xref: /openbmc/qemu/target/arm/cpu.h (revision 042cea27)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
60 
61 #define ARMV7M_EXCP_RESET   1
62 #define ARMV7M_EXCP_NMI     2
63 #define ARMV7M_EXCP_HARD    3
64 #define ARMV7M_EXCP_MEM     4
65 #define ARMV7M_EXCP_BUS     5
66 #define ARMV7M_EXCP_USAGE   6
67 #define ARMV7M_EXCP_SECURE  7
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* For M profile, some registers are banked secure vs non-secure;
74  * these are represented as a 2-element array where the first element
75  * is the non-secure copy and the second is the secure copy.
76  * When the CPU does not have implement the security extension then
77  * only the first element is used.
78  * This means that the copy for the current security state can be
79  * accessed via env->registerfield[env->v7m.secure] (whether the security
80  * extension is implemented or not).
81  */
82 enum {
83     M_REG_NS = 0,
84     M_REG_S = 1,
85     M_REG_NUM_BANKS = 2,
86 };
87 
88 /* ARM-specific interrupt pending bits.  */
89 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
92 
93 /* The usual mapping for an AArch64 system register to its AArch32
94  * counterpart is for the 32 bit world to have access to the lower
95  * half only (with writes leaving the upper half untouched). It's
96  * therefore useful to be able to pass TCG the offset of the least
97  * significant half of a uint64_t struct member.
98  */
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
106 
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
112 
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115  * 1: Conditional execution bits
116  * 2: Partial exception syndrome for data aborts
117  */
118 #define TARGET_INSN_START_EXTRA_WORDS 2
119 
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122  * help the sleb128 encoder do a better job.
123  * When restoring the CPU state, we shift it back up.
124  */
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
127 
128 /* We currently assume float and double are IEEE single and double
129    precision respectively.
130    Doing runtime conversions is tricky because VFP registers may contain
131    integer values (eg. as the result of a FTOSI instruction).
132    s<2n> maps to the least significant half of d<n>
133    s<2n+1> maps to the most significant half of d<n>
134  */
135 
136 /* CPU state for each instance of a generic timer (in cp15 c14) */
137 typedef struct ARMGenericTimer {
138     uint64_t cval; /* Timer CompareValue register */
139     uint64_t ctl; /* Timer Control register */
140 } ARMGenericTimer;
141 
142 #define GTIMER_PHYS 0
143 #define GTIMER_VIRT 1
144 #define GTIMER_HYP  2
145 #define GTIMER_SEC  3
146 #define NUM_GTIMERS 4
147 
148 typedef struct {
149     uint64_t raw_tcr;
150     uint32_t mask;
151     uint32_t base_mask;
152 } TCR;
153 
154 /* Define a maximum sized vector register.
155  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156  * For 64-bit, this is a 2048-bit SVE register.
157  *
158  * Note that the mapping between S, D, and Q views of the register bank
159  * differs between AArch64 and AArch32.
160  * In AArch32:
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n / 2].d[n & 1]
163  *  Sn = regs[n / 4].d[n % 4 / 2],
164  *       bits 31..0 for even n, and bits 63..32 for odd n
165  *       (and regs[16] to regs[31] are inaccessible)
166  * In AArch64:
167  *  Zn = regs[n].d[*]
168  *  Qn = regs[n].d[1]:regs[n].d[0]
169  *  Dn = regs[n].d[0]
170  *  Sn = regs[n].d[0] bits 31..0
171  *
172  * This corresponds to the architecturally defined mapping between
173  * the two execution states, and means we do not need to explicitly
174  * map these registers when changing states.
175  *
176  * Align the data for use with TCG host vector operations.
177  */
178 
179 #ifdef TARGET_AARCH64
180 # define ARM_MAX_VQ    16
181 #else
182 # define ARM_MAX_VQ    1
183 #endif
184 
185 typedef struct ARMVectorReg {
186     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
187 } ARMVectorReg;
188 
189 /* In AArch32 mode, predicate registers do not exist at all.  */
190 #ifdef TARGET_AARCH64
191 typedef struct ARMPredicateReg {
192     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
193 } ARMPredicateReg;
194 #endif
195 
196 
197 typedef struct CPUARMState {
198     /* Regs for current mode.  */
199     uint32_t regs[16];
200 
201     /* 32/64 switch only happens when taking and returning from
202      * exceptions so the overlap semantics are taken care of then
203      * instead of having a complicated union.
204      */
205     /* Regs for A64 mode.  */
206     uint64_t xregs[32];
207     uint64_t pc;
208     /* PSTATE isn't an architectural register for ARMv8. However, it is
209      * convenient for us to assemble the underlying state into a 32 bit format
210      * identical to the architectural format used for the SPSR. (This is also
211      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
212      * 'pstate' register are.) Of the PSTATE bits:
213      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
214      *    semantics as for AArch32, as described in the comments on each field)
215      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
216      *  DAIF (exception masks) are kept in env->daif
217      *  all other bits are stored in their correct places in env->pstate
218      */
219     uint32_t pstate;
220     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
221 
222     /* Frequently accessed CPSR bits are stored separately for efficiency.
223        This contains all the other bits.  Use cpsr_{read,write} to access
224        the whole CPSR.  */
225     uint32_t uncached_cpsr;
226     uint32_t spsr;
227 
228     /* Banked registers.  */
229     uint64_t banked_spsr[8];
230     uint32_t banked_r13[8];
231     uint32_t banked_r14[8];
232 
233     /* These hold r8-r12.  */
234     uint32_t usr_regs[5];
235     uint32_t fiq_regs[5];
236 
237     /* cpsr flag cache for faster execution */
238     uint32_t CF; /* 0 or 1 */
239     uint32_t VF; /* V is the bit 31. All other bits are undefined */
240     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
241     uint32_t ZF; /* Z set if zero.  */
242     uint32_t QF; /* 0 or 1 */
243     uint32_t GE; /* cpsr[19:16] */
244     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
245     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
246     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
247 
248     uint64_t elr_el[4]; /* AArch64 exception link regs  */
249     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
250 
251     /* System control coprocessor (cp15) */
252     struct {
253         uint32_t c0_cpuid;
254         union { /* Cache size selection */
255             struct {
256                 uint64_t _unused_csselr0;
257                 uint64_t csselr_ns;
258                 uint64_t _unused_csselr1;
259                 uint64_t csselr_s;
260             };
261             uint64_t csselr_el[4];
262         };
263         union { /* System control register. */
264             struct {
265                 uint64_t _unused_sctlr;
266                 uint64_t sctlr_ns;
267                 uint64_t hsctlr;
268                 uint64_t sctlr_s;
269             };
270             uint64_t sctlr_el[4];
271         };
272         uint64_t cpacr_el1; /* Architectural feature access control register */
273         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
274         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
275         uint64_t sder; /* Secure debug enable register. */
276         uint32_t nsacr; /* Non-secure access control register. */
277         union { /* MMU translation table base 0. */
278             struct {
279                 uint64_t _unused_ttbr0_0;
280                 uint64_t ttbr0_ns;
281                 uint64_t _unused_ttbr0_1;
282                 uint64_t ttbr0_s;
283             };
284             uint64_t ttbr0_el[4];
285         };
286         union { /* MMU translation table base 1. */
287             struct {
288                 uint64_t _unused_ttbr1_0;
289                 uint64_t ttbr1_ns;
290                 uint64_t _unused_ttbr1_1;
291                 uint64_t ttbr1_s;
292             };
293             uint64_t ttbr1_el[4];
294         };
295         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
296         /* MMU translation table base control. */
297         TCR tcr_el[4];
298         TCR vtcr_el2; /* Virtualization Translation Control.  */
299         uint32_t c2_data; /* MPU data cacheable bits.  */
300         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
301         union { /* MMU domain access control register
302                  * MPU write buffer control.
303                  */
304             struct {
305                 uint64_t dacr_ns;
306                 uint64_t dacr_s;
307             };
308             struct {
309                 uint64_t dacr32_el2;
310             };
311         };
312         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
313         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
314         uint64_t hcr_el2; /* Hypervisor configuration register */
315         uint64_t scr_el3; /* Secure configuration register.  */
316         union { /* Fault status registers.  */
317             struct {
318                 uint64_t ifsr_ns;
319                 uint64_t ifsr_s;
320             };
321             struct {
322                 uint64_t ifsr32_el2;
323             };
324         };
325         union {
326             struct {
327                 uint64_t _unused_dfsr;
328                 uint64_t dfsr_ns;
329                 uint64_t hsr;
330                 uint64_t dfsr_s;
331             };
332             uint64_t esr_el[4];
333         };
334         uint32_t c6_region[8]; /* MPU base/size registers.  */
335         union { /* Fault address registers. */
336             struct {
337                 uint64_t _unused_far0;
338 #ifdef HOST_WORDS_BIGENDIAN
339                 uint32_t ifar_ns;
340                 uint32_t dfar_ns;
341                 uint32_t ifar_s;
342                 uint32_t dfar_s;
343 #else
344                 uint32_t dfar_ns;
345                 uint32_t ifar_ns;
346                 uint32_t dfar_s;
347                 uint32_t ifar_s;
348 #endif
349                 uint64_t _unused_far3;
350             };
351             uint64_t far_el[4];
352         };
353         uint64_t hpfar_el2;
354         uint64_t hstr_el2;
355         union { /* Translation result. */
356             struct {
357                 uint64_t _unused_par_0;
358                 uint64_t par_ns;
359                 uint64_t _unused_par_1;
360                 uint64_t par_s;
361             };
362             uint64_t par_el[4];
363         };
364 
365         uint32_t c9_insn; /* Cache lockdown registers.  */
366         uint32_t c9_data;
367         uint64_t c9_pmcr; /* performance monitor control register */
368         uint64_t c9_pmcnten; /* perf monitor counter enables */
369         uint32_t c9_pmovsr; /* perf monitor overflow status */
370         uint32_t c9_pmuserenr; /* perf monitor user enable */
371         uint64_t c9_pmselr; /* perf monitor counter selection register */
372         uint64_t c9_pminten; /* perf monitor interrupt enables */
373         union { /* Memory attribute redirection */
374             struct {
375 #ifdef HOST_WORDS_BIGENDIAN
376                 uint64_t _unused_mair_0;
377                 uint32_t mair1_ns;
378                 uint32_t mair0_ns;
379                 uint64_t _unused_mair_1;
380                 uint32_t mair1_s;
381                 uint32_t mair0_s;
382 #else
383                 uint64_t _unused_mair_0;
384                 uint32_t mair0_ns;
385                 uint32_t mair1_ns;
386                 uint64_t _unused_mair_1;
387                 uint32_t mair0_s;
388                 uint32_t mair1_s;
389 #endif
390             };
391             uint64_t mair_el[4];
392         };
393         union { /* vector base address register */
394             struct {
395                 uint64_t _unused_vbar;
396                 uint64_t vbar_ns;
397                 uint64_t hvbar;
398                 uint64_t vbar_s;
399             };
400             uint64_t vbar_el[4];
401         };
402         uint32_t mvbar; /* (monitor) vector base address register */
403         struct { /* FCSE PID. */
404             uint32_t fcseidr_ns;
405             uint32_t fcseidr_s;
406         };
407         union { /* Context ID. */
408             struct {
409                 uint64_t _unused_contextidr_0;
410                 uint64_t contextidr_ns;
411                 uint64_t _unused_contextidr_1;
412                 uint64_t contextidr_s;
413             };
414             uint64_t contextidr_el[4];
415         };
416         union { /* User RW Thread register. */
417             struct {
418                 uint64_t tpidrurw_ns;
419                 uint64_t tpidrprw_ns;
420                 uint64_t htpidr;
421                 uint64_t _tpidr_el3;
422             };
423             uint64_t tpidr_el[4];
424         };
425         /* The secure banks of these registers don't map anywhere */
426         uint64_t tpidrurw_s;
427         uint64_t tpidrprw_s;
428         uint64_t tpidruro_s;
429 
430         union { /* User RO Thread register. */
431             uint64_t tpidruro_ns;
432             uint64_t tpidrro_el[1];
433         };
434         uint64_t c14_cntfrq; /* Counter Frequency register */
435         uint64_t c14_cntkctl; /* Timer Control register */
436         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
437         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
438         ARMGenericTimer c14_timer[NUM_GTIMERS];
439         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
440         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
441         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
442         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
443         uint32_t c15_threadid; /* TI debugger thread-ID.  */
444         uint32_t c15_config_base_address; /* SCU base address.  */
445         uint32_t c15_diagnostic; /* diagnostic register */
446         uint32_t c15_power_diagnostic;
447         uint32_t c15_power_control; /* power control */
448         uint64_t dbgbvr[16]; /* breakpoint value registers */
449         uint64_t dbgbcr[16]; /* breakpoint control registers */
450         uint64_t dbgwvr[16]; /* watchpoint value registers */
451         uint64_t dbgwcr[16]; /* watchpoint control registers */
452         uint64_t mdscr_el1;
453         uint64_t oslsr_el1; /* OS Lock Status */
454         uint64_t mdcr_el2;
455         uint64_t mdcr_el3;
456         /* If the counter is enabled, this stores the last time the counter
457          * was reset. Otherwise it stores the counter value
458          */
459         uint64_t c15_ccnt;
460         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
461         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
462         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
463     } cp15;
464 
465     struct {
466         /* M profile has up to 4 stack pointers:
467          * a Main Stack Pointer and a Process Stack Pointer for each
468          * of the Secure and Non-Secure states. (If the CPU doesn't support
469          * the security extension then it has only two SPs.)
470          * In QEMU we always store the currently active SP in regs[13],
471          * and the non-active SP for the current security state in
472          * v7m.other_sp. The stack pointers for the inactive security state
473          * are stored in other_ss_msp and other_ss_psp.
474          * switch_v7m_security_state() is responsible for rearranging them
475          * when we change security state.
476          */
477         uint32_t other_sp;
478         uint32_t other_ss_msp;
479         uint32_t other_ss_psp;
480         uint32_t vecbase[M_REG_NUM_BANKS];
481         uint32_t basepri[M_REG_NUM_BANKS];
482         uint32_t control[M_REG_NUM_BANKS];
483         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
484         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
485         uint32_t hfsr; /* HardFault Status */
486         uint32_t dfsr; /* Debug Fault Status Register */
487         uint32_t sfsr; /* Secure Fault Status Register */
488         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
489         uint32_t bfar; /* BusFault Address */
490         uint32_t sfar; /* Secure Fault Address Register */
491         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
492         int exception;
493         uint32_t primask[M_REG_NUM_BANKS];
494         uint32_t faultmask[M_REG_NUM_BANKS];
495         uint32_t aircr; /* only holds r/w state if security extn implemented */
496         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
497         uint32_t csselr[M_REG_NUM_BANKS];
498         uint32_t scr[M_REG_NUM_BANKS];
499         uint32_t msplim[M_REG_NUM_BANKS];
500         uint32_t psplim[M_REG_NUM_BANKS];
501     } v7m;
502 
503     /* Information associated with an exception about to be taken:
504      * code which raises an exception must set cs->exception_index and
505      * the relevant parts of this structure; the cpu_do_interrupt function
506      * will then set the guest-visible registers as part of the exception
507      * entry process.
508      */
509     struct {
510         uint32_t syndrome; /* AArch64 format syndrome register */
511         uint32_t fsr; /* AArch32 format fault status register info */
512         uint64_t vaddress; /* virtual addr associated with exception, if any */
513         uint32_t target_el; /* EL the exception should be targeted for */
514         /* If we implement EL2 we will also need to store information
515          * about the intermediate physical address for stage 2 faults.
516          */
517     } exception;
518 
519     /* Thumb-2 EE state.  */
520     uint32_t teecr;
521     uint32_t teehbr;
522 
523     /* VFP coprocessor state.  */
524     struct {
525         ARMVectorReg zregs[32];
526 
527 #ifdef TARGET_AARCH64
528         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
529         ARMPredicateReg pregs[17];
530 #endif
531 
532         uint32_t xregs[16];
533         /* We store these fpcsr fields separately for convenience.  */
534         int vec_len;
535         int vec_stride;
536 
537         /* scratch space when Tn are not sufficient.  */
538         uint32_t scratch[8];
539 
540         /* fp_status is the "normal" fp status. standard_fp_status retains
541          * values corresponding to the ARM "Standard FPSCR Value", ie
542          * default-NaN, flush-to-zero, round-to-nearest and is used by
543          * any operations (generally Neon) which the architecture defines
544          * as controlled by the standard FPSCR value rather than the FPSCR.
545          *
546          * To avoid having to transfer exception bits around, we simply
547          * say that the FPSCR cumulative exception flags are the logical
548          * OR of the flags in the two fp statuses. This relies on the
549          * only thing which needs to read the exception flags being
550          * an explicit FPSCR read.
551          */
552         float_status fp_status;
553         float_status standard_fp_status;
554 
555         /* ZCR_EL[1-3] */
556         uint64_t zcr_el[4];
557     } vfp;
558     uint64_t exclusive_addr;
559     uint64_t exclusive_val;
560     uint64_t exclusive_high;
561 
562     /* iwMMXt coprocessor state.  */
563     struct {
564         uint64_t regs[16];
565         uint64_t val;
566 
567         uint32_t cregs[16];
568     } iwmmxt;
569 
570 #if defined(CONFIG_USER_ONLY)
571     /* For usermode syscall translation.  */
572     int eabi;
573 #endif
574 
575     struct CPUBreakpoint *cpu_breakpoint[16];
576     struct CPUWatchpoint *cpu_watchpoint[16];
577 
578     /* Fields up to this point are cleared by a CPU reset */
579     struct {} end_reset_fields;
580 
581     CPU_COMMON
582 
583     /* Fields after CPU_COMMON are preserved across CPU reset. */
584 
585     /* Internal CPU feature flags.  */
586     uint64_t features;
587 
588     /* PMSAv7 MPU */
589     struct {
590         uint32_t *drbar;
591         uint32_t *drsr;
592         uint32_t *dracr;
593         uint32_t rnr[M_REG_NUM_BANKS];
594     } pmsav7;
595 
596     /* PMSAv8 MPU */
597     struct {
598         /* The PMSAv8 implementation also shares some PMSAv7 config
599          * and state:
600          *  pmsav7.rnr (region number register)
601          *  pmsav7_dregion (number of configured regions)
602          */
603         uint32_t *rbar[M_REG_NUM_BANKS];
604         uint32_t *rlar[M_REG_NUM_BANKS];
605         uint32_t mair0[M_REG_NUM_BANKS];
606         uint32_t mair1[M_REG_NUM_BANKS];
607     } pmsav8;
608 
609     /* v8M SAU */
610     struct {
611         uint32_t *rbar;
612         uint32_t *rlar;
613         uint32_t rnr;
614         uint32_t ctrl;
615     } sau;
616 
617     void *nvic;
618     const struct arm_boot_info *boot_info;
619     /* Store GICv3CPUState to access from this struct */
620     void *gicv3state;
621 } CPUARMState;
622 
623 /**
624  * ARMELChangeHook:
625  * type of a function which can be registered via arm_register_el_change_hook()
626  * to get callbacks when the CPU changes its exception level or mode.
627  */
628 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
629 
630 
631 /* These values map onto the return values for
632  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
633 typedef enum ARMPSCIState {
634     PSCI_ON = 0,
635     PSCI_OFF = 1,
636     PSCI_ON_PENDING = 2
637 } ARMPSCIState;
638 
639 /**
640  * ARMCPU:
641  * @env: #CPUARMState
642  *
643  * An ARM CPU core.
644  */
645 struct ARMCPU {
646     /*< private >*/
647     CPUState parent_obj;
648     /*< public >*/
649 
650     CPUARMState env;
651 
652     /* Coprocessor information */
653     GHashTable *cp_regs;
654     /* For marshalling (mostly coprocessor) register state between the
655      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
656      * we use these arrays.
657      */
658     /* List of register indexes managed via these arrays; (full KVM style
659      * 64 bit indexes, not CPRegInfo 32 bit indexes)
660      */
661     uint64_t *cpreg_indexes;
662     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
663     uint64_t *cpreg_values;
664     /* Length of the indexes, values, reset_values arrays */
665     int32_t cpreg_array_len;
666     /* These are used only for migration: incoming data arrives in
667      * these fields and is sanity checked in post_load before copying
668      * to the working data structures above.
669      */
670     uint64_t *cpreg_vmstate_indexes;
671     uint64_t *cpreg_vmstate_values;
672     int32_t cpreg_vmstate_array_len;
673 
674     /* Timers used by the generic (architected) timer */
675     QEMUTimer *gt_timer[NUM_GTIMERS];
676     /* GPIO outputs for generic timer */
677     qemu_irq gt_timer_outputs[NUM_GTIMERS];
678     /* GPIO output for GICv3 maintenance interrupt signal */
679     qemu_irq gicv3_maintenance_interrupt;
680     /* GPIO output for the PMU interrupt */
681     qemu_irq pmu_interrupt;
682 
683     /* MemoryRegion to use for secure physical accesses */
684     MemoryRegion *secure_memory;
685 
686     /* 'compatible' string for this CPU for Linux device trees */
687     const char *dtb_compatible;
688 
689     /* PSCI version for this CPU
690      * Bits[31:16] = Major Version
691      * Bits[15:0] = Minor Version
692      */
693     uint32_t psci_version;
694 
695     /* Should CPU start in PSCI powered-off state? */
696     bool start_powered_off;
697 
698     /* Current power state, access guarded by BQL */
699     ARMPSCIState power_state;
700 
701     /* CPU has virtualization extension */
702     bool has_el2;
703     /* CPU has security extension */
704     bool has_el3;
705     /* CPU has PMU (Performance Monitor Unit) */
706     bool has_pmu;
707 
708     /* CPU has memory protection unit */
709     bool has_mpu;
710     /* PMSAv7 MPU number of supported regions */
711     uint32_t pmsav7_dregion;
712     /* v8M SAU number of supported regions */
713     uint32_t sau_sregion;
714 
715     /* PSCI conduit used to invoke PSCI methods
716      * 0 - disabled, 1 - smc, 2 - hvc
717      */
718     uint32_t psci_conduit;
719 
720     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
721      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
722      */
723     uint32_t kvm_target;
724 
725     /* KVM init features for this CPU */
726     uint32_t kvm_init_features[7];
727 
728     /* Uniprocessor system with MP extensions */
729     bool mp_is_up;
730 
731     /* The instance init functions for implementation-specific subclasses
732      * set these fields to specify the implementation-dependent values of
733      * various constant registers and reset values of non-constant
734      * registers.
735      * Some of these might become QOM properties eventually.
736      * Field names match the official register names as defined in the
737      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
738      * is used for reset values of non-constant registers; no reset_
739      * prefix means a constant register.
740      */
741     uint32_t midr;
742     uint32_t revidr;
743     uint32_t reset_fpsid;
744     uint32_t mvfr0;
745     uint32_t mvfr1;
746     uint32_t mvfr2;
747     uint32_t ctr;
748     uint32_t reset_sctlr;
749     uint32_t id_pfr0;
750     uint32_t id_pfr1;
751     uint32_t id_dfr0;
752     uint32_t pmceid0;
753     uint32_t pmceid1;
754     uint32_t id_afr0;
755     uint32_t id_mmfr0;
756     uint32_t id_mmfr1;
757     uint32_t id_mmfr2;
758     uint32_t id_mmfr3;
759     uint32_t id_mmfr4;
760     uint32_t id_isar0;
761     uint32_t id_isar1;
762     uint32_t id_isar2;
763     uint32_t id_isar3;
764     uint32_t id_isar4;
765     uint32_t id_isar5;
766     uint64_t id_aa64pfr0;
767     uint64_t id_aa64pfr1;
768     uint64_t id_aa64dfr0;
769     uint64_t id_aa64dfr1;
770     uint64_t id_aa64afr0;
771     uint64_t id_aa64afr1;
772     uint64_t id_aa64isar0;
773     uint64_t id_aa64isar1;
774     uint64_t id_aa64mmfr0;
775     uint64_t id_aa64mmfr1;
776     uint32_t dbgdidr;
777     uint32_t clidr;
778     uint64_t mp_affinity; /* MP ID without feature bits */
779     /* The elements of this array are the CCSIDR values for each cache,
780      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
781      */
782     uint32_t ccsidr[16];
783     uint64_t reset_cbar;
784     uint32_t reset_auxcr;
785     bool reset_hivecs;
786     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
787     uint32_t dcz_blocksize;
788     uint64_t rvbar;
789 
790     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
791     int gic_num_lrs; /* number of list registers */
792     int gic_vpribits; /* number of virtual priority bits */
793     int gic_vprebits; /* number of virtual preemption bits */
794 
795     /* Whether the cfgend input is high (i.e. this CPU should reset into
796      * big-endian mode).  This setting isn't used directly: instead it modifies
797      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
798      * architecture version.
799      */
800     bool cfgend;
801 
802     ARMELChangeHook *el_change_hook;
803     void *el_change_hook_opaque;
804 
805     int32_t node_id; /* NUMA node this CPU belongs to */
806 
807     /* Used to synchronize KVM and QEMU in-kernel device levels */
808     uint8_t device_irq_level;
809 };
810 
811 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
812 {
813     return container_of(env, ARMCPU, env);
814 }
815 
816 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
817 
818 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
819 
820 #define ENV_OFFSET offsetof(ARMCPU, env)
821 
822 #ifndef CONFIG_USER_ONLY
823 extern const struct VMStateDescription vmstate_arm_cpu;
824 #endif
825 
826 void arm_cpu_do_interrupt(CPUState *cpu);
827 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
828 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
829 
830 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
831                         int flags);
832 
833 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
834                                          MemTxAttrs *attrs);
835 
836 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
837 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
838 
839 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
840                              int cpuid, void *opaque);
841 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
842                              int cpuid, void *opaque);
843 
844 #ifdef TARGET_AARCH64
845 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
846 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
847 #endif
848 
849 target_ulong do_arm_semihosting(CPUARMState *env);
850 void aarch64_sync_32_to_64(CPUARMState *env);
851 void aarch64_sync_64_to_32(CPUARMState *env);
852 
853 static inline bool is_a64(CPUARMState *env)
854 {
855     return env->aarch64;
856 }
857 
858 /* you can call this signal handler from your SIGBUS and SIGSEGV
859    signal handlers to inform the virtual CPU of exceptions. non zero
860    is returned if the signal was handled by the virtual CPU.  */
861 int cpu_arm_signal_handler(int host_signum, void *pinfo,
862                            void *puc);
863 
864 /**
865  * pmccntr_sync
866  * @env: CPUARMState
867  *
868  * Synchronises the counter in the PMCCNTR. This must always be called twice,
869  * once before any action that might affect the timer and again afterwards.
870  * The function is used to swap the state of the register if required.
871  * This only happens when not in user mode (!CONFIG_USER_ONLY)
872  */
873 void pmccntr_sync(CPUARMState *env);
874 
875 /* SCTLR bit meanings. Several bits have been reused in newer
876  * versions of the architecture; in that case we define constants
877  * for both old and new bit meanings. Code which tests against those
878  * bits should probably check or otherwise arrange that the CPU
879  * is the architectural version it expects.
880  */
881 #define SCTLR_M       (1U << 0)
882 #define SCTLR_A       (1U << 1)
883 #define SCTLR_C       (1U << 2)
884 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
885 #define SCTLR_SA      (1U << 3)
886 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
887 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
888 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
889 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
890 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
891 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
892 #define SCTLR_ITD     (1U << 7) /* v8 onward */
893 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
894 #define SCTLR_SED     (1U << 8) /* v8 onward */
895 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
896 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
897 #define SCTLR_F       (1U << 10) /* up to v6 */
898 #define SCTLR_SW      (1U << 10) /* v7 onward */
899 #define SCTLR_Z       (1U << 11)
900 #define SCTLR_I       (1U << 12)
901 #define SCTLR_V       (1U << 13)
902 #define SCTLR_RR      (1U << 14) /* up to v7 */
903 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
904 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
905 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
906 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
907 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
908 #define SCTLR_HA      (1U << 17)
909 #define SCTLR_BR      (1U << 17) /* PMSA only */
910 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
911 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
912 #define SCTLR_WXN     (1U << 19)
913 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
914 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
915 #define SCTLR_FI      (1U << 21)
916 #define SCTLR_U       (1U << 22)
917 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
918 #define SCTLR_VE      (1U << 24) /* up to v7 */
919 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
920 #define SCTLR_EE      (1U << 25)
921 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
922 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
923 #define SCTLR_NMFI    (1U << 27)
924 #define SCTLR_TRE     (1U << 28)
925 #define SCTLR_AFE     (1U << 29)
926 #define SCTLR_TE      (1U << 30)
927 
928 #define CPTR_TCPAC    (1U << 31)
929 #define CPTR_TTA      (1U << 20)
930 #define CPTR_TFP      (1U << 10)
931 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
932 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
933 
934 #define MDCR_EPMAD    (1U << 21)
935 #define MDCR_EDAD     (1U << 20)
936 #define MDCR_SPME     (1U << 17)
937 #define MDCR_SDD      (1U << 16)
938 #define MDCR_SPD      (3U << 14)
939 #define MDCR_TDRA     (1U << 11)
940 #define MDCR_TDOSA    (1U << 10)
941 #define MDCR_TDA      (1U << 9)
942 #define MDCR_TDE      (1U << 8)
943 #define MDCR_HPME     (1U << 7)
944 #define MDCR_TPM      (1U << 6)
945 #define MDCR_TPMCR    (1U << 5)
946 
947 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
948 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
949 
950 #define CPSR_M (0x1fU)
951 #define CPSR_T (1U << 5)
952 #define CPSR_F (1U << 6)
953 #define CPSR_I (1U << 7)
954 #define CPSR_A (1U << 8)
955 #define CPSR_E (1U << 9)
956 #define CPSR_IT_2_7 (0xfc00U)
957 #define CPSR_GE (0xfU << 16)
958 #define CPSR_IL (1U << 20)
959 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
960  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
961  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
962  * where it is live state but not accessible to the AArch32 code.
963  */
964 #define CPSR_RESERVED (0x7U << 21)
965 #define CPSR_J (1U << 24)
966 #define CPSR_IT_0_1 (3U << 25)
967 #define CPSR_Q (1U << 27)
968 #define CPSR_V (1U << 28)
969 #define CPSR_C (1U << 29)
970 #define CPSR_Z (1U << 30)
971 #define CPSR_N (1U << 31)
972 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
973 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
974 
975 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
976 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
977     | CPSR_NZCV)
978 /* Bits writable in user mode.  */
979 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
980 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
981 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
982 /* Mask of bits which may be set by exception return copying them from SPSR */
983 #define CPSR_ERET_MASK (~CPSR_RESERVED)
984 
985 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
986 #define XPSR_EXCP 0x1ffU
987 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
988 #define XPSR_IT_2_7 CPSR_IT_2_7
989 #define XPSR_GE CPSR_GE
990 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
991 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
992 #define XPSR_IT_0_1 CPSR_IT_0_1
993 #define XPSR_Q CPSR_Q
994 #define XPSR_V CPSR_V
995 #define XPSR_C CPSR_C
996 #define XPSR_Z CPSR_Z
997 #define XPSR_N CPSR_N
998 #define XPSR_NZCV CPSR_NZCV
999 #define XPSR_IT CPSR_IT
1000 
1001 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1002 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1003 #define TTBCR_PD0    (1U << 4)
1004 #define TTBCR_PD1    (1U << 5)
1005 #define TTBCR_EPD0   (1U << 7)
1006 #define TTBCR_IRGN0  (3U << 8)
1007 #define TTBCR_ORGN0  (3U << 10)
1008 #define TTBCR_SH0    (3U << 12)
1009 #define TTBCR_T1SZ   (3U << 16)
1010 #define TTBCR_A1     (1U << 22)
1011 #define TTBCR_EPD1   (1U << 23)
1012 #define TTBCR_IRGN1  (3U << 24)
1013 #define TTBCR_ORGN1  (3U << 26)
1014 #define TTBCR_SH1    (1U << 28)
1015 #define TTBCR_EAE    (1U << 31)
1016 
1017 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1018  * Only these are valid when in AArch64 mode; in
1019  * AArch32 mode SPSRs are basically CPSR-format.
1020  */
1021 #define PSTATE_SP (1U)
1022 #define PSTATE_M (0xFU)
1023 #define PSTATE_nRW (1U << 4)
1024 #define PSTATE_F (1U << 6)
1025 #define PSTATE_I (1U << 7)
1026 #define PSTATE_A (1U << 8)
1027 #define PSTATE_D (1U << 9)
1028 #define PSTATE_IL (1U << 20)
1029 #define PSTATE_SS (1U << 21)
1030 #define PSTATE_V (1U << 28)
1031 #define PSTATE_C (1U << 29)
1032 #define PSTATE_Z (1U << 30)
1033 #define PSTATE_N (1U << 31)
1034 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1035 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1036 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1037 /* Mode values for AArch64 */
1038 #define PSTATE_MODE_EL3h 13
1039 #define PSTATE_MODE_EL3t 12
1040 #define PSTATE_MODE_EL2h 9
1041 #define PSTATE_MODE_EL2t 8
1042 #define PSTATE_MODE_EL1h 5
1043 #define PSTATE_MODE_EL1t 4
1044 #define PSTATE_MODE_EL0t 0
1045 
1046 /* Write a new value to v7m.exception, thus transitioning into or out
1047  * of Handler mode; this may result in a change of active stack pointer.
1048  */
1049 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1050 
1051 /* Map EL and handler into a PSTATE_MODE.  */
1052 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1053 {
1054     return (el << 2) | handler;
1055 }
1056 
1057 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1058  * interprocessing, so we don't attempt to sync with the cpsr state used by
1059  * the 32 bit decoder.
1060  */
1061 static inline uint32_t pstate_read(CPUARMState *env)
1062 {
1063     int ZF;
1064 
1065     ZF = (env->ZF == 0);
1066     return (env->NF & 0x80000000) | (ZF << 30)
1067         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1068         | env->pstate | env->daif;
1069 }
1070 
1071 static inline void pstate_write(CPUARMState *env, uint32_t val)
1072 {
1073     env->ZF = (~val) & PSTATE_Z;
1074     env->NF = val;
1075     env->CF = (val >> 29) & 1;
1076     env->VF = (val << 3) & 0x80000000;
1077     env->daif = val & PSTATE_DAIF;
1078     env->pstate = val & ~CACHED_PSTATE_BITS;
1079 }
1080 
1081 /* Return the current CPSR value.  */
1082 uint32_t cpsr_read(CPUARMState *env);
1083 
1084 typedef enum CPSRWriteType {
1085     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1086     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1087     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1088     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1089 } CPSRWriteType;
1090 
1091 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1092 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1093                 CPSRWriteType write_type);
1094 
1095 /* Return the current xPSR value.  */
1096 static inline uint32_t xpsr_read(CPUARMState *env)
1097 {
1098     int ZF;
1099     ZF = (env->ZF == 0);
1100     return (env->NF & 0x80000000) | (ZF << 30)
1101         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1102         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1103         | ((env->condexec_bits & 0xfc) << 8)
1104         | env->v7m.exception;
1105 }
1106 
1107 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1108 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1109 {
1110     if (mask & XPSR_NZCV) {
1111         env->ZF = (~val) & XPSR_Z;
1112         env->NF = val;
1113         env->CF = (val >> 29) & 1;
1114         env->VF = (val << 3) & 0x80000000;
1115     }
1116     if (mask & XPSR_Q) {
1117         env->QF = ((val & XPSR_Q) != 0);
1118     }
1119     if (mask & XPSR_T) {
1120         env->thumb = ((val & XPSR_T) != 0);
1121     }
1122     if (mask & XPSR_IT_0_1) {
1123         env->condexec_bits &= ~3;
1124         env->condexec_bits |= (val >> 25) & 3;
1125     }
1126     if (mask & XPSR_IT_2_7) {
1127         env->condexec_bits &= 3;
1128         env->condexec_bits |= (val >> 8) & 0xfc;
1129     }
1130     if (mask & XPSR_EXCP) {
1131         /* Note that this only happens on exception exit */
1132         write_v7m_exception(env, val & XPSR_EXCP);
1133     }
1134 }
1135 
1136 #define HCR_VM        (1ULL << 0)
1137 #define HCR_SWIO      (1ULL << 1)
1138 #define HCR_PTW       (1ULL << 2)
1139 #define HCR_FMO       (1ULL << 3)
1140 #define HCR_IMO       (1ULL << 4)
1141 #define HCR_AMO       (1ULL << 5)
1142 #define HCR_VF        (1ULL << 6)
1143 #define HCR_VI        (1ULL << 7)
1144 #define HCR_VSE       (1ULL << 8)
1145 #define HCR_FB        (1ULL << 9)
1146 #define HCR_BSU_MASK  (3ULL << 10)
1147 #define HCR_DC        (1ULL << 12)
1148 #define HCR_TWI       (1ULL << 13)
1149 #define HCR_TWE       (1ULL << 14)
1150 #define HCR_TID0      (1ULL << 15)
1151 #define HCR_TID1      (1ULL << 16)
1152 #define HCR_TID2      (1ULL << 17)
1153 #define HCR_TID3      (1ULL << 18)
1154 #define HCR_TSC       (1ULL << 19)
1155 #define HCR_TIDCP     (1ULL << 20)
1156 #define HCR_TACR      (1ULL << 21)
1157 #define HCR_TSW       (1ULL << 22)
1158 #define HCR_TPC       (1ULL << 23)
1159 #define HCR_TPU       (1ULL << 24)
1160 #define HCR_TTLB      (1ULL << 25)
1161 #define HCR_TVM       (1ULL << 26)
1162 #define HCR_TGE       (1ULL << 27)
1163 #define HCR_TDZ       (1ULL << 28)
1164 #define HCR_HCD       (1ULL << 29)
1165 #define HCR_TRVM      (1ULL << 30)
1166 #define HCR_RW        (1ULL << 31)
1167 #define HCR_CD        (1ULL << 32)
1168 #define HCR_ID        (1ULL << 33)
1169 #define HCR_MASK      ((1ULL << 34) - 1)
1170 
1171 #define SCR_NS                (1U << 0)
1172 #define SCR_IRQ               (1U << 1)
1173 #define SCR_FIQ               (1U << 2)
1174 #define SCR_EA                (1U << 3)
1175 #define SCR_FW                (1U << 4)
1176 #define SCR_AW                (1U << 5)
1177 #define SCR_NET               (1U << 6)
1178 #define SCR_SMD               (1U << 7)
1179 #define SCR_HCE               (1U << 8)
1180 #define SCR_SIF               (1U << 9)
1181 #define SCR_RW                (1U << 10)
1182 #define SCR_ST                (1U << 11)
1183 #define SCR_TWI               (1U << 12)
1184 #define SCR_TWE               (1U << 13)
1185 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1186 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1187 
1188 /* Return the current FPSCR value.  */
1189 uint32_t vfp_get_fpscr(CPUARMState *env);
1190 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1191 
1192 /* For A64 the FPSCR is split into two logically distinct registers,
1193  * FPCR and FPSR. However since they still use non-overlapping bits
1194  * we store the underlying state in fpscr and just mask on read/write.
1195  */
1196 #define FPSR_MASK 0xf800009f
1197 #define FPCR_MASK 0x07f79f00
1198 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1199 {
1200     return vfp_get_fpscr(env) & FPSR_MASK;
1201 }
1202 
1203 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1204 {
1205     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1206     vfp_set_fpscr(env, new_fpscr);
1207 }
1208 
1209 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1210 {
1211     return vfp_get_fpscr(env) & FPCR_MASK;
1212 }
1213 
1214 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1215 {
1216     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1217     vfp_set_fpscr(env, new_fpscr);
1218 }
1219 
1220 enum arm_cpu_mode {
1221   ARM_CPU_MODE_USR = 0x10,
1222   ARM_CPU_MODE_FIQ = 0x11,
1223   ARM_CPU_MODE_IRQ = 0x12,
1224   ARM_CPU_MODE_SVC = 0x13,
1225   ARM_CPU_MODE_MON = 0x16,
1226   ARM_CPU_MODE_ABT = 0x17,
1227   ARM_CPU_MODE_HYP = 0x1a,
1228   ARM_CPU_MODE_UND = 0x1b,
1229   ARM_CPU_MODE_SYS = 0x1f
1230 };
1231 
1232 /* VFP system registers.  */
1233 #define ARM_VFP_FPSID   0
1234 #define ARM_VFP_FPSCR   1
1235 #define ARM_VFP_MVFR2   5
1236 #define ARM_VFP_MVFR1   6
1237 #define ARM_VFP_MVFR0   7
1238 #define ARM_VFP_FPEXC   8
1239 #define ARM_VFP_FPINST  9
1240 #define ARM_VFP_FPINST2 10
1241 
1242 /* iwMMXt coprocessor control registers.  */
1243 #define ARM_IWMMXT_wCID		0
1244 #define ARM_IWMMXT_wCon		1
1245 #define ARM_IWMMXT_wCSSF	2
1246 #define ARM_IWMMXT_wCASF	3
1247 #define ARM_IWMMXT_wCGR0	8
1248 #define ARM_IWMMXT_wCGR1	9
1249 #define ARM_IWMMXT_wCGR2	10
1250 #define ARM_IWMMXT_wCGR3	11
1251 
1252 /* V7M CCR bits */
1253 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1254 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1255 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1256 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1257 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1258 FIELD(V7M_CCR, STKALIGN, 9, 1)
1259 FIELD(V7M_CCR, DC, 16, 1)
1260 FIELD(V7M_CCR, IC, 17, 1)
1261 
1262 /* V7M SCR bits */
1263 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1264 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1265 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1266 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1267 
1268 /* V7M AIRCR bits */
1269 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1270 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1271 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1272 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1273 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1274 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1275 FIELD(V7M_AIRCR, PRIS, 14, 1)
1276 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1277 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1278 
1279 /* V7M CFSR bits for MMFSR */
1280 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1281 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1282 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1283 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1284 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1285 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1286 
1287 /* V7M CFSR bits for BFSR */
1288 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1289 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1290 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1291 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1292 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1293 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1294 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1295 
1296 /* V7M CFSR bits for UFSR */
1297 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1298 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1299 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1300 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1301 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1302 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1303 
1304 /* V7M CFSR bit masks covering all of the subregister bits */
1305 FIELD(V7M_CFSR, MMFSR, 0, 8)
1306 FIELD(V7M_CFSR, BFSR, 8, 8)
1307 FIELD(V7M_CFSR, UFSR, 16, 16)
1308 
1309 /* V7M HFSR bits */
1310 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1311 FIELD(V7M_HFSR, FORCED, 30, 1)
1312 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1313 
1314 /* V7M DFSR bits */
1315 FIELD(V7M_DFSR, HALTED, 0, 1)
1316 FIELD(V7M_DFSR, BKPT, 1, 1)
1317 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1318 FIELD(V7M_DFSR, VCATCH, 3, 1)
1319 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1320 
1321 /* V7M SFSR bits */
1322 FIELD(V7M_SFSR, INVEP, 0, 1)
1323 FIELD(V7M_SFSR, INVIS, 1, 1)
1324 FIELD(V7M_SFSR, INVER, 2, 1)
1325 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1326 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1327 FIELD(V7M_SFSR, LSPERR, 5, 1)
1328 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1329 FIELD(V7M_SFSR, LSERR, 7, 1)
1330 
1331 /* v7M MPU_CTRL bits */
1332 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1333 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1334 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1335 
1336 /* v7M CLIDR bits */
1337 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1338 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1339 FIELD(V7M_CLIDR, LOC, 24, 3)
1340 FIELD(V7M_CLIDR, LOUU, 27, 3)
1341 FIELD(V7M_CLIDR, ICB, 30, 2)
1342 
1343 FIELD(V7M_CSSELR, IND, 0, 1)
1344 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1345 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1346  * define a mask for this and check that it doesn't permit running off
1347  * the end of the array.
1348  */
1349 FIELD(V7M_CSSELR, INDEX, 0, 4)
1350 
1351 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1352 
1353 /* If adding a feature bit which corresponds to a Linux ELF
1354  * HWCAP bit, remember to update the feature-bit-to-hwcap
1355  * mapping in linux-user/elfload.c:get_elf_hwcap().
1356  */
1357 enum arm_features {
1358     ARM_FEATURE_VFP,
1359     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1360     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1361     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1362     ARM_FEATURE_V6,
1363     ARM_FEATURE_V6K,
1364     ARM_FEATURE_V7,
1365     ARM_FEATURE_THUMB2,
1366     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1367     ARM_FEATURE_VFP3,
1368     ARM_FEATURE_VFP_FP16,
1369     ARM_FEATURE_NEON,
1370     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1371     ARM_FEATURE_M, /* Microcontroller profile.  */
1372     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1373     ARM_FEATURE_THUMB2EE,
1374     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1375     ARM_FEATURE_V4T,
1376     ARM_FEATURE_V5,
1377     ARM_FEATURE_STRONGARM,
1378     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1379     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1380     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1381     ARM_FEATURE_GENERIC_TIMER,
1382     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1383     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1384     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1385     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1386     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1387     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1388     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1389     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1390     ARM_FEATURE_V8,
1391     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1392     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1393     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1394     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1395     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1396     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1397     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1398     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1399     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1400     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1401     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1402     ARM_FEATURE_PMU, /* has PMU support */
1403     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1404     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1405     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1406     ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1407     ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1408     ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1409     ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1410     ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1411 };
1412 
1413 static inline int arm_feature(CPUARMState *env, int feature)
1414 {
1415     return (env->features & (1ULL << feature)) != 0;
1416 }
1417 
1418 #if !defined(CONFIG_USER_ONLY)
1419 /* Return true if exception levels below EL3 are in secure state,
1420  * or would be following an exception return to that level.
1421  * Unlike arm_is_secure() (which is always a question about the
1422  * _current_ state of the CPU) this doesn't care about the current
1423  * EL or mode.
1424  */
1425 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1426 {
1427     if (arm_feature(env, ARM_FEATURE_EL3)) {
1428         return !(env->cp15.scr_el3 & SCR_NS);
1429     } else {
1430         /* If EL3 is not supported then the secure state is implementation
1431          * defined, in which case QEMU defaults to non-secure.
1432          */
1433         return false;
1434     }
1435 }
1436 
1437 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1438 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1439 {
1440     if (arm_feature(env, ARM_FEATURE_EL3)) {
1441         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1442             /* CPU currently in AArch64 state and EL3 */
1443             return true;
1444         } else if (!is_a64(env) &&
1445                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1446             /* CPU currently in AArch32 state and monitor mode */
1447             return true;
1448         }
1449     }
1450     return false;
1451 }
1452 
1453 /* Return true if the processor is in secure state */
1454 static inline bool arm_is_secure(CPUARMState *env)
1455 {
1456     if (arm_is_el3_or_mon(env)) {
1457         return true;
1458     }
1459     return arm_is_secure_below_el3(env);
1460 }
1461 
1462 #else
1463 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1464 {
1465     return false;
1466 }
1467 
1468 static inline bool arm_is_secure(CPUARMState *env)
1469 {
1470     return false;
1471 }
1472 #endif
1473 
1474 /* Return true if the specified exception level is running in AArch64 state. */
1475 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1476 {
1477     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1478      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1479      */
1480     assert(el >= 1 && el <= 3);
1481     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1482 
1483     /* The highest exception level is always at the maximum supported
1484      * register width, and then lower levels have a register width controlled
1485      * by bits in the SCR or HCR registers.
1486      */
1487     if (el == 3) {
1488         return aa64;
1489     }
1490 
1491     if (arm_feature(env, ARM_FEATURE_EL3)) {
1492         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1493     }
1494 
1495     if (el == 2) {
1496         return aa64;
1497     }
1498 
1499     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1500         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1501     }
1502 
1503     return aa64;
1504 }
1505 
1506 /* Function for determing whether guest cp register reads and writes should
1507  * access the secure or non-secure bank of a cp register.  When EL3 is
1508  * operating in AArch32 state, the NS-bit determines whether the secure
1509  * instance of a cp register should be used. When EL3 is AArch64 (or if
1510  * it doesn't exist at all) then there is no register banking, and all
1511  * accesses are to the non-secure version.
1512  */
1513 static inline bool access_secure_reg(CPUARMState *env)
1514 {
1515     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1516                 !arm_el_is_aa64(env, 3) &&
1517                 !(env->cp15.scr_el3 & SCR_NS));
1518 
1519     return ret;
1520 }
1521 
1522 /* Macros for accessing a specified CP register bank */
1523 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1524     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1525 
1526 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1527     do {                                                \
1528         if (_secure) {                                   \
1529             (_env)->cp15._regname##_s = (_val);            \
1530         } else {                                        \
1531             (_env)->cp15._regname##_ns = (_val);           \
1532         }                                               \
1533     } while (0)
1534 
1535 /* Macros for automatically accessing a specific CP register bank depending on
1536  * the current secure state of the system.  These macros are not intended for
1537  * supporting instruction translation reads/writes as these are dependent
1538  * solely on the SCR.NS bit and not the mode.
1539  */
1540 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1541     A32_BANKED_REG_GET((_env), _regname,                \
1542                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1543 
1544 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1545     A32_BANKED_REG_SET((_env), _regname,                                    \
1546                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1547                        (_val))
1548 
1549 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1550 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1551                                  uint32_t cur_el, bool secure);
1552 
1553 /* Interface between CPU and Interrupt controller.  */
1554 #ifndef CONFIG_USER_ONLY
1555 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1556 #else
1557 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1558 {
1559     return true;
1560 }
1561 #endif
1562 /**
1563  * armv7m_nvic_set_pending: mark the specified exception as pending
1564  * @opaque: the NVIC
1565  * @irq: the exception number to mark pending
1566  * @secure: false for non-banked exceptions or for the nonsecure
1567  * version of a banked exception, true for the secure version of a banked
1568  * exception.
1569  *
1570  * Marks the specified exception as pending. Note that we will assert()
1571  * if @secure is true and @irq does not specify one of the fixed set
1572  * of architecturally banked exceptions.
1573  */
1574 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1575 /**
1576  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1577  * @opaque: the NVIC
1578  * @irq: the exception number to mark pending
1579  * @secure: false for non-banked exceptions or for the nonsecure
1580  * version of a banked exception, true for the secure version of a banked
1581  * exception.
1582  *
1583  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1584  * exceptions (exceptions generated in the course of trying to take
1585  * a different exception).
1586  */
1587 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1588 /**
1589  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1590  *    exception, and whether it targets Secure state
1591  * @opaque: the NVIC
1592  * @pirq: set to pending exception number
1593  * @ptargets_secure: set to whether pending exception targets Secure
1594  *
1595  * This function writes the number of the highest priority pending
1596  * exception (the one which would be made active by
1597  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1598  * to true if the current highest priority pending exception should
1599  * be taken to Secure state, false for NS.
1600  */
1601 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1602                                       bool *ptargets_secure);
1603 /**
1604  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1605  * @opaque: the NVIC
1606  *
1607  * Move the current highest priority pending exception from the pending
1608  * state to the active state, and update v7m.exception to indicate that
1609  * it is the exception currently being handled.
1610  */
1611 void armv7m_nvic_acknowledge_irq(void *opaque);
1612 /**
1613  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1614  * @opaque: the NVIC
1615  * @irq: the exception number to complete
1616  * @secure: true if this exception was secure
1617  *
1618  * Returns: -1 if the irq was not active
1619  *           1 if completing this irq brought us back to base (no active irqs)
1620  *           0 if there is still an irq active after this one was completed
1621  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1622  */
1623 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1624 /**
1625  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1626  * @opaque: the NVIC
1627  *
1628  * Returns: the raw execution priority as defined by the v8M architecture.
1629  * This is the execution priority minus the effects of AIRCR.PRIS,
1630  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1631  * (v8M ARM ARM I_PKLD.)
1632  */
1633 int armv7m_nvic_raw_execution_priority(void *opaque);
1634 /**
1635  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1636  * priority is negative for the specified security state.
1637  * @opaque: the NVIC
1638  * @secure: the security state to test
1639  * This corresponds to the pseudocode IsReqExecPriNeg().
1640  */
1641 #ifndef CONFIG_USER_ONLY
1642 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1643 #else
1644 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1645 {
1646     return false;
1647 }
1648 #endif
1649 
1650 /* Interface for defining coprocessor registers.
1651  * Registers are defined in tables of arm_cp_reginfo structs
1652  * which are passed to define_arm_cp_regs().
1653  */
1654 
1655 /* When looking up a coprocessor register we look for it
1656  * via an integer which encodes all of:
1657  *  coprocessor number
1658  *  Crn, Crm, opc1, opc2 fields
1659  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1660  *    or via MRRC/MCRR?)
1661  *  non-secure/secure bank (AArch32 only)
1662  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1663  * (In this case crn and opc2 should be zero.)
1664  * For AArch64, there is no 32/64 bit size distinction;
1665  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1666  * and 4 bit CRn and CRm. The encoding patterns are chosen
1667  * to be easy to convert to and from the KVM encodings, and also
1668  * so that the hashtable can contain both AArch32 and AArch64
1669  * registers (to allow for interprocessing where we might run
1670  * 32 bit code on a 64 bit core).
1671  */
1672 /* This bit is private to our hashtable cpreg; in KVM register
1673  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1674  * in the upper bits of the 64 bit ID.
1675  */
1676 #define CP_REG_AA64_SHIFT 28
1677 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1678 
1679 /* To enable banking of coprocessor registers depending on ns-bit we
1680  * add a bit to distinguish between secure and non-secure cpregs in the
1681  * hashtable.
1682  */
1683 #define CP_REG_NS_SHIFT 29
1684 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1685 
1686 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1687     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1688      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1689 
1690 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1691     (CP_REG_AA64_MASK |                                 \
1692      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1693      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1694      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1695      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1696      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1697      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1698 
1699 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1700  * version used as a key for the coprocessor register hashtable
1701  */
1702 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1703 {
1704     uint32_t cpregid = kvmid;
1705     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1706         cpregid |= CP_REG_AA64_MASK;
1707     } else {
1708         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1709             cpregid |= (1 << 15);
1710         }
1711 
1712         /* KVM is always non-secure so add the NS flag on AArch32 register
1713          * entries.
1714          */
1715          cpregid |= 1 << CP_REG_NS_SHIFT;
1716     }
1717     return cpregid;
1718 }
1719 
1720 /* Convert a truncated 32 bit hashtable key into the full
1721  * 64 bit KVM register ID.
1722  */
1723 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1724 {
1725     uint64_t kvmid;
1726 
1727     if (cpregid & CP_REG_AA64_MASK) {
1728         kvmid = cpregid & ~CP_REG_AA64_MASK;
1729         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1730     } else {
1731         kvmid = cpregid & ~(1 << 15);
1732         if (cpregid & (1 << 15)) {
1733             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1734         } else {
1735             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1736         }
1737     }
1738     return kvmid;
1739 }
1740 
1741 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1742  * special-behaviour cp reg and bits [11..8] indicate what behaviour
1743  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1744  * TCG can assume the value to be constant (ie load at translate time)
1745  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1746  * indicates that the TB should not be ended after a write to this register
1747  * (the default is that the TB ends after cp writes). OVERRIDE permits
1748  * a register definition to override a previous definition for the
1749  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1750  * old must have the OVERRIDE bit set.
1751  * ALIAS indicates that this register is an alias view of some underlying
1752  * state which is also visible via another register, and that the other
1753  * register is handling migration and reset; registers marked ALIAS will not be
1754  * migrated but may have their state set by syncing of register state from KVM.
1755  * NO_RAW indicates that this register has no underlying state and does not
1756  * support raw access for state saving/loading; it will not be used for either
1757  * migration or KVM state synchronization. (Typically this is for "registers"
1758  * which are actually used as instructions for cache maintenance and so on.)
1759  * IO indicates that this register does I/O and therefore its accesses
1760  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1761  * registers which implement clocks or timers require this.
1762  */
1763 #define ARM_CP_SPECIAL           0x0001
1764 #define ARM_CP_CONST             0x0002
1765 #define ARM_CP_64BIT             0x0004
1766 #define ARM_CP_SUPPRESS_TB_END   0x0008
1767 #define ARM_CP_OVERRIDE          0x0010
1768 #define ARM_CP_ALIAS             0x0020
1769 #define ARM_CP_IO                0x0040
1770 #define ARM_CP_NO_RAW            0x0080
1771 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1772 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1773 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1774 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1775 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1776 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1777 #define ARM_CP_FPU               0x1000
1778 #define ARM_CP_SVE               0x2000
1779 /* Used only as a terminator for ARMCPRegInfo lists */
1780 #define ARM_CP_SENTINEL          0xffff
1781 /* Mask of only the flag bits in a type field */
1782 #define ARM_CP_FLAG_MASK         0x30ff
1783 
1784 /* Valid values for ARMCPRegInfo state field, indicating which of
1785  * the AArch32 and AArch64 execution states this register is visible in.
1786  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1787  * If the reginfo is declared to be visible in both states then a second
1788  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1789  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1790  * Note that we rely on the values of these enums as we iterate through
1791  * the various states in some places.
1792  */
1793 enum {
1794     ARM_CP_STATE_AA32 = 0,
1795     ARM_CP_STATE_AA64 = 1,
1796     ARM_CP_STATE_BOTH = 2,
1797 };
1798 
1799 /* ARM CP register secure state flags.  These flags identify security state
1800  * attributes for a given CP register entry.
1801  * The existence of both or neither secure and non-secure flags indicates that
1802  * the register has both a secure and non-secure hash entry.  A single one of
1803  * these flags causes the register to only be hashed for the specified
1804  * security state.
1805  * Although definitions may have any combination of the S/NS bits, each
1806  * registered entry will only have one to identify whether the entry is secure
1807  * or non-secure.
1808  */
1809 enum {
1810     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1811     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1812 };
1813 
1814 /* Return true if cptype is a valid type field. This is used to try to
1815  * catch errors where the sentinel has been accidentally left off the end
1816  * of a list of registers.
1817  */
1818 static inline bool cptype_valid(int cptype)
1819 {
1820     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1821         || ((cptype & ARM_CP_SPECIAL) &&
1822             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1823 }
1824 
1825 /* Access rights:
1826  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1827  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1828  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1829  * (ie any of the privileged modes in Secure state, or Monitor mode).
1830  * If a register is accessible in one privilege level it's always accessible
1831  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1832  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1833  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1834  * terminology a little and call this PL3.
1835  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1836  * with the ELx exception levels.
1837  *
1838  * If access permissions for a register are more complex than can be
1839  * described with these bits, then use a laxer set of restrictions, and
1840  * do the more restrictive/complex check inside a helper function.
1841  */
1842 #define PL3_R 0x80
1843 #define PL3_W 0x40
1844 #define PL2_R (0x20 | PL3_R)
1845 #define PL2_W (0x10 | PL3_W)
1846 #define PL1_R (0x08 | PL2_R)
1847 #define PL1_W (0x04 | PL2_W)
1848 #define PL0_R (0x02 | PL1_R)
1849 #define PL0_W (0x01 | PL1_W)
1850 
1851 #define PL3_RW (PL3_R | PL3_W)
1852 #define PL2_RW (PL2_R | PL2_W)
1853 #define PL1_RW (PL1_R | PL1_W)
1854 #define PL0_RW (PL0_R | PL0_W)
1855 
1856 /* Return the highest implemented Exception Level */
1857 static inline int arm_highest_el(CPUARMState *env)
1858 {
1859     if (arm_feature(env, ARM_FEATURE_EL3)) {
1860         return 3;
1861     }
1862     if (arm_feature(env, ARM_FEATURE_EL2)) {
1863         return 2;
1864     }
1865     return 1;
1866 }
1867 
1868 /* Return true if a v7M CPU is in Handler mode */
1869 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1870 {
1871     return env->v7m.exception != 0;
1872 }
1873 
1874 /* Return the current Exception Level (as per ARMv8; note that this differs
1875  * from the ARMv7 Privilege Level).
1876  */
1877 static inline int arm_current_el(CPUARMState *env)
1878 {
1879     if (arm_feature(env, ARM_FEATURE_M)) {
1880         return arm_v7m_is_handler_mode(env) ||
1881             !(env->v7m.control[env->v7m.secure] & 1);
1882     }
1883 
1884     if (is_a64(env)) {
1885         return extract32(env->pstate, 2, 2);
1886     }
1887 
1888     switch (env->uncached_cpsr & 0x1f) {
1889     case ARM_CPU_MODE_USR:
1890         return 0;
1891     case ARM_CPU_MODE_HYP:
1892         return 2;
1893     case ARM_CPU_MODE_MON:
1894         return 3;
1895     default:
1896         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1897             /* If EL3 is 32-bit then all secure privileged modes run in
1898              * EL3
1899              */
1900             return 3;
1901         }
1902 
1903         return 1;
1904     }
1905 }
1906 
1907 typedef struct ARMCPRegInfo ARMCPRegInfo;
1908 
1909 typedef enum CPAccessResult {
1910     /* Access is permitted */
1911     CP_ACCESS_OK = 0,
1912     /* Access fails due to a configurable trap or enable which would
1913      * result in a categorized exception syndrome giving information about
1914      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1915      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1916      * PL1 if in EL0, otherwise to the current EL).
1917      */
1918     CP_ACCESS_TRAP = 1,
1919     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1920      * Note that this is not a catch-all case -- the set of cases which may
1921      * result in this failure is specifically defined by the architecture.
1922      */
1923     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1924     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1925     CP_ACCESS_TRAP_EL2 = 3,
1926     CP_ACCESS_TRAP_EL3 = 4,
1927     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1928     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1929     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1930     /* Access fails and results in an exception syndrome for an FP access,
1931      * trapped directly to EL2 or EL3
1932      */
1933     CP_ACCESS_TRAP_FP_EL2 = 7,
1934     CP_ACCESS_TRAP_FP_EL3 = 8,
1935 } CPAccessResult;
1936 
1937 /* Access functions for coprocessor registers. These cannot fail and
1938  * may not raise exceptions.
1939  */
1940 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1941 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1942                        uint64_t value);
1943 /* Access permission check functions for coprocessor registers. */
1944 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1945                                   const ARMCPRegInfo *opaque,
1946                                   bool isread);
1947 /* Hook function for register reset */
1948 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1949 
1950 #define CP_ANY 0xff
1951 
1952 /* Definition of an ARM coprocessor register */
1953 struct ARMCPRegInfo {
1954     /* Name of register (useful mainly for debugging, need not be unique) */
1955     const char *name;
1956     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1957      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1958      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1959      * will be decoded to this register. The register read and write
1960      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1961      * used by the program, so it is possible to register a wildcard and
1962      * then behave differently on read/write if necessary.
1963      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1964      * must both be zero.
1965      * For AArch64-visible registers, opc0 is also used.
1966      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1967      * way to distinguish (for KVM's benefit) guest-visible system registers
1968      * from demuxed ones provided to preserve the "no side effects on
1969      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1970      * visible (to match KVM's encoding); cp==0 will be converted to
1971      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1972      */
1973     uint8_t cp;
1974     uint8_t crn;
1975     uint8_t crm;
1976     uint8_t opc0;
1977     uint8_t opc1;
1978     uint8_t opc2;
1979     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1980     int state;
1981     /* Register type: ARM_CP_* bits/values */
1982     int type;
1983     /* Access rights: PL*_[RW] */
1984     int access;
1985     /* Security state: ARM_CP_SECSTATE_* bits/values */
1986     int secure;
1987     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1988      * this register was defined: can be used to hand data through to the
1989      * register read/write functions, since they are passed the ARMCPRegInfo*.
1990      */
1991     void *opaque;
1992     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1993      * fieldoffset is non-zero, the reset value of the register.
1994      */
1995     uint64_t resetvalue;
1996     /* Offset of the field in CPUARMState for this register.
1997      *
1998      * This is not needed if either:
1999      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2000      *  2. both readfn and writefn are specified
2001      */
2002     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2003 
2004     /* Offsets of the secure and non-secure fields in CPUARMState for the
2005      * register if it is banked.  These fields are only used during the static
2006      * registration of a register.  During hashing the bank associated
2007      * with a given security state is copied to fieldoffset which is used from
2008      * there on out.
2009      *
2010      * It is expected that register definitions use either fieldoffset or
2011      * bank_fieldoffsets in the definition but not both.  It is also expected
2012      * that both bank offsets are set when defining a banked register.  This
2013      * use indicates that a register is banked.
2014      */
2015     ptrdiff_t bank_fieldoffsets[2];
2016 
2017     /* Function for making any access checks for this register in addition to
2018      * those specified by the 'access' permissions bits. If NULL, no extra
2019      * checks required. The access check is performed at runtime, not at
2020      * translate time.
2021      */
2022     CPAccessFn *accessfn;
2023     /* Function for handling reads of this register. If NULL, then reads
2024      * will be done by loading from the offset into CPUARMState specified
2025      * by fieldoffset.
2026      */
2027     CPReadFn *readfn;
2028     /* Function for handling writes of this register. If NULL, then writes
2029      * will be done by writing to the offset into CPUARMState specified
2030      * by fieldoffset.
2031      */
2032     CPWriteFn *writefn;
2033     /* Function for doing a "raw" read; used when we need to copy
2034      * coprocessor state to the kernel for KVM or out for
2035      * migration. This only needs to be provided if there is also a
2036      * readfn and it has side effects (for instance clear-on-read bits).
2037      */
2038     CPReadFn *raw_readfn;
2039     /* Function for doing a "raw" write; used when we need to copy KVM
2040      * kernel coprocessor state into userspace, or for inbound
2041      * migration. This only needs to be provided if there is also a
2042      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2043      * or similar behaviour.
2044      */
2045     CPWriteFn *raw_writefn;
2046     /* Function for resetting the register. If NULL, then reset will be done
2047      * by writing resetvalue to the field specified in fieldoffset. If
2048      * fieldoffset is 0 then no reset will be done.
2049      */
2050     CPResetFn *resetfn;
2051 };
2052 
2053 /* Macros which are lvalues for the field in CPUARMState for the
2054  * ARMCPRegInfo *ri.
2055  */
2056 #define CPREG_FIELD32(env, ri) \
2057     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2058 #define CPREG_FIELD64(env, ri) \
2059     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2060 
2061 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2062 
2063 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2064                                     const ARMCPRegInfo *regs, void *opaque);
2065 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2066                                        const ARMCPRegInfo *regs, void *opaque);
2067 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2068 {
2069     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2070 }
2071 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2072 {
2073     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2074 }
2075 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2076 
2077 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2078 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2079                          uint64_t value);
2080 /* CPReadFn that can be used for read-as-zero behaviour */
2081 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2082 
2083 /* CPResetFn that does nothing, for use if no reset is required even
2084  * if fieldoffset is non zero.
2085  */
2086 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2087 
2088 /* Return true if this reginfo struct's field in the cpu state struct
2089  * is 64 bits wide.
2090  */
2091 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2092 {
2093     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2094 }
2095 
2096 static inline bool cp_access_ok(int current_el,
2097                                 const ARMCPRegInfo *ri, int isread)
2098 {
2099     return (ri->access >> ((current_el * 2) + isread)) & 1;
2100 }
2101 
2102 /* Raw read of a coprocessor register (as needed for migration, etc) */
2103 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2104 
2105 /**
2106  * write_list_to_cpustate
2107  * @cpu: ARMCPU
2108  *
2109  * For each register listed in the ARMCPU cpreg_indexes list, write
2110  * its value from the cpreg_values list into the ARMCPUState structure.
2111  * This updates TCG's working data structures from KVM data or
2112  * from incoming migration state.
2113  *
2114  * Returns: true if all register values were updated correctly,
2115  * false if some register was unknown or could not be written.
2116  * Note that we do not stop early on failure -- we will attempt
2117  * writing all registers in the list.
2118  */
2119 bool write_list_to_cpustate(ARMCPU *cpu);
2120 
2121 /**
2122  * write_cpustate_to_list:
2123  * @cpu: ARMCPU
2124  *
2125  * For each register listed in the ARMCPU cpreg_indexes list, write
2126  * its value from the ARMCPUState structure into the cpreg_values list.
2127  * This is used to copy info from TCG's working data structures into
2128  * KVM or for outbound migration.
2129  *
2130  * Returns: true if all register values were read correctly,
2131  * false if some register was unknown or could not be read.
2132  * Note that we do not stop early on failure -- we will attempt
2133  * reading all registers in the list.
2134  */
2135 bool write_cpustate_to_list(ARMCPU *cpu);
2136 
2137 #define ARM_CPUID_TI915T      0x54029152
2138 #define ARM_CPUID_TI925T      0x54029252
2139 
2140 #if defined(CONFIG_USER_ONLY)
2141 #define TARGET_PAGE_BITS 12
2142 #else
2143 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2144  * have to support 1K tiny pages.
2145  */
2146 #define TARGET_PAGE_BITS_VARY
2147 #define TARGET_PAGE_BITS_MIN 10
2148 #endif
2149 
2150 #if defined(TARGET_AARCH64)
2151 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2152 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2153 #else
2154 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2155 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2156 #endif
2157 
2158 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2159                                      unsigned int target_el)
2160 {
2161     CPUARMState *env = cs->env_ptr;
2162     unsigned int cur_el = arm_current_el(env);
2163     bool secure = arm_is_secure(env);
2164     bool pstate_unmasked;
2165     int8_t unmasked = 0;
2166 
2167     /* Don't take exceptions if they target a lower EL.
2168      * This check should catch any exceptions that would not be taken but left
2169      * pending.
2170      */
2171     if (cur_el > target_el) {
2172         return false;
2173     }
2174 
2175     switch (excp_idx) {
2176     case EXCP_FIQ:
2177         pstate_unmasked = !(env->daif & PSTATE_F);
2178         break;
2179 
2180     case EXCP_IRQ:
2181         pstate_unmasked = !(env->daif & PSTATE_I);
2182         break;
2183 
2184     case EXCP_VFIQ:
2185         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2186             /* VFIQs are only taken when hypervized and non-secure.  */
2187             return false;
2188         }
2189         return !(env->daif & PSTATE_F);
2190     case EXCP_VIRQ:
2191         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2192             /* VIRQs are only taken when hypervized and non-secure.  */
2193             return false;
2194         }
2195         return !(env->daif & PSTATE_I);
2196     default:
2197         g_assert_not_reached();
2198     }
2199 
2200     /* Use the target EL, current execution state and SCR/HCR settings to
2201      * determine whether the corresponding CPSR bit is used to mask the
2202      * interrupt.
2203      */
2204     if ((target_el > cur_el) && (target_el != 1)) {
2205         /* Exceptions targeting a higher EL may not be maskable */
2206         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2207             /* 64-bit masking rules are simple: exceptions to EL3
2208              * can't be masked, and exceptions to EL2 can only be
2209              * masked from Secure state. The HCR and SCR settings
2210              * don't affect the masking logic, only the interrupt routing.
2211              */
2212             if (target_el == 3 || !secure) {
2213                 unmasked = 1;
2214             }
2215         } else {
2216             /* The old 32-bit-only environment has a more complicated
2217              * masking setup. HCR and SCR bits not only affect interrupt
2218              * routing but also change the behaviour of masking.
2219              */
2220             bool hcr, scr;
2221 
2222             switch (excp_idx) {
2223             case EXCP_FIQ:
2224                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2225                  * we override the CPSR.F in determining if the exception is
2226                  * masked or not. If neither of these are set then we fall back
2227                  * to the CPSR.F setting otherwise we further assess the state
2228                  * below.
2229                  */
2230                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2231                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2232 
2233                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2234                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2235                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2236                  * when non-secure but only when FIQs are only routed to EL3.
2237                  */
2238                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2239                 break;
2240             case EXCP_IRQ:
2241                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2242                  * we may override the CPSR.I masking when in non-secure state.
2243                  * The SCR.IRQ setting has already been taken into consideration
2244                  * when setting the target EL, so it does not have a further
2245                  * affect here.
2246                  */
2247                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2248                 scr = false;
2249                 break;
2250             default:
2251                 g_assert_not_reached();
2252             }
2253 
2254             if ((scr || hcr) && !secure) {
2255                 unmasked = 1;
2256             }
2257         }
2258     }
2259 
2260     /* The PSTATE bits only mask the interrupt if we have not overriden the
2261      * ability above.
2262      */
2263     return unmasked || pstate_unmasked;
2264 }
2265 
2266 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2267 
2268 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2269 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2270 
2271 #define cpu_signal_handler cpu_arm_signal_handler
2272 #define cpu_list arm_cpu_list
2273 
2274 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2275  *
2276  * If EL3 is 64-bit:
2277  *  + NonSecure EL1 & 0 stage 1
2278  *  + NonSecure EL1 & 0 stage 2
2279  *  + NonSecure EL2
2280  *  + Secure EL1 & EL0
2281  *  + Secure EL3
2282  * If EL3 is 32-bit:
2283  *  + NonSecure PL1 & 0 stage 1
2284  *  + NonSecure PL1 & 0 stage 2
2285  *  + NonSecure PL2
2286  *  + Secure PL0 & PL1
2287  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2288  *
2289  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2290  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2291  *     may differ in access permissions even if the VA->PA map is the same
2292  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2293  *     translation, which means that we have one mmu_idx that deals with two
2294  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2295  *     architecturally permitted]
2296  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2297  *     handling via the TLB. The only way to do a stage 1 translation without
2298  *     the immediate stage 2 translation is via the ATS or AT system insns,
2299  *     which can be slow-pathed and always do a page table walk.
2300  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2301  *     translation regimes, because they map reasonably well to each other
2302  *     and they can't both be active at the same time.
2303  * This gives us the following list of mmu_idx values:
2304  *
2305  * NS EL0 (aka NS PL0) stage 1+2
2306  * NS EL1 (aka NS PL1) stage 1+2
2307  * NS EL2 (aka NS PL2)
2308  * S EL3 (aka S PL1)
2309  * S EL0 (aka S PL0)
2310  * S EL1 (not used if EL3 is 32 bit)
2311  * NS EL0+1 stage 2
2312  *
2313  * (The last of these is an mmu_idx because we want to be able to use the TLB
2314  * for the accesses done as part of a stage 1 page table walk, rather than
2315  * having to walk the stage 2 page table over and over.)
2316  *
2317  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2318  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2319  * NS EL2 if we ever model a Cortex-R52).
2320  *
2321  * M profile CPUs are rather different as they do not have a true MMU.
2322  * They have the following different MMU indexes:
2323  *  User
2324  *  Privileged
2325  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2326  *  Privileged, execution priority negative (ditto)
2327  * If the CPU supports the v8M Security Extension then there are also:
2328  *  Secure User
2329  *  Secure Privileged
2330  *  Secure User, execution priority negative
2331  *  Secure Privileged, execution priority negative
2332  *
2333  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2334  * are not quite the same -- different CPU types (most notably M profile
2335  * vs A/R profile) would like to use MMU indexes with different semantics,
2336  * but since we don't ever need to use all of those in a single CPU we
2337  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2338  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2339  * the same for any particular CPU.
2340  * Variables of type ARMMUIdx are always full values, and the core
2341  * index values are in variables of type 'int'.
2342  *
2343  * Our enumeration includes at the end some entries which are not "true"
2344  * mmu_idx values in that they don't have corresponding TLBs and are only
2345  * valid for doing slow path page table walks.
2346  *
2347  * The constant names here are patterned after the general style of the names
2348  * of the AT/ATS operations.
2349  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2350  * For M profile we arrange them to have a bit for priv, a bit for negpri
2351  * and a bit for secure.
2352  */
2353 #define ARM_MMU_IDX_A 0x10 /* A profile */
2354 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2355 #define ARM_MMU_IDX_M 0x40 /* M profile */
2356 
2357 /* meanings of the bits for M profile mmu idx values */
2358 #define ARM_MMU_IDX_M_PRIV 0x1
2359 #define ARM_MMU_IDX_M_NEGPRI 0x2
2360 #define ARM_MMU_IDX_M_S 0x4
2361 
2362 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2363 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2364 
2365 typedef enum ARMMMUIdx {
2366     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2367     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2368     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2369     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2370     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2371     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2372     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2373     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2374     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2375     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2376     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2377     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2378     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2379     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2380     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2381     /* Indexes below here don't have TLBs and are used only for AT system
2382      * instructions or for the first stage of an S12 page table walk.
2383      */
2384     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2385     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2386 } ARMMMUIdx;
2387 
2388 /* Bit macros for the core-mmu-index values for each index,
2389  * for use when calling tlb_flush_by_mmuidx() and friends.
2390  */
2391 typedef enum ARMMMUIdxBit {
2392     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2393     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2394     ARMMMUIdxBit_S1E2 = 1 << 2,
2395     ARMMMUIdxBit_S1E3 = 1 << 3,
2396     ARMMMUIdxBit_S1SE0 = 1 << 4,
2397     ARMMMUIdxBit_S1SE1 = 1 << 5,
2398     ARMMMUIdxBit_S2NS = 1 << 6,
2399     ARMMMUIdxBit_MUser = 1 << 0,
2400     ARMMMUIdxBit_MPriv = 1 << 1,
2401     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2402     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2403     ARMMMUIdxBit_MSUser = 1 << 4,
2404     ARMMMUIdxBit_MSPriv = 1 << 5,
2405     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2406     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2407 } ARMMMUIdxBit;
2408 
2409 #define MMU_USER_IDX 0
2410 
2411 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2412 {
2413     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2414 }
2415 
2416 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2417 {
2418     if (arm_feature(env, ARM_FEATURE_M)) {
2419         return mmu_idx | ARM_MMU_IDX_M;
2420     } else {
2421         return mmu_idx | ARM_MMU_IDX_A;
2422     }
2423 }
2424 
2425 /* Return the exception level we're running at if this is our mmu_idx */
2426 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2427 {
2428     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2429     case ARM_MMU_IDX_A:
2430         return mmu_idx & 3;
2431     case ARM_MMU_IDX_M:
2432         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2433     default:
2434         g_assert_not_reached();
2435     }
2436 }
2437 
2438 /* Return the MMU index for a v7M CPU in the specified security and
2439  * privilege state
2440  */
2441 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2442                                                               bool secstate,
2443                                                               bool priv)
2444 {
2445     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2446 
2447     if (priv) {
2448         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2449     }
2450 
2451     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2452         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2453     }
2454 
2455     if (secstate) {
2456         mmu_idx |= ARM_MMU_IDX_M_S;
2457     }
2458 
2459     return mmu_idx;
2460 }
2461 
2462 /* Return the MMU index for a v7M CPU in the specified security state */
2463 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2464                                                      bool secstate)
2465 {
2466     bool priv = arm_current_el(env) != 0;
2467 
2468     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2469 }
2470 
2471 /* Determine the current mmu_idx to use for normal loads/stores */
2472 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2473 {
2474     int el = arm_current_el(env);
2475 
2476     if (arm_feature(env, ARM_FEATURE_M)) {
2477         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2478 
2479         return arm_to_core_mmu_idx(mmu_idx);
2480     }
2481 
2482     if (el < 2 && arm_is_secure_below_el3(env)) {
2483         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2484     }
2485     return el;
2486 }
2487 
2488 /* Indexes used when registering address spaces with cpu_address_space_init */
2489 typedef enum ARMASIdx {
2490     ARMASIdx_NS = 0,
2491     ARMASIdx_S = 1,
2492 } ARMASIdx;
2493 
2494 /* Return the Exception Level targeted by debug exceptions. */
2495 static inline int arm_debug_target_el(CPUARMState *env)
2496 {
2497     bool secure = arm_is_secure(env);
2498     bool route_to_el2 = false;
2499 
2500     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2501         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2502                        env->cp15.mdcr_el2 & (1 << 8);
2503     }
2504 
2505     if (route_to_el2) {
2506         return 2;
2507     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2508                !arm_el_is_aa64(env, 3) && secure) {
2509         return 3;
2510     } else {
2511         return 1;
2512     }
2513 }
2514 
2515 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2516 {
2517     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2518      * CSSELR is RAZ/WI.
2519      */
2520     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2521 }
2522 
2523 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2524 {
2525     if (arm_is_secure(env)) {
2526         /* MDCR_EL3.SDD disables debug events from Secure state */
2527         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2528             || arm_current_el(env) == 3) {
2529             return false;
2530         }
2531     }
2532 
2533     if (arm_current_el(env) == arm_debug_target_el(env)) {
2534         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2535             || (env->daif & PSTATE_D)) {
2536             return false;
2537         }
2538     }
2539     return true;
2540 }
2541 
2542 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2543 {
2544     int el = arm_current_el(env);
2545 
2546     if (el == 0 && arm_el_is_aa64(env, 1)) {
2547         return aa64_generate_debug_exceptions(env);
2548     }
2549 
2550     if (arm_is_secure(env)) {
2551         int spd;
2552 
2553         if (el == 0 && (env->cp15.sder & 1)) {
2554             /* SDER.SUIDEN means debug exceptions from Secure EL0
2555              * are always enabled. Otherwise they are controlled by
2556              * SDCR.SPD like those from other Secure ELs.
2557              */
2558             return true;
2559         }
2560 
2561         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2562         switch (spd) {
2563         case 1:
2564             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2565         case 0:
2566             /* For 0b00 we return true if external secure invasive debug
2567              * is enabled. On real hardware this is controlled by external
2568              * signals to the core. QEMU always permits debug, and behaves
2569              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2570              */
2571             return true;
2572         case 2:
2573             return false;
2574         case 3:
2575             return true;
2576         }
2577     }
2578 
2579     return el != 2;
2580 }
2581 
2582 /* Return true if debugging exceptions are currently enabled.
2583  * This corresponds to what in ARM ARM pseudocode would be
2584  *    if UsingAArch32() then
2585  *        return AArch32.GenerateDebugExceptions()
2586  *    else
2587  *        return AArch64.GenerateDebugExceptions()
2588  * We choose to push the if() down into this function for clarity,
2589  * since the pseudocode has it at all callsites except for the one in
2590  * CheckSoftwareStep(), where it is elided because both branches would
2591  * always return the same value.
2592  *
2593  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2594  * don't yet implement those exception levels or their associated trap bits.
2595  */
2596 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2597 {
2598     if (env->aarch64) {
2599         return aa64_generate_debug_exceptions(env);
2600     } else {
2601         return aa32_generate_debug_exceptions(env);
2602     }
2603 }
2604 
2605 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2606  * implicitly means this always returns false in pre-v8 CPUs.)
2607  */
2608 static inline bool arm_singlestep_active(CPUARMState *env)
2609 {
2610     return extract32(env->cp15.mdscr_el1, 0, 1)
2611         && arm_el_is_aa64(env, arm_debug_target_el(env))
2612         && arm_generate_debug_exceptions(env);
2613 }
2614 
2615 static inline bool arm_sctlr_b(CPUARMState *env)
2616 {
2617     return
2618         /* We need not implement SCTLR.ITD in user-mode emulation, so
2619          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2620          * This lets people run BE32 binaries with "-cpu any".
2621          */
2622 #ifndef CONFIG_USER_ONLY
2623         !arm_feature(env, ARM_FEATURE_V7) &&
2624 #endif
2625         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2626 }
2627 
2628 /* Return true if the processor is in big-endian mode. */
2629 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2630 {
2631     int cur_el;
2632 
2633     /* In 32bit endianness is determined by looking at CPSR's E bit */
2634     if (!is_a64(env)) {
2635         return
2636 #ifdef CONFIG_USER_ONLY
2637             /* In system mode, BE32 is modelled in line with the
2638              * architecture (as word-invariant big-endianness), where loads
2639              * and stores are done little endian but from addresses which
2640              * are adjusted by XORing with the appropriate constant. So the
2641              * endianness to use for the raw data access is not affected by
2642              * SCTLR.B.
2643              * In user mode, however, we model BE32 as byte-invariant
2644              * big-endianness (because user-only code cannot tell the
2645              * difference), and so we need to use a data access endianness
2646              * that depends on SCTLR.B.
2647              */
2648             arm_sctlr_b(env) ||
2649 #endif
2650                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2651     }
2652 
2653     cur_el = arm_current_el(env);
2654 
2655     if (cur_el == 0) {
2656         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2657     }
2658 
2659     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2660 }
2661 
2662 #include "exec/cpu-all.h"
2663 
2664 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2665  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2666  * We put flags which are shared between 32 and 64 bit mode at the top
2667  * of the word, and flags which apply to only one mode at the bottom.
2668  */
2669 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2670 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2671 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2672 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2673 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2674 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2675 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2676 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2677 /* Target EL if we take a floating-point-disabled exception */
2678 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2679 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2680 
2681 /* Bit usage when in AArch32 state: */
2682 #define ARM_TBFLAG_THUMB_SHIFT      0
2683 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2684 #define ARM_TBFLAG_VECLEN_SHIFT     1
2685 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2686 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2687 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2688 #define ARM_TBFLAG_VFPEN_SHIFT      7
2689 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2690 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2691 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2692 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2693 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2694 /* We store the bottom two bits of the CPAR as TB flags and handle
2695  * checks on the other bits at runtime
2696  */
2697 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2698 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2699 /* Indicates whether cp register reads and writes by guest code should access
2700  * the secure or nonsecure bank of banked registers; note that this is not
2701  * the same thing as the current security state of the processor!
2702  */
2703 #define ARM_TBFLAG_NS_SHIFT         19
2704 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2705 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2706 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2707 /* For M profile only, Handler (ie not Thread) mode */
2708 #define ARM_TBFLAG_HANDLER_SHIFT    21
2709 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2710 
2711 /* Bit usage when in AArch64 state */
2712 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2713 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2714 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2715 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2716 #define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2717 #define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2718 #define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2719 #define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2720 
2721 /* some convenience accessor macros */
2722 #define ARM_TBFLAG_AARCH64_STATE(F) \
2723     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2724 #define ARM_TBFLAG_MMUIDX(F) \
2725     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2726 #define ARM_TBFLAG_SS_ACTIVE(F) \
2727     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2728 #define ARM_TBFLAG_PSTATE_SS(F) \
2729     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2730 #define ARM_TBFLAG_FPEXC_EL(F) \
2731     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2732 #define ARM_TBFLAG_THUMB(F) \
2733     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2734 #define ARM_TBFLAG_VECLEN(F) \
2735     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2736 #define ARM_TBFLAG_VECSTRIDE(F) \
2737     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2738 #define ARM_TBFLAG_VFPEN(F) \
2739     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2740 #define ARM_TBFLAG_CONDEXEC(F) \
2741     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2742 #define ARM_TBFLAG_SCTLR_B(F) \
2743     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2744 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2745     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2746 #define ARM_TBFLAG_NS(F) \
2747     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2748 #define ARM_TBFLAG_BE_DATA(F) \
2749     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2750 #define ARM_TBFLAG_HANDLER(F) \
2751     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2752 #define ARM_TBFLAG_TBI0(F) \
2753     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2754 #define ARM_TBFLAG_TBI1(F) \
2755     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2756 #define ARM_TBFLAG_SVEEXC_EL(F) \
2757     (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2758 #define ARM_TBFLAG_ZCR_LEN(F) \
2759     (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2760 
2761 static inline bool bswap_code(bool sctlr_b)
2762 {
2763 #ifdef CONFIG_USER_ONLY
2764     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2765      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2766      * would also end up as a mixed-endian mode with BE code, LE data.
2767      */
2768     return
2769 #ifdef TARGET_WORDS_BIGENDIAN
2770         1 ^
2771 #endif
2772         sctlr_b;
2773 #else
2774     /* All code access in ARM is little endian, and there are no loaders
2775      * doing swaps that need to be reversed
2776      */
2777     return 0;
2778 #endif
2779 }
2780 
2781 #ifdef CONFIG_USER_ONLY
2782 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2783 {
2784     return
2785 #ifdef TARGET_WORDS_BIGENDIAN
2786        1 ^
2787 #endif
2788        arm_cpu_data_is_big_endian(env);
2789 }
2790 #endif
2791 
2792 #ifndef CONFIG_USER_ONLY
2793 /**
2794  * arm_regime_tbi0:
2795  * @env: CPUARMState
2796  * @mmu_idx: MMU index indicating required translation regime
2797  *
2798  * Extracts the TBI0 value from the appropriate TCR for the current EL
2799  *
2800  * Returns: the TBI0 value.
2801  */
2802 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2803 
2804 /**
2805  * arm_regime_tbi1:
2806  * @env: CPUARMState
2807  * @mmu_idx: MMU index indicating required translation regime
2808  *
2809  * Extracts the TBI1 value from the appropriate TCR for the current EL
2810  *
2811  * Returns: the TBI1 value.
2812  */
2813 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2814 #else
2815 /* We can't handle tagged addresses properly in user-only mode */
2816 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2817 {
2818     return 0;
2819 }
2820 
2821 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2822 {
2823     return 0;
2824 }
2825 #endif
2826 
2827 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2828                           target_ulong *cs_base, uint32_t *flags);
2829 
2830 enum {
2831     QEMU_PSCI_CONDUIT_DISABLED = 0,
2832     QEMU_PSCI_CONDUIT_SMC = 1,
2833     QEMU_PSCI_CONDUIT_HVC = 2,
2834 };
2835 
2836 #ifndef CONFIG_USER_ONLY
2837 /* Return the address space index to use for a memory access */
2838 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2839 {
2840     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2841 }
2842 
2843 /* Return the AddressSpace to use for a memory access
2844  * (which depends on whether the access is S or NS, and whether
2845  * the board gave us a separate AddressSpace for S accesses).
2846  */
2847 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2848 {
2849     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2850 }
2851 #endif
2852 
2853 /**
2854  * arm_register_el_change_hook:
2855  * Register a hook function which will be called back whenever this
2856  * CPU changes exception level or mode. The hook function will be
2857  * passed a pointer to the ARMCPU and the opaque data pointer passed
2858  * to this function when the hook was registered.
2859  *
2860  * Note that we currently only support registering a single hook function,
2861  * and will assert if this function is called twice.
2862  * This facility is intended for the use of the GICv3 emulation.
2863  */
2864 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2865                                  void *opaque);
2866 
2867 /**
2868  * arm_get_el_change_hook_opaque:
2869  * Return the opaque data that will be used by the el_change_hook
2870  * for this CPU.
2871  */
2872 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2873 {
2874     return cpu->el_change_hook_opaque;
2875 }
2876 
2877 /**
2878  * aa32_vfp_dreg:
2879  * Return a pointer to the Dn register within env in 32-bit mode.
2880  */
2881 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2882 {
2883     return &env->vfp.zregs[regno >> 1].d[regno & 1];
2884 }
2885 
2886 /**
2887  * aa32_vfp_qreg:
2888  * Return a pointer to the Qn register within env in 32-bit mode.
2889  */
2890 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2891 {
2892     return &env->vfp.zregs[regno].d[0];
2893 }
2894 
2895 /**
2896  * aa64_vfp_qreg:
2897  * Return a pointer to the Qn register within env in 64-bit mode.
2898  */
2899 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2900 {
2901     return &env->vfp.zregs[regno].d[0];
2902 }
2903 
2904 #endif
2905