xref: /openbmc/qemu/target/arm/cpu.h (revision 0b8fa32f)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "qemu-common.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #define EXCP_UDEF            1   /* undefined instruction */
33 #define EXCP_SWI             2   /* software interrupt */
34 #define EXCP_PREFETCH_ABORT  3
35 #define EXCP_DATA_ABORT      4
36 #define EXCP_IRQ             5
37 #define EXCP_FIQ             6
38 #define EXCP_BKPT            7
39 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
40 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
41 #define EXCP_HVC            11   /* HyperVisor Call */
42 #define EXCP_HYP_TRAP       12
43 #define EXCP_SMC            13   /* Secure Monitor Call */
44 #define EXCP_VIRQ           14
45 #define EXCP_VFIQ           15
46 #define EXCP_SEMIHOST       16   /* semihosting call */
47 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
48 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
49 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
50 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
51 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
52 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
53 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 
55 #define ARMV7M_EXCP_RESET   1
56 #define ARMV7M_EXCP_NMI     2
57 #define ARMV7M_EXCP_HARD    3
58 #define ARMV7M_EXCP_MEM     4
59 #define ARMV7M_EXCP_BUS     5
60 #define ARMV7M_EXCP_USAGE   6
61 #define ARMV7M_EXCP_SECURE  7
62 #define ARMV7M_EXCP_SVC     11
63 #define ARMV7M_EXCP_DEBUG   12
64 #define ARMV7M_EXCP_PENDSV  14
65 #define ARMV7M_EXCP_SYSTICK 15
66 
67 /* For M profile, some registers are banked secure vs non-secure;
68  * these are represented as a 2-element array where the first element
69  * is the non-secure copy and the second is the secure copy.
70  * When the CPU does not have implement the security extension then
71  * only the first element is used.
72  * This means that the copy for the current security state can be
73  * accessed via env->registerfield[env->v7m.secure] (whether the security
74  * extension is implemented or not).
75  */
76 enum {
77     M_REG_NS = 0,
78     M_REG_S = 1,
79     M_REG_NUM_BANKS = 2,
80 };
81 
82 /* ARM-specific interrupt pending bits.  */
83 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
84 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
85 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
86 
87 /* The usual mapping for an AArch64 system register to its AArch32
88  * counterpart is for the 32 bit world to have access to the lower
89  * half only (with writes leaving the upper half untouched). It's
90  * therefore useful to be able to pass TCG the offset of the least
91  * significant half of a uint64_t struct member.
92  */
93 #ifdef HOST_WORDS_BIGENDIAN
94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #define offsetofhigh32(S, M) offsetof(S, M)
96 #else
97 #define offsetoflow32(S, M) offsetof(S, M)
98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #endif
100 
101 /* Meanings of the ARMCPU object's four inbound GPIO lines */
102 #define ARM_CPU_IRQ 0
103 #define ARM_CPU_FIQ 1
104 #define ARM_CPU_VIRQ 2
105 #define ARM_CPU_VFIQ 3
106 
107 /* ARM-specific extra insn start words:
108  * 1: Conditional execution bits
109  * 2: Partial exception syndrome for data aborts
110  */
111 #define TARGET_INSN_START_EXTRA_WORDS 2
112 
113 /* The 2nd extra word holding syndrome info for data aborts does not use
114  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
115  * help the sleb128 encoder do a better job.
116  * When restoring the CPU state, we shift it back up.
117  */
118 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
119 #define ARM_INSN_START_WORD2_SHIFT 14
120 
121 /* We currently assume float and double are IEEE single and double
122    precision respectively.
123    Doing runtime conversions is tricky because VFP registers may contain
124    integer values (eg. as the result of a FTOSI instruction).
125    s<2n> maps to the least significant half of d<n>
126    s<2n+1> maps to the most significant half of d<n>
127  */
128 
129 /**
130  * DynamicGDBXMLInfo:
131  * @desc: Contains the XML descriptions.
132  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
133  * @cpregs_keys: Array that contains the corresponding Key of
134  * a given cpreg with the same order of the cpreg in the XML description.
135  */
136 typedef struct DynamicGDBXMLInfo {
137     char *desc;
138     int num_cpregs;
139     uint32_t *cpregs_keys;
140 } DynamicGDBXMLInfo;
141 
142 /* CPU state for each instance of a generic timer (in cp15 c14) */
143 typedef struct ARMGenericTimer {
144     uint64_t cval; /* Timer CompareValue register */
145     uint64_t ctl; /* Timer Control register */
146 } ARMGenericTimer;
147 
148 #define GTIMER_PHYS 0
149 #define GTIMER_VIRT 1
150 #define GTIMER_HYP  2
151 #define GTIMER_SEC  3
152 #define NUM_GTIMERS 4
153 
154 typedef struct {
155     uint64_t raw_tcr;
156     uint32_t mask;
157     uint32_t base_mask;
158 } TCR;
159 
160 /* Define a maximum sized vector register.
161  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162  * For 64-bit, this is a 2048-bit SVE register.
163  *
164  * Note that the mapping between S, D, and Q views of the register bank
165  * differs between AArch64 and AArch32.
166  * In AArch32:
167  *  Qn = regs[n].d[1]:regs[n].d[0]
168  *  Dn = regs[n / 2].d[n & 1]
169  *  Sn = regs[n / 4].d[n % 4 / 2],
170  *       bits 31..0 for even n, and bits 63..32 for odd n
171  *       (and regs[16] to regs[31] are inaccessible)
172  * In AArch64:
173  *  Zn = regs[n].d[*]
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n].d[0]
176  *  Sn = regs[n].d[0] bits 31..0
177  *  Hn = regs[n].d[0] bits 15..0
178  *
179  * This corresponds to the architecturally defined mapping between
180  * the two execution states, and means we do not need to explicitly
181  * map these registers when changing states.
182  *
183  * Align the data for use with TCG host vector operations.
184  */
185 
186 #ifdef TARGET_AARCH64
187 # define ARM_MAX_VQ    16
188 #else
189 # define ARM_MAX_VQ    1
190 #endif
191 
192 typedef struct ARMVectorReg {
193     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
194 } ARMVectorReg;
195 
196 #ifdef TARGET_AARCH64
197 /* In AArch32 mode, predicate registers do not exist at all.  */
198 typedef struct ARMPredicateReg {
199     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
200 } ARMPredicateReg;
201 
202 /* In AArch32 mode, PAC keys do not exist at all.  */
203 typedef struct ARMPACKey {
204     uint64_t lo, hi;
205 } ARMPACKey;
206 #endif
207 
208 
209 typedef struct CPUARMState {
210     /* Regs for current mode.  */
211     uint32_t regs[16];
212 
213     /* 32/64 switch only happens when taking and returning from
214      * exceptions so the overlap semantics are taken care of then
215      * instead of having a complicated union.
216      */
217     /* Regs for A64 mode.  */
218     uint64_t xregs[32];
219     uint64_t pc;
220     /* PSTATE isn't an architectural register for ARMv8. However, it is
221      * convenient for us to assemble the underlying state into a 32 bit format
222      * identical to the architectural format used for the SPSR. (This is also
223      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
224      * 'pstate' register are.) Of the PSTATE bits:
225      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
226      *    semantics as for AArch32, as described in the comments on each field)
227      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
228      *  DAIF (exception masks) are kept in env->daif
229      *  BTYPE is kept in env->btype
230      *  all other bits are stored in their correct places in env->pstate
231      */
232     uint32_t pstate;
233     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
234 
235     /* Frequently accessed CPSR bits are stored separately for efficiency.
236        This contains all the other bits.  Use cpsr_{read,write} to access
237        the whole CPSR.  */
238     uint32_t uncached_cpsr;
239     uint32_t spsr;
240 
241     /* Banked registers.  */
242     uint64_t banked_spsr[8];
243     uint32_t banked_r13[8];
244     uint32_t banked_r14[8];
245 
246     /* These hold r8-r12.  */
247     uint32_t usr_regs[5];
248     uint32_t fiq_regs[5];
249 
250     /* cpsr flag cache for faster execution */
251     uint32_t CF; /* 0 or 1 */
252     uint32_t VF; /* V is the bit 31. All other bits are undefined */
253     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
254     uint32_t ZF; /* Z set if zero.  */
255     uint32_t QF; /* 0 or 1 */
256     uint32_t GE; /* cpsr[19:16] */
257     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t cpacr_el1; /* Architectural feature access control register */
287         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
288         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
289         uint64_t sder; /* Secure debug enable register. */
290         uint32_t nsacr; /* Non-secure access control register. */
291         union { /* MMU translation table base 0. */
292             struct {
293                 uint64_t _unused_ttbr0_0;
294                 uint64_t ttbr0_ns;
295                 uint64_t _unused_ttbr0_1;
296                 uint64_t ttbr0_s;
297             };
298             uint64_t ttbr0_el[4];
299         };
300         union { /* MMU translation table base 1. */
301             struct {
302                 uint64_t _unused_ttbr1_0;
303                 uint64_t ttbr1_ns;
304                 uint64_t _unused_ttbr1_1;
305                 uint64_t ttbr1_s;
306             };
307             uint64_t ttbr1_el[4];
308         };
309         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
310         /* MMU translation table base control. */
311         TCR tcr_el[4];
312         TCR vtcr_el2; /* Virtualization Translation Control.  */
313         uint32_t c2_data; /* MPU data cacheable bits.  */
314         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315         union { /* MMU domain access control register
316                  * MPU write buffer control.
317                  */
318             struct {
319                 uint64_t dacr_ns;
320                 uint64_t dacr_s;
321             };
322             struct {
323                 uint64_t dacr32_el2;
324             };
325         };
326         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328         uint64_t hcr_el2; /* Hypervisor configuration register */
329         uint64_t scr_el3; /* Secure configuration register.  */
330         union { /* Fault status registers.  */
331             struct {
332                 uint64_t ifsr_ns;
333                 uint64_t ifsr_s;
334             };
335             struct {
336                 uint64_t ifsr32_el2;
337             };
338         };
339         union {
340             struct {
341                 uint64_t _unused_dfsr;
342                 uint64_t dfsr_ns;
343                 uint64_t hsr;
344                 uint64_t dfsr_s;
345             };
346             uint64_t esr_el[4];
347         };
348         uint32_t c6_region[8]; /* MPU base/size registers.  */
349         union { /* Fault address registers. */
350             struct {
351                 uint64_t _unused_far0;
352 #ifdef HOST_WORDS_BIGENDIAN
353                 uint32_t ifar_ns;
354                 uint32_t dfar_ns;
355                 uint32_t ifar_s;
356                 uint32_t dfar_s;
357 #else
358                 uint32_t dfar_ns;
359                 uint32_t ifar_ns;
360                 uint32_t dfar_s;
361                 uint32_t ifar_s;
362 #endif
363                 uint64_t _unused_far3;
364             };
365             uint64_t far_el[4];
366         };
367         uint64_t hpfar_el2;
368         uint64_t hstr_el2;
369         union { /* Translation result. */
370             struct {
371                 uint64_t _unused_par_0;
372                 uint64_t par_ns;
373                 uint64_t _unused_par_1;
374                 uint64_t par_s;
375             };
376             uint64_t par_el[4];
377         };
378 
379         uint32_t c9_insn; /* Cache lockdown registers.  */
380         uint32_t c9_data;
381         uint64_t c9_pmcr; /* performance monitor control register */
382         uint64_t c9_pmcnten; /* perf monitor counter enables */
383         uint64_t c9_pmovsr; /* perf monitor overflow status */
384         uint64_t c9_pmuserenr; /* perf monitor user enable */
385         uint64_t c9_pmselr; /* perf monitor counter selection register */
386         uint64_t c9_pminten; /* perf monitor interrupt enables */
387         union { /* Memory attribute redirection */
388             struct {
389 #ifdef HOST_WORDS_BIGENDIAN
390                 uint64_t _unused_mair_0;
391                 uint32_t mair1_ns;
392                 uint32_t mair0_ns;
393                 uint64_t _unused_mair_1;
394                 uint32_t mair1_s;
395                 uint32_t mair0_s;
396 #else
397                 uint64_t _unused_mair_0;
398                 uint32_t mair0_ns;
399                 uint32_t mair1_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair0_s;
402                 uint32_t mair1_s;
403 #endif
404             };
405             uint64_t mair_el[4];
406         };
407         union { /* vector base address register */
408             struct {
409                 uint64_t _unused_vbar;
410                 uint64_t vbar_ns;
411                 uint64_t hvbar;
412                 uint64_t vbar_s;
413             };
414             uint64_t vbar_el[4];
415         };
416         uint32_t mvbar; /* (monitor) vector base address register */
417         struct { /* FCSE PID. */
418             uint32_t fcseidr_ns;
419             uint32_t fcseidr_s;
420         };
421         union { /* Context ID. */
422             struct {
423                 uint64_t _unused_contextidr_0;
424                 uint64_t contextidr_ns;
425                 uint64_t _unused_contextidr_1;
426                 uint64_t contextidr_s;
427             };
428             uint64_t contextidr_el[4];
429         };
430         union { /* User RW Thread register. */
431             struct {
432                 uint64_t tpidrurw_ns;
433                 uint64_t tpidrprw_ns;
434                 uint64_t htpidr;
435                 uint64_t _tpidr_el3;
436             };
437             uint64_t tpidr_el[4];
438         };
439         /* The secure banks of these registers don't map anywhere */
440         uint64_t tpidrurw_s;
441         uint64_t tpidrprw_s;
442         uint64_t tpidruro_s;
443 
444         union { /* User RO Thread register. */
445             uint64_t tpidruro_ns;
446             uint64_t tpidrro_el[1];
447         };
448         uint64_t c14_cntfrq; /* Counter Frequency register */
449         uint64_t c14_cntkctl; /* Timer Control register */
450         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
451         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
452         ARMGenericTimer c14_timer[NUM_GTIMERS];
453         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
454         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
455         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
456         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
457         uint32_t c15_threadid; /* TI debugger thread-ID.  */
458         uint32_t c15_config_base_address; /* SCU base address.  */
459         uint32_t c15_diagnostic; /* diagnostic register */
460         uint32_t c15_power_diagnostic;
461         uint32_t c15_power_control; /* power control */
462         uint64_t dbgbvr[16]; /* breakpoint value registers */
463         uint64_t dbgbcr[16]; /* breakpoint control registers */
464         uint64_t dbgwvr[16]; /* watchpoint value registers */
465         uint64_t dbgwcr[16]; /* watchpoint control registers */
466         uint64_t mdscr_el1;
467         uint64_t oslsr_el1; /* OS Lock Status */
468         uint64_t mdcr_el2;
469         uint64_t mdcr_el3;
470         /* Stores the architectural value of the counter *the last time it was
471          * updated* by pmccntr_op_start. Accesses should always be surrounded
472          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
473          * architecturally-correct value is being read/set.
474          */
475         uint64_t c15_ccnt;
476         /* Stores the delta between the architectural value and the underlying
477          * cycle count during normal operation. It is used to update c15_ccnt
478          * to be the correct architectural value before accesses. During
479          * accesses, c15_ccnt_delta contains the underlying count being used
480          * for the access, after which it reverts to the delta value in
481          * pmccntr_op_finish.
482          */
483         uint64_t c15_ccnt_delta;
484         uint64_t c14_pmevcntr[31];
485         uint64_t c14_pmevcntr_delta[31];
486         uint64_t c14_pmevtyper[31];
487         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
488         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
489         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
490     } cp15;
491 
492     struct {
493         /* M profile has up to 4 stack pointers:
494          * a Main Stack Pointer and a Process Stack Pointer for each
495          * of the Secure and Non-Secure states. (If the CPU doesn't support
496          * the security extension then it has only two SPs.)
497          * In QEMU we always store the currently active SP in regs[13],
498          * and the non-active SP for the current security state in
499          * v7m.other_sp. The stack pointers for the inactive security state
500          * are stored in other_ss_msp and other_ss_psp.
501          * switch_v7m_security_state() is responsible for rearranging them
502          * when we change security state.
503          */
504         uint32_t other_sp;
505         uint32_t other_ss_msp;
506         uint32_t other_ss_psp;
507         uint32_t vecbase[M_REG_NUM_BANKS];
508         uint32_t basepri[M_REG_NUM_BANKS];
509         uint32_t control[M_REG_NUM_BANKS];
510         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
511         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
512         uint32_t hfsr; /* HardFault Status */
513         uint32_t dfsr; /* Debug Fault Status Register */
514         uint32_t sfsr; /* Secure Fault Status Register */
515         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
516         uint32_t bfar; /* BusFault Address */
517         uint32_t sfar; /* Secure Fault Address Register */
518         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
519         int exception;
520         uint32_t primask[M_REG_NUM_BANKS];
521         uint32_t faultmask[M_REG_NUM_BANKS];
522         uint32_t aircr; /* only holds r/w state if security extn implemented */
523         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
524         uint32_t csselr[M_REG_NUM_BANKS];
525         uint32_t scr[M_REG_NUM_BANKS];
526         uint32_t msplim[M_REG_NUM_BANKS];
527         uint32_t psplim[M_REG_NUM_BANKS];
528         uint32_t fpcar[M_REG_NUM_BANKS];
529         uint32_t fpccr[M_REG_NUM_BANKS];
530         uint32_t fpdscr[M_REG_NUM_BANKS];
531         uint32_t cpacr[M_REG_NUM_BANKS];
532         uint32_t nsacr;
533     } v7m;
534 
535     /* Information associated with an exception about to be taken:
536      * code which raises an exception must set cs->exception_index and
537      * the relevant parts of this structure; the cpu_do_interrupt function
538      * will then set the guest-visible registers as part of the exception
539      * entry process.
540      */
541     struct {
542         uint32_t syndrome; /* AArch64 format syndrome register */
543         uint32_t fsr; /* AArch32 format fault status register info */
544         uint64_t vaddress; /* virtual addr associated with exception, if any */
545         uint32_t target_el; /* EL the exception should be targeted for */
546         /* If we implement EL2 we will also need to store information
547          * about the intermediate physical address for stage 2 faults.
548          */
549     } exception;
550 
551     /* Information associated with an SError */
552     struct {
553         uint8_t pending;
554         uint8_t has_esr;
555         uint64_t esr;
556     } serror;
557 
558     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
559     uint32_t irq_line_state;
560 
561     /* Thumb-2 EE state.  */
562     uint32_t teecr;
563     uint32_t teehbr;
564 
565     /* VFP coprocessor state.  */
566     struct {
567         ARMVectorReg zregs[32];
568 
569 #ifdef TARGET_AARCH64
570         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
571 #define FFR_PRED_NUM 16
572         ARMPredicateReg pregs[17];
573         /* Scratch space for aa64 sve predicate temporary.  */
574         ARMPredicateReg preg_tmp;
575 #endif
576 
577         /* We store these fpcsr fields separately for convenience.  */
578         uint32_t qc[4] QEMU_ALIGNED(16);
579         int vec_len;
580         int vec_stride;
581 
582         uint32_t xregs[16];
583 
584         /* Scratch space for aa32 neon expansion.  */
585         uint32_t scratch[8];
586 
587         /* There are a number of distinct float control structures:
588          *
589          *  fp_status: is the "normal" fp status.
590          *  fp_status_fp16: used for half-precision calculations
591          *  standard_fp_status : the ARM "Standard FPSCR Value"
592          *
593          * Half-precision operations are governed by a separate
594          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
595          * status structure to control this.
596          *
597          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
598          * round-to-nearest and is used by any operations (generally
599          * Neon) which the architecture defines as controlled by the
600          * standard FPSCR value rather than the FPSCR.
601          *
602          * To avoid having to transfer exception bits around, we simply
603          * say that the FPSCR cumulative exception flags are the logical
604          * OR of the flags in the three fp statuses. This relies on the
605          * only thing which needs to read the exception flags being
606          * an explicit FPSCR read.
607          */
608         float_status fp_status;
609         float_status fp_status_f16;
610         float_status standard_fp_status;
611 
612         /* ZCR_EL[1-3] */
613         uint64_t zcr_el[4];
614     } vfp;
615     uint64_t exclusive_addr;
616     uint64_t exclusive_val;
617     uint64_t exclusive_high;
618 
619     /* iwMMXt coprocessor state.  */
620     struct {
621         uint64_t regs[16];
622         uint64_t val;
623 
624         uint32_t cregs[16];
625     } iwmmxt;
626 
627 #ifdef TARGET_AARCH64
628     struct {
629         ARMPACKey apia;
630         ARMPACKey apib;
631         ARMPACKey apda;
632         ARMPACKey apdb;
633         ARMPACKey apga;
634     } keys;
635 #endif
636 
637 #if defined(CONFIG_USER_ONLY)
638     /* For usermode syscall translation.  */
639     int eabi;
640 #endif
641 
642     struct CPUBreakpoint *cpu_breakpoint[16];
643     struct CPUWatchpoint *cpu_watchpoint[16];
644 
645     /* Fields up to this point are cleared by a CPU reset */
646     struct {} end_reset_fields;
647 
648     /* Fields after this point are preserved across CPU reset. */
649 
650     /* Internal CPU feature flags.  */
651     uint64_t features;
652 
653     /* PMSAv7 MPU */
654     struct {
655         uint32_t *drbar;
656         uint32_t *drsr;
657         uint32_t *dracr;
658         uint32_t rnr[M_REG_NUM_BANKS];
659     } pmsav7;
660 
661     /* PMSAv8 MPU */
662     struct {
663         /* The PMSAv8 implementation also shares some PMSAv7 config
664          * and state:
665          *  pmsav7.rnr (region number register)
666          *  pmsav7_dregion (number of configured regions)
667          */
668         uint32_t *rbar[M_REG_NUM_BANKS];
669         uint32_t *rlar[M_REG_NUM_BANKS];
670         uint32_t mair0[M_REG_NUM_BANKS];
671         uint32_t mair1[M_REG_NUM_BANKS];
672     } pmsav8;
673 
674     /* v8M SAU */
675     struct {
676         uint32_t *rbar;
677         uint32_t *rlar;
678         uint32_t rnr;
679         uint32_t ctrl;
680     } sau;
681 
682     void *nvic;
683     const struct arm_boot_info *boot_info;
684     /* Store GICv3CPUState to access from this struct */
685     void *gicv3state;
686 } CPUARMState;
687 
688 /**
689  * ARMELChangeHookFn:
690  * type of a function which can be registered via arm_register_el_change_hook()
691  * to get callbacks when the CPU changes its exception level or mode.
692  */
693 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
694 typedef struct ARMELChangeHook ARMELChangeHook;
695 struct ARMELChangeHook {
696     ARMELChangeHookFn *hook;
697     void *opaque;
698     QLIST_ENTRY(ARMELChangeHook) node;
699 };
700 
701 /* These values map onto the return values for
702  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
703 typedef enum ARMPSCIState {
704     PSCI_ON = 0,
705     PSCI_OFF = 1,
706     PSCI_ON_PENDING = 2
707 } ARMPSCIState;
708 
709 typedef struct ARMISARegisters ARMISARegisters;
710 
711 /**
712  * ARMCPU:
713  * @env: #CPUARMState
714  *
715  * An ARM CPU core.
716  */
717 struct ARMCPU {
718     /*< private >*/
719     CPUState parent_obj;
720     /*< public >*/
721 
722     CPUNegativeOffsetState neg;
723     CPUARMState env;
724 
725     /* Coprocessor information */
726     GHashTable *cp_regs;
727     /* For marshalling (mostly coprocessor) register state between the
728      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
729      * we use these arrays.
730      */
731     /* List of register indexes managed via these arrays; (full KVM style
732      * 64 bit indexes, not CPRegInfo 32 bit indexes)
733      */
734     uint64_t *cpreg_indexes;
735     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
736     uint64_t *cpreg_values;
737     /* Length of the indexes, values, reset_values arrays */
738     int32_t cpreg_array_len;
739     /* These are used only for migration: incoming data arrives in
740      * these fields and is sanity checked in post_load before copying
741      * to the working data structures above.
742      */
743     uint64_t *cpreg_vmstate_indexes;
744     uint64_t *cpreg_vmstate_values;
745     int32_t cpreg_vmstate_array_len;
746 
747     DynamicGDBXMLInfo dyn_xml;
748 
749     /* Timers used by the generic (architected) timer */
750     QEMUTimer *gt_timer[NUM_GTIMERS];
751     /*
752      * Timer used by the PMU. Its state is restored after migration by
753      * pmu_op_finish() - it does not need other handling during migration
754      */
755     QEMUTimer *pmu_timer;
756     /* GPIO outputs for generic timer */
757     qemu_irq gt_timer_outputs[NUM_GTIMERS];
758     /* GPIO output for GICv3 maintenance interrupt signal */
759     qemu_irq gicv3_maintenance_interrupt;
760     /* GPIO output for the PMU interrupt */
761     qemu_irq pmu_interrupt;
762 
763     /* MemoryRegion to use for secure physical accesses */
764     MemoryRegion *secure_memory;
765 
766     /* For v8M, pointer to the IDAU interface provided by board/SoC */
767     Object *idau;
768 
769     /* 'compatible' string for this CPU for Linux device trees */
770     const char *dtb_compatible;
771 
772     /* PSCI version for this CPU
773      * Bits[31:16] = Major Version
774      * Bits[15:0] = Minor Version
775      */
776     uint32_t psci_version;
777 
778     /* Should CPU start in PSCI powered-off state? */
779     bool start_powered_off;
780 
781     /* Current power state, access guarded by BQL */
782     ARMPSCIState power_state;
783 
784     /* CPU has virtualization extension */
785     bool has_el2;
786     /* CPU has security extension */
787     bool has_el3;
788     /* CPU has PMU (Performance Monitor Unit) */
789     bool has_pmu;
790 
791     /* CPU has memory protection unit */
792     bool has_mpu;
793     /* PMSAv7 MPU number of supported regions */
794     uint32_t pmsav7_dregion;
795     /* v8M SAU number of supported regions */
796     uint32_t sau_sregion;
797 
798     /* PSCI conduit used to invoke PSCI methods
799      * 0 - disabled, 1 - smc, 2 - hvc
800      */
801     uint32_t psci_conduit;
802 
803     /* For v8M, initial value of the Secure VTOR */
804     uint32_t init_svtor;
805 
806     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
807      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
808      */
809     uint32_t kvm_target;
810 
811     /* KVM init features for this CPU */
812     uint32_t kvm_init_features[7];
813 
814     /* Uniprocessor system with MP extensions */
815     bool mp_is_up;
816 
817     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
818      * and the probe failed (so we need to report the error in realize)
819      */
820     bool host_cpu_probe_failed;
821 
822     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
823      * register.
824      */
825     int32_t core_count;
826 
827     /* The instance init functions for implementation-specific subclasses
828      * set these fields to specify the implementation-dependent values of
829      * various constant registers and reset values of non-constant
830      * registers.
831      * Some of these might become QOM properties eventually.
832      * Field names match the official register names as defined in the
833      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
834      * is used for reset values of non-constant registers; no reset_
835      * prefix means a constant register.
836      * Some of these registers are split out into a substructure that
837      * is shared with the translators to control the ISA.
838      */
839     struct ARMISARegisters {
840         uint32_t id_isar0;
841         uint32_t id_isar1;
842         uint32_t id_isar2;
843         uint32_t id_isar3;
844         uint32_t id_isar4;
845         uint32_t id_isar5;
846         uint32_t id_isar6;
847         uint32_t mvfr0;
848         uint32_t mvfr1;
849         uint32_t mvfr2;
850         uint64_t id_aa64isar0;
851         uint64_t id_aa64isar1;
852         uint64_t id_aa64pfr0;
853         uint64_t id_aa64pfr1;
854         uint64_t id_aa64mmfr0;
855         uint64_t id_aa64mmfr1;
856     } isar;
857     uint32_t midr;
858     uint32_t revidr;
859     uint32_t reset_fpsid;
860     uint32_t ctr;
861     uint32_t reset_sctlr;
862     uint32_t id_pfr0;
863     uint32_t id_pfr1;
864     uint32_t id_dfr0;
865     uint64_t pmceid0;
866     uint64_t pmceid1;
867     uint32_t id_afr0;
868     uint32_t id_mmfr0;
869     uint32_t id_mmfr1;
870     uint32_t id_mmfr2;
871     uint32_t id_mmfr3;
872     uint32_t id_mmfr4;
873     uint64_t id_aa64dfr0;
874     uint64_t id_aa64dfr1;
875     uint64_t id_aa64afr0;
876     uint64_t id_aa64afr1;
877     uint32_t dbgdidr;
878     uint32_t clidr;
879     uint64_t mp_affinity; /* MP ID without feature bits */
880     /* The elements of this array are the CCSIDR values for each cache,
881      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
882      */
883     uint32_t ccsidr[16];
884     uint64_t reset_cbar;
885     uint32_t reset_auxcr;
886     bool reset_hivecs;
887     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
888     uint32_t dcz_blocksize;
889     uint64_t rvbar;
890 
891     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
892     int gic_num_lrs; /* number of list registers */
893     int gic_vpribits; /* number of virtual priority bits */
894     int gic_vprebits; /* number of virtual preemption bits */
895 
896     /* Whether the cfgend input is high (i.e. this CPU should reset into
897      * big-endian mode).  This setting isn't used directly: instead it modifies
898      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
899      * architecture version.
900      */
901     bool cfgend;
902 
903     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
904     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
905 
906     int32_t node_id; /* NUMA node this CPU belongs to */
907 
908     /* Used to synchronize KVM and QEMU in-kernel device levels */
909     uint8_t device_irq_level;
910 
911     /* Used to set the maximum vector length the cpu will support.  */
912     uint32_t sve_max_vq;
913 };
914 
915 void arm_cpu_post_init(Object *obj);
916 
917 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
918 
919 #ifndef CONFIG_USER_ONLY
920 extern const struct VMStateDescription vmstate_arm_cpu;
921 #endif
922 
923 void arm_cpu_do_interrupt(CPUState *cpu);
924 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
925 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
926 
927 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
928 
929 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
930                                          MemTxAttrs *attrs);
931 
932 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
933 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
934 
935 /* Dynamically generates for gdb stub an XML description of the sysregs from
936  * the cp_regs hashtable. Returns the registered sysregs number.
937  */
938 int arm_gen_dynamic_xml(CPUState *cpu);
939 
940 /* Returns the dynamically generated XML for the gdb stub.
941  * Returns a pointer to the XML contents for the specified XML file or NULL
942  * if the XML name doesn't match the predefined one.
943  */
944 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
945 
946 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
947                              int cpuid, void *opaque);
948 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
949                              int cpuid, void *opaque);
950 
951 #ifdef TARGET_AARCH64
952 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
953 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
954 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
955 void aarch64_sve_change_el(CPUARMState *env, int old_el,
956                            int new_el, bool el0_a64);
957 #else
958 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
959 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
960                                          int n, bool a)
961 { }
962 #endif
963 
964 target_ulong do_arm_semihosting(CPUARMState *env);
965 void aarch64_sync_32_to_64(CPUARMState *env);
966 void aarch64_sync_64_to_32(CPUARMState *env);
967 
968 int fp_exception_el(CPUARMState *env, int cur_el);
969 int sve_exception_el(CPUARMState *env, int cur_el);
970 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
971 
972 static inline bool is_a64(CPUARMState *env)
973 {
974     return env->aarch64;
975 }
976 
977 /* you can call this signal handler from your SIGBUS and SIGSEGV
978    signal handlers to inform the virtual CPU of exceptions. non zero
979    is returned if the signal was handled by the virtual CPU.  */
980 int cpu_arm_signal_handler(int host_signum, void *pinfo,
981                            void *puc);
982 
983 /**
984  * pmu_op_start/finish
985  * @env: CPUARMState
986  *
987  * Convert all PMU counters between their delta form (the typical mode when
988  * they are enabled) and the guest-visible values. These two calls must
989  * surround any action which might affect the counters.
990  */
991 void pmu_op_start(CPUARMState *env);
992 void pmu_op_finish(CPUARMState *env);
993 
994 /*
995  * Called when a PMU counter is due to overflow
996  */
997 void arm_pmu_timer_cb(void *opaque);
998 
999 /**
1000  * Functions to register as EL change hooks for PMU mode filtering
1001  */
1002 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1003 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1004 
1005 /*
1006  * pmu_init
1007  * @cpu: ARMCPU
1008  *
1009  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1010  * for the current configuration
1011  */
1012 void pmu_init(ARMCPU *cpu);
1013 
1014 /* SCTLR bit meanings. Several bits have been reused in newer
1015  * versions of the architecture; in that case we define constants
1016  * for both old and new bit meanings. Code which tests against those
1017  * bits should probably check or otherwise arrange that the CPU
1018  * is the architectural version it expects.
1019  */
1020 #define SCTLR_M       (1U << 0)
1021 #define SCTLR_A       (1U << 1)
1022 #define SCTLR_C       (1U << 2)
1023 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1024 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1025 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1026 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1027 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1028 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1029 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1030 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1031 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1032 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1033 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1034 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1035 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1036 #define SCTLR_SED     (1U << 8) /* v8 onward */
1037 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1038 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1039 #define SCTLR_F       (1U << 10) /* up to v6 */
1040 #define SCTLR_SW      (1U << 10) /* v7 */
1041 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1042 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1043 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1044 #define SCTLR_I       (1U << 12)
1045 #define SCTLR_V       (1U << 13) /* AArch32 only */
1046 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1047 #define SCTLR_RR      (1U << 14) /* up to v7 */
1048 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1049 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1050 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1051 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1052 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1053 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1054 #define SCTLR_BR      (1U << 17) /* PMSA only */
1055 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1056 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1057 #define SCTLR_WXN     (1U << 19)
1058 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1059 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1060 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1061 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1062 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1063 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1064 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1065 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1066 #define SCTLR_VE      (1U << 24) /* up to v7 */
1067 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1068 #define SCTLR_EE      (1U << 25)
1069 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1070 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1071 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1072 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1073 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1074 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1075 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1076 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1077 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1078 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1079 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1080 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1081 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1082 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1083 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1084 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1085 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1086 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1087 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1088 
1089 #define CPTR_TCPAC    (1U << 31)
1090 #define CPTR_TTA      (1U << 20)
1091 #define CPTR_TFP      (1U << 10)
1092 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1093 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1094 
1095 #define MDCR_EPMAD    (1U << 21)
1096 #define MDCR_EDAD     (1U << 20)
1097 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1098 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1099 #define MDCR_SDD      (1U << 16)
1100 #define MDCR_SPD      (3U << 14)
1101 #define MDCR_TDRA     (1U << 11)
1102 #define MDCR_TDOSA    (1U << 10)
1103 #define MDCR_TDA      (1U << 9)
1104 #define MDCR_TDE      (1U << 8)
1105 #define MDCR_HPME     (1U << 7)
1106 #define MDCR_TPM      (1U << 6)
1107 #define MDCR_TPMCR    (1U << 5)
1108 #define MDCR_HPMN     (0x1fU)
1109 
1110 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1111 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1112 
1113 #define CPSR_M (0x1fU)
1114 #define CPSR_T (1U << 5)
1115 #define CPSR_F (1U << 6)
1116 #define CPSR_I (1U << 7)
1117 #define CPSR_A (1U << 8)
1118 #define CPSR_E (1U << 9)
1119 #define CPSR_IT_2_7 (0xfc00U)
1120 #define CPSR_GE (0xfU << 16)
1121 #define CPSR_IL (1U << 20)
1122 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1123  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1124  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1125  * where it is live state but not accessible to the AArch32 code.
1126  */
1127 #define CPSR_RESERVED (0x7U << 21)
1128 #define CPSR_J (1U << 24)
1129 #define CPSR_IT_0_1 (3U << 25)
1130 #define CPSR_Q (1U << 27)
1131 #define CPSR_V (1U << 28)
1132 #define CPSR_C (1U << 29)
1133 #define CPSR_Z (1U << 30)
1134 #define CPSR_N (1U << 31)
1135 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1136 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1137 
1138 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1139 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1140     | CPSR_NZCV)
1141 /* Bits writable in user mode.  */
1142 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1143 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1144 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1145 /* Mask of bits which may be set by exception return copying them from SPSR */
1146 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1147 
1148 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1149 #define XPSR_EXCP 0x1ffU
1150 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1151 #define XPSR_IT_2_7 CPSR_IT_2_7
1152 #define XPSR_GE CPSR_GE
1153 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1154 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1155 #define XPSR_IT_0_1 CPSR_IT_0_1
1156 #define XPSR_Q CPSR_Q
1157 #define XPSR_V CPSR_V
1158 #define XPSR_C CPSR_C
1159 #define XPSR_Z CPSR_Z
1160 #define XPSR_N CPSR_N
1161 #define XPSR_NZCV CPSR_NZCV
1162 #define XPSR_IT CPSR_IT
1163 
1164 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1165 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1166 #define TTBCR_PD0    (1U << 4)
1167 #define TTBCR_PD1    (1U << 5)
1168 #define TTBCR_EPD0   (1U << 7)
1169 #define TTBCR_IRGN0  (3U << 8)
1170 #define TTBCR_ORGN0  (3U << 10)
1171 #define TTBCR_SH0    (3U << 12)
1172 #define TTBCR_T1SZ   (3U << 16)
1173 #define TTBCR_A1     (1U << 22)
1174 #define TTBCR_EPD1   (1U << 23)
1175 #define TTBCR_IRGN1  (3U << 24)
1176 #define TTBCR_ORGN1  (3U << 26)
1177 #define TTBCR_SH1    (1U << 28)
1178 #define TTBCR_EAE    (1U << 31)
1179 
1180 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1181  * Only these are valid when in AArch64 mode; in
1182  * AArch32 mode SPSRs are basically CPSR-format.
1183  */
1184 #define PSTATE_SP (1U)
1185 #define PSTATE_M (0xFU)
1186 #define PSTATE_nRW (1U << 4)
1187 #define PSTATE_F (1U << 6)
1188 #define PSTATE_I (1U << 7)
1189 #define PSTATE_A (1U << 8)
1190 #define PSTATE_D (1U << 9)
1191 #define PSTATE_BTYPE (3U << 10)
1192 #define PSTATE_IL (1U << 20)
1193 #define PSTATE_SS (1U << 21)
1194 #define PSTATE_V (1U << 28)
1195 #define PSTATE_C (1U << 29)
1196 #define PSTATE_Z (1U << 30)
1197 #define PSTATE_N (1U << 31)
1198 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1199 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1200 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1201 /* Mode values for AArch64 */
1202 #define PSTATE_MODE_EL3h 13
1203 #define PSTATE_MODE_EL3t 12
1204 #define PSTATE_MODE_EL2h 9
1205 #define PSTATE_MODE_EL2t 8
1206 #define PSTATE_MODE_EL1h 5
1207 #define PSTATE_MODE_EL1t 4
1208 #define PSTATE_MODE_EL0t 0
1209 
1210 /* Write a new value to v7m.exception, thus transitioning into or out
1211  * of Handler mode; this may result in a change of active stack pointer.
1212  */
1213 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1214 
1215 /* Map EL and handler into a PSTATE_MODE.  */
1216 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1217 {
1218     return (el << 2) | handler;
1219 }
1220 
1221 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1222  * interprocessing, so we don't attempt to sync with the cpsr state used by
1223  * the 32 bit decoder.
1224  */
1225 static inline uint32_t pstate_read(CPUARMState *env)
1226 {
1227     int ZF;
1228 
1229     ZF = (env->ZF == 0);
1230     return (env->NF & 0x80000000) | (ZF << 30)
1231         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1232         | env->pstate | env->daif | (env->btype << 10);
1233 }
1234 
1235 static inline void pstate_write(CPUARMState *env, uint32_t val)
1236 {
1237     env->ZF = (~val) & PSTATE_Z;
1238     env->NF = val;
1239     env->CF = (val >> 29) & 1;
1240     env->VF = (val << 3) & 0x80000000;
1241     env->daif = val & PSTATE_DAIF;
1242     env->btype = (val >> 10) & 3;
1243     env->pstate = val & ~CACHED_PSTATE_BITS;
1244 }
1245 
1246 /* Return the current CPSR value.  */
1247 uint32_t cpsr_read(CPUARMState *env);
1248 
1249 typedef enum CPSRWriteType {
1250     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1251     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1252     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1253     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1254 } CPSRWriteType;
1255 
1256 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1257 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1258                 CPSRWriteType write_type);
1259 
1260 /* Return the current xPSR value.  */
1261 static inline uint32_t xpsr_read(CPUARMState *env)
1262 {
1263     int ZF;
1264     ZF = (env->ZF == 0);
1265     return (env->NF & 0x80000000) | (ZF << 30)
1266         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1267         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1268         | ((env->condexec_bits & 0xfc) << 8)
1269         | (env->GE << 16)
1270         | env->v7m.exception;
1271 }
1272 
1273 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1274 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1275 {
1276     if (mask & XPSR_NZCV) {
1277         env->ZF = (~val) & XPSR_Z;
1278         env->NF = val;
1279         env->CF = (val >> 29) & 1;
1280         env->VF = (val << 3) & 0x80000000;
1281     }
1282     if (mask & XPSR_Q) {
1283         env->QF = ((val & XPSR_Q) != 0);
1284     }
1285     if (mask & XPSR_GE) {
1286         env->GE = (val & XPSR_GE) >> 16;
1287     }
1288     if (mask & XPSR_T) {
1289         env->thumb = ((val & XPSR_T) != 0);
1290     }
1291     if (mask & XPSR_IT_0_1) {
1292         env->condexec_bits &= ~3;
1293         env->condexec_bits |= (val >> 25) & 3;
1294     }
1295     if (mask & XPSR_IT_2_7) {
1296         env->condexec_bits &= 3;
1297         env->condexec_bits |= (val >> 8) & 0xfc;
1298     }
1299     if (mask & XPSR_EXCP) {
1300         /* Note that this only happens on exception exit */
1301         write_v7m_exception(env, val & XPSR_EXCP);
1302     }
1303 }
1304 
1305 #define HCR_VM        (1ULL << 0)
1306 #define HCR_SWIO      (1ULL << 1)
1307 #define HCR_PTW       (1ULL << 2)
1308 #define HCR_FMO       (1ULL << 3)
1309 #define HCR_IMO       (1ULL << 4)
1310 #define HCR_AMO       (1ULL << 5)
1311 #define HCR_VF        (1ULL << 6)
1312 #define HCR_VI        (1ULL << 7)
1313 #define HCR_VSE       (1ULL << 8)
1314 #define HCR_FB        (1ULL << 9)
1315 #define HCR_BSU_MASK  (3ULL << 10)
1316 #define HCR_DC        (1ULL << 12)
1317 #define HCR_TWI       (1ULL << 13)
1318 #define HCR_TWE       (1ULL << 14)
1319 #define HCR_TID0      (1ULL << 15)
1320 #define HCR_TID1      (1ULL << 16)
1321 #define HCR_TID2      (1ULL << 17)
1322 #define HCR_TID3      (1ULL << 18)
1323 #define HCR_TSC       (1ULL << 19)
1324 #define HCR_TIDCP     (1ULL << 20)
1325 #define HCR_TACR      (1ULL << 21)
1326 #define HCR_TSW       (1ULL << 22)
1327 #define HCR_TPCP      (1ULL << 23)
1328 #define HCR_TPU       (1ULL << 24)
1329 #define HCR_TTLB      (1ULL << 25)
1330 #define HCR_TVM       (1ULL << 26)
1331 #define HCR_TGE       (1ULL << 27)
1332 #define HCR_TDZ       (1ULL << 28)
1333 #define HCR_HCD       (1ULL << 29)
1334 #define HCR_TRVM      (1ULL << 30)
1335 #define HCR_RW        (1ULL << 31)
1336 #define HCR_CD        (1ULL << 32)
1337 #define HCR_ID        (1ULL << 33)
1338 #define HCR_E2H       (1ULL << 34)
1339 #define HCR_TLOR      (1ULL << 35)
1340 #define HCR_TERR      (1ULL << 36)
1341 #define HCR_TEA       (1ULL << 37)
1342 #define HCR_MIOCNCE   (1ULL << 38)
1343 #define HCR_APK       (1ULL << 40)
1344 #define HCR_API       (1ULL << 41)
1345 #define HCR_NV        (1ULL << 42)
1346 #define HCR_NV1       (1ULL << 43)
1347 #define HCR_AT        (1ULL << 44)
1348 #define HCR_NV2       (1ULL << 45)
1349 #define HCR_FWB       (1ULL << 46)
1350 #define HCR_FIEN      (1ULL << 47)
1351 #define HCR_TID4      (1ULL << 49)
1352 #define HCR_TICAB     (1ULL << 50)
1353 #define HCR_TOCU      (1ULL << 52)
1354 #define HCR_TTLBIS    (1ULL << 54)
1355 #define HCR_TTLBOS    (1ULL << 55)
1356 #define HCR_ATA       (1ULL << 56)
1357 #define HCR_DCT       (1ULL << 57)
1358 
1359 /*
1360  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1361  * HCR_MASK and then clear it again if the feature bit is not set in
1362  * hcr_write().
1363  */
1364 #define HCR_MASK      ((1ULL << 34) - 1)
1365 
1366 #define SCR_NS                (1U << 0)
1367 #define SCR_IRQ               (1U << 1)
1368 #define SCR_FIQ               (1U << 2)
1369 #define SCR_EA                (1U << 3)
1370 #define SCR_FW                (1U << 4)
1371 #define SCR_AW                (1U << 5)
1372 #define SCR_NET               (1U << 6)
1373 #define SCR_SMD               (1U << 7)
1374 #define SCR_HCE               (1U << 8)
1375 #define SCR_SIF               (1U << 9)
1376 #define SCR_RW                (1U << 10)
1377 #define SCR_ST                (1U << 11)
1378 #define SCR_TWI               (1U << 12)
1379 #define SCR_TWE               (1U << 13)
1380 #define SCR_TLOR              (1U << 14)
1381 #define SCR_TERR              (1U << 15)
1382 #define SCR_APK               (1U << 16)
1383 #define SCR_API               (1U << 17)
1384 #define SCR_EEL2              (1U << 18)
1385 #define SCR_EASE              (1U << 19)
1386 #define SCR_NMEA              (1U << 20)
1387 #define SCR_FIEN              (1U << 21)
1388 #define SCR_ENSCXT            (1U << 25)
1389 #define SCR_ATA               (1U << 26)
1390 
1391 /* Return the current FPSCR value.  */
1392 uint32_t vfp_get_fpscr(CPUARMState *env);
1393 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1394 
1395 /* FPCR, Floating Point Control Register
1396  * FPSR, Floating Poiht Status Register
1397  *
1398  * For A64 the FPSCR is split into two logically distinct registers,
1399  * FPCR and FPSR. However since they still use non-overlapping bits
1400  * we store the underlying state in fpscr and just mask on read/write.
1401  */
1402 #define FPSR_MASK 0xf800009f
1403 #define FPCR_MASK 0x07ff9f00
1404 
1405 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1406 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1407 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1408 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1409 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1410 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1411 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1412 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1413 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1414 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1415 
1416 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1417 {
1418     return vfp_get_fpscr(env) & FPSR_MASK;
1419 }
1420 
1421 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1422 {
1423     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1424     vfp_set_fpscr(env, new_fpscr);
1425 }
1426 
1427 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1428 {
1429     return vfp_get_fpscr(env) & FPCR_MASK;
1430 }
1431 
1432 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1433 {
1434     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1435     vfp_set_fpscr(env, new_fpscr);
1436 }
1437 
1438 enum arm_cpu_mode {
1439   ARM_CPU_MODE_USR = 0x10,
1440   ARM_CPU_MODE_FIQ = 0x11,
1441   ARM_CPU_MODE_IRQ = 0x12,
1442   ARM_CPU_MODE_SVC = 0x13,
1443   ARM_CPU_MODE_MON = 0x16,
1444   ARM_CPU_MODE_ABT = 0x17,
1445   ARM_CPU_MODE_HYP = 0x1a,
1446   ARM_CPU_MODE_UND = 0x1b,
1447   ARM_CPU_MODE_SYS = 0x1f
1448 };
1449 
1450 /* VFP system registers.  */
1451 #define ARM_VFP_FPSID   0
1452 #define ARM_VFP_FPSCR   1
1453 #define ARM_VFP_MVFR2   5
1454 #define ARM_VFP_MVFR1   6
1455 #define ARM_VFP_MVFR0   7
1456 #define ARM_VFP_FPEXC   8
1457 #define ARM_VFP_FPINST  9
1458 #define ARM_VFP_FPINST2 10
1459 
1460 /* iwMMXt coprocessor control registers.  */
1461 #define ARM_IWMMXT_wCID  0
1462 #define ARM_IWMMXT_wCon  1
1463 #define ARM_IWMMXT_wCSSF 2
1464 #define ARM_IWMMXT_wCASF 3
1465 #define ARM_IWMMXT_wCGR0 8
1466 #define ARM_IWMMXT_wCGR1 9
1467 #define ARM_IWMMXT_wCGR2 10
1468 #define ARM_IWMMXT_wCGR3 11
1469 
1470 /* V7M CCR bits */
1471 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1472 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1473 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1474 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1475 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1476 FIELD(V7M_CCR, STKALIGN, 9, 1)
1477 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1478 FIELD(V7M_CCR, DC, 16, 1)
1479 FIELD(V7M_CCR, IC, 17, 1)
1480 FIELD(V7M_CCR, BP, 18, 1)
1481 
1482 /* V7M SCR bits */
1483 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1484 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1485 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1486 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1487 
1488 /* V7M AIRCR bits */
1489 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1490 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1491 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1492 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1493 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1494 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1495 FIELD(V7M_AIRCR, PRIS, 14, 1)
1496 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1497 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1498 
1499 /* V7M CFSR bits for MMFSR */
1500 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1501 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1502 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1503 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1504 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1505 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1506 
1507 /* V7M CFSR bits for BFSR */
1508 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1509 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1510 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1511 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1512 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1513 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1514 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1515 
1516 /* V7M CFSR bits for UFSR */
1517 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1518 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1519 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1520 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1521 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1522 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1523 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1524 
1525 /* V7M CFSR bit masks covering all of the subregister bits */
1526 FIELD(V7M_CFSR, MMFSR, 0, 8)
1527 FIELD(V7M_CFSR, BFSR, 8, 8)
1528 FIELD(V7M_CFSR, UFSR, 16, 16)
1529 
1530 /* V7M HFSR bits */
1531 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1532 FIELD(V7M_HFSR, FORCED, 30, 1)
1533 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1534 
1535 /* V7M DFSR bits */
1536 FIELD(V7M_DFSR, HALTED, 0, 1)
1537 FIELD(V7M_DFSR, BKPT, 1, 1)
1538 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1539 FIELD(V7M_DFSR, VCATCH, 3, 1)
1540 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1541 
1542 /* V7M SFSR bits */
1543 FIELD(V7M_SFSR, INVEP, 0, 1)
1544 FIELD(V7M_SFSR, INVIS, 1, 1)
1545 FIELD(V7M_SFSR, INVER, 2, 1)
1546 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1547 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1548 FIELD(V7M_SFSR, LSPERR, 5, 1)
1549 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1550 FIELD(V7M_SFSR, LSERR, 7, 1)
1551 
1552 /* v7M MPU_CTRL bits */
1553 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1554 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1555 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1556 
1557 /* v7M CLIDR bits */
1558 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1559 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1560 FIELD(V7M_CLIDR, LOC, 24, 3)
1561 FIELD(V7M_CLIDR, LOUU, 27, 3)
1562 FIELD(V7M_CLIDR, ICB, 30, 2)
1563 
1564 FIELD(V7M_CSSELR, IND, 0, 1)
1565 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1566 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1567  * define a mask for this and check that it doesn't permit running off
1568  * the end of the array.
1569  */
1570 FIELD(V7M_CSSELR, INDEX, 0, 4)
1571 
1572 /* v7M FPCCR bits */
1573 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1574 FIELD(V7M_FPCCR, USER, 1, 1)
1575 FIELD(V7M_FPCCR, S, 2, 1)
1576 FIELD(V7M_FPCCR, THREAD, 3, 1)
1577 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1578 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1579 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1580 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1581 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1582 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1583 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1584 FIELD(V7M_FPCCR, RES0, 11, 15)
1585 FIELD(V7M_FPCCR, TS, 26, 1)
1586 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1587 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1588 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1589 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1590 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1591 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1592 #define R_V7M_FPCCR_BANKED_MASK                 \
1593     (R_V7M_FPCCR_LSPACT_MASK |                  \
1594      R_V7M_FPCCR_USER_MASK |                    \
1595      R_V7M_FPCCR_THREAD_MASK |                  \
1596      R_V7M_FPCCR_MMRDY_MASK |                   \
1597      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1598      R_V7M_FPCCR_UFRDY_MASK |                   \
1599      R_V7M_FPCCR_ASPEN_MASK)
1600 
1601 /*
1602  * System register ID fields.
1603  */
1604 FIELD(ID_ISAR0, SWAP, 0, 4)
1605 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1606 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1607 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1608 FIELD(ID_ISAR0, COPROC, 16, 4)
1609 FIELD(ID_ISAR0, DEBUG, 20, 4)
1610 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1611 
1612 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1613 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1614 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1615 FIELD(ID_ISAR1, EXTEND, 12, 4)
1616 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1617 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1618 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1619 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1620 
1621 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1622 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1623 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1624 FIELD(ID_ISAR2, MULT, 12, 4)
1625 FIELD(ID_ISAR2, MULTS, 16, 4)
1626 FIELD(ID_ISAR2, MULTU, 20, 4)
1627 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1628 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1629 
1630 FIELD(ID_ISAR3, SATURATE, 0, 4)
1631 FIELD(ID_ISAR3, SIMD, 4, 4)
1632 FIELD(ID_ISAR3, SVC, 8, 4)
1633 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1634 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1635 FIELD(ID_ISAR3, T32COPY, 20, 4)
1636 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1637 FIELD(ID_ISAR3, T32EE, 28, 4)
1638 
1639 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1640 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1641 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1642 FIELD(ID_ISAR4, SMC, 12, 4)
1643 FIELD(ID_ISAR4, BARRIER, 16, 4)
1644 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1645 FIELD(ID_ISAR4, PSR_M, 24, 4)
1646 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1647 
1648 FIELD(ID_ISAR5, SEVL, 0, 4)
1649 FIELD(ID_ISAR5, AES, 4, 4)
1650 FIELD(ID_ISAR5, SHA1, 8, 4)
1651 FIELD(ID_ISAR5, SHA2, 12, 4)
1652 FIELD(ID_ISAR5, CRC32, 16, 4)
1653 FIELD(ID_ISAR5, RDM, 24, 4)
1654 FIELD(ID_ISAR5, VCMA, 28, 4)
1655 
1656 FIELD(ID_ISAR6, JSCVT, 0, 4)
1657 FIELD(ID_ISAR6, DP, 4, 4)
1658 FIELD(ID_ISAR6, FHM, 8, 4)
1659 FIELD(ID_ISAR6, SB, 12, 4)
1660 FIELD(ID_ISAR6, SPECRES, 16, 4)
1661 
1662 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1663 FIELD(ID_MMFR4, AC2, 4, 4)
1664 FIELD(ID_MMFR4, XNX, 8, 4)
1665 FIELD(ID_MMFR4, CNP, 12, 4)
1666 FIELD(ID_MMFR4, HPDS, 16, 4)
1667 FIELD(ID_MMFR4, LSM, 20, 4)
1668 FIELD(ID_MMFR4, CCIDX, 24, 4)
1669 FIELD(ID_MMFR4, EVT, 28, 4)
1670 
1671 FIELD(ID_AA64ISAR0, AES, 4, 4)
1672 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1673 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1674 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1675 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1676 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1677 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1678 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1679 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1680 FIELD(ID_AA64ISAR0, DP, 44, 4)
1681 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1682 FIELD(ID_AA64ISAR0, TS, 52, 4)
1683 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1684 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1685 
1686 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1687 FIELD(ID_AA64ISAR1, APA, 4, 4)
1688 FIELD(ID_AA64ISAR1, API, 8, 4)
1689 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1690 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1691 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1692 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1693 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1694 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1695 FIELD(ID_AA64ISAR1, SB, 36, 4)
1696 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1697 
1698 FIELD(ID_AA64PFR0, EL0, 0, 4)
1699 FIELD(ID_AA64PFR0, EL1, 4, 4)
1700 FIELD(ID_AA64PFR0, EL2, 8, 4)
1701 FIELD(ID_AA64PFR0, EL3, 12, 4)
1702 FIELD(ID_AA64PFR0, FP, 16, 4)
1703 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1704 FIELD(ID_AA64PFR0, GIC, 24, 4)
1705 FIELD(ID_AA64PFR0, RAS, 28, 4)
1706 FIELD(ID_AA64PFR0, SVE, 32, 4)
1707 
1708 FIELD(ID_AA64PFR1, BT, 0, 4)
1709 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1710 FIELD(ID_AA64PFR1, MTE, 8, 4)
1711 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1712 
1713 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1714 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1715 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1716 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1717 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1718 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1719 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1720 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1721 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1722 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1723 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1724 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1725 
1726 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1727 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1728 FIELD(ID_AA64MMFR1, VH, 8, 4)
1729 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1730 FIELD(ID_AA64MMFR1, LO, 16, 4)
1731 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1732 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1733 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1734 
1735 FIELD(ID_DFR0, COPDBG, 0, 4)
1736 FIELD(ID_DFR0, COPSDBG, 4, 4)
1737 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1738 FIELD(ID_DFR0, COPTRC, 12, 4)
1739 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1740 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1741 FIELD(ID_DFR0, PERFMON, 24, 4)
1742 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1743 
1744 FIELD(MVFR0, SIMDREG, 0, 4)
1745 FIELD(MVFR0, FPSP, 4, 4)
1746 FIELD(MVFR0, FPDP, 8, 4)
1747 FIELD(MVFR0, FPTRAP, 12, 4)
1748 FIELD(MVFR0, FPDIVIDE, 16, 4)
1749 FIELD(MVFR0, FPSQRT, 20, 4)
1750 FIELD(MVFR0, FPSHVEC, 24, 4)
1751 FIELD(MVFR0, FPROUND, 28, 4)
1752 
1753 FIELD(MVFR1, FPFTZ, 0, 4)
1754 FIELD(MVFR1, FPDNAN, 4, 4)
1755 FIELD(MVFR1, SIMDLS, 8, 4)
1756 FIELD(MVFR1, SIMDINT, 12, 4)
1757 FIELD(MVFR1, SIMDSP, 16, 4)
1758 FIELD(MVFR1, SIMDHP, 20, 4)
1759 FIELD(MVFR1, FPHP, 24, 4)
1760 FIELD(MVFR1, SIMDFMAC, 28, 4)
1761 
1762 FIELD(MVFR2, SIMDMISC, 0, 4)
1763 FIELD(MVFR2, FPMISC, 4, 4)
1764 
1765 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1766 
1767 /* If adding a feature bit which corresponds to a Linux ELF
1768  * HWCAP bit, remember to update the feature-bit-to-hwcap
1769  * mapping in linux-user/elfload.c:get_elf_hwcap().
1770  */
1771 enum arm_features {
1772     ARM_FEATURE_VFP,
1773     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1774     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1775     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1776     ARM_FEATURE_V6,
1777     ARM_FEATURE_V6K,
1778     ARM_FEATURE_V7,
1779     ARM_FEATURE_THUMB2,
1780     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1781     ARM_FEATURE_VFP3,
1782     ARM_FEATURE_NEON,
1783     ARM_FEATURE_M, /* Microcontroller profile.  */
1784     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1785     ARM_FEATURE_THUMB2EE,
1786     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1787     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1788     ARM_FEATURE_V4T,
1789     ARM_FEATURE_V5,
1790     ARM_FEATURE_STRONGARM,
1791     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1792     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1793     ARM_FEATURE_GENERIC_TIMER,
1794     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1795     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1796     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1797     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1798     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1799     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1800     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1801     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1802     ARM_FEATURE_V8,
1803     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1804     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1805     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1806     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1807     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1808     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1809     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1810     ARM_FEATURE_PMU, /* has PMU support */
1811     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1812     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1813     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1814 };
1815 
1816 static inline int arm_feature(CPUARMState *env, int feature)
1817 {
1818     return (env->features & (1ULL << feature)) != 0;
1819 }
1820 
1821 #if !defined(CONFIG_USER_ONLY)
1822 /* Return true if exception levels below EL3 are in secure state,
1823  * or would be following an exception return to that level.
1824  * Unlike arm_is_secure() (which is always a question about the
1825  * _current_ state of the CPU) this doesn't care about the current
1826  * EL or mode.
1827  */
1828 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1829 {
1830     if (arm_feature(env, ARM_FEATURE_EL3)) {
1831         return !(env->cp15.scr_el3 & SCR_NS);
1832     } else {
1833         /* If EL3 is not supported then the secure state is implementation
1834          * defined, in which case QEMU defaults to non-secure.
1835          */
1836         return false;
1837     }
1838 }
1839 
1840 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1841 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1842 {
1843     if (arm_feature(env, ARM_FEATURE_EL3)) {
1844         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1845             /* CPU currently in AArch64 state and EL3 */
1846             return true;
1847         } else if (!is_a64(env) &&
1848                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1849             /* CPU currently in AArch32 state and monitor mode */
1850             return true;
1851         }
1852     }
1853     return false;
1854 }
1855 
1856 /* Return true if the processor is in secure state */
1857 static inline bool arm_is_secure(CPUARMState *env)
1858 {
1859     if (arm_is_el3_or_mon(env)) {
1860         return true;
1861     }
1862     return arm_is_secure_below_el3(env);
1863 }
1864 
1865 #else
1866 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1867 {
1868     return false;
1869 }
1870 
1871 static inline bool arm_is_secure(CPUARMState *env)
1872 {
1873     return false;
1874 }
1875 #endif
1876 
1877 /**
1878  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1879  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1880  * "for all purposes other than a direct read or write access of HCR_EL2."
1881  * Not included here is HCR_RW.
1882  */
1883 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1884 
1885 /* Return true if the specified exception level is running in AArch64 state. */
1886 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1887 {
1888     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1889      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1890      */
1891     assert(el >= 1 && el <= 3);
1892     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1893 
1894     /* The highest exception level is always at the maximum supported
1895      * register width, and then lower levels have a register width controlled
1896      * by bits in the SCR or HCR registers.
1897      */
1898     if (el == 3) {
1899         return aa64;
1900     }
1901 
1902     if (arm_feature(env, ARM_FEATURE_EL3)) {
1903         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1904     }
1905 
1906     if (el == 2) {
1907         return aa64;
1908     }
1909 
1910     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1911         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1912     }
1913 
1914     return aa64;
1915 }
1916 
1917 /* Function for determing whether guest cp register reads and writes should
1918  * access the secure or non-secure bank of a cp register.  When EL3 is
1919  * operating in AArch32 state, the NS-bit determines whether the secure
1920  * instance of a cp register should be used. When EL3 is AArch64 (or if
1921  * it doesn't exist at all) then there is no register banking, and all
1922  * accesses are to the non-secure version.
1923  */
1924 static inline bool access_secure_reg(CPUARMState *env)
1925 {
1926     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1927                 !arm_el_is_aa64(env, 3) &&
1928                 !(env->cp15.scr_el3 & SCR_NS));
1929 
1930     return ret;
1931 }
1932 
1933 /* Macros for accessing a specified CP register bank */
1934 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1935     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1936 
1937 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1938     do {                                                \
1939         if (_secure) {                                   \
1940             (_env)->cp15._regname##_s = (_val);            \
1941         } else {                                        \
1942             (_env)->cp15._regname##_ns = (_val);           \
1943         }                                               \
1944     } while (0)
1945 
1946 /* Macros for automatically accessing a specific CP register bank depending on
1947  * the current secure state of the system.  These macros are not intended for
1948  * supporting instruction translation reads/writes as these are dependent
1949  * solely on the SCR.NS bit and not the mode.
1950  */
1951 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1952     A32_BANKED_REG_GET((_env), _regname,                \
1953                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1954 
1955 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1956     A32_BANKED_REG_SET((_env), _regname,                                    \
1957                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1958                        (_val))
1959 
1960 void arm_cpu_list(void);
1961 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1962                                  uint32_t cur_el, bool secure);
1963 
1964 /* Interface between CPU and Interrupt controller.  */
1965 #ifndef CONFIG_USER_ONLY
1966 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1967 #else
1968 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1969 {
1970     return true;
1971 }
1972 #endif
1973 /**
1974  * armv7m_nvic_set_pending: mark the specified exception as pending
1975  * @opaque: the NVIC
1976  * @irq: the exception number to mark pending
1977  * @secure: false for non-banked exceptions or for the nonsecure
1978  * version of a banked exception, true for the secure version of a banked
1979  * exception.
1980  *
1981  * Marks the specified exception as pending. Note that we will assert()
1982  * if @secure is true and @irq does not specify one of the fixed set
1983  * of architecturally banked exceptions.
1984  */
1985 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1986 /**
1987  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1988  * @opaque: the NVIC
1989  * @irq: the exception number to mark pending
1990  * @secure: false for non-banked exceptions or for the nonsecure
1991  * version of a banked exception, true for the secure version of a banked
1992  * exception.
1993  *
1994  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1995  * exceptions (exceptions generated in the course of trying to take
1996  * a different exception).
1997  */
1998 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1999 /**
2000  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2001  * @opaque: the NVIC
2002  * @irq: the exception number to mark pending
2003  * @secure: false for non-banked exceptions or for the nonsecure
2004  * version of a banked exception, true for the secure version of a banked
2005  * exception.
2006  *
2007  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2008  * generated in the course of lazy stacking of FP registers.
2009  */
2010 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2011 /**
2012  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2013  *    exception, and whether it targets Secure state
2014  * @opaque: the NVIC
2015  * @pirq: set to pending exception number
2016  * @ptargets_secure: set to whether pending exception targets Secure
2017  *
2018  * This function writes the number of the highest priority pending
2019  * exception (the one which would be made active by
2020  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2021  * to true if the current highest priority pending exception should
2022  * be taken to Secure state, false for NS.
2023  */
2024 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2025                                       bool *ptargets_secure);
2026 /**
2027  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2028  * @opaque: the NVIC
2029  *
2030  * Move the current highest priority pending exception from the pending
2031  * state to the active state, and update v7m.exception to indicate that
2032  * it is the exception currently being handled.
2033  */
2034 void armv7m_nvic_acknowledge_irq(void *opaque);
2035 /**
2036  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2037  * @opaque: the NVIC
2038  * @irq: the exception number to complete
2039  * @secure: true if this exception was secure
2040  *
2041  * Returns: -1 if the irq was not active
2042  *           1 if completing this irq brought us back to base (no active irqs)
2043  *           0 if there is still an irq active after this one was completed
2044  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2045  */
2046 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2047 /**
2048  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2049  * @opaque: the NVIC
2050  * @irq: the exception number to mark pending
2051  * @secure: false for non-banked exceptions or for the nonsecure
2052  * version of a banked exception, true for the secure version of a banked
2053  * exception.
2054  *
2055  * Return whether an exception is "ready", i.e. whether the exception is
2056  * enabled and is configured at a priority which would allow it to
2057  * interrupt the current execution priority. This controls whether the
2058  * RDY bit for it in the FPCCR is set.
2059  */
2060 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2061 /**
2062  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2063  * @opaque: the NVIC
2064  *
2065  * Returns: the raw execution priority as defined by the v8M architecture.
2066  * This is the execution priority minus the effects of AIRCR.PRIS,
2067  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2068  * (v8M ARM ARM I_PKLD.)
2069  */
2070 int armv7m_nvic_raw_execution_priority(void *opaque);
2071 /**
2072  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2073  * priority is negative for the specified security state.
2074  * @opaque: the NVIC
2075  * @secure: the security state to test
2076  * This corresponds to the pseudocode IsReqExecPriNeg().
2077  */
2078 #ifndef CONFIG_USER_ONLY
2079 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2080 #else
2081 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2082 {
2083     return false;
2084 }
2085 #endif
2086 
2087 /* Interface for defining coprocessor registers.
2088  * Registers are defined in tables of arm_cp_reginfo structs
2089  * which are passed to define_arm_cp_regs().
2090  */
2091 
2092 /* When looking up a coprocessor register we look for it
2093  * via an integer which encodes all of:
2094  *  coprocessor number
2095  *  Crn, Crm, opc1, opc2 fields
2096  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2097  *    or via MRRC/MCRR?)
2098  *  non-secure/secure bank (AArch32 only)
2099  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2100  * (In this case crn and opc2 should be zero.)
2101  * For AArch64, there is no 32/64 bit size distinction;
2102  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2103  * and 4 bit CRn and CRm. The encoding patterns are chosen
2104  * to be easy to convert to and from the KVM encodings, and also
2105  * so that the hashtable can contain both AArch32 and AArch64
2106  * registers (to allow for interprocessing where we might run
2107  * 32 bit code on a 64 bit core).
2108  */
2109 /* This bit is private to our hashtable cpreg; in KVM register
2110  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2111  * in the upper bits of the 64 bit ID.
2112  */
2113 #define CP_REG_AA64_SHIFT 28
2114 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2115 
2116 /* To enable banking of coprocessor registers depending on ns-bit we
2117  * add a bit to distinguish between secure and non-secure cpregs in the
2118  * hashtable.
2119  */
2120 #define CP_REG_NS_SHIFT 29
2121 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2122 
2123 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2124     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2125      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2126 
2127 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2128     (CP_REG_AA64_MASK |                                 \
2129      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2130      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2131      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2132      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2133      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2134      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2135 
2136 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2137  * version used as a key for the coprocessor register hashtable
2138  */
2139 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2140 {
2141     uint32_t cpregid = kvmid;
2142     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2143         cpregid |= CP_REG_AA64_MASK;
2144     } else {
2145         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2146             cpregid |= (1 << 15);
2147         }
2148 
2149         /* KVM is always non-secure so add the NS flag on AArch32 register
2150          * entries.
2151          */
2152          cpregid |= 1 << CP_REG_NS_SHIFT;
2153     }
2154     return cpregid;
2155 }
2156 
2157 /* Convert a truncated 32 bit hashtable key into the full
2158  * 64 bit KVM register ID.
2159  */
2160 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2161 {
2162     uint64_t kvmid;
2163 
2164     if (cpregid & CP_REG_AA64_MASK) {
2165         kvmid = cpregid & ~CP_REG_AA64_MASK;
2166         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2167     } else {
2168         kvmid = cpregid & ~(1 << 15);
2169         if (cpregid & (1 << 15)) {
2170             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2171         } else {
2172             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2173         }
2174     }
2175     return kvmid;
2176 }
2177 
2178 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2179  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2180  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2181  * TCG can assume the value to be constant (ie load at translate time)
2182  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2183  * indicates that the TB should not be ended after a write to this register
2184  * (the default is that the TB ends after cp writes). OVERRIDE permits
2185  * a register definition to override a previous definition for the
2186  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2187  * old must have the OVERRIDE bit set.
2188  * ALIAS indicates that this register is an alias view of some underlying
2189  * state which is also visible via another register, and that the other
2190  * register is handling migration and reset; registers marked ALIAS will not be
2191  * migrated but may have their state set by syncing of register state from KVM.
2192  * NO_RAW indicates that this register has no underlying state and does not
2193  * support raw access for state saving/loading; it will not be used for either
2194  * migration or KVM state synchronization. (Typically this is for "registers"
2195  * which are actually used as instructions for cache maintenance and so on.)
2196  * IO indicates that this register does I/O and therefore its accesses
2197  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2198  * registers which implement clocks or timers require this.
2199  */
2200 #define ARM_CP_SPECIAL           0x0001
2201 #define ARM_CP_CONST             0x0002
2202 #define ARM_CP_64BIT             0x0004
2203 #define ARM_CP_SUPPRESS_TB_END   0x0008
2204 #define ARM_CP_OVERRIDE          0x0010
2205 #define ARM_CP_ALIAS             0x0020
2206 #define ARM_CP_IO                0x0040
2207 #define ARM_CP_NO_RAW            0x0080
2208 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2209 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2210 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2211 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2212 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2213 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2214 #define ARM_CP_FPU               0x1000
2215 #define ARM_CP_SVE               0x2000
2216 #define ARM_CP_NO_GDB            0x4000
2217 /* Used only as a terminator for ARMCPRegInfo lists */
2218 #define ARM_CP_SENTINEL          0xffff
2219 /* Mask of only the flag bits in a type field */
2220 #define ARM_CP_FLAG_MASK         0x70ff
2221 
2222 /* Valid values for ARMCPRegInfo state field, indicating which of
2223  * the AArch32 and AArch64 execution states this register is visible in.
2224  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2225  * If the reginfo is declared to be visible in both states then a second
2226  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2227  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2228  * Note that we rely on the values of these enums as we iterate through
2229  * the various states in some places.
2230  */
2231 enum {
2232     ARM_CP_STATE_AA32 = 0,
2233     ARM_CP_STATE_AA64 = 1,
2234     ARM_CP_STATE_BOTH = 2,
2235 };
2236 
2237 /* ARM CP register secure state flags.  These flags identify security state
2238  * attributes for a given CP register entry.
2239  * The existence of both or neither secure and non-secure flags indicates that
2240  * the register has both a secure and non-secure hash entry.  A single one of
2241  * these flags causes the register to only be hashed for the specified
2242  * security state.
2243  * Although definitions may have any combination of the S/NS bits, each
2244  * registered entry will only have one to identify whether the entry is secure
2245  * or non-secure.
2246  */
2247 enum {
2248     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2249     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2250 };
2251 
2252 /* Return true if cptype is a valid type field. This is used to try to
2253  * catch errors where the sentinel has been accidentally left off the end
2254  * of a list of registers.
2255  */
2256 static inline bool cptype_valid(int cptype)
2257 {
2258     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2259         || ((cptype & ARM_CP_SPECIAL) &&
2260             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2261 }
2262 
2263 /* Access rights:
2264  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2265  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2266  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2267  * (ie any of the privileged modes in Secure state, or Monitor mode).
2268  * If a register is accessible in one privilege level it's always accessible
2269  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2270  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2271  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2272  * terminology a little and call this PL3.
2273  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2274  * with the ELx exception levels.
2275  *
2276  * If access permissions for a register are more complex than can be
2277  * described with these bits, then use a laxer set of restrictions, and
2278  * do the more restrictive/complex check inside a helper function.
2279  */
2280 #define PL3_R 0x80
2281 #define PL3_W 0x40
2282 #define PL2_R (0x20 | PL3_R)
2283 #define PL2_W (0x10 | PL3_W)
2284 #define PL1_R (0x08 | PL2_R)
2285 #define PL1_W (0x04 | PL2_W)
2286 #define PL0_R (0x02 | PL1_R)
2287 #define PL0_W (0x01 | PL1_W)
2288 
2289 /*
2290  * For user-mode some registers are accessible to EL0 via a kernel
2291  * trap-and-emulate ABI. In this case we define the read permissions
2292  * as actually being PL0_R. However some bits of any given register
2293  * may still be masked.
2294  */
2295 #ifdef CONFIG_USER_ONLY
2296 #define PL0U_R PL0_R
2297 #else
2298 #define PL0U_R PL1_R
2299 #endif
2300 
2301 #define PL3_RW (PL3_R | PL3_W)
2302 #define PL2_RW (PL2_R | PL2_W)
2303 #define PL1_RW (PL1_R | PL1_W)
2304 #define PL0_RW (PL0_R | PL0_W)
2305 
2306 /* Return the highest implemented Exception Level */
2307 static inline int arm_highest_el(CPUARMState *env)
2308 {
2309     if (arm_feature(env, ARM_FEATURE_EL3)) {
2310         return 3;
2311     }
2312     if (arm_feature(env, ARM_FEATURE_EL2)) {
2313         return 2;
2314     }
2315     return 1;
2316 }
2317 
2318 /* Return true if a v7M CPU is in Handler mode */
2319 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2320 {
2321     return env->v7m.exception != 0;
2322 }
2323 
2324 /* Return the current Exception Level (as per ARMv8; note that this differs
2325  * from the ARMv7 Privilege Level).
2326  */
2327 static inline int arm_current_el(CPUARMState *env)
2328 {
2329     if (arm_feature(env, ARM_FEATURE_M)) {
2330         return arm_v7m_is_handler_mode(env) ||
2331             !(env->v7m.control[env->v7m.secure] & 1);
2332     }
2333 
2334     if (is_a64(env)) {
2335         return extract32(env->pstate, 2, 2);
2336     }
2337 
2338     switch (env->uncached_cpsr & 0x1f) {
2339     case ARM_CPU_MODE_USR:
2340         return 0;
2341     case ARM_CPU_MODE_HYP:
2342         return 2;
2343     case ARM_CPU_MODE_MON:
2344         return 3;
2345     default:
2346         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2347             /* If EL3 is 32-bit then all secure privileged modes run in
2348              * EL3
2349              */
2350             return 3;
2351         }
2352 
2353         return 1;
2354     }
2355 }
2356 
2357 typedef struct ARMCPRegInfo ARMCPRegInfo;
2358 
2359 typedef enum CPAccessResult {
2360     /* Access is permitted */
2361     CP_ACCESS_OK = 0,
2362     /* Access fails due to a configurable trap or enable which would
2363      * result in a categorized exception syndrome giving information about
2364      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2365      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2366      * PL1 if in EL0, otherwise to the current EL).
2367      */
2368     CP_ACCESS_TRAP = 1,
2369     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2370      * Note that this is not a catch-all case -- the set of cases which may
2371      * result in this failure is specifically defined by the architecture.
2372      */
2373     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2374     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2375     CP_ACCESS_TRAP_EL2 = 3,
2376     CP_ACCESS_TRAP_EL3 = 4,
2377     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2378     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2379     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2380     /* Access fails and results in an exception syndrome for an FP access,
2381      * trapped directly to EL2 or EL3
2382      */
2383     CP_ACCESS_TRAP_FP_EL2 = 7,
2384     CP_ACCESS_TRAP_FP_EL3 = 8,
2385 } CPAccessResult;
2386 
2387 /* Access functions for coprocessor registers. These cannot fail and
2388  * may not raise exceptions.
2389  */
2390 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2391 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2392                        uint64_t value);
2393 /* Access permission check functions for coprocessor registers. */
2394 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2395                                   const ARMCPRegInfo *opaque,
2396                                   bool isread);
2397 /* Hook function for register reset */
2398 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2399 
2400 #define CP_ANY 0xff
2401 
2402 /* Definition of an ARM coprocessor register */
2403 struct ARMCPRegInfo {
2404     /* Name of register (useful mainly for debugging, need not be unique) */
2405     const char *name;
2406     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2407      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2408      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2409      * will be decoded to this register. The register read and write
2410      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2411      * used by the program, so it is possible to register a wildcard and
2412      * then behave differently on read/write if necessary.
2413      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2414      * must both be zero.
2415      * For AArch64-visible registers, opc0 is also used.
2416      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2417      * way to distinguish (for KVM's benefit) guest-visible system registers
2418      * from demuxed ones provided to preserve the "no side effects on
2419      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2420      * visible (to match KVM's encoding); cp==0 will be converted to
2421      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2422      */
2423     uint8_t cp;
2424     uint8_t crn;
2425     uint8_t crm;
2426     uint8_t opc0;
2427     uint8_t opc1;
2428     uint8_t opc2;
2429     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2430     int state;
2431     /* Register type: ARM_CP_* bits/values */
2432     int type;
2433     /* Access rights: PL*_[RW] */
2434     int access;
2435     /* Security state: ARM_CP_SECSTATE_* bits/values */
2436     int secure;
2437     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2438      * this register was defined: can be used to hand data through to the
2439      * register read/write functions, since they are passed the ARMCPRegInfo*.
2440      */
2441     void *opaque;
2442     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2443      * fieldoffset is non-zero, the reset value of the register.
2444      */
2445     uint64_t resetvalue;
2446     /* Offset of the field in CPUARMState for this register.
2447      *
2448      * This is not needed if either:
2449      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2450      *  2. both readfn and writefn are specified
2451      */
2452     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2453 
2454     /* Offsets of the secure and non-secure fields in CPUARMState for the
2455      * register if it is banked.  These fields are only used during the static
2456      * registration of a register.  During hashing the bank associated
2457      * with a given security state is copied to fieldoffset which is used from
2458      * there on out.
2459      *
2460      * It is expected that register definitions use either fieldoffset or
2461      * bank_fieldoffsets in the definition but not both.  It is also expected
2462      * that both bank offsets are set when defining a banked register.  This
2463      * use indicates that a register is banked.
2464      */
2465     ptrdiff_t bank_fieldoffsets[2];
2466 
2467     /* Function for making any access checks for this register in addition to
2468      * those specified by the 'access' permissions bits. If NULL, no extra
2469      * checks required. The access check is performed at runtime, not at
2470      * translate time.
2471      */
2472     CPAccessFn *accessfn;
2473     /* Function for handling reads of this register. If NULL, then reads
2474      * will be done by loading from the offset into CPUARMState specified
2475      * by fieldoffset.
2476      */
2477     CPReadFn *readfn;
2478     /* Function for handling writes of this register. If NULL, then writes
2479      * will be done by writing to the offset into CPUARMState specified
2480      * by fieldoffset.
2481      */
2482     CPWriteFn *writefn;
2483     /* Function for doing a "raw" read; used when we need to copy
2484      * coprocessor state to the kernel for KVM or out for
2485      * migration. This only needs to be provided if there is also a
2486      * readfn and it has side effects (for instance clear-on-read bits).
2487      */
2488     CPReadFn *raw_readfn;
2489     /* Function for doing a "raw" write; used when we need to copy KVM
2490      * kernel coprocessor state into userspace, or for inbound
2491      * migration. This only needs to be provided if there is also a
2492      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2493      * or similar behaviour.
2494      */
2495     CPWriteFn *raw_writefn;
2496     /* Function for resetting the register. If NULL, then reset will be done
2497      * by writing resetvalue to the field specified in fieldoffset. If
2498      * fieldoffset is 0 then no reset will be done.
2499      */
2500     CPResetFn *resetfn;
2501 };
2502 
2503 /* Macros which are lvalues for the field in CPUARMState for the
2504  * ARMCPRegInfo *ri.
2505  */
2506 #define CPREG_FIELD32(env, ri) \
2507     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2508 #define CPREG_FIELD64(env, ri) \
2509     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2510 
2511 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2512 
2513 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2514                                     const ARMCPRegInfo *regs, void *opaque);
2515 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2516                                        const ARMCPRegInfo *regs, void *opaque);
2517 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2518 {
2519     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2520 }
2521 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2522 {
2523     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2524 }
2525 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2526 
2527 /*
2528  * Definition of an ARM co-processor register as viewed from
2529  * userspace. This is used for presenting sanitised versions of
2530  * registers to userspace when emulating the Linux AArch64 CPU
2531  * ID/feature ABI (advertised as HWCAP_CPUID).
2532  */
2533 typedef struct ARMCPRegUserSpaceInfo {
2534     /* Name of register */
2535     const char *name;
2536 
2537     /* Is the name actually a glob pattern */
2538     bool is_glob;
2539 
2540     /* Only some bits are exported to user space */
2541     uint64_t exported_bits;
2542 
2543     /* Fixed bits are applied after the mask */
2544     uint64_t fixed_bits;
2545 } ARMCPRegUserSpaceInfo;
2546 
2547 #define REGUSERINFO_SENTINEL { .name = NULL }
2548 
2549 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2550 
2551 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2552 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2553                          uint64_t value);
2554 /* CPReadFn that can be used for read-as-zero behaviour */
2555 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2556 
2557 /* CPResetFn that does nothing, for use if no reset is required even
2558  * if fieldoffset is non zero.
2559  */
2560 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2561 
2562 /* Return true if this reginfo struct's field in the cpu state struct
2563  * is 64 bits wide.
2564  */
2565 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2566 {
2567     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2568 }
2569 
2570 static inline bool cp_access_ok(int current_el,
2571                                 const ARMCPRegInfo *ri, int isread)
2572 {
2573     return (ri->access >> ((current_el * 2) + isread)) & 1;
2574 }
2575 
2576 /* Raw read of a coprocessor register (as needed for migration, etc) */
2577 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2578 
2579 /**
2580  * write_list_to_cpustate
2581  * @cpu: ARMCPU
2582  *
2583  * For each register listed in the ARMCPU cpreg_indexes list, write
2584  * its value from the cpreg_values list into the ARMCPUState structure.
2585  * This updates TCG's working data structures from KVM data or
2586  * from incoming migration state.
2587  *
2588  * Returns: true if all register values were updated correctly,
2589  * false if some register was unknown or could not be written.
2590  * Note that we do not stop early on failure -- we will attempt
2591  * writing all registers in the list.
2592  */
2593 bool write_list_to_cpustate(ARMCPU *cpu);
2594 
2595 /**
2596  * write_cpustate_to_list:
2597  * @cpu: ARMCPU
2598  * @kvm_sync: true if this is for syncing back to KVM
2599  *
2600  * For each register listed in the ARMCPU cpreg_indexes list, write
2601  * its value from the ARMCPUState structure into the cpreg_values list.
2602  * This is used to copy info from TCG's working data structures into
2603  * KVM or for outbound migration.
2604  *
2605  * @kvm_sync is true if we are doing this in order to sync the
2606  * register state back to KVM. In this case we will only update
2607  * values in the list if the previous list->cpustate sync actually
2608  * successfully wrote the CPU state. Otherwise we will keep the value
2609  * that is in the list.
2610  *
2611  * Returns: true if all register values were read correctly,
2612  * false if some register was unknown or could not be read.
2613  * Note that we do not stop early on failure -- we will attempt
2614  * reading all registers in the list.
2615  */
2616 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2617 
2618 #define ARM_CPUID_TI915T      0x54029152
2619 #define ARM_CPUID_TI925T      0x54029252
2620 
2621 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2622                                      unsigned int target_el)
2623 {
2624     CPUARMState *env = cs->env_ptr;
2625     unsigned int cur_el = arm_current_el(env);
2626     bool secure = arm_is_secure(env);
2627     bool pstate_unmasked;
2628     int8_t unmasked = 0;
2629     uint64_t hcr_el2;
2630 
2631     /* Don't take exceptions if they target a lower EL.
2632      * This check should catch any exceptions that would not be taken but left
2633      * pending.
2634      */
2635     if (cur_el > target_el) {
2636         return false;
2637     }
2638 
2639     hcr_el2 = arm_hcr_el2_eff(env);
2640 
2641     switch (excp_idx) {
2642     case EXCP_FIQ:
2643         pstate_unmasked = !(env->daif & PSTATE_F);
2644         break;
2645 
2646     case EXCP_IRQ:
2647         pstate_unmasked = !(env->daif & PSTATE_I);
2648         break;
2649 
2650     case EXCP_VFIQ:
2651         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2652             /* VFIQs are only taken when hypervized and non-secure.  */
2653             return false;
2654         }
2655         return !(env->daif & PSTATE_F);
2656     case EXCP_VIRQ:
2657         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2658             /* VIRQs are only taken when hypervized and non-secure.  */
2659             return false;
2660         }
2661         return !(env->daif & PSTATE_I);
2662     default:
2663         g_assert_not_reached();
2664     }
2665 
2666     /* Use the target EL, current execution state and SCR/HCR settings to
2667      * determine whether the corresponding CPSR bit is used to mask the
2668      * interrupt.
2669      */
2670     if ((target_el > cur_el) && (target_el != 1)) {
2671         /* Exceptions targeting a higher EL may not be maskable */
2672         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2673             /* 64-bit masking rules are simple: exceptions to EL3
2674              * can't be masked, and exceptions to EL2 can only be
2675              * masked from Secure state. The HCR and SCR settings
2676              * don't affect the masking logic, only the interrupt routing.
2677              */
2678             if (target_el == 3 || !secure) {
2679                 unmasked = 1;
2680             }
2681         } else {
2682             /* The old 32-bit-only environment has a more complicated
2683              * masking setup. HCR and SCR bits not only affect interrupt
2684              * routing but also change the behaviour of masking.
2685              */
2686             bool hcr, scr;
2687 
2688             switch (excp_idx) {
2689             case EXCP_FIQ:
2690                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2691                  * we override the CPSR.F in determining if the exception is
2692                  * masked or not. If neither of these are set then we fall back
2693                  * to the CPSR.F setting otherwise we further assess the state
2694                  * below.
2695                  */
2696                 hcr = hcr_el2 & HCR_FMO;
2697                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2698 
2699                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2700                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2701                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2702                  * when non-secure but only when FIQs are only routed to EL3.
2703                  */
2704                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2705                 break;
2706             case EXCP_IRQ:
2707                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2708                  * we may override the CPSR.I masking when in non-secure state.
2709                  * The SCR.IRQ setting has already been taken into consideration
2710                  * when setting the target EL, so it does not have a further
2711                  * affect here.
2712                  */
2713                 hcr = hcr_el2 & HCR_IMO;
2714                 scr = false;
2715                 break;
2716             default:
2717                 g_assert_not_reached();
2718             }
2719 
2720             if ((scr || hcr) && !secure) {
2721                 unmasked = 1;
2722             }
2723         }
2724     }
2725 
2726     /* The PSTATE bits only mask the interrupt if we have not overriden the
2727      * ability above.
2728      */
2729     return unmasked || pstate_unmasked;
2730 }
2731 
2732 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2733 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2734 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2735 
2736 #define cpu_signal_handler cpu_arm_signal_handler
2737 #define cpu_list arm_cpu_list
2738 
2739 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2740  *
2741  * If EL3 is 64-bit:
2742  *  + NonSecure EL1 & 0 stage 1
2743  *  + NonSecure EL1 & 0 stage 2
2744  *  + NonSecure EL2
2745  *  + Secure EL1 & EL0
2746  *  + Secure EL3
2747  * If EL3 is 32-bit:
2748  *  + NonSecure PL1 & 0 stage 1
2749  *  + NonSecure PL1 & 0 stage 2
2750  *  + NonSecure PL2
2751  *  + Secure PL0 & PL1
2752  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2753  *
2754  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2755  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2756  *     may differ in access permissions even if the VA->PA map is the same
2757  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2758  *     translation, which means that we have one mmu_idx that deals with two
2759  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2760  *     architecturally permitted]
2761  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2762  *     handling via the TLB. The only way to do a stage 1 translation without
2763  *     the immediate stage 2 translation is via the ATS or AT system insns,
2764  *     which can be slow-pathed and always do a page table walk.
2765  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2766  *     translation regimes, because they map reasonably well to each other
2767  *     and they can't both be active at the same time.
2768  * This gives us the following list of mmu_idx values:
2769  *
2770  * NS EL0 (aka NS PL0) stage 1+2
2771  * NS EL1 (aka NS PL1) stage 1+2
2772  * NS EL2 (aka NS PL2)
2773  * S EL3 (aka S PL1)
2774  * S EL0 (aka S PL0)
2775  * S EL1 (not used if EL3 is 32 bit)
2776  * NS EL0+1 stage 2
2777  *
2778  * (The last of these is an mmu_idx because we want to be able to use the TLB
2779  * for the accesses done as part of a stage 1 page table walk, rather than
2780  * having to walk the stage 2 page table over and over.)
2781  *
2782  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2783  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2784  * NS EL2 if we ever model a Cortex-R52).
2785  *
2786  * M profile CPUs are rather different as they do not have a true MMU.
2787  * They have the following different MMU indexes:
2788  *  User
2789  *  Privileged
2790  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2791  *  Privileged, execution priority negative (ditto)
2792  * If the CPU supports the v8M Security Extension then there are also:
2793  *  Secure User
2794  *  Secure Privileged
2795  *  Secure User, execution priority negative
2796  *  Secure Privileged, execution priority negative
2797  *
2798  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2799  * are not quite the same -- different CPU types (most notably M profile
2800  * vs A/R profile) would like to use MMU indexes with different semantics,
2801  * but since we don't ever need to use all of those in a single CPU we
2802  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2803  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2804  * the same for any particular CPU.
2805  * Variables of type ARMMUIdx are always full values, and the core
2806  * index values are in variables of type 'int'.
2807  *
2808  * Our enumeration includes at the end some entries which are not "true"
2809  * mmu_idx values in that they don't have corresponding TLBs and are only
2810  * valid for doing slow path page table walks.
2811  *
2812  * The constant names here are patterned after the general style of the names
2813  * of the AT/ATS operations.
2814  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2815  * For M profile we arrange them to have a bit for priv, a bit for negpri
2816  * and a bit for secure.
2817  */
2818 #define ARM_MMU_IDX_A 0x10 /* A profile */
2819 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2820 #define ARM_MMU_IDX_M 0x40 /* M profile */
2821 
2822 /* meanings of the bits for M profile mmu idx values */
2823 #define ARM_MMU_IDX_M_PRIV 0x1
2824 #define ARM_MMU_IDX_M_NEGPRI 0x2
2825 #define ARM_MMU_IDX_M_S 0x4
2826 
2827 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2828 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2829 
2830 typedef enum ARMMMUIdx {
2831     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2832     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2833     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2834     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2835     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2839     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2840     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2841     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2842     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2843     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2844     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2845     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2846     /* Indexes below here don't have TLBs and are used only for AT system
2847      * instructions or for the first stage of an S12 page table walk.
2848      */
2849     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2850     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2851 } ARMMMUIdx;
2852 
2853 /* Bit macros for the core-mmu-index values for each index,
2854  * for use when calling tlb_flush_by_mmuidx() and friends.
2855  */
2856 typedef enum ARMMMUIdxBit {
2857     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2858     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2859     ARMMMUIdxBit_S1E2 = 1 << 2,
2860     ARMMMUIdxBit_S1E3 = 1 << 3,
2861     ARMMMUIdxBit_S1SE0 = 1 << 4,
2862     ARMMMUIdxBit_S1SE1 = 1 << 5,
2863     ARMMMUIdxBit_S2NS = 1 << 6,
2864     ARMMMUIdxBit_MUser = 1 << 0,
2865     ARMMMUIdxBit_MPriv = 1 << 1,
2866     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2867     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2868     ARMMMUIdxBit_MSUser = 1 << 4,
2869     ARMMMUIdxBit_MSPriv = 1 << 5,
2870     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2871     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2872 } ARMMMUIdxBit;
2873 
2874 #define MMU_USER_IDX 0
2875 
2876 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2877 {
2878     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2879 }
2880 
2881 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2882 {
2883     if (arm_feature(env, ARM_FEATURE_M)) {
2884         return mmu_idx | ARM_MMU_IDX_M;
2885     } else {
2886         return mmu_idx | ARM_MMU_IDX_A;
2887     }
2888 }
2889 
2890 /* Return the exception level we're running at if this is our mmu_idx */
2891 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2892 {
2893     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2894     case ARM_MMU_IDX_A:
2895         return mmu_idx & 3;
2896     case ARM_MMU_IDX_M:
2897         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2898     default:
2899         g_assert_not_reached();
2900     }
2901 }
2902 
2903 /*
2904  * Return the MMU index for a v7M CPU with all relevant information
2905  * manually specified.
2906  */
2907 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2908                               bool secstate, bool priv, bool negpri);
2909 
2910 /* Return the MMU index for a v7M CPU in the specified security and
2911  * privilege state.
2912  */
2913 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2914                                                 bool secstate, bool priv);
2915 
2916 /* Return the MMU index for a v7M CPU in the specified security state */
2917 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2918 
2919 /**
2920  * cpu_mmu_index:
2921  * @env: The cpu environment
2922  * @ifetch: True for code access, false for data access.
2923  *
2924  * Return the core mmu index for the current translation regime.
2925  * This function is used by generic TCG code paths.
2926  */
2927 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2928 
2929 /* Indexes used when registering address spaces with cpu_address_space_init */
2930 typedef enum ARMASIdx {
2931     ARMASIdx_NS = 0,
2932     ARMASIdx_S = 1,
2933 } ARMASIdx;
2934 
2935 /* Return the Exception Level targeted by debug exceptions. */
2936 static inline int arm_debug_target_el(CPUARMState *env)
2937 {
2938     bool secure = arm_is_secure(env);
2939     bool route_to_el2 = false;
2940 
2941     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2942         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2943                        env->cp15.mdcr_el2 & MDCR_TDE;
2944     }
2945 
2946     if (route_to_el2) {
2947         return 2;
2948     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2949                !arm_el_is_aa64(env, 3) && secure) {
2950         return 3;
2951     } else {
2952         return 1;
2953     }
2954 }
2955 
2956 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2957 {
2958     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2959      * CSSELR is RAZ/WI.
2960      */
2961     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2962 }
2963 
2964 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2965 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2966 {
2967     int cur_el = arm_current_el(env);
2968     int debug_el;
2969 
2970     if (cur_el == 3) {
2971         return false;
2972     }
2973 
2974     /* MDCR_EL3.SDD disables debug events from Secure state */
2975     if (arm_is_secure_below_el3(env)
2976         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2977         return false;
2978     }
2979 
2980     /*
2981      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2982      * while not masking the (D)ebug bit in DAIF.
2983      */
2984     debug_el = arm_debug_target_el(env);
2985 
2986     if (cur_el == debug_el) {
2987         return extract32(env->cp15.mdscr_el1, 13, 1)
2988             && !(env->daif & PSTATE_D);
2989     }
2990 
2991     /* Otherwise the debug target needs to be a higher EL */
2992     return debug_el > cur_el;
2993 }
2994 
2995 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2996 {
2997     int el = arm_current_el(env);
2998 
2999     if (el == 0 && arm_el_is_aa64(env, 1)) {
3000         return aa64_generate_debug_exceptions(env);
3001     }
3002 
3003     if (arm_is_secure(env)) {
3004         int spd;
3005 
3006         if (el == 0 && (env->cp15.sder & 1)) {
3007             /* SDER.SUIDEN means debug exceptions from Secure EL0
3008              * are always enabled. Otherwise they are controlled by
3009              * SDCR.SPD like those from other Secure ELs.
3010              */
3011             return true;
3012         }
3013 
3014         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3015         switch (spd) {
3016         case 1:
3017             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3018         case 0:
3019             /* For 0b00 we return true if external secure invasive debug
3020              * is enabled. On real hardware this is controlled by external
3021              * signals to the core. QEMU always permits debug, and behaves
3022              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3023              */
3024             return true;
3025         case 2:
3026             return false;
3027         case 3:
3028             return true;
3029         }
3030     }
3031 
3032     return el != 2;
3033 }
3034 
3035 /* Return true if debugging exceptions are currently enabled.
3036  * This corresponds to what in ARM ARM pseudocode would be
3037  *    if UsingAArch32() then
3038  *        return AArch32.GenerateDebugExceptions()
3039  *    else
3040  *        return AArch64.GenerateDebugExceptions()
3041  * We choose to push the if() down into this function for clarity,
3042  * since the pseudocode has it at all callsites except for the one in
3043  * CheckSoftwareStep(), where it is elided because both branches would
3044  * always return the same value.
3045  */
3046 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3047 {
3048     if (env->aarch64) {
3049         return aa64_generate_debug_exceptions(env);
3050     } else {
3051         return aa32_generate_debug_exceptions(env);
3052     }
3053 }
3054 
3055 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3056  * implicitly means this always returns false in pre-v8 CPUs.)
3057  */
3058 static inline bool arm_singlestep_active(CPUARMState *env)
3059 {
3060     return extract32(env->cp15.mdscr_el1, 0, 1)
3061         && arm_el_is_aa64(env, arm_debug_target_el(env))
3062         && arm_generate_debug_exceptions(env);
3063 }
3064 
3065 static inline bool arm_sctlr_b(CPUARMState *env)
3066 {
3067     return
3068         /* We need not implement SCTLR.ITD in user-mode emulation, so
3069          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3070          * This lets people run BE32 binaries with "-cpu any".
3071          */
3072 #ifndef CONFIG_USER_ONLY
3073         !arm_feature(env, ARM_FEATURE_V7) &&
3074 #endif
3075         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3076 }
3077 
3078 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3079 {
3080     if (el == 0) {
3081         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3082         return env->cp15.sctlr_el[1];
3083     } else {
3084         return env->cp15.sctlr_el[el];
3085     }
3086 }
3087 
3088 
3089 /* Return true if the processor is in big-endian mode. */
3090 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3091 {
3092     /* In 32bit endianness is determined by looking at CPSR's E bit */
3093     if (!is_a64(env)) {
3094         return
3095 #ifdef CONFIG_USER_ONLY
3096             /* In system mode, BE32 is modelled in line with the
3097              * architecture (as word-invariant big-endianness), where loads
3098              * and stores are done little endian but from addresses which
3099              * are adjusted by XORing with the appropriate constant. So the
3100              * endianness to use for the raw data access is not affected by
3101              * SCTLR.B.
3102              * In user mode, however, we model BE32 as byte-invariant
3103              * big-endianness (because user-only code cannot tell the
3104              * difference), and so we need to use a data access endianness
3105              * that depends on SCTLR.B.
3106              */
3107             arm_sctlr_b(env) ||
3108 #endif
3109                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3110     } else {
3111         int cur_el = arm_current_el(env);
3112         uint64_t sctlr = arm_sctlr(env, cur_el);
3113 
3114         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3115     }
3116 }
3117 
3118 typedef CPUARMState CPUArchState;
3119 typedef ARMCPU ArchCPU;
3120 
3121 #include "exec/cpu-all.h"
3122 
3123 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3124  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3125  * We put flags which are shared between 32 and 64 bit mode at the top
3126  * of the word, and flags which apply to only one mode at the bottom.
3127  */
3128 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3129 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3130 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3131 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3132 /* Target EL if we take a floating-point-disabled exception */
3133 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3134 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3135 
3136 /* Bit usage when in AArch32 state: */
3137 FIELD(TBFLAG_A32, THUMB, 0, 1)
3138 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3139 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3140 /*
3141  * We store the bottom two bits of the CPAR as TB flags and handle
3142  * checks on the other bits at runtime. This shares the same bits as
3143  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3144  */
3145 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3146 /*
3147  * Indicates whether cp register reads and writes by guest code should access
3148  * the secure or nonsecure bank of banked registers; note that this is not
3149  * the same thing as the current security state of the processor!
3150  */
3151 FIELD(TBFLAG_A32, NS, 6, 1)
3152 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3153 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3154 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3155 /* For M profile only, set if FPCCR.LSPACT is set */
3156 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3157 /* For M profile only, set if we must create a new FP context */
3158 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3159 /* For M profile only, set if FPCCR.S does not match current security state */
3160 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3161 /* For M profile only, Handler (ie not Thread) mode */
3162 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3163 /* For M profile only, whether we should generate stack-limit checks */
3164 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3165 
3166 /* Bit usage when in AArch64 state */
3167 FIELD(TBFLAG_A64, TBII, 0, 2)
3168 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3169 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3170 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3171 FIELD(TBFLAG_A64, BT, 9, 1)
3172 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3173 FIELD(TBFLAG_A64, TBID, 12, 2)
3174 
3175 static inline bool bswap_code(bool sctlr_b)
3176 {
3177 #ifdef CONFIG_USER_ONLY
3178     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3179      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3180      * would also end up as a mixed-endian mode with BE code, LE data.
3181      */
3182     return
3183 #ifdef TARGET_WORDS_BIGENDIAN
3184         1 ^
3185 #endif
3186         sctlr_b;
3187 #else
3188     /* All code access in ARM is little endian, and there are no loaders
3189      * doing swaps that need to be reversed
3190      */
3191     return 0;
3192 #endif
3193 }
3194 
3195 #ifdef CONFIG_USER_ONLY
3196 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3197 {
3198     return
3199 #ifdef TARGET_WORDS_BIGENDIAN
3200        1 ^
3201 #endif
3202        arm_cpu_data_is_big_endian(env);
3203 }
3204 #endif
3205 
3206 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3207                           target_ulong *cs_base, uint32_t *flags);
3208 
3209 enum {
3210     QEMU_PSCI_CONDUIT_DISABLED = 0,
3211     QEMU_PSCI_CONDUIT_SMC = 1,
3212     QEMU_PSCI_CONDUIT_HVC = 2,
3213 };
3214 
3215 #ifndef CONFIG_USER_ONLY
3216 /* Return the address space index to use for a memory access */
3217 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3218 {
3219     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3220 }
3221 
3222 /* Return the AddressSpace to use for a memory access
3223  * (which depends on whether the access is S or NS, and whether
3224  * the board gave us a separate AddressSpace for S accesses).
3225  */
3226 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3227 {
3228     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3229 }
3230 #endif
3231 
3232 /**
3233  * arm_register_pre_el_change_hook:
3234  * Register a hook function which will be called immediately before this
3235  * CPU changes exception level or mode. The hook function will be
3236  * passed a pointer to the ARMCPU and the opaque data pointer passed
3237  * to this function when the hook was registered.
3238  *
3239  * Note that if a pre-change hook is called, any registered post-change hooks
3240  * are guaranteed to subsequently be called.
3241  */
3242 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3243                                  void *opaque);
3244 /**
3245  * arm_register_el_change_hook:
3246  * Register a hook function which will be called immediately after this
3247  * CPU changes exception level or mode. The hook function will be
3248  * passed a pointer to the ARMCPU and the opaque data pointer passed
3249  * to this function when the hook was registered.
3250  *
3251  * Note that any registered hooks registered here are guaranteed to be called
3252  * if pre-change hooks have been.
3253  */
3254 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3255         *opaque);
3256 
3257 /**
3258  * aa32_vfp_dreg:
3259  * Return a pointer to the Dn register within env in 32-bit mode.
3260  */
3261 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3262 {
3263     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3264 }
3265 
3266 /**
3267  * aa32_vfp_qreg:
3268  * Return a pointer to the Qn register within env in 32-bit mode.
3269  */
3270 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3271 {
3272     return &env->vfp.zregs[regno].d[0];
3273 }
3274 
3275 /**
3276  * aa64_vfp_qreg:
3277  * Return a pointer to the Qn register within env in 64-bit mode.
3278  */
3279 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3280 {
3281     return &env->vfp.zregs[regno].d[0];
3282 }
3283 
3284 /* Shared between translate-sve.c and sve_helper.c.  */
3285 extern const uint64_t pred_esz_masks[4];
3286 
3287 /*
3288  * 32-bit feature tests via id registers.
3289  */
3290 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3291 {
3292     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3293 }
3294 
3295 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3296 {
3297     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3298 }
3299 
3300 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3301 {
3302     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3303 }
3304 
3305 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3306 {
3307     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3308 }
3309 
3310 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3311 {
3312     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3313 }
3314 
3315 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3316 {
3317     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3318 }
3319 
3320 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3321 {
3322     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3323 }
3324 
3325 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3326 {
3327     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3328 }
3329 
3330 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3331 {
3332     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3333 }
3334 
3335 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3336 {
3337     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3338 }
3339 
3340 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3341 {
3342     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3343 }
3344 
3345 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3346 {
3347     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3348 }
3349 
3350 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3351 {
3352     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3353 }
3354 
3355 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3356 {
3357     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3358 }
3359 
3360 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3361 {
3362     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3363 }
3364 
3365 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3366 {
3367     /*
3368      * This is a placeholder for use by VCMA until the rest of
3369      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3370      * At which point we can properly set and check MVFR1.FPHP.
3371      */
3372     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3373 }
3374 
3375 /*
3376  * We always set the FP and SIMD FP16 fields to indicate identical
3377  * levels of support (assuming SIMD is implemented at all), so
3378  * we only need one set of accessors.
3379  */
3380 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3381 {
3382     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3383 }
3384 
3385 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3386 {
3387     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3388 }
3389 
3390 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3391 {
3392     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3393 }
3394 
3395 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3396 {
3397     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3398 }
3399 
3400 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3401 {
3402     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3403 }
3404 
3405 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3408 }
3409 
3410 /*
3411  * 64-bit feature tests via id registers.
3412  */
3413 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3414 {
3415     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3416 }
3417 
3418 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3419 {
3420     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3421 }
3422 
3423 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3424 {
3425     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3426 }
3427 
3428 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3429 {
3430     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3431 }
3432 
3433 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3434 {
3435     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3436 }
3437 
3438 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3439 {
3440     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3441 }
3442 
3443 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3446 }
3447 
3448 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3451 }
3452 
3453 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3461 }
3462 
3463 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3466 }
3467 
3468 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3481 }
3482 
3483 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3486 }
3487 
3488 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3496 }
3497 
3498 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3499 {
3500     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3501 }
3502 
3503 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3504 {
3505     /*
3506      * Note that while QEMU will only implement the architected algorithm
3507      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3508      * defined algorithms, and thus API+GPI, and this predicate controls
3509      * migration of the 128-bit keys.
3510      */
3511     return (id->id_aa64isar1 &
3512             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3513              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3514              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3515              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3516 }
3517 
3518 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3519 {
3520     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3521 }
3522 
3523 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3524 {
3525     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3526 }
3527 
3528 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3529 {
3530     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3531 }
3532 
3533 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3534 {
3535     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3536     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3537 }
3538 
3539 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3540 {
3541     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3542 }
3543 
3544 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3545 {
3546     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3547 }
3548 
3549 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3550 {
3551     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3552 }
3553 
3554 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3557 }
3558 
3559 /*
3560  * Forward to the above feature tests given an ARMCPU pointer.
3561  */
3562 #define cpu_isar_feature(name, cpu) \
3563     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3564 
3565 #endif
3566