xref: /openbmc/qemu/target/arm/cpu.h (revision 6d62f309f869c6a563fbe280c85182954df5855c)
1  /*
2   * ARM virtual CPU header
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #ifndef ARM_CPU_H
21  #define ARM_CPU_H
22  
23  #include "kvm-consts.h"
24  #include "qemu/cpu-float.h"
25  #include "hw/registerfields.h"
26  #include "cpu-qom.h"
27  #include "exec/cpu-defs.h"
28  #include "exec/gdbstub.h"
29  #include "exec/page-protection.h"
30  #include "qapi/qapi-types-common.h"
31  #include "target/arm/multiprocessing.h"
32  #include "target/arm/gtimer.h"
33  
34  #ifdef TARGET_AARCH64
35  #define KVM_HAVE_MCE_INJECTION 1
36  #endif
37  
38  #define EXCP_UDEF            1   /* undefined instruction */
39  #define EXCP_SWI             2   /* software interrupt */
40  #define EXCP_PREFETCH_ABORT  3
41  #define EXCP_DATA_ABORT      4
42  #define EXCP_IRQ             5
43  #define EXCP_FIQ             6
44  #define EXCP_BKPT            7
45  #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46  #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47  #define EXCP_HVC            11   /* HyperVisor Call */
48  #define EXCP_HYP_TRAP       12
49  #define EXCP_SMC            13   /* Secure Monitor Call */
50  #define EXCP_VIRQ           14
51  #define EXCP_VFIQ           15
52  #define EXCP_SEMIHOST       16   /* semihosting call */
53  #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54  #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55  #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56  #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57  #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58  #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59  #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60  #define EXCP_VSERR          24
61  #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62  #define EXCP_NMI            26
63  #define EXCP_VINMI          27
64  #define EXCP_VFNMI          28
65  /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66  
67  #define ARMV7M_EXCP_RESET   1
68  #define ARMV7M_EXCP_NMI     2
69  #define ARMV7M_EXCP_HARD    3
70  #define ARMV7M_EXCP_MEM     4
71  #define ARMV7M_EXCP_BUS     5
72  #define ARMV7M_EXCP_USAGE   6
73  #define ARMV7M_EXCP_SECURE  7
74  #define ARMV7M_EXCP_SVC     11
75  #define ARMV7M_EXCP_DEBUG   12
76  #define ARMV7M_EXCP_PENDSV  14
77  #define ARMV7M_EXCP_SYSTICK 15
78  
79  /* ARM-specific interrupt pending bits.  */
80  #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81  #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82  #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83  #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84  #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85  #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86  #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87  
88  /* The usual mapping for an AArch64 system register to its AArch32
89   * counterpart is for the 32 bit world to have access to the lower
90   * half only (with writes leaving the upper half untouched). It's
91   * therefore useful to be able to pass TCG the offset of the least
92   * significant half of a uint64_t struct member.
93   */
94  #if HOST_BIG_ENDIAN
95  #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96  #define offsetofhigh32(S, M) offsetof(S, M)
97  #else
98  #define offsetoflow32(S, M) offsetof(S, M)
99  #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100  #endif
101  
102  /* ARM-specific extra insn start words:
103   * 1: Conditional execution bits
104   * 2: Partial exception syndrome for data aborts
105   */
106  #define TARGET_INSN_START_EXTRA_WORDS 2
107  
108  /* The 2nd extra word holding syndrome info for data aborts does not use
109   * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110   * help the sleb128 encoder do a better job.
111   * When restoring the CPU state, we shift it back up.
112   */
113  #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114  #define ARM_INSN_START_WORD2_SHIFT 13
115  
116  /* We currently assume float and double are IEEE single and double
117     precision respectively.
118     Doing runtime conversions is tricky because VFP registers may contain
119     integer values (eg. as the result of a FTOSI instruction).
120     s<2n> maps to the least significant half of d<n>
121     s<2n+1> maps to the most significant half of d<n>
122   */
123  
124  /**
125   * DynamicGDBFeatureInfo:
126   * @desc: Contains the feature descriptions.
127   * @data: A union with data specific to the set of registers
128   *    @cpregs_keys: Array that contains the corresponding Key of
129   *                  a given cpreg with the same order of the cpreg
130   *                  in the XML description.
131   */
132  typedef struct DynamicGDBFeatureInfo {
133      GDBFeature desc;
134      union {
135          struct {
136              uint32_t *keys;
137          } cpregs;
138      } data;
139  } DynamicGDBFeatureInfo;
140  
141  /* CPU state for each instance of a generic timer (in cp15 c14) */
142  typedef struct ARMGenericTimer {
143      uint64_t cval; /* Timer CompareValue register */
144      uint64_t ctl; /* Timer Control register */
145  } ARMGenericTimer;
146  
147  /* Define a maximum sized vector register.
148   * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149   * For 64-bit, this is a 2048-bit SVE register.
150   *
151   * Note that the mapping between S, D, and Q views of the register bank
152   * differs between AArch64 and AArch32.
153   * In AArch32:
154   *  Qn = regs[n].d[1]:regs[n].d[0]
155   *  Dn = regs[n / 2].d[n & 1]
156   *  Sn = regs[n / 4].d[n % 4 / 2],
157   *       bits 31..0 for even n, and bits 63..32 for odd n
158   *       (and regs[16] to regs[31] are inaccessible)
159   * In AArch64:
160   *  Zn = regs[n].d[*]
161   *  Qn = regs[n].d[1]:regs[n].d[0]
162   *  Dn = regs[n].d[0]
163   *  Sn = regs[n].d[0] bits 31..0
164   *  Hn = regs[n].d[0] bits 15..0
165   *
166   * This corresponds to the architecturally defined mapping between
167   * the two execution states, and means we do not need to explicitly
168   * map these registers when changing states.
169   *
170   * Align the data for use with TCG host vector operations.
171   */
172  
173  #ifdef TARGET_AARCH64
174  # define ARM_MAX_VQ    16
175  #else
176  # define ARM_MAX_VQ    1
177  #endif
178  
179  typedef struct ARMVectorReg {
180      uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181  } ARMVectorReg;
182  
183  #ifdef TARGET_AARCH64
184  /* In AArch32 mode, predicate registers do not exist at all.  */
185  typedef struct ARMPredicateReg {
186      uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187  } ARMPredicateReg;
188  
189  /* In AArch32 mode, PAC keys do not exist at all.  */
190  typedef struct ARMPACKey {
191      uint64_t lo, hi;
192  } ARMPACKey;
193  #endif
194  
195  /* See the commentary above the TBFLAG field definitions.  */
196  typedef struct CPUARMTBFlags {
197      uint32_t flags;
198      target_ulong flags2;
199  } CPUARMTBFlags;
200  
201  typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202  
203  typedef struct NVICState NVICState;
204  
205  typedef struct CPUArchState {
206      /* Regs for current mode.  */
207      uint32_t regs[16];
208  
209      /* 32/64 switch only happens when taking and returning from
210       * exceptions so the overlap semantics are taken care of then
211       * instead of having a complicated union.
212       */
213      /* Regs for A64 mode.  */
214      uint64_t xregs[32];
215      uint64_t pc;
216      /* PSTATE isn't an architectural register for ARMv8. However, it is
217       * convenient for us to assemble the underlying state into a 32 bit format
218       * identical to the architectural format used for the SPSR. (This is also
219       * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220       * 'pstate' register are.) Of the PSTATE bits:
221       *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222       *    semantics as for AArch32, as described in the comments on each field)
223       *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
224       *  DAIF (exception masks) are kept in env->daif
225       *  BTYPE is kept in env->btype
226       *  SM and ZA are kept in env->svcr
227       *  all other bits are stored in their correct places in env->pstate
228       */
229      uint32_t pstate;
230      bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231      bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
232  
233      /* Cached TBFLAGS state.  See below for which bits are included.  */
234      CPUARMTBFlags hflags;
235  
236      /* Frequently accessed CPSR bits are stored separately for efficiency.
237         This contains all the other bits.  Use cpsr_{read,write} to access
238         the whole CPSR.  */
239      uint32_t uncached_cpsr;
240      uint32_t spsr;
241  
242      /* Banked registers.  */
243      uint64_t banked_spsr[8];
244      uint32_t banked_r13[8];
245      uint32_t banked_r14[8];
246  
247      /* These hold r8-r12.  */
248      uint32_t usr_regs[5];
249      uint32_t fiq_regs[5];
250  
251      /* cpsr flag cache for faster execution */
252      uint32_t CF; /* 0 or 1 */
253      uint32_t VF; /* V is the bit 31. All other bits are undefined */
254      uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255      uint32_t ZF; /* Z set if zero.  */
256      uint32_t QF; /* 0 or 1 */
257      uint32_t GE; /* cpsr[19:16] */
258      uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259      uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260      uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261      uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262  
263      uint64_t elr_el[4]; /* AArch64 exception link regs  */
264      uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265  
266      /* System control coprocessor (cp15) */
267      struct {
268          uint32_t c0_cpuid;
269          union { /* Cache size selection */
270              struct {
271                  uint64_t _unused_csselr0;
272                  uint64_t csselr_ns;
273                  uint64_t _unused_csselr1;
274                  uint64_t csselr_s;
275              };
276              uint64_t csselr_el[4];
277          };
278          union { /* System control register. */
279              struct {
280                  uint64_t _unused_sctlr;
281                  uint64_t sctlr_ns;
282                  uint64_t hsctlr;
283                  uint64_t sctlr_s;
284              };
285              uint64_t sctlr_el[4];
286          };
287          uint64_t vsctlr; /* Virtualization System control register. */
288          uint64_t cpacr_el1; /* Architectural feature access control register */
289          uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290          uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291          uint64_t sder; /* Secure debug enable register. */
292          uint32_t nsacr; /* Non-secure access control register. */
293          union { /* MMU translation table base 0. */
294              struct {
295                  uint64_t _unused_ttbr0_0;
296                  uint64_t ttbr0_ns;
297                  uint64_t _unused_ttbr0_1;
298                  uint64_t ttbr0_s;
299              };
300              uint64_t ttbr0_el[4];
301          };
302          union { /* MMU translation table base 1. */
303              struct {
304                  uint64_t _unused_ttbr1_0;
305                  uint64_t ttbr1_ns;
306                  uint64_t _unused_ttbr1_1;
307                  uint64_t ttbr1_s;
308              };
309              uint64_t ttbr1_el[4];
310          };
311          uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312          uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313          /* MMU translation table base control. */
314          uint64_t tcr_el[4];
315          uint64_t vtcr_el2; /* Virtualization Translation Control.  */
316          uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317          uint32_t c2_data; /* MPU data cacheable bits.  */
318          uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319          union { /* MMU domain access control register
320                   * MPU write buffer control.
321                   */
322              struct {
323                  uint64_t dacr_ns;
324                  uint64_t dacr_s;
325              };
326              struct {
327                  uint64_t dacr32_el2;
328              };
329          };
330          uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331          uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332          uint64_t hcr_el2; /* Hypervisor configuration register */
333          uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334          uint64_t scr_el3; /* Secure configuration register.  */
335          union { /* Fault status registers.  */
336              struct {
337                  uint64_t ifsr_ns;
338                  uint64_t ifsr_s;
339              };
340              struct {
341                  uint64_t ifsr32_el2;
342              };
343          };
344          union {
345              struct {
346                  uint64_t _unused_dfsr;
347                  uint64_t dfsr_ns;
348                  uint64_t hsr;
349                  uint64_t dfsr_s;
350              };
351              uint64_t esr_el[4];
352          };
353          uint32_t c6_region[8]; /* MPU base/size registers.  */
354          union { /* Fault address registers. */
355              struct {
356                  uint64_t _unused_far0;
357  #if HOST_BIG_ENDIAN
358                  uint32_t ifar_ns;
359                  uint32_t dfar_ns;
360                  uint32_t ifar_s;
361                  uint32_t dfar_s;
362  #else
363                  uint32_t dfar_ns;
364                  uint32_t ifar_ns;
365                  uint32_t dfar_s;
366                  uint32_t ifar_s;
367  #endif
368                  uint64_t _unused_far3;
369              };
370              uint64_t far_el[4];
371          };
372          uint64_t hpfar_el2;
373          uint64_t hstr_el2;
374          union { /* Translation result. */
375              struct {
376                  uint64_t _unused_par_0;
377                  uint64_t par_ns;
378                  uint64_t _unused_par_1;
379                  uint64_t par_s;
380              };
381              uint64_t par_el[4];
382          };
383  
384          uint32_t c9_insn; /* Cache lockdown registers.  */
385          uint32_t c9_data;
386          uint64_t c9_pmcr; /* performance monitor control register */
387          uint64_t c9_pmcnten; /* perf monitor counter enables */
388          uint64_t c9_pmovsr; /* perf monitor overflow status */
389          uint64_t c9_pmuserenr; /* perf monitor user enable */
390          uint64_t c9_pmselr; /* perf monitor counter selection register */
391          uint64_t c9_pminten; /* perf monitor interrupt enables */
392          union { /* Memory attribute redirection */
393              struct {
394  #if HOST_BIG_ENDIAN
395                  uint64_t _unused_mair_0;
396                  uint32_t mair1_ns;
397                  uint32_t mair0_ns;
398                  uint64_t _unused_mair_1;
399                  uint32_t mair1_s;
400                  uint32_t mair0_s;
401  #else
402                  uint64_t _unused_mair_0;
403                  uint32_t mair0_ns;
404                  uint32_t mair1_ns;
405                  uint64_t _unused_mair_1;
406                  uint32_t mair0_s;
407                  uint32_t mair1_s;
408  #endif
409              };
410              uint64_t mair_el[4];
411          };
412          union { /* vector base address register */
413              struct {
414                  uint64_t _unused_vbar;
415                  uint64_t vbar_ns;
416                  uint64_t hvbar;
417                  uint64_t vbar_s;
418              };
419              uint64_t vbar_el[4];
420          };
421          uint32_t mvbar; /* (monitor) vector base address register */
422          uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423          struct { /* FCSE PID. */
424              uint32_t fcseidr_ns;
425              uint32_t fcseidr_s;
426          };
427          union { /* Context ID. */
428              struct {
429                  uint64_t _unused_contextidr_0;
430                  uint64_t contextidr_ns;
431                  uint64_t _unused_contextidr_1;
432                  uint64_t contextidr_s;
433              };
434              uint64_t contextidr_el[4];
435          };
436          union { /* User RW Thread register. */
437              struct {
438                  uint64_t tpidrurw_ns;
439                  uint64_t tpidrprw_ns;
440                  uint64_t htpidr;
441                  uint64_t _tpidr_el3;
442              };
443              uint64_t tpidr_el[4];
444          };
445          uint64_t tpidr2_el0;
446          /* The secure banks of these registers don't map anywhere */
447          uint64_t tpidrurw_s;
448          uint64_t tpidrprw_s;
449          uint64_t tpidruro_s;
450  
451          union { /* User RO Thread register. */
452              uint64_t tpidruro_ns;
453              uint64_t tpidrro_el[1];
454          };
455          uint64_t c14_cntfrq; /* Counter Frequency register */
456          uint64_t c14_cntkctl; /* Timer Control register */
457          uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458          uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459          uint64_t cntpoff_el2; /* Counter Physical Offset register */
460          ARMGenericTimer c14_timer[NUM_GTIMERS];
461          uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462          uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463          uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464          uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465          uint32_t c15_threadid; /* TI debugger thread-ID.  */
466          uint32_t c15_config_base_address; /* SCU base address.  */
467          uint32_t c15_diagnostic; /* diagnostic register */
468          uint32_t c15_power_diagnostic;
469          uint32_t c15_power_control; /* power control */
470          uint64_t dbgbvr[16]; /* breakpoint value registers */
471          uint64_t dbgbcr[16]; /* breakpoint control registers */
472          uint64_t dbgwvr[16]; /* watchpoint value registers */
473          uint64_t dbgwcr[16]; /* watchpoint control registers */
474          uint64_t dbgclaim;   /* DBGCLAIM bits */
475          uint64_t mdscr_el1;
476          uint64_t oslsr_el1; /* OS Lock Status */
477          uint64_t osdlr_el1; /* OS DoubleLock status */
478          uint64_t mdcr_el2;
479          uint64_t mdcr_el3;
480          /* Stores the architectural value of the counter *the last time it was
481           * updated* by pmccntr_op_start. Accesses should always be surrounded
482           * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483           * architecturally-correct value is being read/set.
484           */
485          uint64_t c15_ccnt;
486          /* Stores the delta between the architectural value and the underlying
487           * cycle count during normal operation. It is used to update c15_ccnt
488           * to be the correct architectural value before accesses. During
489           * accesses, c15_ccnt_delta contains the underlying count being used
490           * for the access, after which it reverts to the delta value in
491           * pmccntr_op_finish.
492           */
493          uint64_t c15_ccnt_delta;
494          uint64_t c14_pmevcntr[31];
495          uint64_t c14_pmevcntr_delta[31];
496          uint64_t c14_pmevtyper[31];
497          uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498          uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499          uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500          uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501          uint64_t gcr_el1;
502          uint64_t rgsr_el1;
503  
504          /* Minimal RAS registers */
505          uint64_t disr_el1;
506          uint64_t vdisr_el2;
507          uint64_t vsesr_el2;
508  
509          /*
510           * Fine-Grained Trap registers. We store these as arrays so the
511           * access checking code doesn't have to manually select
512           * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513           * FEAT_FGT2 will add more elements to these arrays.
514           */
515          uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516          uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517          uint64_t fgt_exec[1]; /* HFGITR */
518  
519          /* RME registers */
520          uint64_t gpccr_el3;
521          uint64_t gptbr_el3;
522          uint64_t mfar_el3;
523  
524          /* NV2 register */
525          uint64_t vncr_el2;
526      } cp15;
527  
528      struct {
529          /* M profile has up to 4 stack pointers:
530           * a Main Stack Pointer and a Process Stack Pointer for each
531           * of the Secure and Non-Secure states. (If the CPU doesn't support
532           * the security extension then it has only two SPs.)
533           * In QEMU we always store the currently active SP in regs[13],
534           * and the non-active SP for the current security state in
535           * v7m.other_sp. The stack pointers for the inactive security state
536           * are stored in other_ss_msp and other_ss_psp.
537           * switch_v7m_security_state() is responsible for rearranging them
538           * when we change security state.
539           */
540          uint32_t other_sp;
541          uint32_t other_ss_msp;
542          uint32_t other_ss_psp;
543          uint32_t vecbase[M_REG_NUM_BANKS];
544          uint32_t basepri[M_REG_NUM_BANKS];
545          uint32_t control[M_REG_NUM_BANKS];
546          uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547          uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548          uint32_t hfsr; /* HardFault Status */
549          uint32_t dfsr; /* Debug Fault Status Register */
550          uint32_t sfsr; /* Secure Fault Status Register */
551          uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552          uint32_t bfar; /* BusFault Address */
553          uint32_t sfar; /* Secure Fault Address Register */
554          unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555          int exception;
556          uint32_t primask[M_REG_NUM_BANKS];
557          uint32_t faultmask[M_REG_NUM_BANKS];
558          uint32_t aircr; /* only holds r/w state if security extn implemented */
559          uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560          uint32_t csselr[M_REG_NUM_BANKS];
561          uint32_t scr[M_REG_NUM_BANKS];
562          uint32_t msplim[M_REG_NUM_BANKS];
563          uint32_t psplim[M_REG_NUM_BANKS];
564          uint32_t fpcar[M_REG_NUM_BANKS];
565          uint32_t fpccr[M_REG_NUM_BANKS];
566          uint32_t fpdscr[M_REG_NUM_BANKS];
567          uint32_t cpacr[M_REG_NUM_BANKS];
568          uint32_t nsacr;
569          uint32_t ltpsize;
570          uint32_t vpr;
571      } v7m;
572  
573      /* Information associated with an exception about to be taken:
574       * code which raises an exception must set cs->exception_index and
575       * the relevant parts of this structure; the cpu_do_interrupt function
576       * will then set the guest-visible registers as part of the exception
577       * entry process.
578       */
579      struct {
580          uint32_t syndrome; /* AArch64 format syndrome register */
581          uint32_t fsr; /* AArch32 format fault status register info */
582          uint64_t vaddress; /* virtual addr associated with exception, if any */
583          uint32_t target_el; /* EL the exception should be targeted for */
584          /* If we implement EL2 we will also need to store information
585           * about the intermediate physical address for stage 2 faults.
586           */
587      } exception;
588  
589      /* Information associated with an SError */
590      struct {
591          uint8_t pending;
592          uint8_t has_esr;
593          uint64_t esr;
594      } serror;
595  
596      uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597  
598      /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599      uint32_t irq_line_state;
600  
601      /* Thumb-2 EE state.  */
602      uint32_t teecr;
603      uint32_t teehbr;
604  
605      /* VFP coprocessor state.  */
606      struct {
607          ARMVectorReg zregs[32];
608  
609  #ifdef TARGET_AARCH64
610          /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611  #define FFR_PRED_NUM 16
612          ARMPredicateReg pregs[17];
613          /* Scratch space for aa64 sve predicate temporary.  */
614          ARMPredicateReg preg_tmp;
615  #endif
616  
617          /* We store these fpcsr fields separately for convenience.  */
618          uint32_t qc[4] QEMU_ALIGNED(16);
619          int vec_len;
620          int vec_stride;
621  
622          /*
623           * Floating point status and control registers. Some bits are
624           * stored separately in other fields or in the float_status below.
625           */
626          uint64_t fpsr;
627          uint64_t fpcr;
628  
629          uint32_t xregs[16];
630  
631          /* Scratch space for aa32 neon expansion.  */
632          uint32_t scratch[8];
633  
634          /* There are a number of distinct float control structures:
635           *
636           *  fp_status: is the "normal" fp status.
637           *  fp_status_fp16: used for half-precision calculations
638           *  standard_fp_status : the ARM "Standard FPSCR Value"
639           *  standard_fp_status_fp16 : used for half-precision
640           *       calculations with the ARM "Standard FPSCR Value"
641           *
642           * Half-precision operations are governed by a separate
643           * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
644           * status structure to control this.
645           *
646           * The "Standard FPSCR", ie default-NaN, flush-to-zero,
647           * round-to-nearest and is used by any operations (generally
648           * Neon) which the architecture defines as controlled by the
649           * standard FPSCR value rather than the FPSCR.
650           *
651           * The "standard FPSCR but for fp16 ops" is needed because
652           * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
653           * using a fixed value for it.
654           *
655           * To avoid having to transfer exception bits around, we simply
656           * say that the FPSCR cumulative exception flags are the logical
657           * OR of the flags in the four fp statuses. This relies on the
658           * only thing which needs to read the exception flags being
659           * an explicit FPSCR read.
660           */
661          float_status fp_status;
662          float_status fp_status_f16;
663          float_status standard_fp_status;
664          float_status standard_fp_status_f16;
665  
666          uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
667          uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
668      } vfp;
669  
670      uint64_t exclusive_addr;
671      uint64_t exclusive_val;
672      /*
673       * Contains the 'val' for the second 64-bit register of LDXP, which comes
674       * from the higher address, not the high part of a complete 128-bit value.
675       * In some ways it might be more convenient to record the exclusive value
676       * as the low and high halves of a 128 bit data value, but the current
677       * semantics of these fields are baked into the migration format.
678       */
679      uint64_t exclusive_high;
680  
681      /* iwMMXt coprocessor state.  */
682      struct {
683          uint64_t regs[16];
684          uint64_t val;
685  
686          uint32_t cregs[16];
687      } iwmmxt;
688  
689  #ifdef TARGET_AARCH64
690      struct {
691          ARMPACKey apia;
692          ARMPACKey apib;
693          ARMPACKey apda;
694          ARMPACKey apdb;
695          ARMPACKey apga;
696      } keys;
697  
698      uint64_t scxtnum_el[4];
699  
700      /*
701       * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
702       * as we do with vfp.zregs[].  This corresponds to the architectural ZA
703       * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
704       * When SVL is less than the architectural maximum, the accessible
705       * storage is restricted, such that if the SVL is X bytes the guest can
706       * see only the bottom X elements of zarray[], and only the least
707       * significant X bytes of each element of the array. (In other words,
708       * the observable part is always square.)
709       *
710       * The ZA storage can also be considered as a set of square tiles of
711       * elements of different sizes. The mapping from tiles to the ZA array
712       * is architecturally defined, such that for tiles of elements of esz
713       * bytes, the Nth row (or "horizontal slice") of tile T is in
714       * ZA[T + N * esz]. Note that this means that each tile is not contiguous
715       * in the ZA storage, because its rows are striped through the ZA array.
716       *
717       * Because this is so large, keep this toward the end of the reset area,
718       * to keep the offsets into the rest of the structure smaller.
719       */
720      ARMVectorReg zarray[ARM_MAX_VQ * 16];
721  #endif
722  
723      struct CPUBreakpoint *cpu_breakpoint[16];
724      struct CPUWatchpoint *cpu_watchpoint[16];
725  
726      /* Optional fault info across tlb lookup. */
727      ARMMMUFaultInfo *tlb_fi;
728  
729      /* Fields up to this point are cleared by a CPU reset */
730      struct {} end_reset_fields;
731  
732      /* Fields after this point are preserved across CPU reset. */
733  
734      /* Internal CPU feature flags.  */
735      uint64_t features;
736  
737      /* PMSAv7 MPU */
738      struct {
739          uint32_t *drbar;
740          uint32_t *drsr;
741          uint32_t *dracr;
742          uint32_t rnr[M_REG_NUM_BANKS];
743      } pmsav7;
744  
745      /* PMSAv8 MPU */
746      struct {
747          /* The PMSAv8 implementation also shares some PMSAv7 config
748           * and state:
749           *  pmsav7.rnr (region number register)
750           *  pmsav7_dregion (number of configured regions)
751           */
752          uint32_t *rbar[M_REG_NUM_BANKS];
753          uint32_t *rlar[M_REG_NUM_BANKS];
754          uint32_t *hprbar;
755          uint32_t *hprlar;
756          uint32_t mair0[M_REG_NUM_BANKS];
757          uint32_t mair1[M_REG_NUM_BANKS];
758          uint32_t hprselr;
759      } pmsav8;
760  
761      /* v8M SAU */
762      struct {
763          uint32_t *rbar;
764          uint32_t *rlar;
765          uint32_t rnr;
766          uint32_t ctrl;
767      } sau;
768  
769  #if !defined(CONFIG_USER_ONLY)
770      NVICState *nvic;
771      const struct arm_boot_info *boot_info;
772      /* Store GICv3CPUState to access from this struct */
773      void *gicv3state;
774  #else /* CONFIG_USER_ONLY */
775      /* For usermode syscall translation.  */
776      bool eabi;
777  #endif /* CONFIG_USER_ONLY */
778  
779  #ifdef TARGET_TAGGED_ADDRESSES
780      /* Linux syscall tagged address support */
781      bool tagged_addr_enable;
782  #endif
783  } CPUARMState;
784  
set_feature(CPUARMState * env,int feature)785  static inline void set_feature(CPUARMState *env, int feature)
786  {
787      env->features |= 1ULL << feature;
788  }
789  
unset_feature(CPUARMState * env,int feature)790  static inline void unset_feature(CPUARMState *env, int feature)
791  {
792      env->features &= ~(1ULL << feature);
793  }
794  
795  /**
796   * ARMELChangeHookFn:
797   * type of a function which can be registered via arm_register_el_change_hook()
798   * to get callbacks when the CPU changes its exception level or mode.
799   */
800  typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
801  typedef struct ARMELChangeHook ARMELChangeHook;
802  struct ARMELChangeHook {
803      ARMELChangeHookFn *hook;
804      void *opaque;
805      QLIST_ENTRY(ARMELChangeHook) node;
806  };
807  
808  /* These values map onto the return values for
809   * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
810  typedef enum ARMPSCIState {
811      PSCI_ON = 0,
812      PSCI_OFF = 1,
813      PSCI_ON_PENDING = 2
814  } ARMPSCIState;
815  
816  typedef struct ARMISARegisters ARMISARegisters;
817  
818  /*
819   * In map, each set bit is a supported vector length of (bit-number + 1) * 16
820   * bytes, i.e. each bit number + 1 is the vector length in quadwords.
821   *
822   * While processing properties during initialization, corresponding init bits
823   * are set for bits in sve_vq_map that have been set by properties.
824   *
825   * Bits set in supported represent valid vector lengths for the CPU type.
826   */
827  typedef struct {
828      uint32_t map, init, supported;
829  } ARMVQMap;
830  
831  /**
832   * ARMCPU:
833   * @env: #CPUARMState
834   *
835   * An ARM CPU core.
836   */
837  struct ArchCPU {
838      CPUState parent_obj;
839  
840      CPUARMState env;
841  
842      /* Coprocessor information */
843      GHashTable *cp_regs;
844      /* For marshalling (mostly coprocessor) register state between the
845       * kernel and QEMU (for KVM) and between two QEMUs (for migration),
846       * we use these arrays.
847       */
848      /* List of register indexes managed via these arrays; (full KVM style
849       * 64 bit indexes, not CPRegInfo 32 bit indexes)
850       */
851      uint64_t *cpreg_indexes;
852      /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
853      uint64_t *cpreg_values;
854      /* Length of the indexes, values, reset_values arrays */
855      int32_t cpreg_array_len;
856      /* These are used only for migration: incoming data arrives in
857       * these fields and is sanity checked in post_load before copying
858       * to the working data structures above.
859       */
860      uint64_t *cpreg_vmstate_indexes;
861      uint64_t *cpreg_vmstate_values;
862      int32_t cpreg_vmstate_array_len;
863  
864      DynamicGDBFeatureInfo dyn_sysreg_feature;
865      DynamicGDBFeatureInfo dyn_svereg_feature;
866      DynamicGDBFeatureInfo dyn_m_systemreg_feature;
867      DynamicGDBFeatureInfo dyn_m_secextreg_feature;
868  
869      /* Timers used by the generic (architected) timer */
870      QEMUTimer *gt_timer[NUM_GTIMERS];
871      /*
872       * Timer used by the PMU. Its state is restored after migration by
873       * pmu_op_finish() - it does not need other handling during migration
874       */
875      QEMUTimer *pmu_timer;
876      /* Timer used for WFxT timeouts */
877      QEMUTimer *wfxt_timer;
878  
879      /* GPIO outputs for generic timer */
880      qemu_irq gt_timer_outputs[NUM_GTIMERS];
881      /* GPIO output for GICv3 maintenance interrupt signal */
882      qemu_irq gicv3_maintenance_interrupt;
883      /* GPIO output for the PMU interrupt */
884      qemu_irq pmu_interrupt;
885  
886      /* MemoryRegion to use for secure physical accesses */
887      MemoryRegion *secure_memory;
888  
889      /* MemoryRegion to use for allocation tag accesses */
890      MemoryRegion *tag_memory;
891      MemoryRegion *secure_tag_memory;
892  
893      /* For v8M, pointer to the IDAU interface provided by board/SoC */
894      Object *idau;
895  
896      /* 'compatible' string for this CPU for Linux device trees */
897      const char *dtb_compatible;
898  
899      /* PSCI version for this CPU
900       * Bits[31:16] = Major Version
901       * Bits[15:0] = Minor Version
902       */
903      uint32_t psci_version;
904  
905      /* Current power state, access guarded by BQL */
906      ARMPSCIState power_state;
907  
908      /* CPU has virtualization extension */
909      bool has_el2;
910      /* CPU has security extension */
911      bool has_el3;
912      /* CPU has PMU (Performance Monitor Unit) */
913      bool has_pmu;
914      /* CPU has VFP */
915      bool has_vfp;
916      /* CPU has 32 VFP registers */
917      bool has_vfp_d32;
918      /* CPU has Neon */
919      bool has_neon;
920      /* CPU has M-profile DSP extension */
921      bool has_dsp;
922  
923      /* CPU has memory protection unit */
924      bool has_mpu;
925      /* CPU has MTE enabled in KVM mode */
926      bool kvm_mte;
927      /* PMSAv7 MPU number of supported regions */
928      uint32_t pmsav7_dregion;
929      /* PMSAv8 MPU number of supported hyp regions */
930      uint32_t pmsav8r_hdregion;
931      /* v8M SAU number of supported regions */
932      uint32_t sau_sregion;
933  
934      /* PSCI conduit used to invoke PSCI methods
935       * 0 - disabled, 1 - smc, 2 - hvc
936       */
937      uint32_t psci_conduit;
938  
939      /* For v8M, initial value of the Secure VTOR */
940      uint32_t init_svtor;
941      /* For v8M, initial value of the Non-secure VTOR */
942      uint32_t init_nsvtor;
943  
944      /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
945       * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
946       */
947      uint32_t kvm_target;
948  
949  #ifdef CONFIG_KVM
950      /* KVM init features for this CPU */
951      uint32_t kvm_init_features[7];
952  
953      /* KVM CPU state */
954  
955      /* KVM virtual time adjustment */
956      bool kvm_adjvtime;
957      bool kvm_vtime_dirty;
958      uint64_t kvm_vtime;
959  
960      /* KVM steal time */
961      OnOffAuto kvm_steal_time;
962  #endif /* CONFIG_KVM */
963  
964      /* Uniprocessor system with MP extensions */
965      bool mp_is_up;
966  
967      /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
968       * and the probe failed (so we need to report the error in realize)
969       */
970      bool host_cpu_probe_failed;
971  
972      /* QOM property to indicate we should use the back-compat CNTFRQ default */
973      bool backcompat_cntfrq;
974  
975      /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
976       * register.
977       */
978      int32_t core_count;
979  
980      /* The instance init functions for implementation-specific subclasses
981       * set these fields to specify the implementation-dependent values of
982       * various constant registers and reset values of non-constant
983       * registers.
984       * Some of these might become QOM properties eventually.
985       * Field names match the official register names as defined in the
986       * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
987       * is used for reset values of non-constant registers; no reset_
988       * prefix means a constant register.
989       * Some of these registers are split out into a substructure that
990       * is shared with the translators to control the ISA.
991       *
992       * Note that if you add an ID register to the ARMISARegisters struct
993       * you need to also update the 32-bit and 64-bit versions of the
994       * kvm_arm_get_host_cpu_features() function to correctly populate the
995       * field by reading the value from the KVM vCPU.
996       */
997      struct ARMISARegisters {
998          uint32_t id_isar0;
999          uint32_t id_isar1;
1000          uint32_t id_isar2;
1001          uint32_t id_isar3;
1002          uint32_t id_isar4;
1003          uint32_t id_isar5;
1004          uint32_t id_isar6;
1005          uint32_t id_mmfr0;
1006          uint32_t id_mmfr1;
1007          uint32_t id_mmfr2;
1008          uint32_t id_mmfr3;
1009          uint32_t id_mmfr4;
1010          uint32_t id_mmfr5;
1011          uint32_t id_pfr0;
1012          uint32_t id_pfr1;
1013          uint32_t id_pfr2;
1014          uint32_t mvfr0;
1015          uint32_t mvfr1;
1016          uint32_t mvfr2;
1017          uint32_t id_dfr0;
1018          uint32_t id_dfr1;
1019          uint32_t dbgdidr;
1020          uint32_t dbgdevid;
1021          uint32_t dbgdevid1;
1022          uint64_t id_aa64isar0;
1023          uint64_t id_aa64isar1;
1024          uint64_t id_aa64isar2;
1025          uint64_t id_aa64pfr0;
1026          uint64_t id_aa64pfr1;
1027          uint64_t id_aa64mmfr0;
1028          uint64_t id_aa64mmfr1;
1029          uint64_t id_aa64mmfr2;
1030          uint64_t id_aa64mmfr3;
1031          uint64_t id_aa64dfr0;
1032          uint64_t id_aa64dfr1;
1033          uint64_t id_aa64zfr0;
1034          uint64_t id_aa64smfr0;
1035          uint64_t reset_pmcr_el0;
1036      } isar;
1037      uint64_t midr;
1038      uint32_t revidr;
1039      uint32_t reset_fpsid;
1040      uint64_t ctr;
1041      uint32_t reset_sctlr;
1042      uint64_t pmceid0;
1043      uint64_t pmceid1;
1044      uint32_t id_afr0;
1045      uint64_t id_aa64afr0;
1046      uint64_t id_aa64afr1;
1047      uint64_t clidr;
1048      uint64_t mp_affinity; /* MP ID without feature bits */
1049      /* The elements of this array are the CCSIDR values for each cache,
1050       * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1051       */
1052      uint64_t ccsidr[16];
1053      uint64_t reset_cbar;
1054      uint32_t reset_auxcr;
1055      bool reset_hivecs;
1056      uint8_t reset_l0gptsz;
1057  
1058      /*
1059       * Intermediate values used during property parsing.
1060       * Once finalized, the values should be read from ID_AA64*.
1061       */
1062      bool prop_pauth;
1063      bool prop_pauth_impdef;
1064      bool prop_pauth_qarma3;
1065      bool prop_lpa2;
1066  
1067      /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1068      uint8_t dcz_blocksize;
1069      /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1070      uint8_t gm_blocksize;
1071  
1072      uint64_t rvbar_prop; /* Property/input signals.  */
1073  
1074      /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1075      int gic_num_lrs; /* number of list registers */
1076      int gic_vpribits; /* number of virtual priority bits */
1077      int gic_vprebits; /* number of virtual preemption bits */
1078      int gic_pribits; /* number of physical priority bits */
1079  
1080      /* Whether the cfgend input is high (i.e. this CPU should reset into
1081       * big-endian mode).  This setting isn't used directly: instead it modifies
1082       * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1083       * architecture version.
1084       */
1085      bool cfgend;
1086  
1087      QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1088      QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1089  
1090      int32_t node_id; /* NUMA node this CPU belongs to */
1091  
1092      /* Used to synchronize KVM and QEMU in-kernel device levels */
1093      uint8_t device_irq_level;
1094  
1095      /* Used to set the maximum vector length the cpu will support.  */
1096      uint32_t sve_max_vq;
1097  
1098  #ifdef CONFIG_USER_ONLY
1099      /* Used to set the default vector length at process start. */
1100      uint32_t sve_default_vq;
1101      uint32_t sme_default_vq;
1102  #endif
1103  
1104      ARMVQMap sve_vq;
1105      ARMVQMap sme_vq;
1106  
1107      /* Generic timer counter frequency, in Hz */
1108      uint64_t gt_cntfrq_hz;
1109  };
1110  
1111  typedef struct ARMCPUInfo {
1112      const char *name;
1113      void (*initfn)(Object *obj);
1114      void (*class_init)(ObjectClass *oc, void *data);
1115  } ARMCPUInfo;
1116  
1117  /**
1118   * ARMCPUClass:
1119   * @parent_realize: The parent class' realize handler.
1120   * @parent_phases: The parent class' reset phase handlers.
1121   *
1122   * An ARM CPU model.
1123   */
1124  struct ARMCPUClass {
1125      CPUClass parent_class;
1126  
1127      const ARMCPUInfo *info;
1128      DeviceRealize parent_realize;
1129      ResettablePhases parent_phases;
1130  };
1131  
1132  struct AArch64CPUClass {
1133      ARMCPUClass parent_class;
1134  };
1135  
1136  /* Callback functions for the generic timer's timers. */
1137  void arm_gt_ptimer_cb(void *opaque);
1138  void arm_gt_vtimer_cb(void *opaque);
1139  void arm_gt_htimer_cb(void *opaque);
1140  void arm_gt_stimer_cb(void *opaque);
1141  void arm_gt_hvtimer_cb(void *opaque);
1142  
1143  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1144  void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1145  
1146  void arm_cpu_post_init(Object *obj);
1147  
1148  #define ARM_AFF0_SHIFT 0
1149  #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1150  #define ARM_AFF1_SHIFT 8
1151  #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1152  #define ARM_AFF2_SHIFT 16
1153  #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1154  #define ARM_AFF3_SHIFT 32
1155  #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1156  #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1157  
1158  #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1159  #define ARM64_AFFINITY_MASK \
1160      (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1161  #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1162  
1163  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1164  
1165  #ifndef CONFIG_USER_ONLY
1166  extern const VMStateDescription vmstate_arm_cpu;
1167  
1168  void arm_cpu_do_interrupt(CPUState *cpu);
1169  void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1170  
1171  hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1172                                           MemTxAttrs *attrs);
1173  #endif /* !CONFIG_USER_ONLY */
1174  
1175  int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1176  int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1177  
1178  int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1179                               int cpuid, DumpState *s);
1180  int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1181                               int cpuid, DumpState *s);
1182  
1183  /**
1184   * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1185   * @cpu: CPU (which must have been freshly reset)
1186   * @target_el: exception level to put the CPU into
1187   * @secure: whether to put the CPU in secure state
1188   *
1189   * When QEMU is directly running a guest kernel at a lower level than
1190   * EL3 it implicitly emulates some aspects of the guest firmware.
1191   * This includes that on reset we need to configure the parts of the
1192   * CPU corresponding to EL3 so that the real guest code can run at its
1193   * lower exception level. This function does that post-reset CPU setup,
1194   * for when we do direct boot of a guest kernel, and for when we
1195   * emulate PSCI and similar firmware interfaces starting a CPU at a
1196   * lower exception level.
1197   *
1198   * @target_el must be an EL implemented by the CPU between 1 and 3.
1199   * We do not support dropping into a Secure EL other than 3.
1200   *
1201   * It is the responsibility of the caller to call arm_rebuild_hflags().
1202   */
1203  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1204  
1205  #ifdef TARGET_AARCH64
1206  int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1207  int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1208  void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1209  void aarch64_sve_change_el(CPUARMState *env, int old_el,
1210                             int new_el, bool el0_a64);
1211  void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1212  
1213  /*
1214   * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1215   * The byte at offset i from the start of the in-memory representation contains
1216   * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1217   * lowest offsets are stored in the lowest memory addresses, then that nearly
1218   * matches QEMU's representation, which is to use an array of host-endian
1219   * uint64_t's, where the lower offsets are at the lower indices. To complete
1220   * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1221   */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1222  static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1223  {
1224  #if HOST_BIG_ENDIAN
1225      int i;
1226  
1227      for (i = 0; i < nr; ++i) {
1228          dst[i] = bswap64(src[i]);
1229      }
1230  
1231      return dst;
1232  #else
1233      return src;
1234  #endif
1235  }
1236  
1237  #else
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)1238  static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
aarch64_sve_change_el(CPUARMState * env,int o,int n,bool a)1239  static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1240                                           int n, bool a)
1241  { }
1242  #endif
1243  
1244  void aarch64_sync_32_to_64(CPUARMState *env);
1245  void aarch64_sync_64_to_32(CPUARMState *env);
1246  
1247  int fp_exception_el(CPUARMState *env, int cur_el);
1248  int sve_exception_el(CPUARMState *env, int cur_el);
1249  int sme_exception_el(CPUARMState *env, int cur_el);
1250  
1251  /**
1252   * sve_vqm1_for_el_sm:
1253   * @env: CPUARMState
1254   * @el: exception level
1255   * @sm: streaming mode
1256   *
1257   * Compute the current vector length for @el & @sm, in units of
1258   * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1259   * If @sm, compute for SVL, otherwise NVL.
1260   */
1261  uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1262  
1263  /* Likewise, but using @sm = PSTATE.SM. */
1264  uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1265  
is_a64(CPUARMState * env)1266  static inline bool is_a64(CPUARMState *env)
1267  {
1268      return env->aarch64;
1269  }
1270  
1271  /**
1272   * pmu_op_start/finish
1273   * @env: CPUARMState
1274   *
1275   * Convert all PMU counters between their delta form (the typical mode when
1276   * they are enabled) and the guest-visible values. These two calls must
1277   * surround any action which might affect the counters.
1278   */
1279  void pmu_op_start(CPUARMState *env);
1280  void pmu_op_finish(CPUARMState *env);
1281  
1282  /*
1283   * Called when a PMU counter is due to overflow
1284   */
1285  void arm_pmu_timer_cb(void *opaque);
1286  
1287  /**
1288   * Functions to register as EL change hooks for PMU mode filtering
1289   */
1290  void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1291  void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1292  
1293  /*
1294   * pmu_init
1295   * @cpu: ARMCPU
1296   *
1297   * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1298   * for the current configuration
1299   */
1300  void pmu_init(ARMCPU *cpu);
1301  
1302  /* SCTLR bit meanings. Several bits have been reused in newer
1303   * versions of the architecture; in that case we define constants
1304   * for both old and new bit meanings. Code which tests against those
1305   * bits should probably check or otherwise arrange that the CPU
1306   * is the architectural version it expects.
1307   */
1308  #define SCTLR_M       (1U << 0)
1309  #define SCTLR_A       (1U << 1)
1310  #define SCTLR_C       (1U << 2)
1311  #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1312  #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1313  #define SCTLR_SA      (1U << 3) /* AArch64 only */
1314  #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1315  #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1316  #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1317  #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1318  #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1319  #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1320  #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1321  #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1322  #define SCTLR_ITD     (1U << 7) /* v8 onward */
1323  #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1324  #define SCTLR_SED     (1U << 8) /* v8 onward */
1325  #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1326  #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1327  #define SCTLR_F       (1U << 10) /* up to v6 */
1328  #define SCTLR_SW      (1U << 10) /* v7 */
1329  #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1330  #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1331  #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1332  #define SCTLR_I       (1U << 12)
1333  #define SCTLR_V       (1U << 13) /* AArch32 only */
1334  #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1335  #define SCTLR_RR      (1U << 14) /* up to v7 */
1336  #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1337  #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1338  #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1339  #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1340  #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1341  #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1342  #define SCTLR_BR      (1U << 17) /* PMSA only */
1343  #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1344  #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1345  #define SCTLR_WXN     (1U << 19)
1346  #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1347  #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1348  #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1349  #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1350  #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1351  #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1352  #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1353  #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1354  #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1355  #define SCTLR_VE      (1U << 24) /* up to v7 */
1356  #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1357  #define SCTLR_EE      (1U << 25)
1358  #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1359  #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1360  #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1361  #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1362  #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1363  #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1364  #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1365  #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1366  #define SCTLR_TE      (1U << 30) /* AArch32 only */
1367  #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1368  #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1369  #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1370  #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1371  #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1372  #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1373  #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1374  #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1375  #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1376  #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1377  #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1378  #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1379  #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1380  #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1381  #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1382  #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1383  #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1384  #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1385  #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1386  #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1387  #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1388  #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1389  #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1390  #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1391  #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1392  #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1393  #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1394  
1395  #define CPSR_M (0x1fU)
1396  #define CPSR_T (1U << 5)
1397  #define CPSR_F (1U << 6)
1398  #define CPSR_I (1U << 7)
1399  #define CPSR_A (1U << 8)
1400  #define CPSR_E (1U << 9)
1401  #define CPSR_IT_2_7 (0xfc00U)
1402  #define CPSR_GE (0xfU << 16)
1403  #define CPSR_IL (1U << 20)
1404  #define CPSR_DIT (1U << 21)
1405  #define CPSR_PAN (1U << 22)
1406  #define CPSR_SSBS (1U << 23)
1407  #define CPSR_J (1U << 24)
1408  #define CPSR_IT_0_1 (3U << 25)
1409  #define CPSR_Q (1U << 27)
1410  #define CPSR_V (1U << 28)
1411  #define CPSR_C (1U << 29)
1412  #define CPSR_Z (1U << 30)
1413  #define CPSR_N (1U << 31)
1414  #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1415  #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1416  #define ISR_FS (1U << 9)
1417  #define ISR_IS (1U << 10)
1418  
1419  #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1420  #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1421      | CPSR_NZCV)
1422  /* Bits writable in user mode.  */
1423  #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1424  /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1425  #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1426  
1427  /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1428  #define XPSR_EXCP 0x1ffU
1429  #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1430  #define XPSR_IT_2_7 CPSR_IT_2_7
1431  #define XPSR_GE CPSR_GE
1432  #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1433  #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1434  #define XPSR_IT_0_1 CPSR_IT_0_1
1435  #define XPSR_Q CPSR_Q
1436  #define XPSR_V CPSR_V
1437  #define XPSR_C CPSR_C
1438  #define XPSR_Z CPSR_Z
1439  #define XPSR_N CPSR_N
1440  #define XPSR_NZCV CPSR_NZCV
1441  #define XPSR_IT CPSR_IT
1442  
1443  /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1444   * Only these are valid when in AArch64 mode; in
1445   * AArch32 mode SPSRs are basically CPSR-format.
1446   */
1447  #define PSTATE_SP (1U)
1448  #define PSTATE_M (0xFU)
1449  #define PSTATE_nRW (1U << 4)
1450  #define PSTATE_F (1U << 6)
1451  #define PSTATE_I (1U << 7)
1452  #define PSTATE_A (1U << 8)
1453  #define PSTATE_D (1U << 9)
1454  #define PSTATE_BTYPE (3U << 10)
1455  #define PSTATE_SSBS (1U << 12)
1456  #define PSTATE_ALLINT (1U << 13)
1457  #define PSTATE_IL (1U << 20)
1458  #define PSTATE_SS (1U << 21)
1459  #define PSTATE_PAN (1U << 22)
1460  #define PSTATE_UAO (1U << 23)
1461  #define PSTATE_DIT (1U << 24)
1462  #define PSTATE_TCO (1U << 25)
1463  #define PSTATE_V (1U << 28)
1464  #define PSTATE_C (1U << 29)
1465  #define PSTATE_Z (1U << 30)
1466  #define PSTATE_N (1U << 31)
1467  #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1468  #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1469  #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1470  /* Mode values for AArch64 */
1471  #define PSTATE_MODE_EL3h 13
1472  #define PSTATE_MODE_EL3t 12
1473  #define PSTATE_MODE_EL2h 9
1474  #define PSTATE_MODE_EL2t 8
1475  #define PSTATE_MODE_EL1h 5
1476  #define PSTATE_MODE_EL1t 4
1477  #define PSTATE_MODE_EL0t 0
1478  
1479  /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1480  FIELD(SVCR, SM, 0, 1)
1481  FIELD(SVCR, ZA, 1, 1)
1482  
1483  /* Fields for SMCR_ELx. */
1484  FIELD(SMCR, LEN, 0, 4)
1485  FIELD(SMCR, FA64, 31, 1)
1486  
1487  /* Write a new value to v7m.exception, thus transitioning into or out
1488   * of Handler mode; this may result in a change of active stack pointer.
1489   */
1490  void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1491  
1492  /* Map EL and handler into a PSTATE_MODE.  */
aarch64_pstate_mode(unsigned int el,bool handler)1493  static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1494  {
1495      return (el << 2) | handler;
1496  }
1497  
1498  /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1499   * interprocessing, so we don't attempt to sync with the cpsr state used by
1500   * the 32 bit decoder.
1501   */
pstate_read(CPUARMState * env)1502  static inline uint32_t pstate_read(CPUARMState *env)
1503  {
1504      int ZF;
1505  
1506      ZF = (env->ZF == 0);
1507      return (env->NF & 0x80000000) | (ZF << 30)
1508          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1509          | env->pstate | env->daif | (env->btype << 10);
1510  }
1511  
pstate_write(CPUARMState * env,uint32_t val)1512  static inline void pstate_write(CPUARMState *env, uint32_t val)
1513  {
1514      env->ZF = (~val) & PSTATE_Z;
1515      env->NF = val;
1516      env->CF = (val >> 29) & 1;
1517      env->VF = (val << 3) & 0x80000000;
1518      env->daif = val & PSTATE_DAIF;
1519      env->btype = (val >> 10) & 3;
1520      env->pstate = val & ~CACHED_PSTATE_BITS;
1521  }
1522  
1523  /* Return the current CPSR value.  */
1524  uint32_t cpsr_read(CPUARMState *env);
1525  
1526  typedef enum CPSRWriteType {
1527      CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1528      CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1529      CPSRWriteRaw = 2,
1530          /* trust values, no reg bank switch, no hflags rebuild */
1531      CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1532  } CPSRWriteType;
1533  
1534  /*
1535   * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1536   * This will do an arm_rebuild_hflags() if any of the bits in @mask
1537   * correspond to TB flags bits cached in the hflags, unless @write_type
1538   * is CPSRWriteRaw.
1539   */
1540  void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1541                  CPSRWriteType write_type);
1542  
1543  /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)1544  static inline uint32_t xpsr_read(CPUARMState *env)
1545  {
1546      int ZF;
1547      ZF = (env->ZF == 0);
1548      return (env->NF & 0x80000000) | (ZF << 30)
1549          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1550          | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1551          | ((env->condexec_bits & 0xfc) << 8)
1552          | (env->GE << 16)
1553          | env->v7m.exception;
1554  }
1555  
1556  /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1557  static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1558  {
1559      if (mask & XPSR_NZCV) {
1560          env->ZF = (~val) & XPSR_Z;
1561          env->NF = val;
1562          env->CF = (val >> 29) & 1;
1563          env->VF = (val << 3) & 0x80000000;
1564      }
1565      if (mask & XPSR_Q) {
1566          env->QF = ((val & XPSR_Q) != 0);
1567      }
1568      if (mask & XPSR_GE) {
1569          env->GE = (val & XPSR_GE) >> 16;
1570      }
1571  #ifndef CONFIG_USER_ONLY
1572      if (mask & XPSR_T) {
1573          env->thumb = ((val & XPSR_T) != 0);
1574      }
1575      if (mask & XPSR_IT_0_1) {
1576          env->condexec_bits &= ~3;
1577          env->condexec_bits |= (val >> 25) & 3;
1578      }
1579      if (mask & XPSR_IT_2_7) {
1580          env->condexec_bits &= 3;
1581          env->condexec_bits |= (val >> 8) & 0xfc;
1582      }
1583      if (mask & XPSR_EXCP) {
1584          /* Note that this only happens on exception exit */
1585          write_v7m_exception(env, val & XPSR_EXCP);
1586      }
1587  #endif
1588  }
1589  
1590  #define HCR_VM        (1ULL << 0)
1591  #define HCR_SWIO      (1ULL << 1)
1592  #define HCR_PTW       (1ULL << 2)
1593  #define HCR_FMO       (1ULL << 3)
1594  #define HCR_IMO       (1ULL << 4)
1595  #define HCR_AMO       (1ULL << 5)
1596  #define HCR_VF        (1ULL << 6)
1597  #define HCR_VI        (1ULL << 7)
1598  #define HCR_VSE       (1ULL << 8)
1599  #define HCR_FB        (1ULL << 9)
1600  #define HCR_BSU_MASK  (3ULL << 10)
1601  #define HCR_DC        (1ULL << 12)
1602  #define HCR_TWI       (1ULL << 13)
1603  #define HCR_TWE       (1ULL << 14)
1604  #define HCR_TID0      (1ULL << 15)
1605  #define HCR_TID1      (1ULL << 16)
1606  #define HCR_TID2      (1ULL << 17)
1607  #define HCR_TID3      (1ULL << 18)
1608  #define HCR_TSC       (1ULL << 19)
1609  #define HCR_TIDCP     (1ULL << 20)
1610  #define HCR_TACR      (1ULL << 21)
1611  #define HCR_TSW       (1ULL << 22)
1612  #define HCR_TPCP      (1ULL << 23)
1613  #define HCR_TPU       (1ULL << 24)
1614  #define HCR_TTLB      (1ULL << 25)
1615  #define HCR_TVM       (1ULL << 26)
1616  #define HCR_TGE       (1ULL << 27)
1617  #define HCR_TDZ       (1ULL << 28)
1618  #define HCR_HCD       (1ULL << 29)
1619  #define HCR_TRVM      (1ULL << 30)
1620  #define HCR_RW        (1ULL << 31)
1621  #define HCR_CD        (1ULL << 32)
1622  #define HCR_ID        (1ULL << 33)
1623  #define HCR_E2H       (1ULL << 34)
1624  #define HCR_TLOR      (1ULL << 35)
1625  #define HCR_TERR      (1ULL << 36)
1626  #define HCR_TEA       (1ULL << 37)
1627  #define HCR_MIOCNCE   (1ULL << 38)
1628  #define HCR_TME       (1ULL << 39)
1629  #define HCR_APK       (1ULL << 40)
1630  #define HCR_API       (1ULL << 41)
1631  #define HCR_NV        (1ULL << 42)
1632  #define HCR_NV1       (1ULL << 43)
1633  #define HCR_AT        (1ULL << 44)
1634  #define HCR_NV2       (1ULL << 45)
1635  #define HCR_FWB       (1ULL << 46)
1636  #define HCR_FIEN      (1ULL << 47)
1637  #define HCR_GPF       (1ULL << 48)
1638  #define HCR_TID4      (1ULL << 49)
1639  #define HCR_TICAB     (1ULL << 50)
1640  #define HCR_AMVOFFEN  (1ULL << 51)
1641  #define HCR_TOCU      (1ULL << 52)
1642  #define HCR_ENSCXT    (1ULL << 53)
1643  #define HCR_TTLBIS    (1ULL << 54)
1644  #define HCR_TTLBOS    (1ULL << 55)
1645  #define HCR_ATA       (1ULL << 56)
1646  #define HCR_DCT       (1ULL << 57)
1647  #define HCR_TID5      (1ULL << 58)
1648  #define HCR_TWEDEN    (1ULL << 59)
1649  #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1650  
1651  #define SCR_NS                (1ULL << 0)
1652  #define SCR_IRQ               (1ULL << 1)
1653  #define SCR_FIQ               (1ULL << 2)
1654  #define SCR_EA                (1ULL << 3)
1655  #define SCR_FW                (1ULL << 4)
1656  #define SCR_AW                (1ULL << 5)
1657  #define SCR_NET               (1ULL << 6)
1658  #define SCR_SMD               (1ULL << 7)
1659  #define SCR_HCE               (1ULL << 8)
1660  #define SCR_SIF               (1ULL << 9)
1661  #define SCR_RW                (1ULL << 10)
1662  #define SCR_ST                (1ULL << 11)
1663  #define SCR_TWI               (1ULL << 12)
1664  #define SCR_TWE               (1ULL << 13)
1665  #define SCR_TLOR              (1ULL << 14)
1666  #define SCR_TERR              (1ULL << 15)
1667  #define SCR_APK               (1ULL << 16)
1668  #define SCR_API               (1ULL << 17)
1669  #define SCR_EEL2              (1ULL << 18)
1670  #define SCR_EASE              (1ULL << 19)
1671  #define SCR_NMEA              (1ULL << 20)
1672  #define SCR_FIEN              (1ULL << 21)
1673  #define SCR_ENSCXT            (1ULL << 25)
1674  #define SCR_ATA               (1ULL << 26)
1675  #define SCR_FGTEN             (1ULL << 27)
1676  #define SCR_ECVEN             (1ULL << 28)
1677  #define SCR_TWEDEN            (1ULL << 29)
1678  #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1679  #define SCR_TME               (1ULL << 34)
1680  #define SCR_AMVOFFEN          (1ULL << 35)
1681  #define SCR_ENAS0             (1ULL << 36)
1682  #define SCR_ADEN              (1ULL << 37)
1683  #define SCR_HXEN              (1ULL << 38)
1684  #define SCR_TRNDR             (1ULL << 40)
1685  #define SCR_ENTP2             (1ULL << 41)
1686  #define SCR_GPF               (1ULL << 48)
1687  #define SCR_NSE               (1ULL << 62)
1688  
1689  /* Return the current FPSCR value.  */
1690  uint32_t vfp_get_fpscr(CPUARMState *env);
1691  void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1692  
1693  /*
1694   * FPCR, Floating Point Control Register
1695   * FPSR, Floating Point Status Register
1696   *
1697   * For A64 floating point control and status bits are stored in
1698   * two logically distinct registers, FPCR and FPSR. We store these
1699   * in QEMU in vfp.fpcr and vfp.fpsr.
1700   * For A32 there was only one register, FPSCR. The bits are arranged
1701   * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1702   * so we can use appropriate masking to handle FPSCR reads and writes.
1703   * Note that the FPCR has some bits which are not visible in the
1704   * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1705   */
1706  
1707  /* FPCR bits */
1708  #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1709  #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1710  #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1711  #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1712  #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1713  #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1714  #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1715  #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1716  #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1717  #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1718  #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1719  #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1720  #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1721  #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1722  
1723  #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1724  #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1725  #define FPCR_LTPSIZE_LENGTH 3
1726  
1727  /* Cumulative exception trap enable bits */
1728  #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1729  
1730  /* FPSR bits */
1731  #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1732  #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1733  #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1734  #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1735  #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1736  #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1737  #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1738  #define FPSR_V      (1 << 28)   /* FP overflow flag */
1739  #define FPSR_C      (1 << 29)   /* FP carry flag */
1740  #define FPSR_Z      (1 << 30)   /* FP zero flag */
1741  #define FPSR_N      (1 << 31)   /* FP negative flag */
1742  
1743  /* Cumulative exception status bits */
1744  #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1745  
1746  #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1747  #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1748  
1749  /* A32 FPSCR bits which architecturally map to FPSR bits */
1750  #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1751  /* A32 FPSCR bits which architecturally map to FPCR bits */
1752  #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1753                           FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1754                           FPCR_FZ | FPCR_DN | FPCR_AHP)
1755  /* These masks don't overlap: each bit lives in only one place */
1756  QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1757  
1758  /**
1759   * vfp_get_fpsr: read the AArch64 FPSR
1760   * @env: CPU context
1761   *
1762   * Return the current AArch64 FPSR value
1763   */
1764  uint32_t vfp_get_fpsr(CPUARMState *env);
1765  
1766  /**
1767   * vfp_get_fpcr: read the AArch64 FPCR
1768   * @env: CPU context
1769   *
1770   * Return the current AArch64 FPCR value
1771   */
1772  uint32_t vfp_get_fpcr(CPUARMState *env);
1773  
1774  /**
1775   * vfp_set_fpsr: write the AArch64 FPSR
1776   * @env: CPU context
1777   * @value: new value
1778   */
1779  void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1780  
1781  /**
1782   * vfp_set_fpcr: write the AArch64 FPCR
1783   * @env: CPU context
1784   * @value: new value
1785   */
1786  void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1787  
1788  enum arm_cpu_mode {
1789    ARM_CPU_MODE_USR = 0x10,
1790    ARM_CPU_MODE_FIQ = 0x11,
1791    ARM_CPU_MODE_IRQ = 0x12,
1792    ARM_CPU_MODE_SVC = 0x13,
1793    ARM_CPU_MODE_MON = 0x16,
1794    ARM_CPU_MODE_ABT = 0x17,
1795    ARM_CPU_MODE_HYP = 0x1a,
1796    ARM_CPU_MODE_UND = 0x1b,
1797    ARM_CPU_MODE_SYS = 0x1f
1798  };
1799  
1800  /* VFP system registers.  */
1801  #define ARM_VFP_FPSID   0
1802  #define ARM_VFP_FPSCR   1
1803  #define ARM_VFP_MVFR2   5
1804  #define ARM_VFP_MVFR1   6
1805  #define ARM_VFP_MVFR0   7
1806  #define ARM_VFP_FPEXC   8
1807  #define ARM_VFP_FPINST  9
1808  #define ARM_VFP_FPINST2 10
1809  /* These ones are M-profile only */
1810  #define ARM_VFP_FPSCR_NZCVQC 2
1811  #define ARM_VFP_VPR 12
1812  #define ARM_VFP_P0 13
1813  #define ARM_VFP_FPCXT_NS 14
1814  #define ARM_VFP_FPCXT_S 15
1815  
1816  /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1817  #define QEMU_VFP_FPSCR_NZCV 0xffff
1818  
1819  /* iwMMXt coprocessor control registers.  */
1820  #define ARM_IWMMXT_wCID  0
1821  #define ARM_IWMMXT_wCon  1
1822  #define ARM_IWMMXT_wCSSF 2
1823  #define ARM_IWMMXT_wCASF 3
1824  #define ARM_IWMMXT_wCGR0 8
1825  #define ARM_IWMMXT_wCGR1 9
1826  #define ARM_IWMMXT_wCGR2 10
1827  #define ARM_IWMMXT_wCGR3 11
1828  
1829  /* V7M CCR bits */
1830  FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1831  FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1832  FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1833  FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1834  FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1835  FIELD(V7M_CCR, STKALIGN, 9, 1)
1836  FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1837  FIELD(V7M_CCR, DC, 16, 1)
1838  FIELD(V7M_CCR, IC, 17, 1)
1839  FIELD(V7M_CCR, BP, 18, 1)
1840  FIELD(V7M_CCR, LOB, 19, 1)
1841  FIELD(V7M_CCR, TRD, 20, 1)
1842  
1843  /* V7M SCR bits */
1844  FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1845  FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1846  FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1847  FIELD(V7M_SCR, SEVONPEND, 4, 1)
1848  
1849  /* V7M AIRCR bits */
1850  FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1851  FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1852  FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1853  FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1854  FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1855  FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1856  FIELD(V7M_AIRCR, PRIS, 14, 1)
1857  FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1858  FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1859  
1860  /* V7M CFSR bits for MMFSR */
1861  FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1862  FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1863  FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1864  FIELD(V7M_CFSR, MSTKERR, 4, 1)
1865  FIELD(V7M_CFSR, MLSPERR, 5, 1)
1866  FIELD(V7M_CFSR, MMARVALID, 7, 1)
1867  
1868  /* V7M CFSR bits for BFSR */
1869  FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1870  FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1871  FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1872  FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1873  FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1874  FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1875  FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1876  
1877  /* V7M CFSR bits for UFSR */
1878  FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1879  FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1880  FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1881  FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1882  FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1883  FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1884  FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1885  
1886  /* V7M CFSR bit masks covering all of the subregister bits */
1887  FIELD(V7M_CFSR, MMFSR, 0, 8)
1888  FIELD(V7M_CFSR, BFSR, 8, 8)
1889  FIELD(V7M_CFSR, UFSR, 16, 16)
1890  
1891  /* V7M HFSR bits */
1892  FIELD(V7M_HFSR, VECTTBL, 1, 1)
1893  FIELD(V7M_HFSR, FORCED, 30, 1)
1894  FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1895  
1896  /* V7M DFSR bits */
1897  FIELD(V7M_DFSR, HALTED, 0, 1)
1898  FIELD(V7M_DFSR, BKPT, 1, 1)
1899  FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1900  FIELD(V7M_DFSR, VCATCH, 3, 1)
1901  FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1902  
1903  /* V7M SFSR bits */
1904  FIELD(V7M_SFSR, INVEP, 0, 1)
1905  FIELD(V7M_SFSR, INVIS, 1, 1)
1906  FIELD(V7M_SFSR, INVER, 2, 1)
1907  FIELD(V7M_SFSR, AUVIOL, 3, 1)
1908  FIELD(V7M_SFSR, INVTRAN, 4, 1)
1909  FIELD(V7M_SFSR, LSPERR, 5, 1)
1910  FIELD(V7M_SFSR, SFARVALID, 6, 1)
1911  FIELD(V7M_SFSR, LSERR, 7, 1)
1912  
1913  /* v7M MPU_CTRL bits */
1914  FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1915  FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1916  FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1917  
1918  /* v7M CLIDR bits */
1919  FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1920  FIELD(V7M_CLIDR, LOUIS, 21, 3)
1921  FIELD(V7M_CLIDR, LOC, 24, 3)
1922  FIELD(V7M_CLIDR, LOUU, 27, 3)
1923  FIELD(V7M_CLIDR, ICB, 30, 2)
1924  
1925  FIELD(V7M_CSSELR, IND, 0, 1)
1926  FIELD(V7M_CSSELR, LEVEL, 1, 3)
1927  /* We use the combination of InD and Level to index into cpu->ccsidr[];
1928   * define a mask for this and check that it doesn't permit running off
1929   * the end of the array.
1930   */
1931  FIELD(V7M_CSSELR, INDEX, 0, 4)
1932  
1933  /* v7M FPCCR bits */
1934  FIELD(V7M_FPCCR, LSPACT, 0, 1)
1935  FIELD(V7M_FPCCR, USER, 1, 1)
1936  FIELD(V7M_FPCCR, S, 2, 1)
1937  FIELD(V7M_FPCCR, THREAD, 3, 1)
1938  FIELD(V7M_FPCCR, HFRDY, 4, 1)
1939  FIELD(V7M_FPCCR, MMRDY, 5, 1)
1940  FIELD(V7M_FPCCR, BFRDY, 6, 1)
1941  FIELD(V7M_FPCCR, SFRDY, 7, 1)
1942  FIELD(V7M_FPCCR, MONRDY, 8, 1)
1943  FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1944  FIELD(V7M_FPCCR, UFRDY, 10, 1)
1945  FIELD(V7M_FPCCR, RES0, 11, 15)
1946  FIELD(V7M_FPCCR, TS, 26, 1)
1947  FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1948  FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1949  FIELD(V7M_FPCCR, LSPENS, 29, 1)
1950  FIELD(V7M_FPCCR, LSPEN, 30, 1)
1951  FIELD(V7M_FPCCR, ASPEN, 31, 1)
1952  /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1953  #define R_V7M_FPCCR_BANKED_MASK                 \
1954      (R_V7M_FPCCR_LSPACT_MASK |                  \
1955       R_V7M_FPCCR_USER_MASK |                    \
1956       R_V7M_FPCCR_THREAD_MASK |                  \
1957       R_V7M_FPCCR_MMRDY_MASK |                   \
1958       R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1959       R_V7M_FPCCR_UFRDY_MASK |                   \
1960       R_V7M_FPCCR_ASPEN_MASK)
1961  
1962  /* v7M VPR bits */
1963  FIELD(V7M_VPR, P0, 0, 16)
1964  FIELD(V7M_VPR, MASK01, 16, 4)
1965  FIELD(V7M_VPR, MASK23, 20, 4)
1966  
1967  /*
1968   * System register ID fields.
1969   */
1970  FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1971  FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1972  FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1973  FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1974  FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1975  FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1976  FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1977  FIELD(CLIDR_EL1, LOUIS, 21, 3)
1978  FIELD(CLIDR_EL1, LOC, 24, 3)
1979  FIELD(CLIDR_EL1, LOUU, 27, 3)
1980  FIELD(CLIDR_EL1, ICB, 30, 3)
1981  
1982  /* When FEAT_CCIDX is implemented */
1983  FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1984  FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1985  FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1986  
1987  /* When FEAT_CCIDX is not implemented */
1988  FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1989  FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1990  FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1991  
1992  FIELD(CTR_EL0,  IMINLINE, 0, 4)
1993  FIELD(CTR_EL0,  L1IP, 14, 2)
1994  FIELD(CTR_EL0,  DMINLINE, 16, 4)
1995  FIELD(CTR_EL0,  ERG, 20, 4)
1996  FIELD(CTR_EL0,  CWG, 24, 4)
1997  FIELD(CTR_EL0,  IDC, 28, 1)
1998  FIELD(CTR_EL0,  DIC, 29, 1)
1999  FIELD(CTR_EL0,  TMINLINE, 32, 6)
2000  
2001  FIELD(MIDR_EL1, REVISION, 0, 4)
2002  FIELD(MIDR_EL1, PARTNUM, 4, 12)
2003  FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2004  FIELD(MIDR_EL1, VARIANT, 20, 4)
2005  FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2006  
2007  FIELD(ID_ISAR0, SWAP, 0, 4)
2008  FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2009  FIELD(ID_ISAR0, BITFIELD, 8, 4)
2010  FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2011  FIELD(ID_ISAR0, COPROC, 16, 4)
2012  FIELD(ID_ISAR0, DEBUG, 20, 4)
2013  FIELD(ID_ISAR0, DIVIDE, 24, 4)
2014  
2015  FIELD(ID_ISAR1, ENDIAN, 0, 4)
2016  FIELD(ID_ISAR1, EXCEPT, 4, 4)
2017  FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2018  FIELD(ID_ISAR1, EXTEND, 12, 4)
2019  FIELD(ID_ISAR1, IFTHEN, 16, 4)
2020  FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2021  FIELD(ID_ISAR1, INTERWORK, 24, 4)
2022  FIELD(ID_ISAR1, JAZELLE, 28, 4)
2023  
2024  FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2025  FIELD(ID_ISAR2, MEMHINT, 4, 4)
2026  FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2027  FIELD(ID_ISAR2, MULT, 12, 4)
2028  FIELD(ID_ISAR2, MULTS, 16, 4)
2029  FIELD(ID_ISAR2, MULTU, 20, 4)
2030  FIELD(ID_ISAR2, PSR_AR, 24, 4)
2031  FIELD(ID_ISAR2, REVERSAL, 28, 4)
2032  
2033  FIELD(ID_ISAR3, SATURATE, 0, 4)
2034  FIELD(ID_ISAR3, SIMD, 4, 4)
2035  FIELD(ID_ISAR3, SVC, 8, 4)
2036  FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2037  FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2038  FIELD(ID_ISAR3, T32COPY, 20, 4)
2039  FIELD(ID_ISAR3, TRUENOP, 24, 4)
2040  FIELD(ID_ISAR3, T32EE, 28, 4)
2041  
2042  FIELD(ID_ISAR4, UNPRIV, 0, 4)
2043  FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2044  FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2045  FIELD(ID_ISAR4, SMC, 12, 4)
2046  FIELD(ID_ISAR4, BARRIER, 16, 4)
2047  FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2048  FIELD(ID_ISAR4, PSR_M, 24, 4)
2049  FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2050  
2051  FIELD(ID_ISAR5, SEVL, 0, 4)
2052  FIELD(ID_ISAR5, AES, 4, 4)
2053  FIELD(ID_ISAR5, SHA1, 8, 4)
2054  FIELD(ID_ISAR5, SHA2, 12, 4)
2055  FIELD(ID_ISAR5, CRC32, 16, 4)
2056  FIELD(ID_ISAR5, RDM, 24, 4)
2057  FIELD(ID_ISAR5, VCMA, 28, 4)
2058  
2059  FIELD(ID_ISAR6, JSCVT, 0, 4)
2060  FIELD(ID_ISAR6, DP, 4, 4)
2061  FIELD(ID_ISAR6, FHM, 8, 4)
2062  FIELD(ID_ISAR6, SB, 12, 4)
2063  FIELD(ID_ISAR6, SPECRES, 16, 4)
2064  FIELD(ID_ISAR6, BF16, 20, 4)
2065  FIELD(ID_ISAR6, I8MM, 24, 4)
2066  
2067  FIELD(ID_MMFR0, VMSA, 0, 4)
2068  FIELD(ID_MMFR0, PMSA, 4, 4)
2069  FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2070  FIELD(ID_MMFR0, SHARELVL, 12, 4)
2071  FIELD(ID_MMFR0, TCM, 16, 4)
2072  FIELD(ID_MMFR0, AUXREG, 20, 4)
2073  FIELD(ID_MMFR0, FCSE, 24, 4)
2074  FIELD(ID_MMFR0, INNERSHR, 28, 4)
2075  
2076  FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2077  FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2078  FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2079  FIELD(ID_MMFR1, L1UNISW, 12, 4)
2080  FIELD(ID_MMFR1, L1HVD, 16, 4)
2081  FIELD(ID_MMFR1, L1UNI, 20, 4)
2082  FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2083  FIELD(ID_MMFR1, BPRED, 28, 4)
2084  
2085  FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2086  FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2087  FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2088  FIELD(ID_MMFR2, HVDTLB, 12, 4)
2089  FIELD(ID_MMFR2, UNITLB, 16, 4)
2090  FIELD(ID_MMFR2, MEMBARR, 20, 4)
2091  FIELD(ID_MMFR2, WFISTALL, 24, 4)
2092  FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2093  
2094  FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2095  FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2096  FIELD(ID_MMFR3, BPMAINT, 8, 4)
2097  FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2098  FIELD(ID_MMFR3, PAN, 16, 4)
2099  FIELD(ID_MMFR3, COHWALK, 20, 4)
2100  FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2101  FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2102  
2103  FIELD(ID_MMFR4, SPECSEI, 0, 4)
2104  FIELD(ID_MMFR4, AC2, 4, 4)
2105  FIELD(ID_MMFR4, XNX, 8, 4)
2106  FIELD(ID_MMFR4, CNP, 12, 4)
2107  FIELD(ID_MMFR4, HPDS, 16, 4)
2108  FIELD(ID_MMFR4, LSM, 20, 4)
2109  FIELD(ID_MMFR4, CCIDX, 24, 4)
2110  FIELD(ID_MMFR4, EVT, 28, 4)
2111  
2112  FIELD(ID_MMFR5, ETS, 0, 4)
2113  FIELD(ID_MMFR5, NTLBPA, 4, 4)
2114  
2115  FIELD(ID_PFR0, STATE0, 0, 4)
2116  FIELD(ID_PFR0, STATE1, 4, 4)
2117  FIELD(ID_PFR0, STATE2, 8, 4)
2118  FIELD(ID_PFR0, STATE3, 12, 4)
2119  FIELD(ID_PFR0, CSV2, 16, 4)
2120  FIELD(ID_PFR0, AMU, 20, 4)
2121  FIELD(ID_PFR0, DIT, 24, 4)
2122  FIELD(ID_PFR0, RAS, 28, 4)
2123  
2124  FIELD(ID_PFR1, PROGMOD, 0, 4)
2125  FIELD(ID_PFR1, SECURITY, 4, 4)
2126  FIELD(ID_PFR1, MPROGMOD, 8, 4)
2127  FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2128  FIELD(ID_PFR1, GENTIMER, 16, 4)
2129  FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2130  FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2131  FIELD(ID_PFR1, GIC, 28, 4)
2132  
2133  FIELD(ID_PFR2, CSV3, 0, 4)
2134  FIELD(ID_PFR2, SSBS, 4, 4)
2135  FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2136  
2137  FIELD(ID_AA64ISAR0, AES, 4, 4)
2138  FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2139  FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2140  FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2141  FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2142  FIELD(ID_AA64ISAR0, TME, 24, 4)
2143  FIELD(ID_AA64ISAR0, RDM, 28, 4)
2144  FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2145  FIELD(ID_AA64ISAR0, SM3, 36, 4)
2146  FIELD(ID_AA64ISAR0, SM4, 40, 4)
2147  FIELD(ID_AA64ISAR0, DP, 44, 4)
2148  FIELD(ID_AA64ISAR0, FHM, 48, 4)
2149  FIELD(ID_AA64ISAR0, TS, 52, 4)
2150  FIELD(ID_AA64ISAR0, TLB, 56, 4)
2151  FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2152  
2153  FIELD(ID_AA64ISAR1, DPB, 0, 4)
2154  FIELD(ID_AA64ISAR1, APA, 4, 4)
2155  FIELD(ID_AA64ISAR1, API, 8, 4)
2156  FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2157  FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2158  FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2159  FIELD(ID_AA64ISAR1, GPA, 24, 4)
2160  FIELD(ID_AA64ISAR1, GPI, 28, 4)
2161  FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2162  FIELD(ID_AA64ISAR1, SB, 36, 4)
2163  FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2164  FIELD(ID_AA64ISAR1, BF16, 44, 4)
2165  FIELD(ID_AA64ISAR1, DGH, 48, 4)
2166  FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2167  FIELD(ID_AA64ISAR1, XS, 56, 4)
2168  FIELD(ID_AA64ISAR1, LS64, 60, 4)
2169  
2170  FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2171  FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2172  FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2173  FIELD(ID_AA64ISAR2, APA3, 12, 4)
2174  FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2175  FIELD(ID_AA64ISAR2, BC, 20, 4)
2176  FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2177  FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2178  FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2179  FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2180  FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2181  FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2182  FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2183  FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2184  
2185  FIELD(ID_AA64PFR0, EL0, 0, 4)
2186  FIELD(ID_AA64PFR0, EL1, 4, 4)
2187  FIELD(ID_AA64PFR0, EL2, 8, 4)
2188  FIELD(ID_AA64PFR0, EL3, 12, 4)
2189  FIELD(ID_AA64PFR0, FP, 16, 4)
2190  FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2191  FIELD(ID_AA64PFR0, GIC, 24, 4)
2192  FIELD(ID_AA64PFR0, RAS, 28, 4)
2193  FIELD(ID_AA64PFR0, SVE, 32, 4)
2194  FIELD(ID_AA64PFR0, SEL2, 36, 4)
2195  FIELD(ID_AA64PFR0, MPAM, 40, 4)
2196  FIELD(ID_AA64PFR0, AMU, 44, 4)
2197  FIELD(ID_AA64PFR0, DIT, 48, 4)
2198  FIELD(ID_AA64PFR0, RME, 52, 4)
2199  FIELD(ID_AA64PFR0, CSV2, 56, 4)
2200  FIELD(ID_AA64PFR0, CSV3, 60, 4)
2201  
2202  FIELD(ID_AA64PFR1, BT, 0, 4)
2203  FIELD(ID_AA64PFR1, SSBS, 4, 4)
2204  FIELD(ID_AA64PFR1, MTE, 8, 4)
2205  FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2206  FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2207  FIELD(ID_AA64PFR1, SME, 24, 4)
2208  FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2209  FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2210  FIELD(ID_AA64PFR1, NMI, 36, 4)
2211  FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2212  FIELD(ID_AA64PFR1, GCS, 44, 4)
2213  FIELD(ID_AA64PFR1, THE, 48, 4)
2214  FIELD(ID_AA64PFR1, MTEX, 52, 4)
2215  FIELD(ID_AA64PFR1, DF2, 56, 4)
2216  FIELD(ID_AA64PFR1, PFAR, 60, 4)
2217  
2218  FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2219  FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2220  FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2221  FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2222  FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2223  FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2224  FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2225  FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2226  FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2227  FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2228  FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2229  FIELD(ID_AA64MMFR0, EXS, 44, 4)
2230  FIELD(ID_AA64MMFR0, FGT, 56, 4)
2231  FIELD(ID_AA64MMFR0, ECV, 60, 4)
2232  
2233  FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2234  FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2235  FIELD(ID_AA64MMFR1, VH, 8, 4)
2236  FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2237  FIELD(ID_AA64MMFR1, LO, 16, 4)
2238  FIELD(ID_AA64MMFR1, PAN, 20, 4)
2239  FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2240  FIELD(ID_AA64MMFR1, XNX, 28, 4)
2241  FIELD(ID_AA64MMFR1, TWED, 32, 4)
2242  FIELD(ID_AA64MMFR1, ETS, 36, 4)
2243  FIELD(ID_AA64MMFR1, HCX, 40, 4)
2244  FIELD(ID_AA64MMFR1, AFP, 44, 4)
2245  FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2246  FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2247  FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2248  FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2249  
2250  FIELD(ID_AA64MMFR2, CNP, 0, 4)
2251  FIELD(ID_AA64MMFR2, UAO, 4, 4)
2252  FIELD(ID_AA64MMFR2, LSM, 8, 4)
2253  FIELD(ID_AA64MMFR2, IESB, 12, 4)
2254  FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2255  FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2256  FIELD(ID_AA64MMFR2, NV, 24, 4)
2257  FIELD(ID_AA64MMFR2, ST, 28, 4)
2258  FIELD(ID_AA64MMFR2, AT, 32, 4)
2259  FIELD(ID_AA64MMFR2, IDS, 36, 4)
2260  FIELD(ID_AA64MMFR2, FWB, 40, 4)
2261  FIELD(ID_AA64MMFR2, TTL, 48, 4)
2262  FIELD(ID_AA64MMFR2, BBM, 52, 4)
2263  FIELD(ID_AA64MMFR2, EVT, 56, 4)
2264  FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2265  
2266  FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2267  FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2268  FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2269  FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2270  FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2271  FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2272  FIELD(ID_AA64MMFR3, AIE, 24, 4)
2273  FIELD(ID_AA64MMFR3, MEC, 28, 4)
2274  FIELD(ID_AA64MMFR3, D128, 32, 4)
2275  FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2276  FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2277  FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2278  FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2279  FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2280  FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2281  
2282  FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2283  FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2284  FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2285  FIELD(ID_AA64DFR0, BRPS, 12, 4)
2286  FIELD(ID_AA64DFR0, PMSS, 16, 4)
2287  FIELD(ID_AA64DFR0, WRPS, 20, 4)
2288  FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2289  FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2290  FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2291  FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2292  FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2293  FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2294  FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2295  FIELD(ID_AA64DFR0, BRBE, 52, 4)
2296  FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2297  FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2298  
2299  FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2300  FIELD(ID_AA64ZFR0, AES, 4, 4)
2301  FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2302  FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2303  FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2304  FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2305  FIELD(ID_AA64ZFR0, SM4, 40, 4)
2306  FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2307  FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2308  FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2309  
2310  FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2311  FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2312  FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2313  FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2314  FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2315  FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2316  FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2317  FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2318  FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2319  FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2320  FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2321  FIELD(ID_AA64SMFR0, FA64, 63, 1)
2322  
2323  FIELD(ID_DFR0, COPDBG, 0, 4)
2324  FIELD(ID_DFR0, COPSDBG, 4, 4)
2325  FIELD(ID_DFR0, MMAPDBG, 8, 4)
2326  FIELD(ID_DFR0, COPTRC, 12, 4)
2327  FIELD(ID_DFR0, MMAPTRC, 16, 4)
2328  FIELD(ID_DFR0, MPROFDBG, 20, 4)
2329  FIELD(ID_DFR0, PERFMON, 24, 4)
2330  FIELD(ID_DFR0, TRACEFILT, 28, 4)
2331  
2332  FIELD(ID_DFR1, MTPMU, 0, 4)
2333  FIELD(ID_DFR1, HPMN0, 4, 4)
2334  
2335  FIELD(DBGDIDR, SE_IMP, 12, 1)
2336  FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2337  FIELD(DBGDIDR, VERSION, 16, 4)
2338  FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2339  FIELD(DBGDIDR, BRPS, 24, 4)
2340  FIELD(DBGDIDR, WRPS, 28, 4)
2341  
2342  FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2343  FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2344  FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2345  FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2346  FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2347  FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2348  FIELD(DBGDEVID, AUXREGS, 24, 4)
2349  FIELD(DBGDEVID, CIDMASK, 28, 4)
2350  
2351  FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2352  
2353  FIELD(MVFR0, SIMDREG, 0, 4)
2354  FIELD(MVFR0, FPSP, 4, 4)
2355  FIELD(MVFR0, FPDP, 8, 4)
2356  FIELD(MVFR0, FPTRAP, 12, 4)
2357  FIELD(MVFR0, FPDIVIDE, 16, 4)
2358  FIELD(MVFR0, FPSQRT, 20, 4)
2359  FIELD(MVFR0, FPSHVEC, 24, 4)
2360  FIELD(MVFR0, FPROUND, 28, 4)
2361  
2362  FIELD(MVFR1, FPFTZ, 0, 4)
2363  FIELD(MVFR1, FPDNAN, 4, 4)
2364  FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2365  FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2366  FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2367  FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2368  FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2369  FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2370  FIELD(MVFR1, FPHP, 24, 4)
2371  FIELD(MVFR1, SIMDFMAC, 28, 4)
2372  
2373  FIELD(MVFR2, SIMDMISC, 0, 4)
2374  FIELD(MVFR2, FPMISC, 4, 4)
2375  
2376  FIELD(GPCCR, PPS, 0, 3)
2377  FIELD(GPCCR, IRGN, 8, 2)
2378  FIELD(GPCCR, ORGN, 10, 2)
2379  FIELD(GPCCR, SH, 12, 2)
2380  FIELD(GPCCR, PGS, 14, 2)
2381  FIELD(GPCCR, GPC, 16, 1)
2382  FIELD(GPCCR, GPCP, 17, 1)
2383  FIELD(GPCCR, L0GPTSZ, 20, 4)
2384  
2385  FIELD(MFAR, FPA, 12, 40)
2386  FIELD(MFAR, NSE, 62, 1)
2387  FIELD(MFAR, NS, 63, 1)
2388  
2389  QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2390  
2391  /* If adding a feature bit which corresponds to a Linux ELF
2392   * HWCAP bit, remember to update the feature-bit-to-hwcap
2393   * mapping in linux-user/elfload.c:get_elf_hwcap().
2394   */
2395  enum arm_features {
2396      ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2397      ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2398      ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2399      ARM_FEATURE_V6,
2400      ARM_FEATURE_V6K,
2401      ARM_FEATURE_V7,
2402      ARM_FEATURE_THUMB2,
2403      ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2404      ARM_FEATURE_NEON,
2405      ARM_FEATURE_M, /* Microcontroller profile.  */
2406      ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2407      ARM_FEATURE_THUMB2EE,
2408      ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2409      ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2410      ARM_FEATURE_V4T,
2411      ARM_FEATURE_V5,
2412      ARM_FEATURE_STRONGARM,
2413      ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2414      ARM_FEATURE_GENERIC_TIMER,
2415      ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2416      ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2417      ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2418      ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2419      ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2420      ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2421      ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2422      ARM_FEATURE_V8,
2423      ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2424      ARM_FEATURE_CBAR, /* has cp15 CBAR */
2425      ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2426      ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2427      ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2428      ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2429      ARM_FEATURE_PMU, /* has PMU support */
2430      ARM_FEATURE_VBAR, /* has cp15 VBAR */
2431      ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2432      ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2433      ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2434      /*
2435       * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2436       * if the board doesn't set a value, instead of 1GHz. It is for backwards
2437       * compatibility and used only with CPU definitions that were already
2438       * in QEMU before we changed the default. It should not be set on any
2439       * CPU types added in future.
2440       */
2441      ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2442  };
2443  
arm_feature(CPUARMState * env,int feature)2444  static inline int arm_feature(CPUARMState *env, int feature)
2445  {
2446      return (env->features & (1ULL << feature)) != 0;
2447  }
2448  
2449  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2450  
2451  /*
2452   * ARM v9 security states.
2453   * The ordering of the enumeration corresponds to the low 2 bits
2454   * of the GPI value, and (except for Root) the concat of NSE:NS.
2455   */
2456  
2457  typedef enum ARMSecuritySpace {
2458      ARMSS_Secure     = 0,
2459      ARMSS_NonSecure  = 1,
2460      ARMSS_Root       = 2,
2461      ARMSS_Realm      = 3,
2462  } ARMSecuritySpace;
2463  
2464  /* Return true if @space is secure, in the pre-v9 sense. */
arm_space_is_secure(ARMSecuritySpace space)2465  static inline bool arm_space_is_secure(ARMSecuritySpace space)
2466  {
2467      return space == ARMSS_Secure || space == ARMSS_Root;
2468  }
2469  
2470  /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
arm_secure_to_space(bool secure)2471  static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2472  {
2473      return secure ? ARMSS_Secure : ARMSS_NonSecure;
2474  }
2475  
2476  #if !defined(CONFIG_USER_ONLY)
2477  /**
2478   * arm_security_space_below_el3:
2479   * @env: cpu context
2480   *
2481   * Return the security space of exception levels below EL3, following
2482   * an exception return to those levels.  Unlike arm_security_space,
2483   * this doesn't care about the current EL.
2484   */
2485  ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2486  
2487  /**
2488   * arm_is_secure_below_el3:
2489   * @env: cpu context
2490   *
2491   * Return true if exception levels below EL3 are in secure state,
2492   * or would be following an exception return to those levels.
2493   */
arm_is_secure_below_el3(CPUARMState * env)2494  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2495  {
2496      ARMSecuritySpace ss = arm_security_space_below_el3(env);
2497      return ss == ARMSS_Secure;
2498  }
2499  
2500  /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
arm_is_el3_or_mon(CPUARMState * env)2501  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2502  {
2503      assert(!arm_feature(env, ARM_FEATURE_M));
2504      if (arm_feature(env, ARM_FEATURE_EL3)) {
2505          if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2506              /* CPU currently in AArch64 state and EL3 */
2507              return true;
2508          } else if (!is_a64(env) &&
2509                  (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2510              /* CPU currently in AArch32 state and monitor mode */
2511              return true;
2512          }
2513      }
2514      return false;
2515  }
2516  
2517  /**
2518   * arm_security_space:
2519   * @env: cpu context
2520   *
2521   * Return the current security space of the cpu.
2522   */
2523  ARMSecuritySpace arm_security_space(CPUARMState *env);
2524  
2525  /**
2526   * arm_is_secure:
2527   * @env: cpu context
2528   *
2529   * Return true if the processor is in secure state.
2530   */
arm_is_secure(CPUARMState * env)2531  static inline bool arm_is_secure(CPUARMState *env)
2532  {
2533      return arm_space_is_secure(arm_security_space(env));
2534  }
2535  
2536  /*
2537   * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2538   * This corresponds to the pseudocode EL2Enabled().
2539   */
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2540  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2541                                                 ARMSecuritySpace space)
2542  {
2543      assert(space != ARMSS_Root);
2544      return arm_feature(env, ARM_FEATURE_EL2)
2545             && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2546  }
2547  
arm_is_el2_enabled(CPUARMState * env)2548  static inline bool arm_is_el2_enabled(CPUARMState *env)
2549  {
2550      return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2551  }
2552  
2553  #else
arm_security_space_below_el3(CPUARMState * env)2554  static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2555  {
2556      return ARMSS_NonSecure;
2557  }
2558  
arm_is_secure_below_el3(CPUARMState * env)2559  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2560  {
2561      return false;
2562  }
2563  
arm_security_space(CPUARMState * env)2564  static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2565  {
2566      return ARMSS_NonSecure;
2567  }
2568  
arm_is_secure(CPUARMState * env)2569  static inline bool arm_is_secure(CPUARMState *env)
2570  {
2571      return false;
2572  }
2573  
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2574  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2575                                                 ARMSecuritySpace space)
2576  {
2577      return false;
2578  }
2579  
arm_is_el2_enabled(CPUARMState * env)2580  static inline bool arm_is_el2_enabled(CPUARMState *env)
2581  {
2582      return false;
2583  }
2584  #endif
2585  
2586  /**
2587   * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2588   * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2589   * "for all purposes other than a direct read or write access of HCR_EL2."
2590   * Not included here is HCR_RW.
2591   */
2592  uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2593  uint64_t arm_hcr_el2_eff(CPUARMState *env);
2594  uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2595  
2596  /* Return true if the specified exception level is running in AArch64 state. */
arm_el_is_aa64(CPUARMState * env,int el)2597  static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2598  {
2599      /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2600       * and if we're not in EL0 then the state of EL0 isn't well defined.)
2601       */
2602      assert(el >= 1 && el <= 3);
2603      bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2604  
2605      /* The highest exception level is always at the maximum supported
2606       * register width, and then lower levels have a register width controlled
2607       * by bits in the SCR or HCR registers.
2608       */
2609      if (el == 3) {
2610          return aa64;
2611      }
2612  
2613      if (arm_feature(env, ARM_FEATURE_EL3) &&
2614          ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2615          aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2616      }
2617  
2618      if (el == 2) {
2619          return aa64;
2620      }
2621  
2622      if (arm_is_el2_enabled(env)) {
2623          aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2624      }
2625  
2626      return aa64;
2627  }
2628  
2629  /* Function for determining whether guest cp register reads and writes should
2630   * access the secure or non-secure bank of a cp register.  When EL3 is
2631   * operating in AArch32 state, the NS-bit determines whether the secure
2632   * instance of a cp register should be used. When EL3 is AArch64 (or if
2633   * it doesn't exist at all) then there is no register banking, and all
2634   * accesses are to the non-secure version.
2635   */
access_secure_reg(CPUARMState * env)2636  static inline bool access_secure_reg(CPUARMState *env)
2637  {
2638      bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2639                  !arm_el_is_aa64(env, 3) &&
2640                  !(env->cp15.scr_el3 & SCR_NS));
2641  
2642      return ret;
2643  }
2644  
2645  /* Macros for accessing a specified CP register bank */
2646  #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2647      ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2648  
2649  #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2650      do {                                                \
2651          if (_secure) {                                   \
2652              (_env)->cp15._regname##_s = (_val);            \
2653          } else {                                        \
2654              (_env)->cp15._regname##_ns = (_val);           \
2655          }                                               \
2656      } while (0)
2657  
2658  /* Macros for automatically accessing a specific CP register bank depending on
2659   * the current secure state of the system.  These macros are not intended for
2660   * supporting instruction translation reads/writes as these are dependent
2661   * solely on the SCR.NS bit and not the mode.
2662   */
2663  #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2664      A32_BANKED_REG_GET((_env), _regname,                \
2665                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2666  
2667  #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2668      A32_BANKED_REG_SET((_env), _regname,                                    \
2669                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2670                         (_val))
2671  
2672  uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2673                                   uint32_t cur_el, bool secure);
2674  
2675  /* Return the highest implemented Exception Level */
arm_highest_el(CPUARMState * env)2676  static inline int arm_highest_el(CPUARMState *env)
2677  {
2678      if (arm_feature(env, ARM_FEATURE_EL3)) {
2679          return 3;
2680      }
2681      if (arm_feature(env, ARM_FEATURE_EL2)) {
2682          return 2;
2683      }
2684      return 1;
2685  }
2686  
2687  /* Return true if a v7M CPU is in Handler mode */
arm_v7m_is_handler_mode(CPUARMState * env)2688  static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2689  {
2690      return env->v7m.exception != 0;
2691  }
2692  
2693  /* Return the current Exception Level (as per ARMv8; note that this differs
2694   * from the ARMv7 Privilege Level).
2695   */
arm_current_el(CPUARMState * env)2696  static inline int arm_current_el(CPUARMState *env)
2697  {
2698      if (arm_feature(env, ARM_FEATURE_M)) {
2699          return arm_v7m_is_handler_mode(env) ||
2700              !(env->v7m.control[env->v7m.secure] & 1);
2701      }
2702  
2703      if (is_a64(env)) {
2704          return extract32(env->pstate, 2, 2);
2705      }
2706  
2707      switch (env->uncached_cpsr & 0x1f) {
2708      case ARM_CPU_MODE_USR:
2709          return 0;
2710      case ARM_CPU_MODE_HYP:
2711          return 2;
2712      case ARM_CPU_MODE_MON:
2713          return 3;
2714      default:
2715          if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2716              /* If EL3 is 32-bit then all secure privileged modes run in
2717               * EL3
2718               */
2719              return 3;
2720          }
2721  
2722          return 1;
2723      }
2724  }
2725  
2726  /**
2727   * write_list_to_cpustate
2728   * @cpu: ARMCPU
2729   *
2730   * For each register listed in the ARMCPU cpreg_indexes list, write
2731   * its value from the cpreg_values list into the ARMCPUState structure.
2732   * This updates TCG's working data structures from KVM data or
2733   * from incoming migration state.
2734   *
2735   * Returns: true if all register values were updated correctly,
2736   * false if some register was unknown or could not be written.
2737   * Note that we do not stop early on failure -- we will attempt
2738   * writing all registers in the list.
2739   */
2740  bool write_list_to_cpustate(ARMCPU *cpu);
2741  
2742  /**
2743   * write_cpustate_to_list:
2744   * @cpu: ARMCPU
2745   * @kvm_sync: true if this is for syncing back to KVM
2746   *
2747   * For each register listed in the ARMCPU cpreg_indexes list, write
2748   * its value from the ARMCPUState structure into the cpreg_values list.
2749   * This is used to copy info from TCG's working data structures into
2750   * KVM or for outbound migration.
2751   *
2752   * @kvm_sync is true if we are doing this in order to sync the
2753   * register state back to KVM. In this case we will only update
2754   * values in the list if the previous list->cpustate sync actually
2755   * successfully wrote the CPU state. Otherwise we will keep the value
2756   * that is in the list.
2757   *
2758   * Returns: true if all register values were read correctly,
2759   * false if some register was unknown or could not be read.
2760   * Note that we do not stop early on failure -- we will attempt
2761   * reading all registers in the list.
2762   */
2763  bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2764  
2765  #define ARM_CPUID_TI915T      0x54029152
2766  #define ARM_CPUID_TI925T      0x54029252
2767  
2768  #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2769  
2770  #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2771  
2772  /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2773   *
2774   * If EL3 is 64-bit:
2775   *  + NonSecure EL1 & 0 stage 1
2776   *  + NonSecure EL1 & 0 stage 2
2777   *  + NonSecure EL2
2778   *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2779   *  + Secure EL1 & 0 stage 1
2780   *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2781   *  + Secure EL2 (FEAT_SEL2)
2782   *  + Secure EL2 & 0 (FEAT_SEL2)
2783   *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2784   *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2785   *  + Realm EL2 (FEAT_RME)
2786   *  + EL3
2787   * If EL3 is 32-bit:
2788   *  + NonSecure PL1 & 0 stage 1
2789   *  + NonSecure PL1 & 0 stage 2
2790   *  + NonSecure PL2
2791   *  + Secure PL1 & 0
2792   * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2793   *
2794   * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2795   *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2796   *     because they may differ in access permissions even if the VA->PA map is
2797   *     the same
2798   *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2799   *     translation, which means that we have one mmu_idx that deals with two
2800   *     concatenated translation regimes [this sort of combined s1+2 TLB is
2801   *     architecturally permitted]
2802   *  3. we don't need to allocate an mmu_idx to translations that we won't be
2803   *     handling via the TLB. The only way to do a stage 1 translation without
2804   *     the immediate stage 2 translation is via the ATS or AT system insns,
2805   *     which can be slow-pathed and always do a page table walk.
2806   *     The only use of stage 2 translations is either as part of an s1+2
2807   *     lookup or when loading the descriptors during a stage 1 page table walk,
2808   *     and in both those cases we don't use the TLB.
2809   *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2810   *     translation regimes, because they map reasonably well to each other
2811   *     and they can't both be active at the same time.
2812   *  5. we want to be able to use the TLB for accesses done as part of a
2813   *     stage1 page table walk, rather than having to walk the stage2 page
2814   *     table over and over.
2815   *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2816   *     Never (PAN) bit within PSTATE.
2817   *  7. we fold together most secure and non-secure regimes for A-profile,
2818   *     because there are no banked system registers for aarch64, so the
2819   *     process of switching between secure and non-secure is
2820   *     already heavyweight.
2821   *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2822   *     because both are in use simultaneously for Secure EL2.
2823   *
2824   * This gives us the following list of cases:
2825   *
2826   * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2827   * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2828   * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2829   * EL0 EL2&0
2830   * EL2 EL2&0
2831   * EL2 EL2&0 +PAN
2832   * EL2 (aka NS PL2)
2833   * EL3 (aka AArch32 S PL1 PL1&0)
2834   * AArch32 S PL0 PL1&0 (we call this EL30_0)
2835   * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2836   * Stage2 Secure
2837   * Stage2 NonSecure
2838   * plus one TLB per Physical address space: S, NS, Realm, Root
2839   *
2840   * for a total of 16 different mmu_idx.
2841   *
2842   * R profile CPUs have an MPU, but can use the same set of MMU indexes
2843   * as A profile. They only need to distinguish EL0 and EL1 (and
2844   * EL2 for cores like the Cortex-R52).
2845   *
2846   * M profile CPUs are rather different as they do not have a true MMU.
2847   * They have the following different MMU indexes:
2848   *  User
2849   *  Privileged
2850   *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2851   *  Privileged, execution priority negative (ditto)
2852   * If the CPU supports the v8M Security Extension then there are also:
2853   *  Secure User
2854   *  Secure Privileged
2855   *  Secure User, execution priority negative
2856   *  Secure Privileged, execution priority negative
2857   *
2858   * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2859   * are not quite the same -- different CPU types (most notably M profile
2860   * vs A/R profile) would like to use MMU indexes with different semantics,
2861   * but since we don't ever need to use all of those in a single CPU we
2862   * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2863   * modes + total number of M profile MMU modes". The lower bits of
2864   * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2865   * the same for any particular CPU.
2866   * Variables of type ARMMUIdx are always full values, and the core
2867   * index values are in variables of type 'int'.
2868   *
2869   * Our enumeration includes at the end some entries which are not "true"
2870   * mmu_idx values in that they don't have corresponding TLBs and are only
2871   * valid for doing slow path page table walks.
2872   *
2873   * The constant names here are patterned after the general style of the names
2874   * of the AT/ATS operations.
2875   * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2876   * For M profile we arrange them to have a bit for priv, a bit for negpri
2877   * and a bit for secure.
2878   */
2879  #define ARM_MMU_IDX_A     0x10  /* A profile */
2880  #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2881  #define ARM_MMU_IDX_M     0x40  /* M profile */
2882  
2883  /* Meanings of the bits for M profile mmu idx values */
2884  #define ARM_MMU_IDX_M_PRIV   0x1
2885  #define ARM_MMU_IDX_M_NEGPRI 0x2
2886  #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2887  
2888  #define ARM_MMU_IDX_TYPE_MASK \
2889      (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2890  #define ARM_MMU_IDX_COREIDX_MASK 0xf
2891  
2892  typedef enum ARMMMUIdx {
2893      /*
2894       * A-profile.
2895       */
2896      ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2897      ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2898      ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2899      ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2900      ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2901      ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2902      ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2903      ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2904      ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2905      ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2906  
2907      /*
2908       * Used for second stage of an S12 page table walk, or for descriptor
2909       * loads during first stage of an S1 page table walk.  Note that both
2910       * are in use simultaneously for SecureEL2: the security state for
2911       * the S2 ptw is selected by the NS bit from the S1 ptw.
2912       */
2913      ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2914      ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2915  
2916      /* TLBs with 1-1 mapping to the physical address spaces. */
2917      ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2918      ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2919      ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2920      ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2921  
2922      /*
2923       * These are not allocated TLBs and are used only for AT system
2924       * instructions or for the first stage of an S12 page table walk.
2925       */
2926      ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2927      ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2928      ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2929  
2930      /*
2931       * M-profile.
2932       */
2933      ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2934      ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2935      ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2936      ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2937      ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2938      ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2939      ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2940      ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2941  } ARMMMUIdx;
2942  
2943  /*
2944   * Bit macros for the core-mmu-index values for each index,
2945   * for use when calling tlb_flush_by_mmuidx() and friends.
2946   */
2947  #define TO_CORE_BIT(NAME) \
2948      ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2949  
2950  typedef enum ARMMMUIdxBit {
2951      TO_CORE_BIT(E10_0),
2952      TO_CORE_BIT(E20_0),
2953      TO_CORE_BIT(E10_1),
2954      TO_CORE_BIT(E10_1_PAN),
2955      TO_CORE_BIT(E2),
2956      TO_CORE_BIT(E20_2),
2957      TO_CORE_BIT(E20_2_PAN),
2958      TO_CORE_BIT(E3),
2959      TO_CORE_BIT(E30_0),
2960      TO_CORE_BIT(E30_3_PAN),
2961      TO_CORE_BIT(Stage2),
2962      TO_CORE_BIT(Stage2_S),
2963  
2964      TO_CORE_BIT(MUser),
2965      TO_CORE_BIT(MPriv),
2966      TO_CORE_BIT(MUserNegPri),
2967      TO_CORE_BIT(MPrivNegPri),
2968      TO_CORE_BIT(MSUser),
2969      TO_CORE_BIT(MSPriv),
2970      TO_CORE_BIT(MSUserNegPri),
2971      TO_CORE_BIT(MSPrivNegPri),
2972  } ARMMMUIdxBit;
2973  
2974  #undef TO_CORE_BIT
2975  
2976  #define MMU_USER_IDX 0
2977  
2978  /* Indexes used when registering address spaces with cpu_address_space_init */
2979  typedef enum ARMASIdx {
2980      ARMASIdx_NS = 0,
2981      ARMASIdx_S = 1,
2982      ARMASIdx_TagNS = 2,
2983      ARMASIdx_TagS = 3,
2984  } ARMASIdx;
2985  
arm_space_to_phys(ARMSecuritySpace space)2986  static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2987  {
2988      /* Assert the relative order of the physical mmu indexes. */
2989      QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2990      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2991      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2992      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2993  
2994      return ARMMMUIdx_Phys_S + space;
2995  }
2996  
arm_phys_to_space(ARMMMUIdx idx)2997  static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2998  {
2999      assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3000      return idx - ARMMMUIdx_Phys_S;
3001  }
3002  
arm_v7m_csselr_razwi(ARMCPU * cpu)3003  static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3004  {
3005      /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3006       * CSSELR is RAZ/WI.
3007       */
3008      return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3009  }
3010  
arm_sctlr_b(CPUARMState * env)3011  static inline bool arm_sctlr_b(CPUARMState *env)
3012  {
3013      return
3014          /* We need not implement SCTLR.ITD in user-mode emulation, so
3015           * let linux-user ignore the fact that it conflicts with SCTLR_B.
3016           * This lets people run BE32 binaries with "-cpu any".
3017           */
3018  #ifndef CONFIG_USER_ONLY
3019          !arm_feature(env, ARM_FEATURE_V7) &&
3020  #endif
3021          (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3022  }
3023  
3024  uint64_t arm_sctlr(CPUARMState *env, int el);
3025  
arm_cpu_data_is_big_endian_a32(CPUARMState * env,bool sctlr_b)3026  static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3027                                                    bool sctlr_b)
3028  {
3029  #ifdef CONFIG_USER_ONLY
3030      /*
3031       * In system mode, BE32 is modelled in line with the
3032       * architecture (as word-invariant big-endianness), where loads
3033       * and stores are done little endian but from addresses which
3034       * are adjusted by XORing with the appropriate constant. So the
3035       * endianness to use for the raw data access is not affected by
3036       * SCTLR.B.
3037       * In user mode, however, we model BE32 as byte-invariant
3038       * big-endianness (because user-only code cannot tell the
3039       * difference), and so we need to use a data access endianness
3040       * that depends on SCTLR.B.
3041       */
3042      if (sctlr_b) {
3043          return true;
3044      }
3045  #endif
3046      /* In 32bit endianness is determined by looking at CPSR's E bit */
3047      return env->uncached_cpsr & CPSR_E;
3048  }
3049  
arm_cpu_data_is_big_endian_a64(int el,uint64_t sctlr)3050  static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3051  {
3052      return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3053  }
3054  
3055  /* Return true if the processor is in big-endian mode. */
arm_cpu_data_is_big_endian(CPUARMState * env)3056  static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3057  {
3058      if (!is_a64(env)) {
3059          return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3060      } else {
3061          int cur_el = arm_current_el(env);
3062          uint64_t sctlr = arm_sctlr(env, cur_el);
3063          return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3064      }
3065  }
3066  
3067  #include "exec/cpu-all.h"
3068  
3069  /*
3070   * We have more than 32-bits worth of state per TB, so we split the data
3071   * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3072   * We collect these two parts in CPUARMTBFlags where they are named
3073   * flags and flags2 respectively.
3074   *
3075   * The flags that are shared between all execution modes, TBFLAG_ANY,
3076   * are stored in flags.  The flags that are specific to a given mode
3077   * are stores in flags2.  Since cs_base is sized on the configured
3078   * address size, flags2 always has 64-bits for A64, and a minimum of
3079   * 32-bits for A32 and M32.
3080   *
3081   * The bits for 32-bit A-profile and M-profile partially overlap:
3082   *
3083   *  31         23         11 10             0
3084   * +-------------+----------+----------------+
3085   * |             |          |   TBFLAG_A32   |
3086   * | TBFLAG_AM32 |          +-----+----------+
3087   * |             |                |TBFLAG_M32|
3088   * +-------------+----------------+----------+
3089   *  31         23                6 5        0
3090   *
3091   * Unless otherwise noted, these bits are cached in env->hflags.
3092   */
3093  FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3094  FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3095  FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3096  FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3097  FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3098  /* Target EL if we take a floating-point-disabled exception */
3099  FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3100  /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3101  FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3102  FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3103  FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3104  FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3105  
3106  /*
3107   * Bit usage when in AArch32 state, both A- and M-profile.
3108   */
3109  FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3110  FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3111  
3112  /*
3113   * Bit usage when in AArch32 state, for A-profile only.
3114   */
3115  FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3116  FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3117  /*
3118   * We store the bottom two bits of the CPAR as TB flags and handle
3119   * checks on the other bits at runtime. This shares the same bits as
3120   * VECSTRIDE, which is OK as no XScale CPU has VFP.
3121   * Not cached, because VECLEN+VECSTRIDE are not cached.
3122   */
3123  FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3124  FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3125  FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3126  FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3127  /*
3128   * Indicates whether cp register reads and writes by guest code should access
3129   * the secure or nonsecure bank of banked registers; note that this is not
3130   * the same thing as the current security state of the processor!
3131   */
3132  FIELD(TBFLAG_A32, NS, 10, 1)
3133  /*
3134   * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3135   * This requires an SME trap from AArch32 mode when using NEON.
3136   */
3137  FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3138  
3139  /*
3140   * Bit usage when in AArch32 state, for M-profile only.
3141   */
3142  /* Handler (ie not Thread) mode */
3143  FIELD(TBFLAG_M32, HANDLER, 0, 1)
3144  /* Whether we should generate stack-limit checks */
3145  FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3146  /* Set if FPCCR.LSPACT is set */
3147  FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3148  /* Set if we must create a new FP context */
3149  FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3150  /* Set if FPCCR.S does not match current security state */
3151  FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3152  /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3153  FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3154  /* Set if in secure mode */
3155  FIELD(TBFLAG_M32, SECURE, 6, 1)
3156  
3157  /*
3158   * Bit usage when in AArch64 state
3159   */
3160  FIELD(TBFLAG_A64, TBII, 0, 2)
3161  FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3162  /* The current vector length, either NVL or SVL. */
3163  FIELD(TBFLAG_A64, VL, 4, 4)
3164  FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3165  FIELD(TBFLAG_A64, BT, 9, 1)
3166  FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3167  FIELD(TBFLAG_A64, TBID, 12, 2)
3168  FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3169  FIELD(TBFLAG_A64, ATA, 15, 1)
3170  FIELD(TBFLAG_A64, TCMA, 16, 2)
3171  FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3172  FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3173  FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3174  FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3175  FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3176  FIELD(TBFLAG_A64, SVL, 24, 4)
3177  /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3178  FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3179  FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3180  FIELD(TBFLAG_A64, NAA, 30, 1)
3181  FIELD(TBFLAG_A64, ATA0, 31, 1)
3182  FIELD(TBFLAG_A64, NV, 32, 1)
3183  FIELD(TBFLAG_A64, NV1, 33, 1)
3184  FIELD(TBFLAG_A64, NV2, 34, 1)
3185  /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3186  FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3187  /* Set if FEAT_NV2 RAM accesses are big-endian */
3188  FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3189  
3190  /*
3191   * Helpers for using the above. Note that only the A64 accessors use
3192   * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3193   * word either is or might be 32 bits only.
3194   */
3195  #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3196      (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3197  #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3198      (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3199  #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3200      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3201  #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3202      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3203  #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3204      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3205  
3206  #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3207  #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3208  #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3209  #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3210  #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3211  
3212  /**
3213   * sve_vq
3214   * @env: the cpu context
3215   *
3216   * Return the VL cached within env->hflags, in units of quadwords.
3217   */
sve_vq(CPUARMState * env)3218  static inline int sve_vq(CPUARMState *env)
3219  {
3220      return EX_TBFLAG_A64(env->hflags, VL) + 1;
3221  }
3222  
3223  /**
3224   * sme_vq
3225   * @env: the cpu context
3226   *
3227   * Return the SVL cached within env->hflags, in units of quadwords.
3228   */
sme_vq(CPUARMState * env)3229  static inline int sme_vq(CPUARMState *env)
3230  {
3231      return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3232  }
3233  
bswap_code(bool sctlr_b)3234  static inline bool bswap_code(bool sctlr_b)
3235  {
3236  #ifdef CONFIG_USER_ONLY
3237      /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3238       * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3239       * would also end up as a mixed-endian mode with BE code, LE data.
3240       */
3241      return TARGET_BIG_ENDIAN ^ sctlr_b;
3242  #else
3243      /* All code access in ARM is little endian, and there are no loaders
3244       * doing swaps that need to be reversed
3245       */
3246      return 0;
3247  #endif
3248  }
3249  
3250  #ifdef CONFIG_USER_ONLY
arm_cpu_bswap_data(CPUARMState * env)3251  static inline bool arm_cpu_bswap_data(CPUARMState *env)
3252  {
3253      return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3254  }
3255  #endif
3256  
3257  void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3258                            uint64_t *cs_base, uint32_t *flags);
3259  
3260  enum {
3261      QEMU_PSCI_CONDUIT_DISABLED = 0,
3262      QEMU_PSCI_CONDUIT_SMC = 1,
3263      QEMU_PSCI_CONDUIT_HVC = 2,
3264  };
3265  
3266  #ifndef CONFIG_USER_ONLY
3267  /* Return the address space index to use for a memory access */
arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3268  static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3269  {
3270      return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3271  }
3272  
3273  /* Return the AddressSpace to use for a memory access
3274   * (which depends on whether the access is S or NS, and whether
3275   * the board gave us a separate AddressSpace for S accesses).
3276   */
arm_addressspace(CPUState * cs,MemTxAttrs attrs)3277  static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3278  {
3279      return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3280  }
3281  #endif
3282  
3283  /**
3284   * arm_register_pre_el_change_hook:
3285   * Register a hook function which will be called immediately before this
3286   * CPU changes exception level or mode. The hook function will be
3287   * passed a pointer to the ARMCPU and the opaque data pointer passed
3288   * to this function when the hook was registered.
3289   *
3290   * Note that if a pre-change hook is called, any registered post-change hooks
3291   * are guaranteed to subsequently be called.
3292   */
3293  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3294                                   void *opaque);
3295  /**
3296   * arm_register_el_change_hook:
3297   * Register a hook function which will be called immediately after this
3298   * CPU changes exception level or mode. The hook function will be
3299   * passed a pointer to the ARMCPU and the opaque data pointer passed
3300   * to this function when the hook was registered.
3301   *
3302   * Note that any registered hooks registered here are guaranteed to be called
3303   * if pre-change hooks have been.
3304   */
3305  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3306          *opaque);
3307  
3308  /**
3309   * arm_rebuild_hflags:
3310   * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3311   */
3312  void arm_rebuild_hflags(CPUARMState *env);
3313  
3314  /**
3315   * aa32_vfp_dreg:
3316   * Return a pointer to the Dn register within env in 32-bit mode.
3317   */
aa32_vfp_dreg(CPUARMState * env,unsigned regno)3318  static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3319  {
3320      return &env->vfp.zregs[regno >> 1].d[regno & 1];
3321  }
3322  
3323  /**
3324   * aa32_vfp_qreg:
3325   * Return a pointer to the Qn register within env in 32-bit mode.
3326   */
aa32_vfp_qreg(CPUARMState * env,unsigned regno)3327  static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3328  {
3329      return &env->vfp.zregs[regno].d[0];
3330  }
3331  
3332  /**
3333   * aa64_vfp_qreg:
3334   * Return a pointer to the Qn register within env in 64-bit mode.
3335   */
aa64_vfp_qreg(CPUARMState * env,unsigned regno)3336  static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3337  {
3338      return &env->vfp.zregs[regno].d[0];
3339  }
3340  
3341  /* Shared between translate-sve.c and sve_helper.c.  */
3342  extern const uint64_t pred_esz_masks[5];
3343  
3344  /*
3345   * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3346   * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3347   * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3348   */
3349  #define PAGE_BTI            PAGE_TARGET_1
3350  #define PAGE_MTE            PAGE_TARGET_2
3351  #define PAGE_TARGET_STICKY  PAGE_MTE
3352  
3353  /* We associate one allocation tag per 16 bytes, the minimum.  */
3354  #define LOG2_TAG_GRANULE 4
3355  #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3356  
3357  #ifdef CONFIG_USER_ONLY
3358  #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3359  #endif
3360  
3361  #ifdef TARGET_TAGGED_ADDRESSES
3362  /**
3363   * cpu_untagged_addr:
3364   * @cs: CPU context
3365   * @x: tagged address
3366   *
3367   * Remove any address tag from @x.  This is explicitly related to the
3368   * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3369   *
3370   * There should be a better place to put this, but we need this in
3371   * include/exec/cpu_ldst.h, and not some place linux-user specific.
3372   */
cpu_untagged_addr(CPUState * cs,target_ulong x)3373  static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3374  {
3375      CPUARMState *env = cpu_env(cs);
3376      if (env->tagged_addr_enable) {
3377          /*
3378           * TBI is enabled for userspace but not kernelspace addresses.
3379           * Only clear the tag if bit 55 is clear.
3380           */
3381          x &= sextract64(x, 0, 56);
3382      }
3383      return x;
3384  }
3385  #endif
3386  
3387  #endif
3388