xref: /openbmc/qemu/target/arm/cpu.h (revision 0b1183e3)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* ARM-specific interrupt pending bits.  */
75 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
78 
79 /* The usual mapping for an AArch64 system register to its AArch32
80  * counterpart is for the 32 bit world to have access to the lower
81  * half only (with writes leaving the upper half untouched). It's
82  * therefore useful to be able to pass TCG the offset of the least
83  * significant half of a uint64_t struct member.
84  */
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
92 
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
98 
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101  * 1: Conditional execution bits
102  * 2: Partial exception syndrome for data aborts
103  */
104 #define TARGET_INSN_START_EXTRA_WORDS 2
105 
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108  * help the sleb128 encoder do a better job.
109  * When restoring the CPU state, we shift it back up.
110  */
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
113 
114 /* We currently assume float and double are IEEE single and double
115    precision respectively.
116    Doing runtime conversions is tricky because VFP registers may contain
117    integer values (eg. as the result of a FTOSI instruction).
118    s<2n> maps to the least significant half of d<n>
119    s<2n+1> maps to the most significant half of d<n>
120  */
121 
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124     uint64_t cval; /* Timer CompareValue register */
125     uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
127 
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP  2
131 #define GTIMER_SEC  3
132 #define NUM_GTIMERS 4
133 
134 typedef struct {
135     uint64_t raw_tcr;
136     uint32_t mask;
137     uint32_t base_mask;
138 } TCR;
139 
140 typedef struct CPUARMState {
141     /* Regs for current mode.  */
142     uint32_t regs[16];
143 
144     /* 32/64 switch only happens when taking and returning from
145      * exceptions so the overlap semantics are taken care of then
146      * instead of having a complicated union.
147      */
148     /* Regs for A64 mode.  */
149     uint64_t xregs[32];
150     uint64_t pc;
151     /* PSTATE isn't an architectural register for ARMv8. However, it is
152      * convenient for us to assemble the underlying state into a 32 bit format
153      * identical to the architectural format used for the SPSR. (This is also
154      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155      * 'pstate' register are.) Of the PSTATE bits:
156      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157      *    semantics as for AArch32, as described in the comments on each field)
158      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
159      *  DAIF (exception masks) are kept in env->daif
160      *  all other bits are stored in their correct places in env->pstate
161      */
162     uint32_t pstate;
163     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164 
165     /* Frequently accessed CPSR bits are stored separately for efficiency.
166        This contains all the other bits.  Use cpsr_{read,write} to access
167        the whole CPSR.  */
168     uint32_t uncached_cpsr;
169     uint32_t spsr;
170 
171     /* Banked registers.  */
172     uint64_t banked_spsr[8];
173     uint32_t banked_r13[8];
174     uint32_t banked_r14[8];
175 
176     /* These hold r8-r12.  */
177     uint32_t usr_regs[5];
178     uint32_t fiq_regs[5];
179 
180     /* cpsr flag cache for faster execution */
181     uint32_t CF; /* 0 or 1 */
182     uint32_t VF; /* V is the bit 31. All other bits are undefined */
183     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
184     uint32_t ZF; /* Z set if zero.  */
185     uint32_t QF; /* 0 or 1 */
186     uint32_t GE; /* cpsr[19:16] */
187     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
189     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
190 
191     uint64_t elr_el[4]; /* AArch64 exception link regs  */
192     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
193 
194     /* System control coprocessor (cp15) */
195     struct {
196         uint32_t c0_cpuid;
197         union { /* Cache size selection */
198             struct {
199                 uint64_t _unused_csselr0;
200                 uint64_t csselr_ns;
201                 uint64_t _unused_csselr1;
202                 uint64_t csselr_s;
203             };
204             uint64_t csselr_el[4];
205         };
206         union { /* System control register. */
207             struct {
208                 uint64_t _unused_sctlr;
209                 uint64_t sctlr_ns;
210                 uint64_t hsctlr;
211                 uint64_t sctlr_s;
212             };
213             uint64_t sctlr_el[4];
214         };
215         uint64_t cpacr_el1; /* Architectural feature access control register */
216         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
217         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
218         uint64_t sder; /* Secure debug enable register. */
219         uint32_t nsacr; /* Non-secure access control register. */
220         union { /* MMU translation table base 0. */
221             struct {
222                 uint64_t _unused_ttbr0_0;
223                 uint64_t ttbr0_ns;
224                 uint64_t _unused_ttbr0_1;
225                 uint64_t ttbr0_s;
226             };
227             uint64_t ttbr0_el[4];
228         };
229         union { /* MMU translation table base 1. */
230             struct {
231                 uint64_t _unused_ttbr1_0;
232                 uint64_t ttbr1_ns;
233                 uint64_t _unused_ttbr1_1;
234                 uint64_t ttbr1_s;
235             };
236             uint64_t ttbr1_el[4];
237         };
238         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
239         /* MMU translation table base control. */
240         TCR tcr_el[4];
241         TCR vtcr_el2; /* Virtualization Translation Control.  */
242         uint32_t c2_data; /* MPU data cacheable bits.  */
243         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
244         union { /* MMU domain access control register
245                  * MPU write buffer control.
246                  */
247             struct {
248                 uint64_t dacr_ns;
249                 uint64_t dacr_s;
250             };
251             struct {
252                 uint64_t dacr32_el2;
253             };
254         };
255         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257         uint64_t hcr_el2; /* Hypervisor configuration register */
258         uint64_t scr_el3; /* Secure configuration register.  */
259         union { /* Fault status registers.  */
260             struct {
261                 uint64_t ifsr_ns;
262                 uint64_t ifsr_s;
263             };
264             struct {
265                 uint64_t ifsr32_el2;
266             };
267         };
268         union {
269             struct {
270                 uint64_t _unused_dfsr;
271                 uint64_t dfsr_ns;
272                 uint64_t hsr;
273                 uint64_t dfsr_s;
274             };
275             uint64_t esr_el[4];
276         };
277         uint32_t c6_region[8]; /* MPU base/size registers.  */
278         union { /* Fault address registers. */
279             struct {
280                 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282                 uint32_t ifar_ns;
283                 uint32_t dfar_ns;
284                 uint32_t ifar_s;
285                 uint32_t dfar_s;
286 #else
287                 uint32_t dfar_ns;
288                 uint32_t ifar_ns;
289                 uint32_t dfar_s;
290                 uint32_t ifar_s;
291 #endif
292                 uint64_t _unused_far3;
293             };
294             uint64_t far_el[4];
295         };
296         uint64_t hpfar_el2;
297         uint64_t hstr_el2;
298         union { /* Translation result. */
299             struct {
300                 uint64_t _unused_par_0;
301                 uint64_t par_ns;
302                 uint64_t _unused_par_1;
303                 uint64_t par_s;
304             };
305             uint64_t par_el[4];
306         };
307 
308         uint32_t c6_rgnr;
309 
310         uint32_t c9_insn; /* Cache lockdown registers.  */
311         uint32_t c9_data;
312         uint64_t c9_pmcr; /* performance monitor control register */
313         uint64_t c9_pmcnten; /* perf monitor counter enables */
314         uint32_t c9_pmovsr; /* perf monitor overflow status */
315         uint32_t c9_pmuserenr; /* perf monitor user enable */
316         uint64_t c9_pmselr; /* perf monitor counter selection register */
317         uint64_t c9_pminten; /* perf monitor interrupt enables */
318         union { /* Memory attribute redirection */
319             struct {
320 #ifdef HOST_WORDS_BIGENDIAN
321                 uint64_t _unused_mair_0;
322                 uint32_t mair1_ns;
323                 uint32_t mair0_ns;
324                 uint64_t _unused_mair_1;
325                 uint32_t mair1_s;
326                 uint32_t mair0_s;
327 #else
328                 uint64_t _unused_mair_0;
329                 uint32_t mair0_ns;
330                 uint32_t mair1_ns;
331                 uint64_t _unused_mair_1;
332                 uint32_t mair0_s;
333                 uint32_t mair1_s;
334 #endif
335             };
336             uint64_t mair_el[4];
337         };
338         union { /* vector base address register */
339             struct {
340                 uint64_t _unused_vbar;
341                 uint64_t vbar_ns;
342                 uint64_t hvbar;
343                 uint64_t vbar_s;
344             };
345             uint64_t vbar_el[4];
346         };
347         uint32_t mvbar; /* (monitor) vector base address register */
348         struct { /* FCSE PID. */
349             uint32_t fcseidr_ns;
350             uint32_t fcseidr_s;
351         };
352         union { /* Context ID. */
353             struct {
354                 uint64_t _unused_contextidr_0;
355                 uint64_t contextidr_ns;
356                 uint64_t _unused_contextidr_1;
357                 uint64_t contextidr_s;
358             };
359             uint64_t contextidr_el[4];
360         };
361         union { /* User RW Thread register. */
362             struct {
363                 uint64_t tpidrurw_ns;
364                 uint64_t tpidrprw_ns;
365                 uint64_t htpidr;
366                 uint64_t _tpidr_el3;
367             };
368             uint64_t tpidr_el[4];
369         };
370         /* The secure banks of these registers don't map anywhere */
371         uint64_t tpidrurw_s;
372         uint64_t tpidrprw_s;
373         uint64_t tpidruro_s;
374 
375         union { /* User RO Thread register. */
376             uint64_t tpidruro_ns;
377             uint64_t tpidrro_el[1];
378         };
379         uint64_t c14_cntfrq; /* Counter Frequency register */
380         uint64_t c14_cntkctl; /* Timer Control register */
381         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
382         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
383         ARMGenericTimer c14_timer[NUM_GTIMERS];
384         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
385         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
386         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
387         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
388         uint32_t c15_threadid; /* TI debugger thread-ID.  */
389         uint32_t c15_config_base_address; /* SCU base address.  */
390         uint32_t c15_diagnostic; /* diagnostic register */
391         uint32_t c15_power_diagnostic;
392         uint32_t c15_power_control; /* power control */
393         uint64_t dbgbvr[16]; /* breakpoint value registers */
394         uint64_t dbgbcr[16]; /* breakpoint control registers */
395         uint64_t dbgwvr[16]; /* watchpoint value registers */
396         uint64_t dbgwcr[16]; /* watchpoint control registers */
397         uint64_t mdscr_el1;
398         uint64_t oslsr_el1; /* OS Lock Status */
399         uint64_t mdcr_el2;
400         uint64_t mdcr_el3;
401         /* If the counter is enabled, this stores the last time the counter
402          * was reset. Otherwise it stores the counter value
403          */
404         uint64_t c15_ccnt;
405         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
406         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
407         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
408     } cp15;
409 
410     struct {
411         uint32_t other_sp;
412         uint32_t vecbase;
413         uint32_t basepri;
414         uint32_t control;
415         uint32_t ccr; /* Configuration and Control */
416         uint32_t cfsr; /* Configurable Fault Status */
417         uint32_t hfsr; /* HardFault Status */
418         uint32_t dfsr; /* Debug Fault Status Register */
419         uint32_t mmfar; /* MemManage Fault Address */
420         uint32_t bfar; /* BusFault Address */
421         unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */
422         int exception;
423     } v7m;
424 
425     /* Information associated with an exception about to be taken:
426      * code which raises an exception must set cs->exception_index and
427      * the relevant parts of this structure; the cpu_do_interrupt function
428      * will then set the guest-visible registers as part of the exception
429      * entry process.
430      */
431     struct {
432         uint32_t syndrome; /* AArch64 format syndrome register */
433         uint32_t fsr; /* AArch32 format fault status register info */
434         uint64_t vaddress; /* virtual addr associated with exception, if any */
435         uint32_t target_el; /* EL the exception should be targeted for */
436         /* If we implement EL2 we will also need to store information
437          * about the intermediate physical address for stage 2 faults.
438          */
439     } exception;
440 
441     /* Thumb-2 EE state.  */
442     uint32_t teecr;
443     uint32_t teehbr;
444 
445     /* VFP coprocessor state.  */
446     struct {
447         /* VFP/Neon register state. Note that the mapping between S, D and Q
448          * views of the register bank differs between AArch64 and AArch32:
449          * In AArch32:
450          *  Qn = regs[2n+1]:regs[2n]
451          *  Dn = regs[n]
452          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
453          * (and regs[32] to regs[63] are inaccessible)
454          * In AArch64:
455          *  Qn = regs[2n+1]:regs[2n]
456          *  Dn = regs[2n]
457          *  Sn = regs[2n] bits 31..0
458          * This corresponds to the architecturally defined mapping between
459          * the two execution states, and means we do not need to explicitly
460          * map these registers when changing states.
461          */
462         float64 regs[64];
463 
464         uint32_t xregs[16];
465         /* We store these fpcsr fields separately for convenience.  */
466         int vec_len;
467         int vec_stride;
468 
469         /* scratch space when Tn are not sufficient.  */
470         uint32_t scratch[8];
471 
472         /* fp_status is the "normal" fp status. standard_fp_status retains
473          * values corresponding to the ARM "Standard FPSCR Value", ie
474          * default-NaN, flush-to-zero, round-to-nearest and is used by
475          * any operations (generally Neon) which the architecture defines
476          * as controlled by the standard FPSCR value rather than the FPSCR.
477          *
478          * To avoid having to transfer exception bits around, we simply
479          * say that the FPSCR cumulative exception flags are the logical
480          * OR of the flags in the two fp statuses. This relies on the
481          * only thing which needs to read the exception flags being
482          * an explicit FPSCR read.
483          */
484         float_status fp_status;
485         float_status standard_fp_status;
486     } vfp;
487     uint64_t exclusive_addr;
488     uint64_t exclusive_val;
489     uint64_t exclusive_high;
490 
491     /* iwMMXt coprocessor state.  */
492     struct {
493         uint64_t regs[16];
494         uint64_t val;
495 
496         uint32_t cregs[16];
497     } iwmmxt;
498 
499 #if defined(CONFIG_USER_ONLY)
500     /* For usermode syscall translation.  */
501     int eabi;
502 #endif
503 
504     struct CPUBreakpoint *cpu_breakpoint[16];
505     struct CPUWatchpoint *cpu_watchpoint[16];
506 
507     /* Fields up to this point are cleared by a CPU reset */
508     struct {} end_reset_fields;
509 
510     CPU_COMMON
511 
512     /* Fields after CPU_COMMON are preserved across CPU reset. */
513 
514     /* Internal CPU feature flags.  */
515     uint64_t features;
516 
517     /* PMSAv7 MPU */
518     struct {
519         uint32_t *drbar;
520         uint32_t *drsr;
521         uint32_t *dracr;
522     } pmsav7;
523 
524     void *nvic;
525     const struct arm_boot_info *boot_info;
526     /* Store GICv3CPUState to access from this struct */
527     void *gicv3state;
528 } CPUARMState;
529 
530 /**
531  * ARMELChangeHook:
532  * type of a function which can be registered via arm_register_el_change_hook()
533  * to get callbacks when the CPU changes its exception level or mode.
534  */
535 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
536 
537 
538 /* These values map onto the return values for
539  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
540 typedef enum ARMPSCIState {
541     PSCI_ON = 0,
542     PSCI_OFF = 1,
543     PSCI_ON_PENDING = 2
544 } ARMPSCIState;
545 
546 /**
547  * ARMCPU:
548  * @env: #CPUARMState
549  *
550  * An ARM CPU core.
551  */
552 struct ARMCPU {
553     /*< private >*/
554     CPUState parent_obj;
555     /*< public >*/
556 
557     CPUARMState env;
558 
559     /* Coprocessor information */
560     GHashTable *cp_regs;
561     /* For marshalling (mostly coprocessor) register state between the
562      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
563      * we use these arrays.
564      */
565     /* List of register indexes managed via these arrays; (full KVM style
566      * 64 bit indexes, not CPRegInfo 32 bit indexes)
567      */
568     uint64_t *cpreg_indexes;
569     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
570     uint64_t *cpreg_values;
571     /* Length of the indexes, values, reset_values arrays */
572     int32_t cpreg_array_len;
573     /* These are used only for migration: incoming data arrives in
574      * these fields and is sanity checked in post_load before copying
575      * to the working data structures above.
576      */
577     uint64_t *cpreg_vmstate_indexes;
578     uint64_t *cpreg_vmstate_values;
579     int32_t cpreg_vmstate_array_len;
580 
581     /* Timers used by the generic (architected) timer */
582     QEMUTimer *gt_timer[NUM_GTIMERS];
583     /* GPIO outputs for generic timer */
584     qemu_irq gt_timer_outputs[NUM_GTIMERS];
585     /* GPIO output for GICv3 maintenance interrupt signal */
586     qemu_irq gicv3_maintenance_interrupt;
587 
588     /* MemoryRegion to use for secure physical accesses */
589     MemoryRegion *secure_memory;
590 
591     /* 'compatible' string for this CPU for Linux device trees */
592     const char *dtb_compatible;
593 
594     /* PSCI version for this CPU
595      * Bits[31:16] = Major Version
596      * Bits[15:0] = Minor Version
597      */
598     uint32_t psci_version;
599 
600     /* Should CPU start in PSCI powered-off state? */
601     bool start_powered_off;
602 
603     /* Current power state, access guarded by BQL */
604     ARMPSCIState power_state;
605 
606     /* CPU has virtualization extension */
607     bool has_el2;
608     /* CPU has security extension */
609     bool has_el3;
610     /* CPU has PMU (Performance Monitor Unit) */
611     bool has_pmu;
612 
613     /* CPU has memory protection unit */
614     bool has_mpu;
615     /* PMSAv7 MPU number of supported regions */
616     uint32_t pmsav7_dregion;
617 
618     /* PSCI conduit used to invoke PSCI methods
619      * 0 - disabled, 1 - smc, 2 - hvc
620      */
621     uint32_t psci_conduit;
622 
623     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
624      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
625      */
626     uint32_t kvm_target;
627 
628     /* KVM init features for this CPU */
629     uint32_t kvm_init_features[7];
630 
631     /* Uniprocessor system with MP extensions */
632     bool mp_is_up;
633 
634     /* The instance init functions for implementation-specific subclasses
635      * set these fields to specify the implementation-dependent values of
636      * various constant registers and reset values of non-constant
637      * registers.
638      * Some of these might become QOM properties eventually.
639      * Field names match the official register names as defined in the
640      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
641      * is used for reset values of non-constant registers; no reset_
642      * prefix means a constant register.
643      */
644     uint32_t midr;
645     uint32_t revidr;
646     uint32_t reset_fpsid;
647     uint32_t mvfr0;
648     uint32_t mvfr1;
649     uint32_t mvfr2;
650     uint32_t ctr;
651     uint32_t reset_sctlr;
652     uint32_t id_pfr0;
653     uint32_t id_pfr1;
654     uint32_t id_dfr0;
655     uint32_t pmceid0;
656     uint32_t pmceid1;
657     uint32_t id_afr0;
658     uint32_t id_mmfr0;
659     uint32_t id_mmfr1;
660     uint32_t id_mmfr2;
661     uint32_t id_mmfr3;
662     uint32_t id_mmfr4;
663     uint32_t id_isar0;
664     uint32_t id_isar1;
665     uint32_t id_isar2;
666     uint32_t id_isar3;
667     uint32_t id_isar4;
668     uint32_t id_isar5;
669     uint64_t id_aa64pfr0;
670     uint64_t id_aa64pfr1;
671     uint64_t id_aa64dfr0;
672     uint64_t id_aa64dfr1;
673     uint64_t id_aa64afr0;
674     uint64_t id_aa64afr1;
675     uint64_t id_aa64isar0;
676     uint64_t id_aa64isar1;
677     uint64_t id_aa64mmfr0;
678     uint64_t id_aa64mmfr1;
679     uint32_t dbgdidr;
680     uint32_t clidr;
681     uint64_t mp_affinity; /* MP ID without feature bits */
682     /* The elements of this array are the CCSIDR values for each cache,
683      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
684      */
685     uint32_t ccsidr[16];
686     uint64_t reset_cbar;
687     uint32_t reset_auxcr;
688     bool reset_hivecs;
689     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
690     uint32_t dcz_blocksize;
691     uint64_t rvbar;
692 
693     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
694     int gic_num_lrs; /* number of list registers */
695     int gic_vpribits; /* number of virtual priority bits */
696     int gic_vprebits; /* number of virtual preemption bits */
697 
698     /* Whether the cfgend input is high (i.e. this CPU should reset into
699      * big-endian mode).  This setting isn't used directly: instead it modifies
700      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
701      * architecture version.
702      */
703     bool cfgend;
704 
705     ARMELChangeHook *el_change_hook;
706     void *el_change_hook_opaque;
707 
708     int32_t node_id; /* NUMA node this CPU belongs to */
709 
710     /* Used to synchronize KVM and QEMU in-kernel device levels */
711     uint8_t device_irq_level;
712 };
713 
714 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
715 {
716     return container_of(env, ARMCPU, env);
717 }
718 
719 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
720 
721 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
722 
723 #define ENV_OFFSET offsetof(ARMCPU, env)
724 
725 #ifndef CONFIG_USER_ONLY
726 extern const struct VMStateDescription vmstate_arm_cpu;
727 #endif
728 
729 void arm_cpu_do_interrupt(CPUState *cpu);
730 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
731 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
732 
733 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
734                         int flags);
735 
736 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
737                                          MemTxAttrs *attrs);
738 
739 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
740 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
741 
742 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
743                              int cpuid, void *opaque);
744 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
745                              int cpuid, void *opaque);
746 
747 #ifdef TARGET_AARCH64
748 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
749 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
750 #endif
751 
752 ARMCPU *cpu_arm_init(const char *cpu_model);
753 target_ulong do_arm_semihosting(CPUARMState *env);
754 void aarch64_sync_32_to_64(CPUARMState *env);
755 void aarch64_sync_64_to_32(CPUARMState *env);
756 
757 static inline bool is_a64(CPUARMState *env)
758 {
759     return env->aarch64;
760 }
761 
762 /* you can call this signal handler from your SIGBUS and SIGSEGV
763    signal handlers to inform the virtual CPU of exceptions. non zero
764    is returned if the signal was handled by the virtual CPU.  */
765 int cpu_arm_signal_handler(int host_signum, void *pinfo,
766                            void *puc);
767 
768 /**
769  * pmccntr_sync
770  * @env: CPUARMState
771  *
772  * Synchronises the counter in the PMCCNTR. This must always be called twice,
773  * once before any action that might affect the timer and again afterwards.
774  * The function is used to swap the state of the register if required.
775  * This only happens when not in user mode (!CONFIG_USER_ONLY)
776  */
777 void pmccntr_sync(CPUARMState *env);
778 
779 /* SCTLR bit meanings. Several bits have been reused in newer
780  * versions of the architecture; in that case we define constants
781  * for both old and new bit meanings. Code which tests against those
782  * bits should probably check or otherwise arrange that the CPU
783  * is the architectural version it expects.
784  */
785 #define SCTLR_M       (1U << 0)
786 #define SCTLR_A       (1U << 1)
787 #define SCTLR_C       (1U << 2)
788 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
789 #define SCTLR_SA      (1U << 3)
790 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
791 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
792 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
793 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
794 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
795 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
796 #define SCTLR_ITD     (1U << 7) /* v8 onward */
797 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
798 #define SCTLR_SED     (1U << 8) /* v8 onward */
799 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
800 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
801 #define SCTLR_F       (1U << 10) /* up to v6 */
802 #define SCTLR_SW      (1U << 10) /* v7 onward */
803 #define SCTLR_Z       (1U << 11)
804 #define SCTLR_I       (1U << 12)
805 #define SCTLR_V       (1U << 13)
806 #define SCTLR_RR      (1U << 14) /* up to v7 */
807 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
808 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
809 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
810 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
811 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
812 #define SCTLR_HA      (1U << 17)
813 #define SCTLR_BR      (1U << 17) /* PMSA only */
814 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
815 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
816 #define SCTLR_WXN     (1U << 19)
817 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
818 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
819 #define SCTLR_FI      (1U << 21)
820 #define SCTLR_U       (1U << 22)
821 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
822 #define SCTLR_VE      (1U << 24) /* up to v7 */
823 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
824 #define SCTLR_EE      (1U << 25)
825 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
826 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
827 #define SCTLR_NMFI    (1U << 27)
828 #define SCTLR_TRE     (1U << 28)
829 #define SCTLR_AFE     (1U << 29)
830 #define SCTLR_TE      (1U << 30)
831 
832 #define CPTR_TCPAC    (1U << 31)
833 #define CPTR_TTA      (1U << 20)
834 #define CPTR_TFP      (1U << 10)
835 
836 #define MDCR_EPMAD    (1U << 21)
837 #define MDCR_EDAD     (1U << 20)
838 #define MDCR_SPME     (1U << 17)
839 #define MDCR_SDD      (1U << 16)
840 #define MDCR_SPD      (3U << 14)
841 #define MDCR_TDRA     (1U << 11)
842 #define MDCR_TDOSA    (1U << 10)
843 #define MDCR_TDA      (1U << 9)
844 #define MDCR_TDE      (1U << 8)
845 #define MDCR_HPME     (1U << 7)
846 #define MDCR_TPM      (1U << 6)
847 #define MDCR_TPMCR    (1U << 5)
848 
849 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
850 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
851 
852 #define CPSR_M (0x1fU)
853 #define CPSR_T (1U << 5)
854 #define CPSR_F (1U << 6)
855 #define CPSR_I (1U << 7)
856 #define CPSR_A (1U << 8)
857 #define CPSR_E (1U << 9)
858 #define CPSR_IT_2_7 (0xfc00U)
859 #define CPSR_GE (0xfU << 16)
860 #define CPSR_IL (1U << 20)
861 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
862  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
863  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
864  * where it is live state but not accessible to the AArch32 code.
865  */
866 #define CPSR_RESERVED (0x7U << 21)
867 #define CPSR_J (1U << 24)
868 #define CPSR_IT_0_1 (3U << 25)
869 #define CPSR_Q (1U << 27)
870 #define CPSR_V (1U << 28)
871 #define CPSR_C (1U << 29)
872 #define CPSR_Z (1U << 30)
873 #define CPSR_N (1U << 31)
874 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
875 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
876 
877 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
878 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
879     | CPSR_NZCV)
880 /* Bits writable in user mode.  */
881 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
882 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
883 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
884 /* Mask of bits which may be set by exception return copying them from SPSR */
885 #define CPSR_ERET_MASK (~CPSR_RESERVED)
886 
887 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
888 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
889 #define TTBCR_PD0    (1U << 4)
890 #define TTBCR_PD1    (1U << 5)
891 #define TTBCR_EPD0   (1U << 7)
892 #define TTBCR_IRGN0  (3U << 8)
893 #define TTBCR_ORGN0  (3U << 10)
894 #define TTBCR_SH0    (3U << 12)
895 #define TTBCR_T1SZ   (3U << 16)
896 #define TTBCR_A1     (1U << 22)
897 #define TTBCR_EPD1   (1U << 23)
898 #define TTBCR_IRGN1  (3U << 24)
899 #define TTBCR_ORGN1  (3U << 26)
900 #define TTBCR_SH1    (1U << 28)
901 #define TTBCR_EAE    (1U << 31)
902 
903 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
904  * Only these are valid when in AArch64 mode; in
905  * AArch32 mode SPSRs are basically CPSR-format.
906  */
907 #define PSTATE_SP (1U)
908 #define PSTATE_M (0xFU)
909 #define PSTATE_nRW (1U << 4)
910 #define PSTATE_F (1U << 6)
911 #define PSTATE_I (1U << 7)
912 #define PSTATE_A (1U << 8)
913 #define PSTATE_D (1U << 9)
914 #define PSTATE_IL (1U << 20)
915 #define PSTATE_SS (1U << 21)
916 #define PSTATE_V (1U << 28)
917 #define PSTATE_C (1U << 29)
918 #define PSTATE_Z (1U << 30)
919 #define PSTATE_N (1U << 31)
920 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
921 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
922 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
923 /* Mode values for AArch64 */
924 #define PSTATE_MODE_EL3h 13
925 #define PSTATE_MODE_EL3t 12
926 #define PSTATE_MODE_EL2h 9
927 #define PSTATE_MODE_EL2t 8
928 #define PSTATE_MODE_EL1h 5
929 #define PSTATE_MODE_EL1t 4
930 #define PSTATE_MODE_EL0t 0
931 
932 /* Map EL and handler into a PSTATE_MODE.  */
933 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
934 {
935     return (el << 2) | handler;
936 }
937 
938 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
939  * interprocessing, so we don't attempt to sync with the cpsr state used by
940  * the 32 bit decoder.
941  */
942 static inline uint32_t pstate_read(CPUARMState *env)
943 {
944     int ZF;
945 
946     ZF = (env->ZF == 0);
947     return (env->NF & 0x80000000) | (ZF << 30)
948         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
949         | env->pstate | env->daif;
950 }
951 
952 static inline void pstate_write(CPUARMState *env, uint32_t val)
953 {
954     env->ZF = (~val) & PSTATE_Z;
955     env->NF = val;
956     env->CF = (val >> 29) & 1;
957     env->VF = (val << 3) & 0x80000000;
958     env->daif = val & PSTATE_DAIF;
959     env->pstate = val & ~CACHED_PSTATE_BITS;
960 }
961 
962 /* Return the current CPSR value.  */
963 uint32_t cpsr_read(CPUARMState *env);
964 
965 typedef enum CPSRWriteType {
966     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
967     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
968     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
969     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
970 } CPSRWriteType;
971 
972 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
973 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
974                 CPSRWriteType write_type);
975 
976 /* Return the current xPSR value.  */
977 static inline uint32_t xpsr_read(CPUARMState *env)
978 {
979     int ZF;
980     ZF = (env->ZF == 0);
981     return (env->NF & 0x80000000) | (ZF << 30)
982         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
983         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
984         | ((env->condexec_bits & 0xfc) << 8)
985         | env->v7m.exception;
986 }
987 
988 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
989 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
990 {
991     if (mask & CPSR_NZCV) {
992         env->ZF = (~val) & CPSR_Z;
993         env->NF = val;
994         env->CF = (val >> 29) & 1;
995         env->VF = (val << 3) & 0x80000000;
996     }
997     if (mask & CPSR_Q)
998         env->QF = ((val & CPSR_Q) != 0);
999     if (mask & (1 << 24))
1000         env->thumb = ((val & (1 << 24)) != 0);
1001     if (mask & CPSR_IT_0_1) {
1002         env->condexec_bits &= ~3;
1003         env->condexec_bits |= (val >> 25) & 3;
1004     }
1005     if (mask & CPSR_IT_2_7) {
1006         env->condexec_bits &= 3;
1007         env->condexec_bits |= (val >> 8) & 0xfc;
1008     }
1009     if (mask & 0x1ff) {
1010         env->v7m.exception = val & 0x1ff;
1011     }
1012 }
1013 
1014 #define HCR_VM        (1ULL << 0)
1015 #define HCR_SWIO      (1ULL << 1)
1016 #define HCR_PTW       (1ULL << 2)
1017 #define HCR_FMO       (1ULL << 3)
1018 #define HCR_IMO       (1ULL << 4)
1019 #define HCR_AMO       (1ULL << 5)
1020 #define HCR_VF        (1ULL << 6)
1021 #define HCR_VI        (1ULL << 7)
1022 #define HCR_VSE       (1ULL << 8)
1023 #define HCR_FB        (1ULL << 9)
1024 #define HCR_BSU_MASK  (3ULL << 10)
1025 #define HCR_DC        (1ULL << 12)
1026 #define HCR_TWI       (1ULL << 13)
1027 #define HCR_TWE       (1ULL << 14)
1028 #define HCR_TID0      (1ULL << 15)
1029 #define HCR_TID1      (1ULL << 16)
1030 #define HCR_TID2      (1ULL << 17)
1031 #define HCR_TID3      (1ULL << 18)
1032 #define HCR_TSC       (1ULL << 19)
1033 #define HCR_TIDCP     (1ULL << 20)
1034 #define HCR_TACR      (1ULL << 21)
1035 #define HCR_TSW       (1ULL << 22)
1036 #define HCR_TPC       (1ULL << 23)
1037 #define HCR_TPU       (1ULL << 24)
1038 #define HCR_TTLB      (1ULL << 25)
1039 #define HCR_TVM       (1ULL << 26)
1040 #define HCR_TGE       (1ULL << 27)
1041 #define HCR_TDZ       (1ULL << 28)
1042 #define HCR_HCD       (1ULL << 29)
1043 #define HCR_TRVM      (1ULL << 30)
1044 #define HCR_RW        (1ULL << 31)
1045 #define HCR_CD        (1ULL << 32)
1046 #define HCR_ID        (1ULL << 33)
1047 #define HCR_MASK      ((1ULL << 34) - 1)
1048 
1049 #define SCR_NS                (1U << 0)
1050 #define SCR_IRQ               (1U << 1)
1051 #define SCR_FIQ               (1U << 2)
1052 #define SCR_EA                (1U << 3)
1053 #define SCR_FW                (1U << 4)
1054 #define SCR_AW                (1U << 5)
1055 #define SCR_NET               (1U << 6)
1056 #define SCR_SMD               (1U << 7)
1057 #define SCR_HCE               (1U << 8)
1058 #define SCR_SIF               (1U << 9)
1059 #define SCR_RW                (1U << 10)
1060 #define SCR_ST                (1U << 11)
1061 #define SCR_TWI               (1U << 12)
1062 #define SCR_TWE               (1U << 13)
1063 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1064 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1065 
1066 /* Return the current FPSCR value.  */
1067 uint32_t vfp_get_fpscr(CPUARMState *env);
1068 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1069 
1070 /* For A64 the FPSCR is split into two logically distinct registers,
1071  * FPCR and FPSR. However since they still use non-overlapping bits
1072  * we store the underlying state in fpscr and just mask on read/write.
1073  */
1074 #define FPSR_MASK 0xf800009f
1075 #define FPCR_MASK 0x07f79f00
1076 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1077 {
1078     return vfp_get_fpscr(env) & FPSR_MASK;
1079 }
1080 
1081 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1082 {
1083     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1084     vfp_set_fpscr(env, new_fpscr);
1085 }
1086 
1087 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1088 {
1089     return vfp_get_fpscr(env) & FPCR_MASK;
1090 }
1091 
1092 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1093 {
1094     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1095     vfp_set_fpscr(env, new_fpscr);
1096 }
1097 
1098 enum arm_cpu_mode {
1099   ARM_CPU_MODE_USR = 0x10,
1100   ARM_CPU_MODE_FIQ = 0x11,
1101   ARM_CPU_MODE_IRQ = 0x12,
1102   ARM_CPU_MODE_SVC = 0x13,
1103   ARM_CPU_MODE_MON = 0x16,
1104   ARM_CPU_MODE_ABT = 0x17,
1105   ARM_CPU_MODE_HYP = 0x1a,
1106   ARM_CPU_MODE_UND = 0x1b,
1107   ARM_CPU_MODE_SYS = 0x1f
1108 };
1109 
1110 /* VFP system registers.  */
1111 #define ARM_VFP_FPSID   0
1112 #define ARM_VFP_FPSCR   1
1113 #define ARM_VFP_MVFR2   5
1114 #define ARM_VFP_MVFR1   6
1115 #define ARM_VFP_MVFR0   7
1116 #define ARM_VFP_FPEXC   8
1117 #define ARM_VFP_FPINST  9
1118 #define ARM_VFP_FPINST2 10
1119 
1120 /* iwMMXt coprocessor control registers.  */
1121 #define ARM_IWMMXT_wCID		0
1122 #define ARM_IWMMXT_wCon		1
1123 #define ARM_IWMMXT_wCSSF	2
1124 #define ARM_IWMMXT_wCASF	3
1125 #define ARM_IWMMXT_wCGR0	8
1126 #define ARM_IWMMXT_wCGR1	9
1127 #define ARM_IWMMXT_wCGR2	10
1128 #define ARM_IWMMXT_wCGR3	11
1129 
1130 /* V7M CCR bits */
1131 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1132 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1133 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1134 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1135 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1136 FIELD(V7M_CCR, STKALIGN, 9, 1)
1137 FIELD(V7M_CCR, DC, 16, 1)
1138 FIELD(V7M_CCR, IC, 17, 1)
1139 
1140 /* V7M CFSR bits for MMFSR */
1141 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1142 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1143 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1144 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1145 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1146 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1147 
1148 /* V7M CFSR bits for BFSR */
1149 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1150 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1151 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1152 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1153 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1154 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1155 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1156 
1157 /* V7M CFSR bits for UFSR */
1158 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1159 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1160 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1161 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1162 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1163 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1164 
1165 /* V7M HFSR bits */
1166 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1167 FIELD(V7M_HFSR, FORCED, 30, 1)
1168 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1169 
1170 /* V7M DFSR bits */
1171 FIELD(V7M_DFSR, HALTED, 0, 1)
1172 FIELD(V7M_DFSR, BKPT, 1, 1)
1173 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1174 FIELD(V7M_DFSR, VCATCH, 3, 1)
1175 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1176 
1177 /* v7M MPU_CTRL bits */
1178 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1179 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1180 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1181 
1182 /* If adding a feature bit which corresponds to a Linux ELF
1183  * HWCAP bit, remember to update the feature-bit-to-hwcap
1184  * mapping in linux-user/elfload.c:get_elf_hwcap().
1185  */
1186 enum arm_features {
1187     ARM_FEATURE_VFP,
1188     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1189     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1190     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1191     ARM_FEATURE_V6,
1192     ARM_FEATURE_V6K,
1193     ARM_FEATURE_V7,
1194     ARM_FEATURE_THUMB2,
1195     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1196     ARM_FEATURE_VFP3,
1197     ARM_FEATURE_VFP_FP16,
1198     ARM_FEATURE_NEON,
1199     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1200     ARM_FEATURE_M, /* Microcontroller profile.  */
1201     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1202     ARM_FEATURE_THUMB2EE,
1203     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1204     ARM_FEATURE_V4T,
1205     ARM_FEATURE_V5,
1206     ARM_FEATURE_STRONGARM,
1207     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1208     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1209     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1210     ARM_FEATURE_GENERIC_TIMER,
1211     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1212     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1213     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1214     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1215     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1216     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1217     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1218     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1219     ARM_FEATURE_V8,
1220     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1221     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1222     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1223     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1224     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1225     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1226     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1227     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1228     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1229     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1230     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1231     ARM_FEATURE_PMU, /* has PMU support */
1232     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1233 };
1234 
1235 static inline int arm_feature(CPUARMState *env, int feature)
1236 {
1237     return (env->features & (1ULL << feature)) != 0;
1238 }
1239 
1240 #if !defined(CONFIG_USER_ONLY)
1241 /* Return true if exception levels below EL3 are in secure state,
1242  * or would be following an exception return to that level.
1243  * Unlike arm_is_secure() (which is always a question about the
1244  * _current_ state of the CPU) this doesn't care about the current
1245  * EL or mode.
1246  */
1247 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1248 {
1249     if (arm_feature(env, ARM_FEATURE_EL3)) {
1250         return !(env->cp15.scr_el3 & SCR_NS);
1251     } else {
1252         /* If EL3 is not supported then the secure state is implementation
1253          * defined, in which case QEMU defaults to non-secure.
1254          */
1255         return false;
1256     }
1257 }
1258 
1259 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1260 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1261 {
1262     if (arm_feature(env, ARM_FEATURE_EL3)) {
1263         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1264             /* CPU currently in AArch64 state and EL3 */
1265             return true;
1266         } else if (!is_a64(env) &&
1267                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1268             /* CPU currently in AArch32 state and monitor mode */
1269             return true;
1270         }
1271     }
1272     return false;
1273 }
1274 
1275 /* Return true if the processor is in secure state */
1276 static inline bool arm_is_secure(CPUARMState *env)
1277 {
1278     if (arm_is_el3_or_mon(env)) {
1279         return true;
1280     }
1281     return arm_is_secure_below_el3(env);
1282 }
1283 
1284 #else
1285 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1286 {
1287     return false;
1288 }
1289 
1290 static inline bool arm_is_secure(CPUARMState *env)
1291 {
1292     return false;
1293 }
1294 #endif
1295 
1296 /* Return true if the specified exception level is running in AArch64 state. */
1297 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1298 {
1299     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1300      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1301      */
1302     assert(el >= 1 && el <= 3);
1303     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1304 
1305     /* The highest exception level is always at the maximum supported
1306      * register width, and then lower levels have a register width controlled
1307      * by bits in the SCR or HCR registers.
1308      */
1309     if (el == 3) {
1310         return aa64;
1311     }
1312 
1313     if (arm_feature(env, ARM_FEATURE_EL3)) {
1314         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1315     }
1316 
1317     if (el == 2) {
1318         return aa64;
1319     }
1320 
1321     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1322         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1323     }
1324 
1325     return aa64;
1326 }
1327 
1328 /* Function for determing whether guest cp register reads and writes should
1329  * access the secure or non-secure bank of a cp register.  When EL3 is
1330  * operating in AArch32 state, the NS-bit determines whether the secure
1331  * instance of a cp register should be used. When EL3 is AArch64 (or if
1332  * it doesn't exist at all) then there is no register banking, and all
1333  * accesses are to the non-secure version.
1334  */
1335 static inline bool access_secure_reg(CPUARMState *env)
1336 {
1337     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1338                 !arm_el_is_aa64(env, 3) &&
1339                 !(env->cp15.scr_el3 & SCR_NS));
1340 
1341     return ret;
1342 }
1343 
1344 /* Macros for accessing a specified CP register bank */
1345 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1346     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1347 
1348 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1349     do {                                                \
1350         if (_secure) {                                   \
1351             (_env)->cp15._regname##_s = (_val);            \
1352         } else {                                        \
1353             (_env)->cp15._regname##_ns = (_val);           \
1354         }                                               \
1355     } while (0)
1356 
1357 /* Macros for automatically accessing a specific CP register bank depending on
1358  * the current secure state of the system.  These macros are not intended for
1359  * supporting instruction translation reads/writes as these are dependent
1360  * solely on the SCR.NS bit and not the mode.
1361  */
1362 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1363     A32_BANKED_REG_GET((_env), _regname,                \
1364                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1365 
1366 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1367     A32_BANKED_REG_SET((_env), _regname,                                    \
1368                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1369                        (_val))
1370 
1371 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1372 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1373                                  uint32_t cur_el, bool secure);
1374 
1375 /* Interface between CPU and Interrupt controller.  */
1376 #ifndef CONFIG_USER_ONLY
1377 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1378 #else
1379 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1380 {
1381     return true;
1382 }
1383 #endif
1384 void armv7m_nvic_set_pending(void *opaque, int irq);
1385 void armv7m_nvic_acknowledge_irq(void *opaque);
1386 /**
1387  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1388  * @opaque: the NVIC
1389  * @irq: the exception number to complete
1390  *
1391  * Returns: -1 if the irq was not active
1392  *           1 if completing this irq brought us back to base (no active irqs)
1393  *           0 if there is still an irq active after this one was completed
1394  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1395  */
1396 int armv7m_nvic_complete_irq(void *opaque, int irq);
1397 
1398 /* Interface for defining coprocessor registers.
1399  * Registers are defined in tables of arm_cp_reginfo structs
1400  * which are passed to define_arm_cp_regs().
1401  */
1402 
1403 /* When looking up a coprocessor register we look for it
1404  * via an integer which encodes all of:
1405  *  coprocessor number
1406  *  Crn, Crm, opc1, opc2 fields
1407  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1408  *    or via MRRC/MCRR?)
1409  *  non-secure/secure bank (AArch32 only)
1410  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1411  * (In this case crn and opc2 should be zero.)
1412  * For AArch64, there is no 32/64 bit size distinction;
1413  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1414  * and 4 bit CRn and CRm. The encoding patterns are chosen
1415  * to be easy to convert to and from the KVM encodings, and also
1416  * so that the hashtable can contain both AArch32 and AArch64
1417  * registers (to allow for interprocessing where we might run
1418  * 32 bit code on a 64 bit core).
1419  */
1420 /* This bit is private to our hashtable cpreg; in KVM register
1421  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1422  * in the upper bits of the 64 bit ID.
1423  */
1424 #define CP_REG_AA64_SHIFT 28
1425 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1426 
1427 /* To enable banking of coprocessor registers depending on ns-bit we
1428  * add a bit to distinguish between secure and non-secure cpregs in the
1429  * hashtable.
1430  */
1431 #define CP_REG_NS_SHIFT 29
1432 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1433 
1434 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1435     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1436      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1437 
1438 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1439     (CP_REG_AA64_MASK |                                 \
1440      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1441      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1442      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1443      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1444      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1445      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1446 
1447 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1448  * version used as a key for the coprocessor register hashtable
1449  */
1450 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1451 {
1452     uint32_t cpregid = kvmid;
1453     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1454         cpregid |= CP_REG_AA64_MASK;
1455     } else {
1456         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1457             cpregid |= (1 << 15);
1458         }
1459 
1460         /* KVM is always non-secure so add the NS flag on AArch32 register
1461          * entries.
1462          */
1463          cpregid |= 1 << CP_REG_NS_SHIFT;
1464     }
1465     return cpregid;
1466 }
1467 
1468 /* Convert a truncated 32 bit hashtable key into the full
1469  * 64 bit KVM register ID.
1470  */
1471 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1472 {
1473     uint64_t kvmid;
1474 
1475     if (cpregid & CP_REG_AA64_MASK) {
1476         kvmid = cpregid & ~CP_REG_AA64_MASK;
1477         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1478     } else {
1479         kvmid = cpregid & ~(1 << 15);
1480         if (cpregid & (1 << 15)) {
1481             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1482         } else {
1483             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1484         }
1485     }
1486     return kvmid;
1487 }
1488 
1489 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1490  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1491  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1492  * TCG can assume the value to be constant (ie load at translate time)
1493  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1494  * indicates that the TB should not be ended after a write to this register
1495  * (the default is that the TB ends after cp writes). OVERRIDE permits
1496  * a register definition to override a previous definition for the
1497  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1498  * old must have the OVERRIDE bit set.
1499  * ALIAS indicates that this register is an alias view of some underlying
1500  * state which is also visible via another register, and that the other
1501  * register is handling migration and reset; registers marked ALIAS will not be
1502  * migrated but may have their state set by syncing of register state from KVM.
1503  * NO_RAW indicates that this register has no underlying state and does not
1504  * support raw access for state saving/loading; it will not be used for either
1505  * migration or KVM state synchronization. (Typically this is for "registers"
1506  * which are actually used as instructions for cache maintenance and so on.)
1507  * IO indicates that this register does I/O and therefore its accesses
1508  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1509  * registers which implement clocks or timers require this.
1510  */
1511 #define ARM_CP_SPECIAL 1
1512 #define ARM_CP_CONST 2
1513 #define ARM_CP_64BIT 4
1514 #define ARM_CP_SUPPRESS_TB_END 8
1515 #define ARM_CP_OVERRIDE 16
1516 #define ARM_CP_ALIAS 32
1517 #define ARM_CP_IO 64
1518 #define ARM_CP_NO_RAW 128
1519 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1520 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1521 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1522 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1523 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1524 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1525 /* Used only as a terminator for ARMCPRegInfo lists */
1526 #define ARM_CP_SENTINEL 0xffff
1527 /* Mask of only the flag bits in a type field */
1528 #define ARM_CP_FLAG_MASK 0xff
1529 
1530 /* Valid values for ARMCPRegInfo state field, indicating which of
1531  * the AArch32 and AArch64 execution states this register is visible in.
1532  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1533  * If the reginfo is declared to be visible in both states then a second
1534  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1535  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1536  * Note that we rely on the values of these enums as we iterate through
1537  * the various states in some places.
1538  */
1539 enum {
1540     ARM_CP_STATE_AA32 = 0,
1541     ARM_CP_STATE_AA64 = 1,
1542     ARM_CP_STATE_BOTH = 2,
1543 };
1544 
1545 /* ARM CP register secure state flags.  These flags identify security state
1546  * attributes for a given CP register entry.
1547  * The existence of both or neither secure and non-secure flags indicates that
1548  * the register has both a secure and non-secure hash entry.  A single one of
1549  * these flags causes the register to only be hashed for the specified
1550  * security state.
1551  * Although definitions may have any combination of the S/NS bits, each
1552  * registered entry will only have one to identify whether the entry is secure
1553  * or non-secure.
1554  */
1555 enum {
1556     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1557     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1558 };
1559 
1560 /* Return true if cptype is a valid type field. This is used to try to
1561  * catch errors where the sentinel has been accidentally left off the end
1562  * of a list of registers.
1563  */
1564 static inline bool cptype_valid(int cptype)
1565 {
1566     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1567         || ((cptype & ARM_CP_SPECIAL) &&
1568             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1569 }
1570 
1571 /* Access rights:
1572  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1573  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1574  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1575  * (ie any of the privileged modes in Secure state, or Monitor mode).
1576  * If a register is accessible in one privilege level it's always accessible
1577  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1578  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1579  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1580  * terminology a little and call this PL3.
1581  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1582  * with the ELx exception levels.
1583  *
1584  * If access permissions for a register are more complex than can be
1585  * described with these bits, then use a laxer set of restrictions, and
1586  * do the more restrictive/complex check inside a helper function.
1587  */
1588 #define PL3_R 0x80
1589 #define PL3_W 0x40
1590 #define PL2_R (0x20 | PL3_R)
1591 #define PL2_W (0x10 | PL3_W)
1592 #define PL1_R (0x08 | PL2_R)
1593 #define PL1_W (0x04 | PL2_W)
1594 #define PL0_R (0x02 | PL1_R)
1595 #define PL0_W (0x01 | PL1_W)
1596 
1597 #define PL3_RW (PL3_R | PL3_W)
1598 #define PL2_RW (PL2_R | PL2_W)
1599 #define PL1_RW (PL1_R | PL1_W)
1600 #define PL0_RW (PL0_R | PL0_W)
1601 
1602 /* Return the highest implemented Exception Level */
1603 static inline int arm_highest_el(CPUARMState *env)
1604 {
1605     if (arm_feature(env, ARM_FEATURE_EL3)) {
1606         return 3;
1607     }
1608     if (arm_feature(env, ARM_FEATURE_EL2)) {
1609         return 2;
1610     }
1611     return 1;
1612 }
1613 
1614 /* Return the current Exception Level (as per ARMv8; note that this differs
1615  * from the ARMv7 Privilege Level).
1616  */
1617 static inline int arm_current_el(CPUARMState *env)
1618 {
1619     if (arm_feature(env, ARM_FEATURE_M)) {
1620         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1621     }
1622 
1623     if (is_a64(env)) {
1624         return extract32(env->pstate, 2, 2);
1625     }
1626 
1627     switch (env->uncached_cpsr & 0x1f) {
1628     case ARM_CPU_MODE_USR:
1629         return 0;
1630     case ARM_CPU_MODE_HYP:
1631         return 2;
1632     case ARM_CPU_MODE_MON:
1633         return 3;
1634     default:
1635         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1636             /* If EL3 is 32-bit then all secure privileged modes run in
1637              * EL3
1638              */
1639             return 3;
1640         }
1641 
1642         return 1;
1643     }
1644 }
1645 
1646 typedef struct ARMCPRegInfo ARMCPRegInfo;
1647 
1648 typedef enum CPAccessResult {
1649     /* Access is permitted */
1650     CP_ACCESS_OK = 0,
1651     /* Access fails due to a configurable trap or enable which would
1652      * result in a categorized exception syndrome giving information about
1653      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1654      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1655      * PL1 if in EL0, otherwise to the current EL).
1656      */
1657     CP_ACCESS_TRAP = 1,
1658     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1659      * Note that this is not a catch-all case -- the set of cases which may
1660      * result in this failure is specifically defined by the architecture.
1661      */
1662     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1663     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1664     CP_ACCESS_TRAP_EL2 = 3,
1665     CP_ACCESS_TRAP_EL3 = 4,
1666     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1667     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1668     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1669     /* Access fails and results in an exception syndrome for an FP access,
1670      * trapped directly to EL2 or EL3
1671      */
1672     CP_ACCESS_TRAP_FP_EL2 = 7,
1673     CP_ACCESS_TRAP_FP_EL3 = 8,
1674 } CPAccessResult;
1675 
1676 /* Access functions for coprocessor registers. These cannot fail and
1677  * may not raise exceptions.
1678  */
1679 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1680 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1681                        uint64_t value);
1682 /* Access permission check functions for coprocessor registers. */
1683 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1684                                   const ARMCPRegInfo *opaque,
1685                                   bool isread);
1686 /* Hook function for register reset */
1687 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1688 
1689 #define CP_ANY 0xff
1690 
1691 /* Definition of an ARM coprocessor register */
1692 struct ARMCPRegInfo {
1693     /* Name of register (useful mainly for debugging, need not be unique) */
1694     const char *name;
1695     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1696      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1697      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1698      * will be decoded to this register. The register read and write
1699      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1700      * used by the program, so it is possible to register a wildcard and
1701      * then behave differently on read/write if necessary.
1702      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1703      * must both be zero.
1704      * For AArch64-visible registers, opc0 is also used.
1705      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1706      * way to distinguish (for KVM's benefit) guest-visible system registers
1707      * from demuxed ones provided to preserve the "no side effects on
1708      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1709      * visible (to match KVM's encoding); cp==0 will be converted to
1710      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1711      */
1712     uint8_t cp;
1713     uint8_t crn;
1714     uint8_t crm;
1715     uint8_t opc0;
1716     uint8_t opc1;
1717     uint8_t opc2;
1718     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1719     int state;
1720     /* Register type: ARM_CP_* bits/values */
1721     int type;
1722     /* Access rights: PL*_[RW] */
1723     int access;
1724     /* Security state: ARM_CP_SECSTATE_* bits/values */
1725     int secure;
1726     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1727      * this register was defined: can be used to hand data through to the
1728      * register read/write functions, since they are passed the ARMCPRegInfo*.
1729      */
1730     void *opaque;
1731     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1732      * fieldoffset is non-zero, the reset value of the register.
1733      */
1734     uint64_t resetvalue;
1735     /* Offset of the field in CPUARMState for this register.
1736      *
1737      * This is not needed if either:
1738      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1739      *  2. both readfn and writefn are specified
1740      */
1741     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1742 
1743     /* Offsets of the secure and non-secure fields in CPUARMState for the
1744      * register if it is banked.  These fields are only used during the static
1745      * registration of a register.  During hashing the bank associated
1746      * with a given security state is copied to fieldoffset which is used from
1747      * there on out.
1748      *
1749      * It is expected that register definitions use either fieldoffset or
1750      * bank_fieldoffsets in the definition but not both.  It is also expected
1751      * that both bank offsets are set when defining a banked register.  This
1752      * use indicates that a register is banked.
1753      */
1754     ptrdiff_t bank_fieldoffsets[2];
1755 
1756     /* Function for making any access checks for this register in addition to
1757      * those specified by the 'access' permissions bits. If NULL, no extra
1758      * checks required. The access check is performed at runtime, not at
1759      * translate time.
1760      */
1761     CPAccessFn *accessfn;
1762     /* Function for handling reads of this register. If NULL, then reads
1763      * will be done by loading from the offset into CPUARMState specified
1764      * by fieldoffset.
1765      */
1766     CPReadFn *readfn;
1767     /* Function for handling writes of this register. If NULL, then writes
1768      * will be done by writing to the offset into CPUARMState specified
1769      * by fieldoffset.
1770      */
1771     CPWriteFn *writefn;
1772     /* Function for doing a "raw" read; used when we need to copy
1773      * coprocessor state to the kernel for KVM or out for
1774      * migration. This only needs to be provided if there is also a
1775      * readfn and it has side effects (for instance clear-on-read bits).
1776      */
1777     CPReadFn *raw_readfn;
1778     /* Function for doing a "raw" write; used when we need to copy KVM
1779      * kernel coprocessor state into userspace, or for inbound
1780      * migration. This only needs to be provided if there is also a
1781      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1782      * or similar behaviour.
1783      */
1784     CPWriteFn *raw_writefn;
1785     /* Function for resetting the register. If NULL, then reset will be done
1786      * by writing resetvalue to the field specified in fieldoffset. If
1787      * fieldoffset is 0 then no reset will be done.
1788      */
1789     CPResetFn *resetfn;
1790 };
1791 
1792 /* Macros which are lvalues for the field in CPUARMState for the
1793  * ARMCPRegInfo *ri.
1794  */
1795 #define CPREG_FIELD32(env, ri) \
1796     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1797 #define CPREG_FIELD64(env, ri) \
1798     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1799 
1800 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1801 
1802 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1803                                     const ARMCPRegInfo *regs, void *opaque);
1804 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1805                                        const ARMCPRegInfo *regs, void *opaque);
1806 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1807 {
1808     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1809 }
1810 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1811 {
1812     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1813 }
1814 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1815 
1816 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1817 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1818                          uint64_t value);
1819 /* CPReadFn that can be used for read-as-zero behaviour */
1820 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1821 
1822 /* CPResetFn that does nothing, for use if no reset is required even
1823  * if fieldoffset is non zero.
1824  */
1825 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1826 
1827 /* Return true if this reginfo struct's field in the cpu state struct
1828  * is 64 bits wide.
1829  */
1830 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1831 {
1832     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1833 }
1834 
1835 static inline bool cp_access_ok(int current_el,
1836                                 const ARMCPRegInfo *ri, int isread)
1837 {
1838     return (ri->access >> ((current_el * 2) + isread)) & 1;
1839 }
1840 
1841 /* Raw read of a coprocessor register (as needed for migration, etc) */
1842 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1843 
1844 /**
1845  * write_list_to_cpustate
1846  * @cpu: ARMCPU
1847  *
1848  * For each register listed in the ARMCPU cpreg_indexes list, write
1849  * its value from the cpreg_values list into the ARMCPUState structure.
1850  * This updates TCG's working data structures from KVM data or
1851  * from incoming migration state.
1852  *
1853  * Returns: true if all register values were updated correctly,
1854  * false if some register was unknown or could not be written.
1855  * Note that we do not stop early on failure -- we will attempt
1856  * writing all registers in the list.
1857  */
1858 bool write_list_to_cpustate(ARMCPU *cpu);
1859 
1860 /**
1861  * write_cpustate_to_list:
1862  * @cpu: ARMCPU
1863  *
1864  * For each register listed in the ARMCPU cpreg_indexes list, write
1865  * its value from the ARMCPUState structure into the cpreg_values list.
1866  * This is used to copy info from TCG's working data structures into
1867  * KVM or for outbound migration.
1868  *
1869  * Returns: true if all register values were read correctly,
1870  * false if some register was unknown or could not be read.
1871  * Note that we do not stop early on failure -- we will attempt
1872  * reading all registers in the list.
1873  */
1874 bool write_cpustate_to_list(ARMCPU *cpu);
1875 
1876 #define ARM_CPUID_TI915T      0x54029152
1877 #define ARM_CPUID_TI925T      0x54029252
1878 
1879 #if defined(CONFIG_USER_ONLY)
1880 #define TARGET_PAGE_BITS 12
1881 #else
1882 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1883  * have to support 1K tiny pages.
1884  */
1885 #define TARGET_PAGE_BITS_VARY
1886 #define TARGET_PAGE_BITS_MIN 10
1887 #endif
1888 
1889 #if defined(TARGET_AARCH64)
1890 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1891 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1892 #else
1893 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1894 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1895 #endif
1896 
1897 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1898                                      unsigned int target_el)
1899 {
1900     CPUARMState *env = cs->env_ptr;
1901     unsigned int cur_el = arm_current_el(env);
1902     bool secure = arm_is_secure(env);
1903     bool pstate_unmasked;
1904     int8_t unmasked = 0;
1905 
1906     /* Don't take exceptions if they target a lower EL.
1907      * This check should catch any exceptions that would not be taken but left
1908      * pending.
1909      */
1910     if (cur_el > target_el) {
1911         return false;
1912     }
1913 
1914     switch (excp_idx) {
1915     case EXCP_FIQ:
1916         pstate_unmasked = !(env->daif & PSTATE_F);
1917         break;
1918 
1919     case EXCP_IRQ:
1920         pstate_unmasked = !(env->daif & PSTATE_I);
1921         break;
1922 
1923     case EXCP_VFIQ:
1924         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1925             /* VFIQs are only taken when hypervized and non-secure.  */
1926             return false;
1927         }
1928         return !(env->daif & PSTATE_F);
1929     case EXCP_VIRQ:
1930         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1931             /* VIRQs are only taken when hypervized and non-secure.  */
1932             return false;
1933         }
1934         return !(env->daif & PSTATE_I);
1935     default:
1936         g_assert_not_reached();
1937     }
1938 
1939     /* Use the target EL, current execution state and SCR/HCR settings to
1940      * determine whether the corresponding CPSR bit is used to mask the
1941      * interrupt.
1942      */
1943     if ((target_el > cur_el) && (target_el != 1)) {
1944         /* Exceptions targeting a higher EL may not be maskable */
1945         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1946             /* 64-bit masking rules are simple: exceptions to EL3
1947              * can't be masked, and exceptions to EL2 can only be
1948              * masked from Secure state. The HCR and SCR settings
1949              * don't affect the masking logic, only the interrupt routing.
1950              */
1951             if (target_el == 3 || !secure) {
1952                 unmasked = 1;
1953             }
1954         } else {
1955             /* The old 32-bit-only environment has a more complicated
1956              * masking setup. HCR and SCR bits not only affect interrupt
1957              * routing but also change the behaviour of masking.
1958              */
1959             bool hcr, scr;
1960 
1961             switch (excp_idx) {
1962             case EXCP_FIQ:
1963                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1964                  * we override the CPSR.F in determining if the exception is
1965                  * masked or not. If neither of these are set then we fall back
1966                  * to the CPSR.F setting otherwise we further assess the state
1967                  * below.
1968                  */
1969                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1970                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1971 
1972                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1973                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1974                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1975                  * when non-secure but only when FIQs are only routed to EL3.
1976                  */
1977                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1978                 break;
1979             case EXCP_IRQ:
1980                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1981                  * we may override the CPSR.I masking when in non-secure state.
1982                  * The SCR.IRQ setting has already been taken into consideration
1983                  * when setting the target EL, so it does not have a further
1984                  * affect here.
1985                  */
1986                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1987                 scr = false;
1988                 break;
1989             default:
1990                 g_assert_not_reached();
1991             }
1992 
1993             if ((scr || hcr) && !secure) {
1994                 unmasked = 1;
1995             }
1996         }
1997     }
1998 
1999     /* The PSTATE bits only mask the interrupt if we have not overriden the
2000      * ability above.
2001      */
2002     return unmasked || pstate_unmasked;
2003 }
2004 
2005 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
2006 
2007 #define cpu_signal_handler cpu_arm_signal_handler
2008 #define cpu_list arm_cpu_list
2009 
2010 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2011  *
2012  * If EL3 is 64-bit:
2013  *  + NonSecure EL1 & 0 stage 1
2014  *  + NonSecure EL1 & 0 stage 2
2015  *  + NonSecure EL2
2016  *  + Secure EL1 & EL0
2017  *  + Secure EL3
2018  * If EL3 is 32-bit:
2019  *  + NonSecure PL1 & 0 stage 1
2020  *  + NonSecure PL1 & 0 stage 2
2021  *  + NonSecure PL2
2022  *  + Secure PL0 & PL1
2023  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2024  *
2025  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2026  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2027  *     may differ in access permissions even if the VA->PA map is the same
2028  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2029  *     translation, which means that we have one mmu_idx that deals with two
2030  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2031  *     architecturally permitted]
2032  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2033  *     handling via the TLB. The only way to do a stage 1 translation without
2034  *     the immediate stage 2 translation is via the ATS or AT system insns,
2035  *     which can be slow-pathed and always do a page table walk.
2036  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2037  *     translation regimes, because they map reasonably well to each other
2038  *     and they can't both be active at the same time.
2039  * This gives us the following list of mmu_idx values:
2040  *
2041  * NS EL0 (aka NS PL0) stage 1+2
2042  * NS EL1 (aka NS PL1) stage 1+2
2043  * NS EL2 (aka NS PL2)
2044  * S EL3 (aka S PL1)
2045  * S EL0 (aka S PL0)
2046  * S EL1 (not used if EL3 is 32 bit)
2047  * NS EL0+1 stage 2
2048  *
2049  * (The last of these is an mmu_idx because we want to be able to use the TLB
2050  * for the accesses done as part of a stage 1 page table walk, rather than
2051  * having to walk the stage 2 page table over and over.)
2052  *
2053  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2054  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2055  * NS EL2 if we ever model a Cortex-R52).
2056  *
2057  * M profile CPUs are rather different as they do not have a true MMU.
2058  * They have the following different MMU indexes:
2059  *  User
2060  *  Privileged
2061  *  Execution priority negative (this is like privileged, but the
2062  *  MPU HFNMIENA bit means that it may have different access permission
2063  *  check results to normal privileged code, so can't share a TLB).
2064  *
2065  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2066  * are not quite the same -- different CPU types (most notably M profile
2067  * vs A/R profile) would like to use MMU indexes with different semantics,
2068  * but since we don't ever need to use all of those in a single CPU we
2069  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2070  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2071  * the same for any particular CPU.
2072  * Variables of type ARMMUIdx are always full values, and the core
2073  * index values are in variables of type 'int'.
2074  *
2075  * Our enumeration includes at the end some entries which are not "true"
2076  * mmu_idx values in that they don't have corresponding TLBs and are only
2077  * valid for doing slow path page table walks.
2078  *
2079  * The constant names here are patterned after the general style of the names
2080  * of the AT/ATS operations.
2081  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2082  */
2083 #define ARM_MMU_IDX_A 0x10 /* A profile */
2084 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2085 #define ARM_MMU_IDX_M 0x40 /* M profile */
2086 
2087 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2088 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2089 
2090 typedef enum ARMMMUIdx {
2091     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2092     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2093     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2094     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2095     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2096     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2097     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2098     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2099     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2100     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2101     /* Indexes below here don't have TLBs and are used only for AT system
2102      * instructions or for the first stage of an S12 page table walk.
2103      */
2104     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2105     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2106 } ARMMMUIdx;
2107 
2108 /* Bit macros for the core-mmu-index values for each index,
2109  * for use when calling tlb_flush_by_mmuidx() and friends.
2110  */
2111 typedef enum ARMMMUIdxBit {
2112     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2113     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2114     ARMMMUIdxBit_S1E2 = 1 << 2,
2115     ARMMMUIdxBit_S1E3 = 1 << 3,
2116     ARMMMUIdxBit_S1SE0 = 1 << 4,
2117     ARMMMUIdxBit_S1SE1 = 1 << 5,
2118     ARMMMUIdxBit_S2NS = 1 << 6,
2119     ARMMMUIdxBit_MUser = 1 << 0,
2120     ARMMMUIdxBit_MPriv = 1 << 1,
2121     ARMMMUIdxBit_MNegPri = 1 << 2,
2122 } ARMMMUIdxBit;
2123 
2124 #define MMU_USER_IDX 0
2125 
2126 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2127 {
2128     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2129 }
2130 
2131 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2132 {
2133     if (arm_feature(env, ARM_FEATURE_M)) {
2134         return mmu_idx | ARM_MMU_IDX_M;
2135     } else {
2136         return mmu_idx | ARM_MMU_IDX_A;
2137     }
2138 }
2139 
2140 /* Return the exception level we're running at if this is our mmu_idx */
2141 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2142 {
2143     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2144     case ARM_MMU_IDX_A:
2145         return mmu_idx & 3;
2146     case ARM_MMU_IDX_M:
2147         return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
2148     default:
2149         g_assert_not_reached();
2150     }
2151 }
2152 
2153 /* Determine the current mmu_idx to use for normal loads/stores */
2154 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2155 {
2156     int el = arm_current_el(env);
2157 
2158     if (arm_feature(env, ARM_FEATURE_M)) {
2159         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2160 
2161         /* Execution priority is negative if FAULTMASK is set or
2162          * we're in a HardFault or NMI handler.
2163          */
2164         if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2165             || env->daif & PSTATE_F) {
2166             return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
2167         }
2168 
2169         return arm_to_core_mmu_idx(mmu_idx);
2170     }
2171 
2172     if (el < 2 && arm_is_secure_below_el3(env)) {
2173         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2174     }
2175     return el;
2176 }
2177 
2178 /* Indexes used when registering address spaces with cpu_address_space_init */
2179 typedef enum ARMASIdx {
2180     ARMASIdx_NS = 0,
2181     ARMASIdx_S = 1,
2182 } ARMASIdx;
2183 
2184 /* Return the Exception Level targeted by debug exceptions. */
2185 static inline int arm_debug_target_el(CPUARMState *env)
2186 {
2187     bool secure = arm_is_secure(env);
2188     bool route_to_el2 = false;
2189 
2190     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2191         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2192                        env->cp15.mdcr_el2 & (1 << 8);
2193     }
2194 
2195     if (route_to_el2) {
2196         return 2;
2197     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2198                !arm_el_is_aa64(env, 3) && secure) {
2199         return 3;
2200     } else {
2201         return 1;
2202     }
2203 }
2204 
2205 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2206 {
2207     if (arm_is_secure(env)) {
2208         /* MDCR_EL3.SDD disables debug events from Secure state */
2209         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2210             || arm_current_el(env) == 3) {
2211             return false;
2212         }
2213     }
2214 
2215     if (arm_current_el(env) == arm_debug_target_el(env)) {
2216         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2217             || (env->daif & PSTATE_D)) {
2218             return false;
2219         }
2220     }
2221     return true;
2222 }
2223 
2224 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2225 {
2226     int el = arm_current_el(env);
2227 
2228     if (el == 0 && arm_el_is_aa64(env, 1)) {
2229         return aa64_generate_debug_exceptions(env);
2230     }
2231 
2232     if (arm_is_secure(env)) {
2233         int spd;
2234 
2235         if (el == 0 && (env->cp15.sder & 1)) {
2236             /* SDER.SUIDEN means debug exceptions from Secure EL0
2237              * are always enabled. Otherwise they are controlled by
2238              * SDCR.SPD like those from other Secure ELs.
2239              */
2240             return true;
2241         }
2242 
2243         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2244         switch (spd) {
2245         case 1:
2246             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2247         case 0:
2248             /* For 0b00 we return true if external secure invasive debug
2249              * is enabled. On real hardware this is controlled by external
2250              * signals to the core. QEMU always permits debug, and behaves
2251              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2252              */
2253             return true;
2254         case 2:
2255             return false;
2256         case 3:
2257             return true;
2258         }
2259     }
2260 
2261     return el != 2;
2262 }
2263 
2264 /* Return true if debugging exceptions are currently enabled.
2265  * This corresponds to what in ARM ARM pseudocode would be
2266  *    if UsingAArch32() then
2267  *        return AArch32.GenerateDebugExceptions()
2268  *    else
2269  *        return AArch64.GenerateDebugExceptions()
2270  * We choose to push the if() down into this function for clarity,
2271  * since the pseudocode has it at all callsites except for the one in
2272  * CheckSoftwareStep(), where it is elided because both branches would
2273  * always return the same value.
2274  *
2275  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2276  * don't yet implement those exception levels or their associated trap bits.
2277  */
2278 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2279 {
2280     if (env->aarch64) {
2281         return aa64_generate_debug_exceptions(env);
2282     } else {
2283         return aa32_generate_debug_exceptions(env);
2284     }
2285 }
2286 
2287 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2288  * implicitly means this always returns false in pre-v8 CPUs.)
2289  */
2290 static inline bool arm_singlestep_active(CPUARMState *env)
2291 {
2292     return extract32(env->cp15.mdscr_el1, 0, 1)
2293         && arm_el_is_aa64(env, arm_debug_target_el(env))
2294         && arm_generate_debug_exceptions(env);
2295 }
2296 
2297 static inline bool arm_sctlr_b(CPUARMState *env)
2298 {
2299     return
2300         /* We need not implement SCTLR.ITD in user-mode emulation, so
2301          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2302          * This lets people run BE32 binaries with "-cpu any".
2303          */
2304 #ifndef CONFIG_USER_ONLY
2305         !arm_feature(env, ARM_FEATURE_V7) &&
2306 #endif
2307         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2308 }
2309 
2310 /* Return true if the processor is in big-endian mode. */
2311 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2312 {
2313     int cur_el;
2314 
2315     /* In 32bit endianness is determined by looking at CPSR's E bit */
2316     if (!is_a64(env)) {
2317         return
2318 #ifdef CONFIG_USER_ONLY
2319             /* In system mode, BE32 is modelled in line with the
2320              * architecture (as word-invariant big-endianness), where loads
2321              * and stores are done little endian but from addresses which
2322              * are adjusted by XORing with the appropriate constant. So the
2323              * endianness to use for the raw data access is not affected by
2324              * SCTLR.B.
2325              * In user mode, however, we model BE32 as byte-invariant
2326              * big-endianness (because user-only code cannot tell the
2327              * difference), and so we need to use a data access endianness
2328              * that depends on SCTLR.B.
2329              */
2330             arm_sctlr_b(env) ||
2331 #endif
2332                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2333     }
2334 
2335     cur_el = arm_current_el(env);
2336 
2337     if (cur_el == 0) {
2338         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2339     }
2340 
2341     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2342 }
2343 
2344 #include "exec/cpu-all.h"
2345 
2346 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2347  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2348  * We put flags which are shared between 32 and 64 bit mode at the top
2349  * of the word, and flags which apply to only one mode at the bottom.
2350  */
2351 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2352 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2353 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2354 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2355 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2356 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2357 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2358 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2359 /* Target EL if we take a floating-point-disabled exception */
2360 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2361 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2362 
2363 /* Bit usage when in AArch32 state: */
2364 #define ARM_TBFLAG_THUMB_SHIFT      0
2365 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2366 #define ARM_TBFLAG_VECLEN_SHIFT     1
2367 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2368 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2369 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2370 #define ARM_TBFLAG_VFPEN_SHIFT      7
2371 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2372 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2373 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2374 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2375 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2376 /* We store the bottom two bits of the CPAR as TB flags and handle
2377  * checks on the other bits at runtime
2378  */
2379 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2380 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2381 /* Indicates whether cp register reads and writes by guest code should access
2382  * the secure or nonsecure bank of banked registers; note that this is not
2383  * the same thing as the current security state of the processor!
2384  */
2385 #define ARM_TBFLAG_NS_SHIFT         19
2386 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2387 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2388 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2389 /* For M profile only, Handler (ie not Thread) mode */
2390 #define ARM_TBFLAG_HANDLER_SHIFT    21
2391 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2392 
2393 /* Bit usage when in AArch64 state */
2394 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2395 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2396 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2397 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2398 
2399 /* some convenience accessor macros */
2400 #define ARM_TBFLAG_AARCH64_STATE(F) \
2401     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2402 #define ARM_TBFLAG_MMUIDX(F) \
2403     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2404 #define ARM_TBFLAG_SS_ACTIVE(F) \
2405     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2406 #define ARM_TBFLAG_PSTATE_SS(F) \
2407     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2408 #define ARM_TBFLAG_FPEXC_EL(F) \
2409     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2410 #define ARM_TBFLAG_THUMB(F) \
2411     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2412 #define ARM_TBFLAG_VECLEN(F) \
2413     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2414 #define ARM_TBFLAG_VECSTRIDE(F) \
2415     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2416 #define ARM_TBFLAG_VFPEN(F) \
2417     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2418 #define ARM_TBFLAG_CONDEXEC(F) \
2419     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2420 #define ARM_TBFLAG_SCTLR_B(F) \
2421     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2422 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2423     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2424 #define ARM_TBFLAG_NS(F) \
2425     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2426 #define ARM_TBFLAG_BE_DATA(F) \
2427     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2428 #define ARM_TBFLAG_HANDLER(F) \
2429     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2430 #define ARM_TBFLAG_TBI0(F) \
2431     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2432 #define ARM_TBFLAG_TBI1(F) \
2433     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2434 
2435 static inline bool bswap_code(bool sctlr_b)
2436 {
2437 #ifdef CONFIG_USER_ONLY
2438     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2439      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2440      * would also end up as a mixed-endian mode with BE code, LE data.
2441      */
2442     return
2443 #ifdef TARGET_WORDS_BIGENDIAN
2444         1 ^
2445 #endif
2446         sctlr_b;
2447 #else
2448     /* All code access in ARM is little endian, and there are no loaders
2449      * doing swaps that need to be reversed
2450      */
2451     return 0;
2452 #endif
2453 }
2454 
2455 /* Return the exception level to which FP-disabled exceptions should
2456  * be taken, or 0 if FP is enabled.
2457  */
2458 static inline int fp_exception_el(CPUARMState *env)
2459 {
2460     int fpen;
2461     int cur_el = arm_current_el(env);
2462 
2463     /* CPACR and the CPTR registers don't exist before v6, so FP is
2464      * always accessible
2465      */
2466     if (!arm_feature(env, ARM_FEATURE_V6)) {
2467         return 0;
2468     }
2469 
2470     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2471      * 0, 2 : trap EL0 and EL1/PL1 accesses
2472      * 1    : trap only EL0 accesses
2473      * 3    : trap no accesses
2474      */
2475     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2476     switch (fpen) {
2477     case 0:
2478     case 2:
2479         if (cur_el == 0 || cur_el == 1) {
2480             /* Trap to PL1, which might be EL1 or EL3 */
2481             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2482                 return 3;
2483             }
2484             return 1;
2485         }
2486         if (cur_el == 3 && !is_a64(env)) {
2487             /* Secure PL1 running at EL3 */
2488             return 3;
2489         }
2490         break;
2491     case 1:
2492         if (cur_el == 0) {
2493             return 1;
2494         }
2495         break;
2496     case 3:
2497         break;
2498     }
2499 
2500     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2501      * check because zero bits in the registers mean "don't trap".
2502      */
2503 
2504     /* CPTR_EL2 : present in v7VE or v8 */
2505     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2506         && !arm_is_secure_below_el3(env)) {
2507         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2508         return 2;
2509     }
2510 
2511     /* CPTR_EL3 : present in v8 */
2512     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2513         /* Trap all FP ops to EL3 */
2514         return 3;
2515     }
2516 
2517     return 0;
2518 }
2519 
2520 #ifdef CONFIG_USER_ONLY
2521 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2522 {
2523     return
2524 #ifdef TARGET_WORDS_BIGENDIAN
2525        1 ^
2526 #endif
2527        arm_cpu_data_is_big_endian(env);
2528 }
2529 #endif
2530 
2531 #ifndef CONFIG_USER_ONLY
2532 /**
2533  * arm_regime_tbi0:
2534  * @env: CPUARMState
2535  * @mmu_idx: MMU index indicating required translation regime
2536  *
2537  * Extracts the TBI0 value from the appropriate TCR for the current EL
2538  *
2539  * Returns: the TBI0 value.
2540  */
2541 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2542 
2543 /**
2544  * arm_regime_tbi1:
2545  * @env: CPUARMState
2546  * @mmu_idx: MMU index indicating required translation regime
2547  *
2548  * Extracts the TBI1 value from the appropriate TCR for the current EL
2549  *
2550  * Returns: the TBI1 value.
2551  */
2552 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2553 #else
2554 /* We can't handle tagged addresses properly in user-only mode */
2555 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2556 {
2557     return 0;
2558 }
2559 
2560 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2561 {
2562     return 0;
2563 }
2564 #endif
2565 
2566 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2567                                         target_ulong *cs_base, uint32_t *flags)
2568 {
2569     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2570     if (is_a64(env)) {
2571         *pc = env->pc;
2572         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2573         /* Get control bits for tagged addresses */
2574         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2575         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2576     } else {
2577         *pc = env->regs[15];
2578         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2579             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2580             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2581             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2582             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2583         if (!(access_secure_reg(env))) {
2584             *flags |= ARM_TBFLAG_NS_MASK;
2585         }
2586         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2587             || arm_el_is_aa64(env, 1)) {
2588             *flags |= ARM_TBFLAG_VFPEN_MASK;
2589         }
2590         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2591                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2592     }
2593 
2594     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2595 
2596     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2597      * states defined in the ARM ARM for software singlestep:
2598      *  SS_ACTIVE   PSTATE.SS   State
2599      *     0            x       Inactive (the TB flag for SS is always 0)
2600      *     1            0       Active-pending
2601      *     1            1       Active-not-pending
2602      */
2603     if (arm_singlestep_active(env)) {
2604         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2605         if (is_a64(env)) {
2606             if (env->pstate & PSTATE_SS) {
2607                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2608             }
2609         } else {
2610             if (env->uncached_cpsr & PSTATE_SS) {
2611                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2612             }
2613         }
2614     }
2615     if (arm_cpu_data_is_big_endian(env)) {
2616         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2617     }
2618     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2619 
2620     if (env->v7m.exception != 0) {
2621         *flags |= ARM_TBFLAG_HANDLER_MASK;
2622     }
2623 
2624     *cs_base = 0;
2625 }
2626 
2627 enum {
2628     QEMU_PSCI_CONDUIT_DISABLED = 0,
2629     QEMU_PSCI_CONDUIT_SMC = 1,
2630     QEMU_PSCI_CONDUIT_HVC = 2,
2631 };
2632 
2633 #ifndef CONFIG_USER_ONLY
2634 /* Return the address space index to use for a memory access */
2635 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2636 {
2637     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2638 }
2639 
2640 /* Return the AddressSpace to use for a memory access
2641  * (which depends on whether the access is S or NS, and whether
2642  * the board gave us a separate AddressSpace for S accesses).
2643  */
2644 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2645 {
2646     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2647 }
2648 #endif
2649 
2650 /**
2651  * arm_register_el_change_hook:
2652  * Register a hook function which will be called back whenever this
2653  * CPU changes exception level or mode. The hook function will be
2654  * passed a pointer to the ARMCPU and the opaque data pointer passed
2655  * to this function when the hook was registered.
2656  *
2657  * Note that we currently only support registering a single hook function,
2658  * and will assert if this function is called twice.
2659  * This facility is intended for the use of the GICv3 emulation.
2660  */
2661 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2662                                  void *opaque);
2663 
2664 /**
2665  * arm_get_el_change_hook_opaque:
2666  * Return the opaque data that will be used by the el_change_hook
2667  * for this CPU.
2668  */
2669 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2670 {
2671     return cpu->el_change_hook_opaque;
2672 }
2673 
2674 #endif
2675