 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3958 } 3959 3960 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 3961 { 3962 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 3963 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3964 } 3965 3966 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 3967 { 3968 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 3969 } 3970 3971 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 3972 { 3973 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 3974 } 3975 3976 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 3977 { 3978 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 3979 } 3980 3981 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 3982 { 3983 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 3984 } 3985 3986 /* 3987 * Feature tests for "does this exist in either 32-bit or 64-bit?" 3988 */ 3989 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 3990 { 3991 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 3992 } 3993 3994 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 3995 { 3996 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 3997 } 3998 3999 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 4000 { 4001 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 4002 } 4003 4004 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 4005 { 4006 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 4007 } 4008 4009 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4010 { 4011 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4012 } 4013 4014 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4015 { 4016 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4017 } 4018 4019 /* 4020 * Forward to the above feature tests given an ARMCPU pointer. 4021 */ 4022 #define cpu_isar_feature(name, cpu) \ 4023 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4024 4025 #endif 4026