xref: /openbmc/qemu/target/arm/cpu.h (revision 073d9f2c)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 
94 /* The usual mapping for an AArch64 system register to its AArch32
95  * counterpart is for the 32 bit world to have access to the lower
96  * half only (with writes leaving the upper half untouched). It's
97  * therefore useful to be able to pass TCG the offset of the least
98  * significant half of a uint64_t struct member.
99  */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107 
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113 
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141  * @cpregs_keys: Array that contains the corresponding Key of
142  * a given cpreg with the same order of the cpreg in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num_cpregs;
147     uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149 
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152     uint64_t cval; /* Timer CompareValue register */
153     uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155 
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP  2
159 #define GTIMER_SEC  3
160 #define NUM_GTIMERS 4
161 
162 typedef struct {
163     uint64_t raw_tcr;
164     uint32_t mask;
165     uint32_t base_mask;
166 } TCR;
167 
168 /* Define a maximum sized vector register.
169  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170  * For 64-bit, this is a 2048-bit SVE register.
171  *
172  * Note that the mapping between S, D, and Q views of the register bank
173  * differs between AArch64 and AArch32.
174  * In AArch32:
175  *  Qn = regs[n].d[1]:regs[n].d[0]
176  *  Dn = regs[n / 2].d[n & 1]
177  *  Sn = regs[n / 4].d[n % 4 / 2],
178  *       bits 31..0 for even n, and bits 63..32 for odd n
179  *       (and regs[16] to regs[31] are inaccessible)
180  * In AArch64:
181  *  Zn = regs[n].d[*]
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n].d[0]
184  *  Sn = regs[n].d[0] bits 31..0
185  *  Hn = regs[n].d[0] bits 15..0
186  *
187  * This corresponds to the architecturally defined mapping between
188  * the two execution states, and means we do not need to explicitly
189  * map these registers when changing states.
190  *
191  * Align the data for use with TCG host vector operations.
192  */
193 
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ    16
196 #else
197 # define ARM_MAX_VQ    1
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all.  */
206 typedef struct ARMPredicateReg {
207     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 
210 /* In AArch32 mode, PAC keys do not exist at all.  */
211 typedef struct ARMPACKey {
212     uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
215 
216 
217 typedef struct CPUARMState {
218     /* Regs for current mode.  */
219     uint32_t regs[16];
220 
221     /* 32/64 switch only happens when taking and returning from
222      * exceptions so the overlap semantics are taken care of then
223      * instead of having a complicated union.
224      */
225     /* Regs for A64 mode.  */
226     uint64_t xregs[32];
227     uint64_t pc;
228     /* PSTATE isn't an architectural register for ARMv8. However, it is
229      * convenient for us to assemble the underlying state into a 32 bit format
230      * identical to the architectural format used for the SPSR. (This is also
231      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232      * 'pstate' register are.) Of the PSTATE bits:
233      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234      *    semantics as for AArch32, as described in the comments on each field)
235      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
236      *  DAIF (exception masks) are kept in env->daif
237      *  all other bits are stored in their correct places in env->pstate
238      */
239     uint32_t pstate;
240     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
241 
242     /* Frequently accessed CPSR bits are stored separately for efficiency.
243        This contains all the other bits.  Use cpsr_{read,write} to access
244        the whole CPSR.  */
245     uint32_t uncached_cpsr;
246     uint32_t spsr;
247 
248     /* Banked registers.  */
249     uint64_t banked_spsr[8];
250     uint32_t banked_r13[8];
251     uint32_t banked_r14[8];
252 
253     /* These hold r8-r12.  */
254     uint32_t usr_regs[5];
255     uint32_t fiq_regs[5];
256 
257     /* cpsr flag cache for faster execution */
258     uint32_t CF; /* 0 or 1 */
259     uint32_t VF; /* V is the bit 31. All other bits are undefined */
260     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
261     uint32_t ZF; /* Z set if zero.  */
262     uint32_t QF; /* 0 or 1 */
263     uint32_t GE; /* cpsr[19:16] */
264     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
265     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
266     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
267 
268     uint64_t elr_el[4]; /* AArch64 exception link regs  */
269     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
270 
271     /* System control coprocessor (cp15) */
272     struct {
273         uint32_t c0_cpuid;
274         union { /* Cache size selection */
275             struct {
276                 uint64_t _unused_csselr0;
277                 uint64_t csselr_ns;
278                 uint64_t _unused_csselr1;
279                 uint64_t csselr_s;
280             };
281             uint64_t csselr_el[4];
282         };
283         union { /* System control register. */
284             struct {
285                 uint64_t _unused_sctlr;
286                 uint64_t sctlr_ns;
287                 uint64_t hsctlr;
288                 uint64_t sctlr_s;
289             };
290             uint64_t sctlr_el[4];
291         };
292         uint64_t cpacr_el1; /* Architectural feature access control register */
293         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
294         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
295         uint64_t sder; /* Secure debug enable register. */
296         uint32_t nsacr; /* Non-secure access control register. */
297         union { /* MMU translation table base 0. */
298             struct {
299                 uint64_t _unused_ttbr0_0;
300                 uint64_t ttbr0_ns;
301                 uint64_t _unused_ttbr0_1;
302                 uint64_t ttbr0_s;
303             };
304             uint64_t ttbr0_el[4];
305         };
306         union { /* MMU translation table base 1. */
307             struct {
308                 uint64_t _unused_ttbr1_0;
309                 uint64_t ttbr1_ns;
310                 uint64_t _unused_ttbr1_1;
311                 uint64_t ttbr1_s;
312             };
313             uint64_t ttbr1_el[4];
314         };
315         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
316         /* MMU translation table base control. */
317         TCR tcr_el[4];
318         TCR vtcr_el2; /* Virtualization Translation Control.  */
319         uint32_t c2_data; /* MPU data cacheable bits.  */
320         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
321         union { /* MMU domain access control register
322                  * MPU write buffer control.
323                  */
324             struct {
325                 uint64_t dacr_ns;
326                 uint64_t dacr_s;
327             };
328             struct {
329                 uint64_t dacr32_el2;
330             };
331         };
332         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
334         uint64_t hcr_el2; /* Hypervisor configuration register */
335         uint64_t scr_el3; /* Secure configuration register.  */
336         union { /* Fault status registers.  */
337             struct {
338                 uint64_t ifsr_ns;
339                 uint64_t ifsr_s;
340             };
341             struct {
342                 uint64_t ifsr32_el2;
343             };
344         };
345         union {
346             struct {
347                 uint64_t _unused_dfsr;
348                 uint64_t dfsr_ns;
349                 uint64_t hsr;
350                 uint64_t dfsr_s;
351             };
352             uint64_t esr_el[4];
353         };
354         uint32_t c6_region[8]; /* MPU base/size registers.  */
355         union { /* Fault address registers. */
356             struct {
357                 uint64_t _unused_far0;
358 #ifdef HOST_WORDS_BIGENDIAN
359                 uint32_t ifar_ns;
360                 uint32_t dfar_ns;
361                 uint32_t ifar_s;
362                 uint32_t dfar_s;
363 #else
364                 uint32_t dfar_ns;
365                 uint32_t ifar_ns;
366                 uint32_t dfar_s;
367                 uint32_t ifar_s;
368 #endif
369                 uint64_t _unused_far3;
370             };
371             uint64_t far_el[4];
372         };
373         uint64_t hpfar_el2;
374         uint64_t hstr_el2;
375         union { /* Translation result. */
376             struct {
377                 uint64_t _unused_par_0;
378                 uint64_t par_ns;
379                 uint64_t _unused_par_1;
380                 uint64_t par_s;
381             };
382             uint64_t par_el[4];
383         };
384 
385         uint32_t c9_insn; /* Cache lockdown registers.  */
386         uint32_t c9_data;
387         uint64_t c9_pmcr; /* performance monitor control register */
388         uint64_t c9_pmcnten; /* perf monitor counter enables */
389         uint64_t c9_pmovsr; /* perf monitor overflow status */
390         uint64_t c9_pmuserenr; /* perf monitor user enable */
391         uint64_t c9_pmselr; /* perf monitor counter selection register */
392         uint64_t c9_pminten; /* perf monitor interrupt enables */
393         union { /* Memory attribute redirection */
394             struct {
395 #ifdef HOST_WORDS_BIGENDIAN
396                 uint64_t _unused_mair_0;
397                 uint32_t mair1_ns;
398                 uint32_t mair0_ns;
399                 uint64_t _unused_mair_1;
400                 uint32_t mair1_s;
401                 uint32_t mair0_s;
402 #else
403                 uint64_t _unused_mair_0;
404                 uint32_t mair0_ns;
405                 uint32_t mair1_ns;
406                 uint64_t _unused_mair_1;
407                 uint32_t mair0_s;
408                 uint32_t mair1_s;
409 #endif
410             };
411             uint64_t mair_el[4];
412         };
413         union { /* vector base address register */
414             struct {
415                 uint64_t _unused_vbar;
416                 uint64_t vbar_ns;
417                 uint64_t hvbar;
418                 uint64_t vbar_s;
419             };
420             uint64_t vbar_el[4];
421         };
422         uint32_t mvbar; /* (monitor) vector base address register */
423         struct { /* FCSE PID. */
424             uint32_t fcseidr_ns;
425             uint32_t fcseidr_s;
426         };
427         union { /* Context ID. */
428             struct {
429                 uint64_t _unused_contextidr_0;
430                 uint64_t contextidr_ns;
431                 uint64_t _unused_contextidr_1;
432                 uint64_t contextidr_s;
433             };
434             uint64_t contextidr_el[4];
435         };
436         union { /* User RW Thread register. */
437             struct {
438                 uint64_t tpidrurw_ns;
439                 uint64_t tpidrprw_ns;
440                 uint64_t htpidr;
441                 uint64_t _tpidr_el3;
442             };
443             uint64_t tpidr_el[4];
444         };
445         /* The secure banks of these registers don't map anywhere */
446         uint64_t tpidrurw_s;
447         uint64_t tpidrprw_s;
448         uint64_t tpidruro_s;
449 
450         union { /* User RO Thread register. */
451             uint64_t tpidruro_ns;
452             uint64_t tpidrro_el[1];
453         };
454         uint64_t c14_cntfrq; /* Counter Frequency register */
455         uint64_t c14_cntkctl; /* Timer Control register */
456         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
457         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
458         ARMGenericTimer c14_timer[NUM_GTIMERS];
459         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
460         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
461         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
462         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
463         uint32_t c15_threadid; /* TI debugger thread-ID.  */
464         uint32_t c15_config_base_address; /* SCU base address.  */
465         uint32_t c15_diagnostic; /* diagnostic register */
466         uint32_t c15_power_diagnostic;
467         uint32_t c15_power_control; /* power control */
468         uint64_t dbgbvr[16]; /* breakpoint value registers */
469         uint64_t dbgbcr[16]; /* breakpoint control registers */
470         uint64_t dbgwvr[16]; /* watchpoint value registers */
471         uint64_t dbgwcr[16]; /* watchpoint control registers */
472         uint64_t mdscr_el1;
473         uint64_t oslsr_el1; /* OS Lock Status */
474         uint64_t mdcr_el2;
475         uint64_t mdcr_el3;
476         /* Stores the architectural value of the counter *the last time it was
477          * updated* by pmccntr_op_start. Accesses should always be surrounded
478          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
479          * architecturally-correct value is being read/set.
480          */
481         uint64_t c15_ccnt;
482         /* Stores the delta between the architectural value and the underlying
483          * cycle count during normal operation. It is used to update c15_ccnt
484          * to be the correct architectural value before accesses. During
485          * accesses, c15_ccnt_delta contains the underlying count being used
486          * for the access, after which it reverts to the delta value in
487          * pmccntr_op_finish.
488          */
489         uint64_t c15_ccnt_delta;
490         uint64_t c14_pmevcntr[31];
491         uint64_t c14_pmevcntr_delta[31];
492         uint64_t c14_pmevtyper[31];
493         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
494         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
495         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
496     } cp15;
497 
498     struct {
499         /* M profile has up to 4 stack pointers:
500          * a Main Stack Pointer and a Process Stack Pointer for each
501          * of the Secure and Non-Secure states. (If the CPU doesn't support
502          * the security extension then it has only two SPs.)
503          * In QEMU we always store the currently active SP in regs[13],
504          * and the non-active SP for the current security state in
505          * v7m.other_sp. The stack pointers for the inactive security state
506          * are stored in other_ss_msp and other_ss_psp.
507          * switch_v7m_security_state() is responsible for rearranging them
508          * when we change security state.
509          */
510         uint32_t other_sp;
511         uint32_t other_ss_msp;
512         uint32_t other_ss_psp;
513         uint32_t vecbase[M_REG_NUM_BANKS];
514         uint32_t basepri[M_REG_NUM_BANKS];
515         uint32_t control[M_REG_NUM_BANKS];
516         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
517         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
518         uint32_t hfsr; /* HardFault Status */
519         uint32_t dfsr; /* Debug Fault Status Register */
520         uint32_t sfsr; /* Secure Fault Status Register */
521         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
522         uint32_t bfar; /* BusFault Address */
523         uint32_t sfar; /* Secure Fault Address Register */
524         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
525         int exception;
526         uint32_t primask[M_REG_NUM_BANKS];
527         uint32_t faultmask[M_REG_NUM_BANKS];
528         uint32_t aircr; /* only holds r/w state if security extn implemented */
529         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
530         uint32_t csselr[M_REG_NUM_BANKS];
531         uint32_t scr[M_REG_NUM_BANKS];
532         uint32_t msplim[M_REG_NUM_BANKS];
533         uint32_t psplim[M_REG_NUM_BANKS];
534     } v7m;
535 
536     /* Information associated with an exception about to be taken:
537      * code which raises an exception must set cs->exception_index and
538      * the relevant parts of this structure; the cpu_do_interrupt function
539      * will then set the guest-visible registers as part of the exception
540      * entry process.
541      */
542     struct {
543         uint32_t syndrome; /* AArch64 format syndrome register */
544         uint32_t fsr; /* AArch32 format fault status register info */
545         uint64_t vaddress; /* virtual addr associated with exception, if any */
546         uint32_t target_el; /* EL the exception should be targeted for */
547         /* If we implement EL2 we will also need to store information
548          * about the intermediate physical address for stage 2 faults.
549          */
550     } exception;
551 
552     /* Information associated with an SError */
553     struct {
554         uint8_t pending;
555         uint8_t has_esr;
556         uint64_t esr;
557     } serror;
558 
559     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
560     uint32_t irq_line_state;
561 
562     /* Thumb-2 EE state.  */
563     uint32_t teecr;
564     uint32_t teehbr;
565 
566     /* VFP coprocessor state.  */
567     struct {
568         ARMVectorReg zregs[32];
569 
570 #ifdef TARGET_AARCH64
571         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
572 #define FFR_PRED_NUM 16
573         ARMPredicateReg pregs[17];
574         /* Scratch space for aa64 sve predicate temporary.  */
575         ARMPredicateReg preg_tmp;
576 #endif
577 
578         uint32_t xregs[16];
579         /* We store these fpcsr fields separately for convenience.  */
580         int vec_len;
581         int vec_stride;
582 
583         /* Scratch space for aa32 neon expansion.  */
584         uint32_t scratch[8];
585 
586         /* There are a number of distinct float control structures:
587          *
588          *  fp_status: is the "normal" fp status.
589          *  fp_status_fp16: used for half-precision calculations
590          *  standard_fp_status : the ARM "Standard FPSCR Value"
591          *
592          * Half-precision operations are governed by a separate
593          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594          * status structure to control this.
595          *
596          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597          * round-to-nearest and is used by any operations (generally
598          * Neon) which the architecture defines as controlled by the
599          * standard FPSCR value rather than the FPSCR.
600          *
601          * To avoid having to transfer exception bits around, we simply
602          * say that the FPSCR cumulative exception flags are the logical
603          * OR of the flags in the three fp statuses. This relies on the
604          * only thing which needs to read the exception flags being
605          * an explicit FPSCR read.
606          */
607         float_status fp_status;
608         float_status fp_status_f16;
609         float_status standard_fp_status;
610 
611         /* ZCR_EL[1-3] */
612         uint64_t zcr_el[4];
613     } vfp;
614     uint64_t exclusive_addr;
615     uint64_t exclusive_val;
616     uint64_t exclusive_high;
617 
618     /* iwMMXt coprocessor state.  */
619     struct {
620         uint64_t regs[16];
621         uint64_t val;
622 
623         uint32_t cregs[16];
624     } iwmmxt;
625 
626 #ifdef TARGET_AARCH64
627     ARMPACKey apia_key;
628     ARMPACKey apib_key;
629     ARMPACKey apda_key;
630     ARMPACKey apdb_key;
631     ARMPACKey apga_key;
632 #endif
633 
634 #if defined(CONFIG_USER_ONLY)
635     /* For usermode syscall translation.  */
636     int eabi;
637 #endif
638 
639     struct CPUBreakpoint *cpu_breakpoint[16];
640     struct CPUWatchpoint *cpu_watchpoint[16];
641 
642     /* Fields up to this point are cleared by a CPU reset */
643     struct {} end_reset_fields;
644 
645     CPU_COMMON
646 
647     /* Fields after CPU_COMMON are preserved across CPU reset. */
648 
649     /* Internal CPU feature flags.  */
650     uint64_t features;
651 
652     /* PMSAv7 MPU */
653     struct {
654         uint32_t *drbar;
655         uint32_t *drsr;
656         uint32_t *dracr;
657         uint32_t rnr[M_REG_NUM_BANKS];
658     } pmsav7;
659 
660     /* PMSAv8 MPU */
661     struct {
662         /* The PMSAv8 implementation also shares some PMSAv7 config
663          * and state:
664          *  pmsav7.rnr (region number register)
665          *  pmsav7_dregion (number of configured regions)
666          */
667         uint32_t *rbar[M_REG_NUM_BANKS];
668         uint32_t *rlar[M_REG_NUM_BANKS];
669         uint32_t mair0[M_REG_NUM_BANKS];
670         uint32_t mair1[M_REG_NUM_BANKS];
671     } pmsav8;
672 
673     /* v8M SAU */
674     struct {
675         uint32_t *rbar;
676         uint32_t *rlar;
677         uint32_t rnr;
678         uint32_t ctrl;
679     } sau;
680 
681     void *nvic;
682     const struct arm_boot_info *boot_info;
683     /* Store GICv3CPUState to access from this struct */
684     void *gicv3state;
685 } CPUARMState;
686 
687 /**
688  * ARMELChangeHookFn:
689  * type of a function which can be registered via arm_register_el_change_hook()
690  * to get callbacks when the CPU changes its exception level or mode.
691  */
692 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693 typedef struct ARMELChangeHook ARMELChangeHook;
694 struct ARMELChangeHook {
695     ARMELChangeHookFn *hook;
696     void *opaque;
697     QLIST_ENTRY(ARMELChangeHook) node;
698 };
699 
700 /* These values map onto the return values for
701  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702 typedef enum ARMPSCIState {
703     PSCI_ON = 0,
704     PSCI_OFF = 1,
705     PSCI_ON_PENDING = 2
706 } ARMPSCIState;
707 
708 typedef struct ARMISARegisters ARMISARegisters;
709 
710 /**
711  * ARMCPU:
712  * @env: #CPUARMState
713  *
714  * An ARM CPU core.
715  */
716 struct ARMCPU {
717     /*< private >*/
718     CPUState parent_obj;
719     /*< public >*/
720 
721     CPUARMState env;
722 
723     /* Coprocessor information */
724     GHashTable *cp_regs;
725     /* For marshalling (mostly coprocessor) register state between the
726      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
727      * we use these arrays.
728      */
729     /* List of register indexes managed via these arrays; (full KVM style
730      * 64 bit indexes, not CPRegInfo 32 bit indexes)
731      */
732     uint64_t *cpreg_indexes;
733     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
734     uint64_t *cpreg_values;
735     /* Length of the indexes, values, reset_values arrays */
736     int32_t cpreg_array_len;
737     /* These are used only for migration: incoming data arrives in
738      * these fields and is sanity checked in post_load before copying
739      * to the working data structures above.
740      */
741     uint64_t *cpreg_vmstate_indexes;
742     uint64_t *cpreg_vmstate_values;
743     int32_t cpreg_vmstate_array_len;
744 
745     DynamicGDBXMLInfo dyn_xml;
746 
747     /* Timers used by the generic (architected) timer */
748     QEMUTimer *gt_timer[NUM_GTIMERS];
749     /* GPIO outputs for generic timer */
750     qemu_irq gt_timer_outputs[NUM_GTIMERS];
751     /* GPIO output for GICv3 maintenance interrupt signal */
752     qemu_irq gicv3_maintenance_interrupt;
753     /* GPIO output for the PMU interrupt */
754     qemu_irq pmu_interrupt;
755 
756     /* MemoryRegion to use for secure physical accesses */
757     MemoryRegion *secure_memory;
758 
759     /* For v8M, pointer to the IDAU interface provided by board/SoC */
760     Object *idau;
761 
762     /* 'compatible' string for this CPU for Linux device trees */
763     const char *dtb_compatible;
764 
765     /* PSCI version for this CPU
766      * Bits[31:16] = Major Version
767      * Bits[15:0] = Minor Version
768      */
769     uint32_t psci_version;
770 
771     /* Should CPU start in PSCI powered-off state? */
772     bool start_powered_off;
773 
774     /* Current power state, access guarded by BQL */
775     ARMPSCIState power_state;
776 
777     /* CPU has virtualization extension */
778     bool has_el2;
779     /* CPU has security extension */
780     bool has_el3;
781     /* CPU has PMU (Performance Monitor Unit) */
782     bool has_pmu;
783 
784     /* CPU has memory protection unit */
785     bool has_mpu;
786     /* PMSAv7 MPU number of supported regions */
787     uint32_t pmsav7_dregion;
788     /* v8M SAU number of supported regions */
789     uint32_t sau_sregion;
790 
791     /* PSCI conduit used to invoke PSCI methods
792      * 0 - disabled, 1 - smc, 2 - hvc
793      */
794     uint32_t psci_conduit;
795 
796     /* For v8M, initial value of the Secure VTOR */
797     uint32_t init_svtor;
798 
799     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
800      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
801      */
802     uint32_t kvm_target;
803 
804     /* KVM init features for this CPU */
805     uint32_t kvm_init_features[7];
806 
807     /* Uniprocessor system with MP extensions */
808     bool mp_is_up;
809 
810     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
811      * and the probe failed (so we need to report the error in realize)
812      */
813     bool host_cpu_probe_failed;
814 
815     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
816      * register.
817      */
818     int32_t core_count;
819 
820     /* The instance init functions for implementation-specific subclasses
821      * set these fields to specify the implementation-dependent values of
822      * various constant registers and reset values of non-constant
823      * registers.
824      * Some of these might become QOM properties eventually.
825      * Field names match the official register names as defined in the
826      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
827      * is used for reset values of non-constant registers; no reset_
828      * prefix means a constant register.
829      * Some of these registers are split out into a substructure that
830      * is shared with the translators to control the ISA.
831      */
832     struct ARMISARegisters {
833         uint32_t id_isar0;
834         uint32_t id_isar1;
835         uint32_t id_isar2;
836         uint32_t id_isar3;
837         uint32_t id_isar4;
838         uint32_t id_isar5;
839         uint32_t id_isar6;
840         uint32_t mvfr0;
841         uint32_t mvfr1;
842         uint32_t mvfr2;
843         uint64_t id_aa64isar0;
844         uint64_t id_aa64isar1;
845         uint64_t id_aa64pfr0;
846         uint64_t id_aa64pfr1;
847         uint64_t id_aa64mmfr0;
848         uint64_t id_aa64mmfr1;
849     } isar;
850     uint32_t midr;
851     uint32_t revidr;
852     uint32_t reset_fpsid;
853     uint32_t ctr;
854     uint32_t reset_sctlr;
855     uint32_t id_pfr0;
856     uint32_t id_pfr1;
857     uint32_t id_dfr0;
858     uint64_t pmceid0;
859     uint64_t pmceid1;
860     uint32_t id_afr0;
861     uint32_t id_mmfr0;
862     uint32_t id_mmfr1;
863     uint32_t id_mmfr2;
864     uint32_t id_mmfr3;
865     uint32_t id_mmfr4;
866     uint64_t id_aa64dfr0;
867     uint64_t id_aa64dfr1;
868     uint64_t id_aa64afr0;
869     uint64_t id_aa64afr1;
870     uint32_t dbgdidr;
871     uint32_t clidr;
872     uint64_t mp_affinity; /* MP ID without feature bits */
873     /* The elements of this array are the CCSIDR values for each cache,
874      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
875      */
876     uint32_t ccsidr[16];
877     uint64_t reset_cbar;
878     uint32_t reset_auxcr;
879     bool reset_hivecs;
880     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
881     uint32_t dcz_blocksize;
882     uint64_t rvbar;
883 
884     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
885     int gic_num_lrs; /* number of list registers */
886     int gic_vpribits; /* number of virtual priority bits */
887     int gic_vprebits; /* number of virtual preemption bits */
888 
889     /* Whether the cfgend input is high (i.e. this CPU should reset into
890      * big-endian mode).  This setting isn't used directly: instead it modifies
891      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
892      * architecture version.
893      */
894     bool cfgend;
895 
896     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
897     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
898 
899     int32_t node_id; /* NUMA node this CPU belongs to */
900 
901     /* Used to synchronize KVM and QEMU in-kernel device levels */
902     uint8_t device_irq_level;
903 
904     /* Used to set the maximum vector length the cpu will support.  */
905     uint32_t sve_max_vq;
906 };
907 
908 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
909 {
910     return container_of(env, ARMCPU, env);
911 }
912 
913 void arm_cpu_post_init(Object *obj);
914 
915 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
916 
917 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
918 
919 #define ENV_OFFSET offsetof(ARMCPU, env)
920 
921 #ifndef CONFIG_USER_ONLY
922 extern const struct VMStateDescription vmstate_arm_cpu;
923 #endif
924 
925 void arm_cpu_do_interrupt(CPUState *cpu);
926 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
927 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
928 
929 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
930                         int flags);
931 
932 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
933                                          MemTxAttrs *attrs);
934 
935 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
936 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
937 
938 /* Dynamically generates for gdb stub an XML description of the sysregs from
939  * the cp_regs hashtable. Returns the registered sysregs number.
940  */
941 int arm_gen_dynamic_xml(CPUState *cpu);
942 
943 /* Returns the dynamically generated XML for the gdb stub.
944  * Returns a pointer to the XML contents for the specified XML file or NULL
945  * if the XML name doesn't match the predefined one.
946  */
947 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
948 
949 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
950                              int cpuid, void *opaque);
951 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
952                              int cpuid, void *opaque);
953 
954 #ifdef TARGET_AARCH64
955 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
956 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
957 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
958 void aarch64_sve_change_el(CPUARMState *env, int old_el,
959                            int new_el, bool el0_a64);
960 #else
961 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
962 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
963                                          int n, bool a)
964 { }
965 #endif
966 
967 target_ulong do_arm_semihosting(CPUARMState *env);
968 void aarch64_sync_32_to_64(CPUARMState *env);
969 void aarch64_sync_64_to_32(CPUARMState *env);
970 
971 int fp_exception_el(CPUARMState *env, int cur_el);
972 int sve_exception_el(CPUARMState *env, int cur_el);
973 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
974 
975 static inline bool is_a64(CPUARMState *env)
976 {
977     return env->aarch64;
978 }
979 
980 /* you can call this signal handler from your SIGBUS and SIGSEGV
981    signal handlers to inform the virtual CPU of exceptions. non zero
982    is returned if the signal was handled by the virtual CPU.  */
983 int cpu_arm_signal_handler(int host_signum, void *pinfo,
984                            void *puc);
985 
986 /**
987  * pmccntr_op_start/finish
988  * @env: CPUARMState
989  *
990  * Convert the counter in the PMCCNTR between its delta form (the typical mode
991  * when it's enabled) and the guest-visible value. These two calls must always
992  * surround any action which might affect the counter.
993  */
994 void pmccntr_op_start(CPUARMState *env);
995 void pmccntr_op_finish(CPUARMState *env);
996 
997 /**
998  * pmu_op_start/finish
999  * @env: CPUARMState
1000  *
1001  * Convert all PMU counters between their delta form (the typical mode when
1002  * they are enabled) and the guest-visible values. These two calls must
1003  * surround any action which might affect the counters.
1004  */
1005 void pmu_op_start(CPUARMState *env);
1006 void pmu_op_finish(CPUARMState *env);
1007 
1008 /**
1009  * Functions to register as EL change hooks for PMU mode filtering
1010  */
1011 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1012 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1013 
1014 /*
1015  * get_pmceid
1016  * @env: CPUARMState
1017  * @which: which PMCEID register to return (0 or 1)
1018  *
1019  * Return the PMCEID[01]_EL0 register values corresponding to the counters
1020  * which are supported given the current configuration
1021  */
1022 uint64_t get_pmceid(CPUARMState *env, unsigned which);
1023 
1024 /* SCTLR bit meanings. Several bits have been reused in newer
1025  * versions of the architecture; in that case we define constants
1026  * for both old and new bit meanings. Code which tests against those
1027  * bits should probably check or otherwise arrange that the CPU
1028  * is the architectural version it expects.
1029  */
1030 #define SCTLR_M       (1U << 0)
1031 #define SCTLR_A       (1U << 1)
1032 #define SCTLR_C       (1U << 2)
1033 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1034 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1035 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1036 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1037 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1038 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1039 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1040 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1041 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1042 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1043 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1044 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1045 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1046 #define SCTLR_SED     (1U << 8) /* v8 onward */
1047 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1048 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1049 #define SCTLR_F       (1U << 10) /* up to v6 */
1050 #define SCTLR_SW      (1U << 10) /* v7, RES0 in v8 */
1051 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1052 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1053 #define SCTLR_I       (1U << 12)
1054 #define SCTLR_V       (1U << 13) /* AArch32 only */
1055 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1056 #define SCTLR_RR      (1U << 14) /* up to v7 */
1057 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1058 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1059 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1060 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1061 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1062 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1063 #define SCTLR_BR      (1U << 17) /* PMSA only */
1064 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1065 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1066 #define SCTLR_WXN     (1U << 19)
1067 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1068 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1069 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1070 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1071 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1072 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1073 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1074 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1075 #define SCTLR_VE      (1U << 24) /* up to v7 */
1076 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1077 #define SCTLR_EE      (1U << 25)
1078 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1079 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1080 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1081 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1082 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1083 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1084 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1085 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1086 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1087 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1088 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1089 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1090 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1091 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1092 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1093 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1094 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1095 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1096 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1097 
1098 #define CPTR_TCPAC    (1U << 31)
1099 #define CPTR_TTA      (1U << 20)
1100 #define CPTR_TFP      (1U << 10)
1101 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1102 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1103 
1104 #define MDCR_EPMAD    (1U << 21)
1105 #define MDCR_EDAD     (1U << 20)
1106 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1107 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1108 #define MDCR_SDD      (1U << 16)
1109 #define MDCR_SPD      (3U << 14)
1110 #define MDCR_TDRA     (1U << 11)
1111 #define MDCR_TDOSA    (1U << 10)
1112 #define MDCR_TDA      (1U << 9)
1113 #define MDCR_TDE      (1U << 8)
1114 #define MDCR_HPME     (1U << 7)
1115 #define MDCR_TPM      (1U << 6)
1116 #define MDCR_TPMCR    (1U << 5)
1117 #define MDCR_HPMN     (0x1fU)
1118 
1119 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1120 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1121 
1122 #define CPSR_M (0x1fU)
1123 #define CPSR_T (1U << 5)
1124 #define CPSR_F (1U << 6)
1125 #define CPSR_I (1U << 7)
1126 #define CPSR_A (1U << 8)
1127 #define CPSR_E (1U << 9)
1128 #define CPSR_IT_2_7 (0xfc00U)
1129 #define CPSR_GE (0xfU << 16)
1130 #define CPSR_IL (1U << 20)
1131 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1132  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1133  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1134  * where it is live state but not accessible to the AArch32 code.
1135  */
1136 #define CPSR_RESERVED (0x7U << 21)
1137 #define CPSR_J (1U << 24)
1138 #define CPSR_IT_0_1 (3U << 25)
1139 #define CPSR_Q (1U << 27)
1140 #define CPSR_V (1U << 28)
1141 #define CPSR_C (1U << 29)
1142 #define CPSR_Z (1U << 30)
1143 #define CPSR_N (1U << 31)
1144 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1145 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1146 
1147 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1148 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1149     | CPSR_NZCV)
1150 /* Bits writable in user mode.  */
1151 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1152 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1153 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1154 /* Mask of bits which may be set by exception return copying them from SPSR */
1155 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1156 
1157 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1158 #define XPSR_EXCP 0x1ffU
1159 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1160 #define XPSR_IT_2_7 CPSR_IT_2_7
1161 #define XPSR_GE CPSR_GE
1162 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1163 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1164 #define XPSR_IT_0_1 CPSR_IT_0_1
1165 #define XPSR_Q CPSR_Q
1166 #define XPSR_V CPSR_V
1167 #define XPSR_C CPSR_C
1168 #define XPSR_Z CPSR_Z
1169 #define XPSR_N CPSR_N
1170 #define XPSR_NZCV CPSR_NZCV
1171 #define XPSR_IT CPSR_IT
1172 
1173 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1174 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1175 #define TTBCR_PD0    (1U << 4)
1176 #define TTBCR_PD1    (1U << 5)
1177 #define TTBCR_EPD0   (1U << 7)
1178 #define TTBCR_IRGN0  (3U << 8)
1179 #define TTBCR_ORGN0  (3U << 10)
1180 #define TTBCR_SH0    (3U << 12)
1181 #define TTBCR_T1SZ   (3U << 16)
1182 #define TTBCR_A1     (1U << 22)
1183 #define TTBCR_EPD1   (1U << 23)
1184 #define TTBCR_IRGN1  (3U << 24)
1185 #define TTBCR_ORGN1  (3U << 26)
1186 #define TTBCR_SH1    (1U << 28)
1187 #define TTBCR_EAE    (1U << 31)
1188 
1189 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1190  * Only these are valid when in AArch64 mode; in
1191  * AArch32 mode SPSRs are basically CPSR-format.
1192  */
1193 #define PSTATE_SP (1U)
1194 #define PSTATE_M (0xFU)
1195 #define PSTATE_nRW (1U << 4)
1196 #define PSTATE_F (1U << 6)
1197 #define PSTATE_I (1U << 7)
1198 #define PSTATE_A (1U << 8)
1199 #define PSTATE_D (1U << 9)
1200 #define PSTATE_IL (1U << 20)
1201 #define PSTATE_SS (1U << 21)
1202 #define PSTATE_V (1U << 28)
1203 #define PSTATE_C (1U << 29)
1204 #define PSTATE_Z (1U << 30)
1205 #define PSTATE_N (1U << 31)
1206 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1207 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1208 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1209 /* Mode values for AArch64 */
1210 #define PSTATE_MODE_EL3h 13
1211 #define PSTATE_MODE_EL3t 12
1212 #define PSTATE_MODE_EL2h 9
1213 #define PSTATE_MODE_EL2t 8
1214 #define PSTATE_MODE_EL1h 5
1215 #define PSTATE_MODE_EL1t 4
1216 #define PSTATE_MODE_EL0t 0
1217 
1218 /* Write a new value to v7m.exception, thus transitioning into or out
1219  * of Handler mode; this may result in a change of active stack pointer.
1220  */
1221 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1222 
1223 /* Map EL and handler into a PSTATE_MODE.  */
1224 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1225 {
1226     return (el << 2) | handler;
1227 }
1228 
1229 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1230  * interprocessing, so we don't attempt to sync with the cpsr state used by
1231  * the 32 bit decoder.
1232  */
1233 static inline uint32_t pstate_read(CPUARMState *env)
1234 {
1235     int ZF;
1236 
1237     ZF = (env->ZF == 0);
1238     return (env->NF & 0x80000000) | (ZF << 30)
1239         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1240         | env->pstate | env->daif;
1241 }
1242 
1243 static inline void pstate_write(CPUARMState *env, uint32_t val)
1244 {
1245     env->ZF = (~val) & PSTATE_Z;
1246     env->NF = val;
1247     env->CF = (val >> 29) & 1;
1248     env->VF = (val << 3) & 0x80000000;
1249     env->daif = val & PSTATE_DAIF;
1250     env->pstate = val & ~CACHED_PSTATE_BITS;
1251 }
1252 
1253 /* Return the current CPSR value.  */
1254 uint32_t cpsr_read(CPUARMState *env);
1255 
1256 typedef enum CPSRWriteType {
1257     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1258     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1259     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1260     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1261 } CPSRWriteType;
1262 
1263 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1264 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1265                 CPSRWriteType write_type);
1266 
1267 /* Return the current xPSR value.  */
1268 static inline uint32_t xpsr_read(CPUARMState *env)
1269 {
1270     int ZF;
1271     ZF = (env->ZF == 0);
1272     return (env->NF & 0x80000000) | (ZF << 30)
1273         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1274         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1275         | ((env->condexec_bits & 0xfc) << 8)
1276         | env->v7m.exception;
1277 }
1278 
1279 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1280 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1281 {
1282     if (mask & XPSR_NZCV) {
1283         env->ZF = (~val) & XPSR_Z;
1284         env->NF = val;
1285         env->CF = (val >> 29) & 1;
1286         env->VF = (val << 3) & 0x80000000;
1287     }
1288     if (mask & XPSR_Q) {
1289         env->QF = ((val & XPSR_Q) != 0);
1290     }
1291     if (mask & XPSR_T) {
1292         env->thumb = ((val & XPSR_T) != 0);
1293     }
1294     if (mask & XPSR_IT_0_1) {
1295         env->condexec_bits &= ~3;
1296         env->condexec_bits |= (val >> 25) & 3;
1297     }
1298     if (mask & XPSR_IT_2_7) {
1299         env->condexec_bits &= 3;
1300         env->condexec_bits |= (val >> 8) & 0xfc;
1301     }
1302     if (mask & XPSR_EXCP) {
1303         /* Note that this only happens on exception exit */
1304         write_v7m_exception(env, val & XPSR_EXCP);
1305     }
1306 }
1307 
1308 #define HCR_VM        (1ULL << 0)
1309 #define HCR_SWIO      (1ULL << 1)
1310 #define HCR_PTW       (1ULL << 2)
1311 #define HCR_FMO       (1ULL << 3)
1312 #define HCR_IMO       (1ULL << 4)
1313 #define HCR_AMO       (1ULL << 5)
1314 #define HCR_VF        (1ULL << 6)
1315 #define HCR_VI        (1ULL << 7)
1316 #define HCR_VSE       (1ULL << 8)
1317 #define HCR_FB        (1ULL << 9)
1318 #define HCR_BSU_MASK  (3ULL << 10)
1319 #define HCR_DC        (1ULL << 12)
1320 #define HCR_TWI       (1ULL << 13)
1321 #define HCR_TWE       (1ULL << 14)
1322 #define HCR_TID0      (1ULL << 15)
1323 #define HCR_TID1      (1ULL << 16)
1324 #define HCR_TID2      (1ULL << 17)
1325 #define HCR_TID3      (1ULL << 18)
1326 #define HCR_TSC       (1ULL << 19)
1327 #define HCR_TIDCP     (1ULL << 20)
1328 #define HCR_TACR      (1ULL << 21)
1329 #define HCR_TSW       (1ULL << 22)
1330 #define HCR_TPCP      (1ULL << 23)
1331 #define HCR_TPU       (1ULL << 24)
1332 #define HCR_TTLB      (1ULL << 25)
1333 #define HCR_TVM       (1ULL << 26)
1334 #define HCR_TGE       (1ULL << 27)
1335 #define HCR_TDZ       (1ULL << 28)
1336 #define HCR_HCD       (1ULL << 29)
1337 #define HCR_TRVM      (1ULL << 30)
1338 #define HCR_RW        (1ULL << 31)
1339 #define HCR_CD        (1ULL << 32)
1340 #define HCR_ID        (1ULL << 33)
1341 #define HCR_E2H       (1ULL << 34)
1342 #define HCR_TLOR      (1ULL << 35)
1343 #define HCR_TERR      (1ULL << 36)
1344 #define HCR_TEA       (1ULL << 37)
1345 #define HCR_MIOCNCE   (1ULL << 38)
1346 #define HCR_APK       (1ULL << 40)
1347 #define HCR_API       (1ULL << 41)
1348 #define HCR_NV        (1ULL << 42)
1349 #define HCR_NV1       (1ULL << 43)
1350 #define HCR_AT        (1ULL << 44)
1351 #define HCR_NV2       (1ULL << 45)
1352 #define HCR_FWB       (1ULL << 46)
1353 #define HCR_FIEN      (1ULL << 47)
1354 #define HCR_TID4      (1ULL << 49)
1355 #define HCR_TICAB     (1ULL << 50)
1356 #define HCR_TOCU      (1ULL << 52)
1357 #define HCR_TTLBIS    (1ULL << 54)
1358 #define HCR_TTLBOS    (1ULL << 55)
1359 #define HCR_ATA       (1ULL << 56)
1360 #define HCR_DCT       (1ULL << 57)
1361 
1362 /*
1363  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1364  * HCR_MASK and then clear it again if the feature bit is not set in
1365  * hcr_write().
1366  */
1367 #define HCR_MASK      ((1ULL << 34) - 1)
1368 
1369 #define SCR_NS                (1U << 0)
1370 #define SCR_IRQ               (1U << 1)
1371 #define SCR_FIQ               (1U << 2)
1372 #define SCR_EA                (1U << 3)
1373 #define SCR_FW                (1U << 4)
1374 #define SCR_AW                (1U << 5)
1375 #define SCR_NET               (1U << 6)
1376 #define SCR_SMD               (1U << 7)
1377 #define SCR_HCE               (1U << 8)
1378 #define SCR_SIF               (1U << 9)
1379 #define SCR_RW                (1U << 10)
1380 #define SCR_ST                (1U << 11)
1381 #define SCR_TWI               (1U << 12)
1382 #define SCR_TWE               (1U << 13)
1383 #define SCR_TLOR              (1U << 14)
1384 #define SCR_TERR              (1U << 15)
1385 #define SCR_APK               (1U << 16)
1386 #define SCR_API               (1U << 17)
1387 #define SCR_EEL2              (1U << 18)
1388 #define SCR_EASE              (1U << 19)
1389 #define SCR_NMEA              (1U << 20)
1390 #define SCR_FIEN              (1U << 21)
1391 #define SCR_ENSCXT            (1U << 25)
1392 #define SCR_ATA               (1U << 26)
1393 
1394 /* Return the current FPSCR value.  */
1395 uint32_t vfp_get_fpscr(CPUARMState *env);
1396 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1397 
1398 /* FPCR, Floating Point Control Register
1399  * FPSR, Floating Poiht Status Register
1400  *
1401  * For A64 the FPSCR is split into two logically distinct registers,
1402  * FPCR and FPSR. However since they still use non-overlapping bits
1403  * we store the underlying state in fpscr and just mask on read/write.
1404  */
1405 #define FPSR_MASK 0xf800009f
1406 #define FPCR_MASK 0x07ff9f00
1407 
1408 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1409 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1410 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1411 
1412 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1413 {
1414     return vfp_get_fpscr(env) & FPSR_MASK;
1415 }
1416 
1417 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1418 {
1419     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1420     vfp_set_fpscr(env, new_fpscr);
1421 }
1422 
1423 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1424 {
1425     return vfp_get_fpscr(env) & FPCR_MASK;
1426 }
1427 
1428 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1429 {
1430     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1431     vfp_set_fpscr(env, new_fpscr);
1432 }
1433 
1434 enum arm_cpu_mode {
1435   ARM_CPU_MODE_USR = 0x10,
1436   ARM_CPU_MODE_FIQ = 0x11,
1437   ARM_CPU_MODE_IRQ = 0x12,
1438   ARM_CPU_MODE_SVC = 0x13,
1439   ARM_CPU_MODE_MON = 0x16,
1440   ARM_CPU_MODE_ABT = 0x17,
1441   ARM_CPU_MODE_HYP = 0x1a,
1442   ARM_CPU_MODE_UND = 0x1b,
1443   ARM_CPU_MODE_SYS = 0x1f
1444 };
1445 
1446 /* VFP system registers.  */
1447 #define ARM_VFP_FPSID   0
1448 #define ARM_VFP_FPSCR   1
1449 #define ARM_VFP_MVFR2   5
1450 #define ARM_VFP_MVFR1   6
1451 #define ARM_VFP_MVFR0   7
1452 #define ARM_VFP_FPEXC   8
1453 #define ARM_VFP_FPINST  9
1454 #define ARM_VFP_FPINST2 10
1455 
1456 /* iwMMXt coprocessor control registers.  */
1457 #define ARM_IWMMXT_wCID  0
1458 #define ARM_IWMMXT_wCon  1
1459 #define ARM_IWMMXT_wCSSF 2
1460 #define ARM_IWMMXT_wCASF 3
1461 #define ARM_IWMMXT_wCGR0 8
1462 #define ARM_IWMMXT_wCGR1 9
1463 #define ARM_IWMMXT_wCGR2 10
1464 #define ARM_IWMMXT_wCGR3 11
1465 
1466 /* V7M CCR bits */
1467 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1468 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1469 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1470 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1471 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1472 FIELD(V7M_CCR, STKALIGN, 9, 1)
1473 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1474 FIELD(V7M_CCR, DC, 16, 1)
1475 FIELD(V7M_CCR, IC, 17, 1)
1476 FIELD(V7M_CCR, BP, 18, 1)
1477 
1478 /* V7M SCR bits */
1479 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1480 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1481 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1482 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1483 
1484 /* V7M AIRCR bits */
1485 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1486 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1487 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1488 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1489 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1490 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1491 FIELD(V7M_AIRCR, PRIS, 14, 1)
1492 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1493 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1494 
1495 /* V7M CFSR bits for MMFSR */
1496 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1497 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1498 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1499 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1500 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1501 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1502 
1503 /* V7M CFSR bits for BFSR */
1504 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1505 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1506 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1507 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1508 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1509 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1510 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1511 
1512 /* V7M CFSR bits for UFSR */
1513 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1514 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1515 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1516 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1517 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1518 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1519 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1520 
1521 /* V7M CFSR bit masks covering all of the subregister bits */
1522 FIELD(V7M_CFSR, MMFSR, 0, 8)
1523 FIELD(V7M_CFSR, BFSR, 8, 8)
1524 FIELD(V7M_CFSR, UFSR, 16, 16)
1525 
1526 /* V7M HFSR bits */
1527 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1528 FIELD(V7M_HFSR, FORCED, 30, 1)
1529 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1530 
1531 /* V7M DFSR bits */
1532 FIELD(V7M_DFSR, HALTED, 0, 1)
1533 FIELD(V7M_DFSR, BKPT, 1, 1)
1534 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1535 FIELD(V7M_DFSR, VCATCH, 3, 1)
1536 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1537 
1538 /* V7M SFSR bits */
1539 FIELD(V7M_SFSR, INVEP, 0, 1)
1540 FIELD(V7M_SFSR, INVIS, 1, 1)
1541 FIELD(V7M_SFSR, INVER, 2, 1)
1542 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1543 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1544 FIELD(V7M_SFSR, LSPERR, 5, 1)
1545 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1546 FIELD(V7M_SFSR, LSERR, 7, 1)
1547 
1548 /* v7M MPU_CTRL bits */
1549 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1550 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1551 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1552 
1553 /* v7M CLIDR bits */
1554 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1555 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1556 FIELD(V7M_CLIDR, LOC, 24, 3)
1557 FIELD(V7M_CLIDR, LOUU, 27, 3)
1558 FIELD(V7M_CLIDR, ICB, 30, 2)
1559 
1560 FIELD(V7M_CSSELR, IND, 0, 1)
1561 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1562 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1563  * define a mask for this and check that it doesn't permit running off
1564  * the end of the array.
1565  */
1566 FIELD(V7M_CSSELR, INDEX, 0, 4)
1567 
1568 /*
1569  * System register ID fields.
1570  */
1571 FIELD(ID_ISAR0, SWAP, 0, 4)
1572 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1573 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1574 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1575 FIELD(ID_ISAR0, COPROC, 16, 4)
1576 FIELD(ID_ISAR0, DEBUG, 20, 4)
1577 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1578 
1579 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1580 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1581 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1582 FIELD(ID_ISAR1, EXTEND, 12, 4)
1583 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1584 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1585 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1586 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1587 
1588 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1589 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1590 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1591 FIELD(ID_ISAR2, MULT, 12, 4)
1592 FIELD(ID_ISAR2, MULTS, 16, 4)
1593 FIELD(ID_ISAR2, MULTU, 20, 4)
1594 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1595 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1596 
1597 FIELD(ID_ISAR3, SATURATE, 0, 4)
1598 FIELD(ID_ISAR3, SIMD, 4, 4)
1599 FIELD(ID_ISAR3, SVC, 8, 4)
1600 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1601 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1602 FIELD(ID_ISAR3, T32COPY, 20, 4)
1603 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1604 FIELD(ID_ISAR3, T32EE, 28, 4)
1605 
1606 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1607 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1608 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1609 FIELD(ID_ISAR4, SMC, 12, 4)
1610 FIELD(ID_ISAR4, BARRIER, 16, 4)
1611 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1612 FIELD(ID_ISAR4, PSR_M, 24, 4)
1613 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1614 
1615 FIELD(ID_ISAR5, SEVL, 0, 4)
1616 FIELD(ID_ISAR5, AES, 4, 4)
1617 FIELD(ID_ISAR5, SHA1, 8, 4)
1618 FIELD(ID_ISAR5, SHA2, 12, 4)
1619 FIELD(ID_ISAR5, CRC32, 16, 4)
1620 FIELD(ID_ISAR5, RDM, 24, 4)
1621 FIELD(ID_ISAR5, VCMA, 28, 4)
1622 
1623 FIELD(ID_ISAR6, JSCVT, 0, 4)
1624 FIELD(ID_ISAR6, DP, 4, 4)
1625 FIELD(ID_ISAR6, FHM, 8, 4)
1626 FIELD(ID_ISAR6, SB, 12, 4)
1627 FIELD(ID_ISAR6, SPECRES, 16, 4)
1628 
1629 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1630 FIELD(ID_MMFR4, AC2, 4, 4)
1631 FIELD(ID_MMFR4, XNX, 8, 4)
1632 FIELD(ID_MMFR4, CNP, 12, 4)
1633 FIELD(ID_MMFR4, HPDS, 16, 4)
1634 FIELD(ID_MMFR4, LSM, 20, 4)
1635 FIELD(ID_MMFR4, CCIDX, 24, 4)
1636 FIELD(ID_MMFR4, EVT, 28, 4)
1637 
1638 FIELD(ID_AA64ISAR0, AES, 4, 4)
1639 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1640 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1641 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1642 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1643 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1644 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1645 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1646 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1647 FIELD(ID_AA64ISAR0, DP, 44, 4)
1648 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1649 FIELD(ID_AA64ISAR0, TS, 52, 4)
1650 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1651 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1652 
1653 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1654 FIELD(ID_AA64ISAR1, APA, 4, 4)
1655 FIELD(ID_AA64ISAR1, API, 8, 4)
1656 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1657 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1658 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1659 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1660 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1661 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1662 FIELD(ID_AA64ISAR1, SB, 36, 4)
1663 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1664 
1665 FIELD(ID_AA64PFR0, EL0, 0, 4)
1666 FIELD(ID_AA64PFR0, EL1, 4, 4)
1667 FIELD(ID_AA64PFR0, EL2, 8, 4)
1668 FIELD(ID_AA64PFR0, EL3, 12, 4)
1669 FIELD(ID_AA64PFR0, FP, 16, 4)
1670 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1671 FIELD(ID_AA64PFR0, GIC, 24, 4)
1672 FIELD(ID_AA64PFR0, RAS, 28, 4)
1673 FIELD(ID_AA64PFR0, SVE, 32, 4)
1674 
1675 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1676 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1677 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1678 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1679 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1680 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1681 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1682 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1683 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1684 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1685 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1686 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1687 
1688 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1689 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1690 FIELD(ID_AA64MMFR1, VH, 8, 4)
1691 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1692 FIELD(ID_AA64MMFR1, LO, 16, 4)
1693 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1694 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1695 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1696 
1697 FIELD(ID_DFR0, COPDBG, 0, 4)
1698 FIELD(ID_DFR0, COPSDBG, 4, 4)
1699 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1700 FIELD(ID_DFR0, COPTRC, 12, 4)
1701 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1702 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1703 FIELD(ID_DFR0, PERFMON, 24, 4)
1704 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1705 
1706 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1707 
1708 /* If adding a feature bit which corresponds to a Linux ELF
1709  * HWCAP bit, remember to update the feature-bit-to-hwcap
1710  * mapping in linux-user/elfload.c:get_elf_hwcap().
1711  */
1712 enum arm_features {
1713     ARM_FEATURE_VFP,
1714     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1715     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1716     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1717     ARM_FEATURE_V6,
1718     ARM_FEATURE_V6K,
1719     ARM_FEATURE_V7,
1720     ARM_FEATURE_THUMB2,
1721     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1722     ARM_FEATURE_VFP3,
1723     ARM_FEATURE_VFP_FP16,
1724     ARM_FEATURE_NEON,
1725     ARM_FEATURE_M, /* Microcontroller profile.  */
1726     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1727     ARM_FEATURE_THUMB2EE,
1728     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1729     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1730     ARM_FEATURE_V4T,
1731     ARM_FEATURE_V5,
1732     ARM_FEATURE_STRONGARM,
1733     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1734     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1735     ARM_FEATURE_GENERIC_TIMER,
1736     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1737     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1738     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1739     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1740     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1741     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1742     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1743     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1744     ARM_FEATURE_V8,
1745     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1746     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1747     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1748     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1749     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1750     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1751     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1752     ARM_FEATURE_PMU, /* has PMU support */
1753     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1754     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1755     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1756 };
1757 
1758 static inline int arm_feature(CPUARMState *env, int feature)
1759 {
1760     return (env->features & (1ULL << feature)) != 0;
1761 }
1762 
1763 #if !defined(CONFIG_USER_ONLY)
1764 /* Return true if exception levels below EL3 are in secure state,
1765  * or would be following an exception return to that level.
1766  * Unlike arm_is_secure() (which is always a question about the
1767  * _current_ state of the CPU) this doesn't care about the current
1768  * EL or mode.
1769  */
1770 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1771 {
1772     if (arm_feature(env, ARM_FEATURE_EL3)) {
1773         return !(env->cp15.scr_el3 & SCR_NS);
1774     } else {
1775         /* If EL3 is not supported then the secure state is implementation
1776          * defined, in which case QEMU defaults to non-secure.
1777          */
1778         return false;
1779     }
1780 }
1781 
1782 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1783 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1784 {
1785     if (arm_feature(env, ARM_FEATURE_EL3)) {
1786         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1787             /* CPU currently in AArch64 state and EL3 */
1788             return true;
1789         } else if (!is_a64(env) &&
1790                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1791             /* CPU currently in AArch32 state and monitor mode */
1792             return true;
1793         }
1794     }
1795     return false;
1796 }
1797 
1798 /* Return true if the processor is in secure state */
1799 static inline bool arm_is_secure(CPUARMState *env)
1800 {
1801     if (arm_is_el3_or_mon(env)) {
1802         return true;
1803     }
1804     return arm_is_secure_below_el3(env);
1805 }
1806 
1807 #else
1808 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1809 {
1810     return false;
1811 }
1812 
1813 static inline bool arm_is_secure(CPUARMState *env)
1814 {
1815     return false;
1816 }
1817 #endif
1818 
1819 /**
1820  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1821  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1822  * "for all purposes other than a direct read or write access of HCR_EL2."
1823  * Not included here is HCR_RW.
1824  */
1825 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1826 
1827 /* Return true if the specified exception level is running in AArch64 state. */
1828 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1829 {
1830     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1831      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1832      */
1833     assert(el >= 1 && el <= 3);
1834     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1835 
1836     /* The highest exception level is always at the maximum supported
1837      * register width, and then lower levels have a register width controlled
1838      * by bits in the SCR or HCR registers.
1839      */
1840     if (el == 3) {
1841         return aa64;
1842     }
1843 
1844     if (arm_feature(env, ARM_FEATURE_EL3)) {
1845         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1846     }
1847 
1848     if (el == 2) {
1849         return aa64;
1850     }
1851 
1852     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1853         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1854     }
1855 
1856     return aa64;
1857 }
1858 
1859 /* Function for determing whether guest cp register reads and writes should
1860  * access the secure or non-secure bank of a cp register.  When EL3 is
1861  * operating in AArch32 state, the NS-bit determines whether the secure
1862  * instance of a cp register should be used. When EL3 is AArch64 (or if
1863  * it doesn't exist at all) then there is no register banking, and all
1864  * accesses are to the non-secure version.
1865  */
1866 static inline bool access_secure_reg(CPUARMState *env)
1867 {
1868     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1869                 !arm_el_is_aa64(env, 3) &&
1870                 !(env->cp15.scr_el3 & SCR_NS));
1871 
1872     return ret;
1873 }
1874 
1875 /* Macros for accessing a specified CP register bank */
1876 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1877     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1878 
1879 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1880     do {                                                \
1881         if (_secure) {                                   \
1882             (_env)->cp15._regname##_s = (_val);            \
1883         } else {                                        \
1884             (_env)->cp15._regname##_ns = (_val);           \
1885         }                                               \
1886     } while (0)
1887 
1888 /* Macros for automatically accessing a specific CP register bank depending on
1889  * the current secure state of the system.  These macros are not intended for
1890  * supporting instruction translation reads/writes as these are dependent
1891  * solely on the SCR.NS bit and not the mode.
1892  */
1893 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1894     A32_BANKED_REG_GET((_env), _regname,                \
1895                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1896 
1897 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1898     A32_BANKED_REG_SET((_env), _regname,                                    \
1899                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1900                        (_val))
1901 
1902 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1903 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1904                                  uint32_t cur_el, bool secure);
1905 
1906 /* Interface between CPU and Interrupt controller.  */
1907 #ifndef CONFIG_USER_ONLY
1908 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1909 #else
1910 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1911 {
1912     return true;
1913 }
1914 #endif
1915 /**
1916  * armv7m_nvic_set_pending: mark the specified exception as pending
1917  * @opaque: the NVIC
1918  * @irq: the exception number to mark pending
1919  * @secure: false for non-banked exceptions or for the nonsecure
1920  * version of a banked exception, true for the secure version of a banked
1921  * exception.
1922  *
1923  * Marks the specified exception as pending. Note that we will assert()
1924  * if @secure is true and @irq does not specify one of the fixed set
1925  * of architecturally banked exceptions.
1926  */
1927 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1928 /**
1929  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1930  * @opaque: the NVIC
1931  * @irq: the exception number to mark pending
1932  * @secure: false for non-banked exceptions or for the nonsecure
1933  * version of a banked exception, true for the secure version of a banked
1934  * exception.
1935  *
1936  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1937  * exceptions (exceptions generated in the course of trying to take
1938  * a different exception).
1939  */
1940 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1941 /**
1942  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1943  *    exception, and whether it targets Secure state
1944  * @opaque: the NVIC
1945  * @pirq: set to pending exception number
1946  * @ptargets_secure: set to whether pending exception targets Secure
1947  *
1948  * This function writes the number of the highest priority pending
1949  * exception (the one which would be made active by
1950  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1951  * to true if the current highest priority pending exception should
1952  * be taken to Secure state, false for NS.
1953  */
1954 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1955                                       bool *ptargets_secure);
1956 /**
1957  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1958  * @opaque: the NVIC
1959  *
1960  * Move the current highest priority pending exception from the pending
1961  * state to the active state, and update v7m.exception to indicate that
1962  * it is the exception currently being handled.
1963  */
1964 void armv7m_nvic_acknowledge_irq(void *opaque);
1965 /**
1966  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1967  * @opaque: the NVIC
1968  * @irq: the exception number to complete
1969  * @secure: true if this exception was secure
1970  *
1971  * Returns: -1 if the irq was not active
1972  *           1 if completing this irq brought us back to base (no active irqs)
1973  *           0 if there is still an irq active after this one was completed
1974  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1975  */
1976 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1977 /**
1978  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1979  * @opaque: the NVIC
1980  *
1981  * Returns: the raw execution priority as defined by the v8M architecture.
1982  * This is the execution priority minus the effects of AIRCR.PRIS,
1983  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1984  * (v8M ARM ARM I_PKLD.)
1985  */
1986 int armv7m_nvic_raw_execution_priority(void *opaque);
1987 /**
1988  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1989  * priority is negative for the specified security state.
1990  * @opaque: the NVIC
1991  * @secure: the security state to test
1992  * This corresponds to the pseudocode IsReqExecPriNeg().
1993  */
1994 #ifndef CONFIG_USER_ONLY
1995 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1996 #else
1997 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1998 {
1999     return false;
2000 }
2001 #endif
2002 
2003 /* Interface for defining coprocessor registers.
2004  * Registers are defined in tables of arm_cp_reginfo structs
2005  * which are passed to define_arm_cp_regs().
2006  */
2007 
2008 /* When looking up a coprocessor register we look for it
2009  * via an integer which encodes all of:
2010  *  coprocessor number
2011  *  Crn, Crm, opc1, opc2 fields
2012  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2013  *    or via MRRC/MCRR?)
2014  *  non-secure/secure bank (AArch32 only)
2015  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2016  * (In this case crn and opc2 should be zero.)
2017  * For AArch64, there is no 32/64 bit size distinction;
2018  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2019  * and 4 bit CRn and CRm. The encoding patterns are chosen
2020  * to be easy to convert to and from the KVM encodings, and also
2021  * so that the hashtable can contain both AArch32 and AArch64
2022  * registers (to allow for interprocessing where we might run
2023  * 32 bit code on a 64 bit core).
2024  */
2025 /* This bit is private to our hashtable cpreg; in KVM register
2026  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2027  * in the upper bits of the 64 bit ID.
2028  */
2029 #define CP_REG_AA64_SHIFT 28
2030 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2031 
2032 /* To enable banking of coprocessor registers depending on ns-bit we
2033  * add a bit to distinguish between secure and non-secure cpregs in the
2034  * hashtable.
2035  */
2036 #define CP_REG_NS_SHIFT 29
2037 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2038 
2039 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2040     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2041      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2042 
2043 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2044     (CP_REG_AA64_MASK |                                 \
2045      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2046      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2047      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2048      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2049      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2050      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2051 
2052 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2053  * version used as a key for the coprocessor register hashtable
2054  */
2055 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2056 {
2057     uint32_t cpregid = kvmid;
2058     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2059         cpregid |= CP_REG_AA64_MASK;
2060     } else {
2061         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2062             cpregid |= (1 << 15);
2063         }
2064 
2065         /* KVM is always non-secure so add the NS flag on AArch32 register
2066          * entries.
2067          */
2068          cpregid |= 1 << CP_REG_NS_SHIFT;
2069     }
2070     return cpregid;
2071 }
2072 
2073 /* Convert a truncated 32 bit hashtable key into the full
2074  * 64 bit KVM register ID.
2075  */
2076 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2077 {
2078     uint64_t kvmid;
2079 
2080     if (cpregid & CP_REG_AA64_MASK) {
2081         kvmid = cpregid & ~CP_REG_AA64_MASK;
2082         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2083     } else {
2084         kvmid = cpregid & ~(1 << 15);
2085         if (cpregid & (1 << 15)) {
2086             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2087         } else {
2088             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2089         }
2090     }
2091     return kvmid;
2092 }
2093 
2094 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2095  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2096  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2097  * TCG can assume the value to be constant (ie load at translate time)
2098  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2099  * indicates that the TB should not be ended after a write to this register
2100  * (the default is that the TB ends after cp writes). OVERRIDE permits
2101  * a register definition to override a previous definition for the
2102  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2103  * old must have the OVERRIDE bit set.
2104  * ALIAS indicates that this register is an alias view of some underlying
2105  * state which is also visible via another register, and that the other
2106  * register is handling migration and reset; registers marked ALIAS will not be
2107  * migrated but may have their state set by syncing of register state from KVM.
2108  * NO_RAW indicates that this register has no underlying state and does not
2109  * support raw access for state saving/loading; it will not be used for either
2110  * migration or KVM state synchronization. (Typically this is for "registers"
2111  * which are actually used as instructions for cache maintenance and so on.)
2112  * IO indicates that this register does I/O and therefore its accesses
2113  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2114  * registers which implement clocks or timers require this.
2115  */
2116 #define ARM_CP_SPECIAL           0x0001
2117 #define ARM_CP_CONST             0x0002
2118 #define ARM_CP_64BIT             0x0004
2119 #define ARM_CP_SUPPRESS_TB_END   0x0008
2120 #define ARM_CP_OVERRIDE          0x0010
2121 #define ARM_CP_ALIAS             0x0020
2122 #define ARM_CP_IO                0x0040
2123 #define ARM_CP_NO_RAW            0x0080
2124 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2125 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2126 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2127 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2128 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2129 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2130 #define ARM_CP_FPU               0x1000
2131 #define ARM_CP_SVE               0x2000
2132 #define ARM_CP_NO_GDB            0x4000
2133 /* Used only as a terminator for ARMCPRegInfo lists */
2134 #define ARM_CP_SENTINEL          0xffff
2135 /* Mask of only the flag bits in a type field */
2136 #define ARM_CP_FLAG_MASK         0x70ff
2137 
2138 /* Valid values for ARMCPRegInfo state field, indicating which of
2139  * the AArch32 and AArch64 execution states this register is visible in.
2140  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2141  * If the reginfo is declared to be visible in both states then a second
2142  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2143  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2144  * Note that we rely on the values of these enums as we iterate through
2145  * the various states in some places.
2146  */
2147 enum {
2148     ARM_CP_STATE_AA32 = 0,
2149     ARM_CP_STATE_AA64 = 1,
2150     ARM_CP_STATE_BOTH = 2,
2151 };
2152 
2153 /* ARM CP register secure state flags.  These flags identify security state
2154  * attributes for a given CP register entry.
2155  * The existence of both or neither secure and non-secure flags indicates that
2156  * the register has both a secure and non-secure hash entry.  A single one of
2157  * these flags causes the register to only be hashed for the specified
2158  * security state.
2159  * Although definitions may have any combination of the S/NS bits, each
2160  * registered entry will only have one to identify whether the entry is secure
2161  * or non-secure.
2162  */
2163 enum {
2164     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2165     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2166 };
2167 
2168 /* Return true if cptype is a valid type field. This is used to try to
2169  * catch errors where the sentinel has been accidentally left off the end
2170  * of a list of registers.
2171  */
2172 static inline bool cptype_valid(int cptype)
2173 {
2174     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2175         || ((cptype & ARM_CP_SPECIAL) &&
2176             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2177 }
2178 
2179 /* Access rights:
2180  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2181  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2182  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2183  * (ie any of the privileged modes in Secure state, or Monitor mode).
2184  * If a register is accessible in one privilege level it's always accessible
2185  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2186  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2187  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2188  * terminology a little and call this PL3.
2189  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2190  * with the ELx exception levels.
2191  *
2192  * If access permissions for a register are more complex than can be
2193  * described with these bits, then use a laxer set of restrictions, and
2194  * do the more restrictive/complex check inside a helper function.
2195  */
2196 #define PL3_R 0x80
2197 #define PL3_W 0x40
2198 #define PL2_R (0x20 | PL3_R)
2199 #define PL2_W (0x10 | PL3_W)
2200 #define PL1_R (0x08 | PL2_R)
2201 #define PL1_W (0x04 | PL2_W)
2202 #define PL0_R (0x02 | PL1_R)
2203 #define PL0_W (0x01 | PL1_W)
2204 
2205 #define PL3_RW (PL3_R | PL3_W)
2206 #define PL2_RW (PL2_R | PL2_W)
2207 #define PL1_RW (PL1_R | PL1_W)
2208 #define PL0_RW (PL0_R | PL0_W)
2209 
2210 /* Return the highest implemented Exception Level */
2211 static inline int arm_highest_el(CPUARMState *env)
2212 {
2213     if (arm_feature(env, ARM_FEATURE_EL3)) {
2214         return 3;
2215     }
2216     if (arm_feature(env, ARM_FEATURE_EL2)) {
2217         return 2;
2218     }
2219     return 1;
2220 }
2221 
2222 /* Return true if a v7M CPU is in Handler mode */
2223 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2224 {
2225     return env->v7m.exception != 0;
2226 }
2227 
2228 /* Return the current Exception Level (as per ARMv8; note that this differs
2229  * from the ARMv7 Privilege Level).
2230  */
2231 static inline int arm_current_el(CPUARMState *env)
2232 {
2233     if (arm_feature(env, ARM_FEATURE_M)) {
2234         return arm_v7m_is_handler_mode(env) ||
2235             !(env->v7m.control[env->v7m.secure] & 1);
2236     }
2237 
2238     if (is_a64(env)) {
2239         return extract32(env->pstate, 2, 2);
2240     }
2241 
2242     switch (env->uncached_cpsr & 0x1f) {
2243     case ARM_CPU_MODE_USR:
2244         return 0;
2245     case ARM_CPU_MODE_HYP:
2246         return 2;
2247     case ARM_CPU_MODE_MON:
2248         return 3;
2249     default:
2250         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2251             /* If EL3 is 32-bit then all secure privileged modes run in
2252              * EL3
2253              */
2254             return 3;
2255         }
2256 
2257         return 1;
2258     }
2259 }
2260 
2261 typedef struct ARMCPRegInfo ARMCPRegInfo;
2262 
2263 typedef enum CPAccessResult {
2264     /* Access is permitted */
2265     CP_ACCESS_OK = 0,
2266     /* Access fails due to a configurable trap or enable which would
2267      * result in a categorized exception syndrome giving information about
2268      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2269      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2270      * PL1 if in EL0, otherwise to the current EL).
2271      */
2272     CP_ACCESS_TRAP = 1,
2273     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2274      * Note that this is not a catch-all case -- the set of cases which may
2275      * result in this failure is specifically defined by the architecture.
2276      */
2277     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2278     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2279     CP_ACCESS_TRAP_EL2 = 3,
2280     CP_ACCESS_TRAP_EL3 = 4,
2281     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2282     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2283     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2284     /* Access fails and results in an exception syndrome for an FP access,
2285      * trapped directly to EL2 or EL3
2286      */
2287     CP_ACCESS_TRAP_FP_EL2 = 7,
2288     CP_ACCESS_TRAP_FP_EL3 = 8,
2289 } CPAccessResult;
2290 
2291 /* Access functions for coprocessor registers. These cannot fail and
2292  * may not raise exceptions.
2293  */
2294 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2295 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2296                        uint64_t value);
2297 /* Access permission check functions for coprocessor registers. */
2298 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2299                                   const ARMCPRegInfo *opaque,
2300                                   bool isread);
2301 /* Hook function for register reset */
2302 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2303 
2304 #define CP_ANY 0xff
2305 
2306 /* Definition of an ARM coprocessor register */
2307 struct ARMCPRegInfo {
2308     /* Name of register (useful mainly for debugging, need not be unique) */
2309     const char *name;
2310     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2311      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2312      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2313      * will be decoded to this register. The register read and write
2314      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2315      * used by the program, so it is possible to register a wildcard and
2316      * then behave differently on read/write if necessary.
2317      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2318      * must both be zero.
2319      * For AArch64-visible registers, opc0 is also used.
2320      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2321      * way to distinguish (for KVM's benefit) guest-visible system registers
2322      * from demuxed ones provided to preserve the "no side effects on
2323      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2324      * visible (to match KVM's encoding); cp==0 will be converted to
2325      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2326      */
2327     uint8_t cp;
2328     uint8_t crn;
2329     uint8_t crm;
2330     uint8_t opc0;
2331     uint8_t opc1;
2332     uint8_t opc2;
2333     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2334     int state;
2335     /* Register type: ARM_CP_* bits/values */
2336     int type;
2337     /* Access rights: PL*_[RW] */
2338     int access;
2339     /* Security state: ARM_CP_SECSTATE_* bits/values */
2340     int secure;
2341     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2342      * this register was defined: can be used to hand data through to the
2343      * register read/write functions, since they are passed the ARMCPRegInfo*.
2344      */
2345     void *opaque;
2346     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2347      * fieldoffset is non-zero, the reset value of the register.
2348      */
2349     uint64_t resetvalue;
2350     /* Offset of the field in CPUARMState for this register.
2351      *
2352      * This is not needed if either:
2353      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2354      *  2. both readfn and writefn are specified
2355      */
2356     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2357 
2358     /* Offsets of the secure and non-secure fields in CPUARMState for the
2359      * register if it is banked.  These fields are only used during the static
2360      * registration of a register.  During hashing the bank associated
2361      * with a given security state is copied to fieldoffset which is used from
2362      * there on out.
2363      *
2364      * It is expected that register definitions use either fieldoffset or
2365      * bank_fieldoffsets in the definition but not both.  It is also expected
2366      * that both bank offsets are set when defining a banked register.  This
2367      * use indicates that a register is banked.
2368      */
2369     ptrdiff_t bank_fieldoffsets[2];
2370 
2371     /* Function for making any access checks for this register in addition to
2372      * those specified by the 'access' permissions bits. If NULL, no extra
2373      * checks required. The access check is performed at runtime, not at
2374      * translate time.
2375      */
2376     CPAccessFn *accessfn;
2377     /* Function for handling reads of this register. If NULL, then reads
2378      * will be done by loading from the offset into CPUARMState specified
2379      * by fieldoffset.
2380      */
2381     CPReadFn *readfn;
2382     /* Function for handling writes of this register. If NULL, then writes
2383      * will be done by writing to the offset into CPUARMState specified
2384      * by fieldoffset.
2385      */
2386     CPWriteFn *writefn;
2387     /* Function for doing a "raw" read; used when we need to copy
2388      * coprocessor state to the kernel for KVM or out for
2389      * migration. This only needs to be provided if there is also a
2390      * readfn and it has side effects (for instance clear-on-read bits).
2391      */
2392     CPReadFn *raw_readfn;
2393     /* Function for doing a "raw" write; used when we need to copy KVM
2394      * kernel coprocessor state into userspace, or for inbound
2395      * migration. This only needs to be provided if there is also a
2396      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2397      * or similar behaviour.
2398      */
2399     CPWriteFn *raw_writefn;
2400     /* Function for resetting the register. If NULL, then reset will be done
2401      * by writing resetvalue to the field specified in fieldoffset. If
2402      * fieldoffset is 0 then no reset will be done.
2403      */
2404     CPResetFn *resetfn;
2405 };
2406 
2407 /* Macros which are lvalues for the field in CPUARMState for the
2408  * ARMCPRegInfo *ri.
2409  */
2410 #define CPREG_FIELD32(env, ri) \
2411     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2412 #define CPREG_FIELD64(env, ri) \
2413     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2414 
2415 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2416 
2417 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2418                                     const ARMCPRegInfo *regs, void *opaque);
2419 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2420                                        const ARMCPRegInfo *regs, void *opaque);
2421 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2422 {
2423     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2424 }
2425 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2426 {
2427     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2428 }
2429 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2430 
2431 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2432 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2433                          uint64_t value);
2434 /* CPReadFn that can be used for read-as-zero behaviour */
2435 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2436 
2437 /* CPResetFn that does nothing, for use if no reset is required even
2438  * if fieldoffset is non zero.
2439  */
2440 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2441 
2442 /* Return true if this reginfo struct's field in the cpu state struct
2443  * is 64 bits wide.
2444  */
2445 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2446 {
2447     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2448 }
2449 
2450 static inline bool cp_access_ok(int current_el,
2451                                 const ARMCPRegInfo *ri, int isread)
2452 {
2453     return (ri->access >> ((current_el * 2) + isread)) & 1;
2454 }
2455 
2456 /* Raw read of a coprocessor register (as needed for migration, etc) */
2457 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2458 
2459 /**
2460  * write_list_to_cpustate
2461  * @cpu: ARMCPU
2462  *
2463  * For each register listed in the ARMCPU cpreg_indexes list, write
2464  * its value from the cpreg_values list into the ARMCPUState structure.
2465  * This updates TCG's working data structures from KVM data or
2466  * from incoming migration state.
2467  *
2468  * Returns: true if all register values were updated correctly,
2469  * false if some register was unknown or could not be written.
2470  * Note that we do not stop early on failure -- we will attempt
2471  * writing all registers in the list.
2472  */
2473 bool write_list_to_cpustate(ARMCPU *cpu);
2474 
2475 /**
2476  * write_cpustate_to_list:
2477  * @cpu: ARMCPU
2478  *
2479  * For each register listed in the ARMCPU cpreg_indexes list, write
2480  * its value from the ARMCPUState structure into the cpreg_values list.
2481  * This is used to copy info from TCG's working data structures into
2482  * KVM or for outbound migration.
2483  *
2484  * Returns: true if all register values were read correctly,
2485  * false if some register was unknown or could not be read.
2486  * Note that we do not stop early on failure -- we will attempt
2487  * reading all registers in the list.
2488  */
2489 bool write_cpustate_to_list(ARMCPU *cpu);
2490 
2491 #define ARM_CPUID_TI915T      0x54029152
2492 #define ARM_CPUID_TI925T      0x54029252
2493 
2494 #if defined(CONFIG_USER_ONLY)
2495 #define TARGET_PAGE_BITS 12
2496 #else
2497 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2498  * have to support 1K tiny pages.
2499  */
2500 #define TARGET_PAGE_BITS_VARY
2501 #define TARGET_PAGE_BITS_MIN 10
2502 #endif
2503 
2504 #if defined(TARGET_AARCH64)
2505 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2506 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2507 #else
2508 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2509 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2510 #endif
2511 
2512 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2513                                      unsigned int target_el)
2514 {
2515     CPUARMState *env = cs->env_ptr;
2516     unsigned int cur_el = arm_current_el(env);
2517     bool secure = arm_is_secure(env);
2518     bool pstate_unmasked;
2519     int8_t unmasked = 0;
2520     uint64_t hcr_el2;
2521 
2522     /* Don't take exceptions if they target a lower EL.
2523      * This check should catch any exceptions that would not be taken but left
2524      * pending.
2525      */
2526     if (cur_el > target_el) {
2527         return false;
2528     }
2529 
2530     hcr_el2 = arm_hcr_el2_eff(env);
2531 
2532     switch (excp_idx) {
2533     case EXCP_FIQ:
2534         pstate_unmasked = !(env->daif & PSTATE_F);
2535         break;
2536 
2537     case EXCP_IRQ:
2538         pstate_unmasked = !(env->daif & PSTATE_I);
2539         break;
2540 
2541     case EXCP_VFIQ:
2542         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2543             /* VFIQs are only taken when hypervized and non-secure.  */
2544             return false;
2545         }
2546         return !(env->daif & PSTATE_F);
2547     case EXCP_VIRQ:
2548         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2549             /* VIRQs are only taken when hypervized and non-secure.  */
2550             return false;
2551         }
2552         return !(env->daif & PSTATE_I);
2553     default:
2554         g_assert_not_reached();
2555     }
2556 
2557     /* Use the target EL, current execution state and SCR/HCR settings to
2558      * determine whether the corresponding CPSR bit is used to mask the
2559      * interrupt.
2560      */
2561     if ((target_el > cur_el) && (target_el != 1)) {
2562         /* Exceptions targeting a higher EL may not be maskable */
2563         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2564             /* 64-bit masking rules are simple: exceptions to EL3
2565              * can't be masked, and exceptions to EL2 can only be
2566              * masked from Secure state. The HCR and SCR settings
2567              * don't affect the masking logic, only the interrupt routing.
2568              */
2569             if (target_el == 3 || !secure) {
2570                 unmasked = 1;
2571             }
2572         } else {
2573             /* The old 32-bit-only environment has a more complicated
2574              * masking setup. HCR and SCR bits not only affect interrupt
2575              * routing but also change the behaviour of masking.
2576              */
2577             bool hcr, scr;
2578 
2579             switch (excp_idx) {
2580             case EXCP_FIQ:
2581                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2582                  * we override the CPSR.F in determining if the exception is
2583                  * masked or not. If neither of these are set then we fall back
2584                  * to the CPSR.F setting otherwise we further assess the state
2585                  * below.
2586                  */
2587                 hcr = hcr_el2 & HCR_FMO;
2588                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2589 
2590                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2591                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2592                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2593                  * when non-secure but only when FIQs are only routed to EL3.
2594                  */
2595                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2596                 break;
2597             case EXCP_IRQ:
2598                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2599                  * we may override the CPSR.I masking when in non-secure state.
2600                  * The SCR.IRQ setting has already been taken into consideration
2601                  * when setting the target EL, so it does not have a further
2602                  * affect here.
2603                  */
2604                 hcr = hcr_el2 & HCR_IMO;
2605                 scr = false;
2606                 break;
2607             default:
2608                 g_assert_not_reached();
2609             }
2610 
2611             if ((scr || hcr) && !secure) {
2612                 unmasked = 1;
2613             }
2614         }
2615     }
2616 
2617     /* The PSTATE bits only mask the interrupt if we have not overriden the
2618      * ability above.
2619      */
2620     return unmasked || pstate_unmasked;
2621 }
2622 
2623 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2624 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2625 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2626 
2627 #define cpu_signal_handler cpu_arm_signal_handler
2628 #define cpu_list arm_cpu_list
2629 
2630 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2631  *
2632  * If EL3 is 64-bit:
2633  *  + NonSecure EL1 & 0 stage 1
2634  *  + NonSecure EL1 & 0 stage 2
2635  *  + NonSecure EL2
2636  *  + Secure EL1 & EL0
2637  *  + Secure EL3
2638  * If EL3 is 32-bit:
2639  *  + NonSecure PL1 & 0 stage 1
2640  *  + NonSecure PL1 & 0 stage 2
2641  *  + NonSecure PL2
2642  *  + Secure PL0 & PL1
2643  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2644  *
2645  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2646  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2647  *     may differ in access permissions even if the VA->PA map is the same
2648  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2649  *     translation, which means that we have one mmu_idx that deals with two
2650  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2651  *     architecturally permitted]
2652  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2653  *     handling via the TLB. The only way to do a stage 1 translation without
2654  *     the immediate stage 2 translation is via the ATS or AT system insns,
2655  *     which can be slow-pathed and always do a page table walk.
2656  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2657  *     translation regimes, because they map reasonably well to each other
2658  *     and they can't both be active at the same time.
2659  * This gives us the following list of mmu_idx values:
2660  *
2661  * NS EL0 (aka NS PL0) stage 1+2
2662  * NS EL1 (aka NS PL1) stage 1+2
2663  * NS EL2 (aka NS PL2)
2664  * S EL3 (aka S PL1)
2665  * S EL0 (aka S PL0)
2666  * S EL1 (not used if EL3 is 32 bit)
2667  * NS EL0+1 stage 2
2668  *
2669  * (The last of these is an mmu_idx because we want to be able to use the TLB
2670  * for the accesses done as part of a stage 1 page table walk, rather than
2671  * having to walk the stage 2 page table over and over.)
2672  *
2673  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2674  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2675  * NS EL2 if we ever model a Cortex-R52).
2676  *
2677  * M profile CPUs are rather different as they do not have a true MMU.
2678  * They have the following different MMU indexes:
2679  *  User
2680  *  Privileged
2681  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2682  *  Privileged, execution priority negative (ditto)
2683  * If the CPU supports the v8M Security Extension then there are also:
2684  *  Secure User
2685  *  Secure Privileged
2686  *  Secure User, execution priority negative
2687  *  Secure Privileged, execution priority negative
2688  *
2689  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2690  * are not quite the same -- different CPU types (most notably M profile
2691  * vs A/R profile) would like to use MMU indexes with different semantics,
2692  * but since we don't ever need to use all of those in a single CPU we
2693  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2694  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2695  * the same for any particular CPU.
2696  * Variables of type ARMMUIdx are always full values, and the core
2697  * index values are in variables of type 'int'.
2698  *
2699  * Our enumeration includes at the end some entries which are not "true"
2700  * mmu_idx values in that they don't have corresponding TLBs and are only
2701  * valid for doing slow path page table walks.
2702  *
2703  * The constant names here are patterned after the general style of the names
2704  * of the AT/ATS operations.
2705  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2706  * For M profile we arrange them to have a bit for priv, a bit for negpri
2707  * and a bit for secure.
2708  */
2709 #define ARM_MMU_IDX_A 0x10 /* A profile */
2710 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2711 #define ARM_MMU_IDX_M 0x40 /* M profile */
2712 
2713 /* meanings of the bits for M profile mmu idx values */
2714 #define ARM_MMU_IDX_M_PRIV 0x1
2715 #define ARM_MMU_IDX_M_NEGPRI 0x2
2716 #define ARM_MMU_IDX_M_S 0x4
2717 
2718 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2719 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2720 
2721 typedef enum ARMMMUIdx {
2722     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2723     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2724     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2725     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2726     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2727     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2728     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2729     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2730     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2731     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2732     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2733     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2734     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2735     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2736     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2737     /* Indexes below here don't have TLBs and are used only for AT system
2738      * instructions or for the first stage of an S12 page table walk.
2739      */
2740     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2741     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2742 } ARMMMUIdx;
2743 
2744 /* Bit macros for the core-mmu-index values for each index,
2745  * for use when calling tlb_flush_by_mmuidx() and friends.
2746  */
2747 typedef enum ARMMMUIdxBit {
2748     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2749     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2750     ARMMMUIdxBit_S1E2 = 1 << 2,
2751     ARMMMUIdxBit_S1E3 = 1 << 3,
2752     ARMMMUIdxBit_S1SE0 = 1 << 4,
2753     ARMMMUIdxBit_S1SE1 = 1 << 5,
2754     ARMMMUIdxBit_S2NS = 1 << 6,
2755     ARMMMUIdxBit_MUser = 1 << 0,
2756     ARMMMUIdxBit_MPriv = 1 << 1,
2757     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2758     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2759     ARMMMUIdxBit_MSUser = 1 << 4,
2760     ARMMMUIdxBit_MSPriv = 1 << 5,
2761     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2762     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2763 } ARMMMUIdxBit;
2764 
2765 #define MMU_USER_IDX 0
2766 
2767 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2768 {
2769     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2770 }
2771 
2772 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2773 {
2774     if (arm_feature(env, ARM_FEATURE_M)) {
2775         return mmu_idx | ARM_MMU_IDX_M;
2776     } else {
2777         return mmu_idx | ARM_MMU_IDX_A;
2778     }
2779 }
2780 
2781 /* Return the exception level we're running at if this is our mmu_idx */
2782 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2783 {
2784     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2785     case ARM_MMU_IDX_A:
2786         return mmu_idx & 3;
2787     case ARM_MMU_IDX_M:
2788         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2789     default:
2790         g_assert_not_reached();
2791     }
2792 }
2793 
2794 /* Return the MMU index for a v7M CPU in the specified security and
2795  * privilege state.
2796  */
2797 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2798                                                 bool secstate, bool priv);
2799 
2800 /* Return the MMU index for a v7M CPU in the specified security state */
2801 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2802 
2803 /**
2804  * cpu_mmu_index:
2805  * @env: The cpu environment
2806  * @ifetch: True for code access, false for data access.
2807  *
2808  * Return the core mmu index for the current translation regime.
2809  * This function is used by generic TCG code paths.
2810  */
2811 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2812 
2813 /* Indexes used when registering address spaces with cpu_address_space_init */
2814 typedef enum ARMASIdx {
2815     ARMASIdx_NS = 0,
2816     ARMASIdx_S = 1,
2817 } ARMASIdx;
2818 
2819 /* Return the Exception Level targeted by debug exceptions. */
2820 static inline int arm_debug_target_el(CPUARMState *env)
2821 {
2822     bool secure = arm_is_secure(env);
2823     bool route_to_el2 = false;
2824 
2825     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2826         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2827                        env->cp15.mdcr_el2 & MDCR_TDE;
2828     }
2829 
2830     if (route_to_el2) {
2831         return 2;
2832     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2833                !arm_el_is_aa64(env, 3) && secure) {
2834         return 3;
2835     } else {
2836         return 1;
2837     }
2838 }
2839 
2840 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2841 {
2842     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2843      * CSSELR is RAZ/WI.
2844      */
2845     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2846 }
2847 
2848 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2849 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2850 {
2851     int cur_el = arm_current_el(env);
2852     int debug_el;
2853 
2854     if (cur_el == 3) {
2855         return false;
2856     }
2857 
2858     /* MDCR_EL3.SDD disables debug events from Secure state */
2859     if (arm_is_secure_below_el3(env)
2860         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2861         return false;
2862     }
2863 
2864     /*
2865      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2866      * while not masking the (D)ebug bit in DAIF.
2867      */
2868     debug_el = arm_debug_target_el(env);
2869 
2870     if (cur_el == debug_el) {
2871         return extract32(env->cp15.mdscr_el1, 13, 1)
2872             && !(env->daif & PSTATE_D);
2873     }
2874 
2875     /* Otherwise the debug target needs to be a higher EL */
2876     return debug_el > cur_el;
2877 }
2878 
2879 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2880 {
2881     int el = arm_current_el(env);
2882 
2883     if (el == 0 && arm_el_is_aa64(env, 1)) {
2884         return aa64_generate_debug_exceptions(env);
2885     }
2886 
2887     if (arm_is_secure(env)) {
2888         int spd;
2889 
2890         if (el == 0 && (env->cp15.sder & 1)) {
2891             /* SDER.SUIDEN means debug exceptions from Secure EL0
2892              * are always enabled. Otherwise they are controlled by
2893              * SDCR.SPD like those from other Secure ELs.
2894              */
2895             return true;
2896         }
2897 
2898         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2899         switch (spd) {
2900         case 1:
2901             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2902         case 0:
2903             /* For 0b00 we return true if external secure invasive debug
2904              * is enabled. On real hardware this is controlled by external
2905              * signals to the core. QEMU always permits debug, and behaves
2906              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2907              */
2908             return true;
2909         case 2:
2910             return false;
2911         case 3:
2912             return true;
2913         }
2914     }
2915 
2916     return el != 2;
2917 }
2918 
2919 /* Return true if debugging exceptions are currently enabled.
2920  * This corresponds to what in ARM ARM pseudocode would be
2921  *    if UsingAArch32() then
2922  *        return AArch32.GenerateDebugExceptions()
2923  *    else
2924  *        return AArch64.GenerateDebugExceptions()
2925  * We choose to push the if() down into this function for clarity,
2926  * since the pseudocode has it at all callsites except for the one in
2927  * CheckSoftwareStep(), where it is elided because both branches would
2928  * always return the same value.
2929  */
2930 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2931 {
2932     if (env->aarch64) {
2933         return aa64_generate_debug_exceptions(env);
2934     } else {
2935         return aa32_generate_debug_exceptions(env);
2936     }
2937 }
2938 
2939 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2940  * implicitly means this always returns false in pre-v8 CPUs.)
2941  */
2942 static inline bool arm_singlestep_active(CPUARMState *env)
2943 {
2944     return extract32(env->cp15.mdscr_el1, 0, 1)
2945         && arm_el_is_aa64(env, arm_debug_target_el(env))
2946         && arm_generate_debug_exceptions(env);
2947 }
2948 
2949 static inline bool arm_sctlr_b(CPUARMState *env)
2950 {
2951     return
2952         /* We need not implement SCTLR.ITD in user-mode emulation, so
2953          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2954          * This lets people run BE32 binaries with "-cpu any".
2955          */
2956 #ifndef CONFIG_USER_ONLY
2957         !arm_feature(env, ARM_FEATURE_V7) &&
2958 #endif
2959         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2960 }
2961 
2962 /* Return true if the processor is in big-endian mode. */
2963 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2964 {
2965     int cur_el;
2966 
2967     /* In 32bit endianness is determined by looking at CPSR's E bit */
2968     if (!is_a64(env)) {
2969         return
2970 #ifdef CONFIG_USER_ONLY
2971             /* In system mode, BE32 is modelled in line with the
2972              * architecture (as word-invariant big-endianness), where loads
2973              * and stores are done little endian but from addresses which
2974              * are adjusted by XORing with the appropriate constant. So the
2975              * endianness to use for the raw data access is not affected by
2976              * SCTLR.B.
2977              * In user mode, however, we model BE32 as byte-invariant
2978              * big-endianness (because user-only code cannot tell the
2979              * difference), and so we need to use a data access endianness
2980              * that depends on SCTLR.B.
2981              */
2982             arm_sctlr_b(env) ||
2983 #endif
2984                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2985     }
2986 
2987     cur_el = arm_current_el(env);
2988 
2989     if (cur_el == 0) {
2990         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2991     }
2992 
2993     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2994 }
2995 
2996 #include "exec/cpu-all.h"
2997 
2998 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2999  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3000  * We put flags which are shared between 32 and 64 bit mode at the top
3001  * of the word, and flags which apply to only one mode at the bottom.
3002  */
3003 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3004 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3005 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3006 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3007 /* Target EL if we take a floating-point-disabled exception */
3008 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3009 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3010 
3011 /* Bit usage when in AArch32 state: */
3012 FIELD(TBFLAG_A32, THUMB, 0, 1)
3013 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3014 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3015 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3016 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3017 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3018 /* We store the bottom two bits of the CPAR as TB flags and handle
3019  * checks on the other bits at runtime
3020  */
3021 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3022 /* Indicates whether cp register reads and writes by guest code should access
3023  * the secure or nonsecure bank of banked registers; note that this is not
3024  * the same thing as the current security state of the processor!
3025  */
3026 FIELD(TBFLAG_A32, NS, 19, 1)
3027 /* For M profile only, Handler (ie not Thread) mode */
3028 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3029 /* For M profile only, whether we should generate stack-limit checks */
3030 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3031 
3032 /* Bit usage when in AArch64 state */
3033 FIELD(TBFLAG_A64, TBII, 0, 2)
3034 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3035 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3036 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3037 
3038 static inline bool bswap_code(bool sctlr_b)
3039 {
3040 #ifdef CONFIG_USER_ONLY
3041     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3042      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3043      * would also end up as a mixed-endian mode with BE code, LE data.
3044      */
3045     return
3046 #ifdef TARGET_WORDS_BIGENDIAN
3047         1 ^
3048 #endif
3049         sctlr_b;
3050 #else
3051     /* All code access in ARM is little endian, and there are no loaders
3052      * doing swaps that need to be reversed
3053      */
3054     return 0;
3055 #endif
3056 }
3057 
3058 #ifdef CONFIG_USER_ONLY
3059 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3060 {
3061     return
3062 #ifdef TARGET_WORDS_BIGENDIAN
3063        1 ^
3064 #endif
3065        arm_cpu_data_is_big_endian(env);
3066 }
3067 #endif
3068 
3069 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3070                           target_ulong *cs_base, uint32_t *flags);
3071 
3072 enum {
3073     QEMU_PSCI_CONDUIT_DISABLED = 0,
3074     QEMU_PSCI_CONDUIT_SMC = 1,
3075     QEMU_PSCI_CONDUIT_HVC = 2,
3076 };
3077 
3078 #ifndef CONFIG_USER_ONLY
3079 /* Return the address space index to use for a memory access */
3080 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3081 {
3082     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3083 }
3084 
3085 /* Return the AddressSpace to use for a memory access
3086  * (which depends on whether the access is S or NS, and whether
3087  * the board gave us a separate AddressSpace for S accesses).
3088  */
3089 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3090 {
3091     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3092 }
3093 #endif
3094 
3095 /**
3096  * arm_register_pre_el_change_hook:
3097  * Register a hook function which will be called immediately before this
3098  * CPU changes exception level or mode. The hook function will be
3099  * passed a pointer to the ARMCPU and the opaque data pointer passed
3100  * to this function when the hook was registered.
3101  *
3102  * Note that if a pre-change hook is called, any registered post-change hooks
3103  * are guaranteed to subsequently be called.
3104  */
3105 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3106                                  void *opaque);
3107 /**
3108  * arm_register_el_change_hook:
3109  * Register a hook function which will be called immediately after this
3110  * CPU changes exception level or mode. The hook function will be
3111  * passed a pointer to the ARMCPU and the opaque data pointer passed
3112  * to this function when the hook was registered.
3113  *
3114  * Note that any registered hooks registered here are guaranteed to be called
3115  * if pre-change hooks have been.
3116  */
3117 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3118         *opaque);
3119 
3120 /**
3121  * aa32_vfp_dreg:
3122  * Return a pointer to the Dn register within env in 32-bit mode.
3123  */
3124 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3125 {
3126     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3127 }
3128 
3129 /**
3130  * aa32_vfp_qreg:
3131  * Return a pointer to the Qn register within env in 32-bit mode.
3132  */
3133 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3134 {
3135     return &env->vfp.zregs[regno].d[0];
3136 }
3137 
3138 /**
3139  * aa64_vfp_qreg:
3140  * Return a pointer to the Qn register within env in 64-bit mode.
3141  */
3142 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3143 {
3144     return &env->vfp.zregs[regno].d[0];
3145 }
3146 
3147 /* Shared between translate-sve.c and sve_helper.c.  */
3148 extern const uint64_t pred_esz_masks[4];
3149 
3150 /*
3151  * 32-bit feature tests via id registers.
3152  */
3153 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3154 {
3155     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3156 }
3157 
3158 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3159 {
3160     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3161 }
3162 
3163 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3164 {
3165     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3166 }
3167 
3168 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3169 {
3170     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3171 }
3172 
3173 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3174 {
3175     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3176 }
3177 
3178 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3179 {
3180     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3181 }
3182 
3183 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3184 {
3185     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3186 }
3187 
3188 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3189 {
3190     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3191 }
3192 
3193 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3194 {
3195     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3196 }
3197 
3198 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3199 {
3200     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3201 }
3202 
3203 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3204 {
3205     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3206 }
3207 
3208 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3209 {
3210     /*
3211      * This is a placeholder for use by VCMA until the rest of
3212      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3213      * At which point we can properly set and check MVFR1.FPHP.
3214      */
3215     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3216 }
3217 
3218 /*
3219  * 64-bit feature tests via id registers.
3220  */
3221 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3222 {
3223     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3224 }
3225 
3226 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3227 {
3228     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3229 }
3230 
3231 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3232 {
3233     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3234 }
3235 
3236 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3237 {
3238     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3239 }
3240 
3241 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3242 {
3243     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3244 }
3245 
3246 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3247 {
3248     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3249 }
3250 
3251 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3252 {
3253     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3254 }
3255 
3256 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3257 {
3258     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3259 }
3260 
3261 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3262 {
3263     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3264 }
3265 
3266 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3267 {
3268     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3269 }
3270 
3271 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3272 {
3273     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3274 }
3275 
3276 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3277 {
3278     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3279 }
3280 
3281 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3282 {
3283     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3284 }
3285 
3286 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3287 {
3288     /*
3289      * Note that while QEMU will only implement the architected algorithm
3290      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3291      * defined algorithms, and thus API+GPI, and this predicate controls
3292      * migration of the 128-bit keys.
3293      */
3294     return (id->id_aa64isar1 &
3295             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3296              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3297              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3298              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3299 }
3300 
3301 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3302 {
3303     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3304     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3305 }
3306 
3307 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3308 {
3309     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3310 }
3311 
3312 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3313 {
3314     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3315 }
3316 
3317 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3318 {
3319     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3320 }
3321 
3322 /*
3323  * Forward to the above feature tests given an ARMCPU pointer.
3324  */
3325 #define cpu_isar_feature(name, cpu) \
3326     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3327 
3328 #endif
3329