1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/error-report.h" 23 #include "qapi/error.h" 24 #include "cpu.h" 25 #include "internals.h" 26 #include "qemu-common.h" 27 #include "exec/exec-all.h" 28 #include "hw/qdev-properties.h" 29 #if !defined(CONFIG_USER_ONLY) 30 #include "hw/loader.h" 31 #endif 32 #include "hw/arm/arm.h" 33 #include "sysemu/sysemu.h" 34 #include "sysemu/hw_accel.h" 35 #include "kvm_arm.h" 36 #include "disas/capstone.h" 37 38 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 39 { 40 ARMCPU *cpu = ARM_CPU(cs); 41 42 cpu->env.regs[15] = value; 43 } 44 45 static bool arm_cpu_has_work(CPUState *cs) 46 { 47 ARMCPU *cpu = ARM_CPU(cs); 48 49 return (cpu->power_state != PSCI_OFF) 50 && cs->interrupt_request & 51 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 52 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 53 | CPU_INTERRUPT_EXITTB); 54 } 55 56 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 57 void *opaque) 58 { 59 /* We currently only support registering a single hook function */ 60 assert(!cpu->el_change_hook); 61 cpu->el_change_hook = hook; 62 cpu->el_change_hook_opaque = opaque; 63 } 64 65 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 66 { 67 /* Reset a single ARMCPRegInfo register */ 68 ARMCPRegInfo *ri = value; 69 ARMCPU *cpu = opaque; 70 71 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 72 return; 73 } 74 75 if (ri->resetfn) { 76 ri->resetfn(&cpu->env, ri); 77 return; 78 } 79 80 /* A zero offset is never possible as it would be regs[0] 81 * so we use it to indicate that reset is being handled elsewhere. 82 * This is basically only used for fields in non-core coprocessors 83 * (like the pxa2xx ones). 84 */ 85 if (!ri->fieldoffset) { 86 return; 87 } 88 89 if (cpreg_field_is_64bit(ri)) { 90 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 91 } else { 92 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 93 } 94 } 95 96 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 97 { 98 /* Purely an assertion check: we've already done reset once, 99 * so now check that running the reset for the cpreg doesn't 100 * change its value. This traps bugs where two different cpregs 101 * both try to reset the same state field but to different values. 102 */ 103 ARMCPRegInfo *ri = value; 104 ARMCPU *cpu = opaque; 105 uint64_t oldvalue, newvalue; 106 107 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 108 return; 109 } 110 111 oldvalue = read_raw_cp_reg(&cpu->env, ri); 112 cp_reg_reset(key, value, opaque); 113 newvalue = read_raw_cp_reg(&cpu->env, ri); 114 assert(oldvalue == newvalue); 115 } 116 117 /* CPUClass::reset() */ 118 static void arm_cpu_reset(CPUState *s) 119 { 120 ARMCPU *cpu = ARM_CPU(s); 121 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 122 CPUARMState *env = &cpu->env; 123 124 acc->parent_reset(s); 125 126 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 127 128 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 129 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 130 131 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 132 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0; 133 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1; 134 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2; 135 136 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 137 s->halted = cpu->start_powered_off; 138 139 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 140 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 141 } 142 143 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 144 /* 64 bit CPUs always start in 64 bit mode */ 145 env->aarch64 = 1; 146 #if defined(CONFIG_USER_ONLY) 147 env->pstate = PSTATE_MODE_EL0t; 148 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 149 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 150 /* and to the FP/Neon instructions */ 151 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 152 #else 153 /* Reset into the highest available EL */ 154 if (arm_feature(env, ARM_FEATURE_EL3)) { 155 env->pstate = PSTATE_MODE_EL3h; 156 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 157 env->pstate = PSTATE_MODE_EL2h; 158 } else { 159 env->pstate = PSTATE_MODE_EL1h; 160 } 161 env->pc = cpu->rvbar; 162 #endif 163 } else { 164 #if defined(CONFIG_USER_ONLY) 165 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 167 #endif 168 } 169 170 #if defined(CONFIG_USER_ONLY) 171 env->uncached_cpsr = ARM_CPU_MODE_USR; 172 /* For user mode we must enable access to coprocessors */ 173 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 174 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 175 env->cp15.c15_cpar = 3; 176 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 177 env->cp15.c15_cpar = 1; 178 } 179 #else 180 /* SVC mode with interrupts disabled. */ 181 env->uncached_cpsr = ARM_CPU_MODE_SVC; 182 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 183 184 if (arm_feature(env, ARM_FEATURE_M)) { 185 uint32_t initial_msp; /* Loaded from 0x0 */ 186 uint32_t initial_pc; /* Loaded from 0x4 */ 187 uint8_t *rom; 188 189 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 190 env->v7m.secure = true; 191 } else { 192 /* This bit resets to 0 if security is supported, but 1 if 193 * it is not. The bit is not present in v7M, but we set it 194 * here so we can avoid having to make checks on it conditional 195 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 196 */ 197 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 198 } 199 200 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 201 * that it resets to 1, so QEMU always does that rather than making 202 * it dependent on CPU model. In v8M it is RES1. 203 */ 204 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 205 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 206 if (arm_feature(env, ARM_FEATURE_V8)) { 207 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 208 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 209 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 210 } 211 212 /* Unlike A/R profile, M profile defines the reset LR value */ 213 env->regs[14] = 0xffffffff; 214 215 /* Load the initial SP and PC from the vector table at address 0 */ 216 rom = rom_ptr(0); 217 if (rom) { 218 /* Address zero is covered by ROM which hasn't yet been 219 * copied into physical memory. 220 */ 221 initial_msp = ldl_p(rom); 222 initial_pc = ldl_p(rom + 4); 223 } else { 224 /* Address zero not covered by a ROM blob, or the ROM blob 225 * is in non-modifiable memory and this is a second reset after 226 * it got copied into memory. In the latter case, rom_ptr 227 * will return a NULL pointer and we should use ldl_phys instead. 228 */ 229 initial_msp = ldl_phys(s->as, 0); 230 initial_pc = ldl_phys(s->as, 4); 231 } 232 233 env->regs[13] = initial_msp & 0xFFFFFFFC; 234 env->regs[15] = initial_pc & ~1; 235 env->thumb = initial_pc & 1; 236 } 237 238 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 239 * executing as AArch32 then check if highvecs are enabled and 240 * adjust the PC accordingly. 241 */ 242 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 243 env->regs[15] = 0xFFFF0000; 244 } 245 246 /* M profile requires that reset clears the exclusive monitor; 247 * A profile does not, but clearing it makes more sense than having it 248 * set with an exclusive access on address zero. 249 */ 250 arm_clear_exclusive(env); 251 252 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 253 #endif 254 255 if (arm_feature(env, ARM_FEATURE_PMSA)) { 256 if (cpu->pmsav7_dregion > 0) { 257 if (arm_feature(env, ARM_FEATURE_V8)) { 258 memset(env->pmsav8.rbar[M_REG_NS], 0, 259 sizeof(*env->pmsav8.rbar[M_REG_NS]) 260 * cpu->pmsav7_dregion); 261 memset(env->pmsav8.rlar[M_REG_NS], 0, 262 sizeof(*env->pmsav8.rlar[M_REG_NS]) 263 * cpu->pmsav7_dregion); 264 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 265 memset(env->pmsav8.rbar[M_REG_S], 0, 266 sizeof(*env->pmsav8.rbar[M_REG_S]) 267 * cpu->pmsav7_dregion); 268 memset(env->pmsav8.rlar[M_REG_S], 0, 269 sizeof(*env->pmsav8.rlar[M_REG_S]) 270 * cpu->pmsav7_dregion); 271 } 272 } else if (arm_feature(env, ARM_FEATURE_V7)) { 273 memset(env->pmsav7.drbar, 0, 274 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 275 memset(env->pmsav7.drsr, 0, 276 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 277 memset(env->pmsav7.dracr, 0, 278 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 279 } 280 } 281 env->pmsav7.rnr[M_REG_NS] = 0; 282 env->pmsav7.rnr[M_REG_S] = 0; 283 env->pmsav8.mair0[M_REG_NS] = 0; 284 env->pmsav8.mair0[M_REG_S] = 0; 285 env->pmsav8.mair1[M_REG_NS] = 0; 286 env->pmsav8.mair1[M_REG_S] = 0; 287 } 288 289 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 290 if (cpu->sau_sregion > 0) { 291 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 292 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 293 } 294 env->sau.rnr = 0; 295 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 296 * the Cortex-M33 does. 297 */ 298 env->sau.ctrl = 0; 299 } 300 301 set_flush_to_zero(1, &env->vfp.standard_fp_status); 302 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 303 set_default_nan_mode(1, &env->vfp.standard_fp_status); 304 set_float_detect_tininess(float_tininess_before_rounding, 305 &env->vfp.fp_status); 306 set_float_detect_tininess(float_tininess_before_rounding, 307 &env->vfp.standard_fp_status); 308 #ifndef CONFIG_USER_ONLY 309 if (kvm_enabled()) { 310 kvm_arm_reset_vcpu(cpu); 311 } 312 #endif 313 314 hw_breakpoint_update_all(cpu); 315 hw_watchpoint_update_all(cpu); 316 } 317 318 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 319 { 320 CPUClass *cc = CPU_GET_CLASS(cs); 321 CPUARMState *env = cs->env_ptr; 322 uint32_t cur_el = arm_current_el(env); 323 bool secure = arm_is_secure(env); 324 uint32_t target_el; 325 uint32_t excp_idx; 326 bool ret = false; 327 328 if (interrupt_request & CPU_INTERRUPT_FIQ) { 329 excp_idx = EXCP_FIQ; 330 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 331 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 332 cs->exception_index = excp_idx; 333 env->exception.target_el = target_el; 334 cc->do_interrupt(cs); 335 ret = true; 336 } 337 } 338 if (interrupt_request & CPU_INTERRUPT_HARD) { 339 excp_idx = EXCP_IRQ; 340 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 341 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 342 cs->exception_index = excp_idx; 343 env->exception.target_el = target_el; 344 cc->do_interrupt(cs); 345 ret = true; 346 } 347 } 348 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 349 excp_idx = EXCP_VIRQ; 350 target_el = 1; 351 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 352 cs->exception_index = excp_idx; 353 env->exception.target_el = target_el; 354 cc->do_interrupt(cs); 355 ret = true; 356 } 357 } 358 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 359 excp_idx = EXCP_VFIQ; 360 target_el = 1; 361 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 362 cs->exception_index = excp_idx; 363 env->exception.target_el = target_el; 364 cc->do_interrupt(cs); 365 ret = true; 366 } 367 } 368 369 return ret; 370 } 371 372 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 373 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 374 { 375 CPUClass *cc = CPU_GET_CLASS(cs); 376 ARMCPU *cpu = ARM_CPU(cs); 377 CPUARMState *env = &cpu->env; 378 bool ret = false; 379 380 /* ARMv7-M interrupt masking works differently than -A or -R. 381 * There is no FIQ/IRQ distinction. Instead of I and F bits 382 * masking FIQ and IRQ interrupts, an exception is taken only 383 * if it is higher priority than the current execution priority 384 * (which depends on state like BASEPRI, FAULTMASK and the 385 * currently active exception). 386 */ 387 if (interrupt_request & CPU_INTERRUPT_HARD 388 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 389 cs->exception_index = EXCP_IRQ; 390 cc->do_interrupt(cs); 391 ret = true; 392 } 393 return ret; 394 } 395 #endif 396 397 #ifndef CONFIG_USER_ONLY 398 static void arm_cpu_set_irq(void *opaque, int irq, int level) 399 { 400 ARMCPU *cpu = opaque; 401 CPUARMState *env = &cpu->env; 402 CPUState *cs = CPU(cpu); 403 static const int mask[] = { 404 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 405 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 406 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 407 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 408 }; 409 410 switch (irq) { 411 case ARM_CPU_VIRQ: 412 case ARM_CPU_VFIQ: 413 assert(arm_feature(env, ARM_FEATURE_EL2)); 414 /* fall through */ 415 case ARM_CPU_IRQ: 416 case ARM_CPU_FIQ: 417 if (level) { 418 cpu_interrupt(cs, mask[irq]); 419 } else { 420 cpu_reset_interrupt(cs, mask[irq]); 421 } 422 break; 423 default: 424 g_assert_not_reached(); 425 } 426 } 427 428 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 429 { 430 #ifdef CONFIG_KVM 431 ARMCPU *cpu = opaque; 432 CPUState *cs = CPU(cpu); 433 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 434 435 switch (irq) { 436 case ARM_CPU_IRQ: 437 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 438 break; 439 case ARM_CPU_FIQ: 440 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 441 break; 442 default: 443 g_assert_not_reached(); 444 } 445 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 446 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 447 #endif 448 } 449 450 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 451 { 452 ARMCPU *cpu = ARM_CPU(cs); 453 CPUARMState *env = &cpu->env; 454 455 cpu_synchronize_state(cs); 456 return arm_cpu_data_is_big_endian(env); 457 } 458 459 #endif 460 461 static inline void set_feature(CPUARMState *env, int feature) 462 { 463 env->features |= 1ULL << feature; 464 } 465 466 static inline void unset_feature(CPUARMState *env, int feature) 467 { 468 env->features &= ~(1ULL << feature); 469 } 470 471 static int 472 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 473 { 474 return print_insn_arm(pc | 1, info); 475 } 476 477 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 478 { 479 ARMCPU *ac = ARM_CPU(cpu); 480 CPUARMState *env = &ac->env; 481 bool sctlr_b; 482 483 if (is_a64(env)) { 484 /* We might not be compiled with the A64 disassembler 485 * because it needs a C++ compiler. Leave print_insn 486 * unset in this case to use the caller default behaviour. 487 */ 488 #if defined(CONFIG_ARM_A64_DIS) 489 info->print_insn = print_insn_arm_a64; 490 #endif 491 info->cap_arch = CS_ARCH_ARM64; 492 info->cap_insn_unit = 4; 493 info->cap_insn_split = 4; 494 } else { 495 int cap_mode; 496 if (env->thumb) { 497 info->print_insn = print_insn_thumb1; 498 info->cap_insn_unit = 2; 499 info->cap_insn_split = 4; 500 cap_mode = CS_MODE_THUMB; 501 } else { 502 info->print_insn = print_insn_arm; 503 info->cap_insn_unit = 4; 504 info->cap_insn_split = 4; 505 cap_mode = CS_MODE_ARM; 506 } 507 if (arm_feature(env, ARM_FEATURE_V8)) { 508 cap_mode |= CS_MODE_V8; 509 } 510 if (arm_feature(env, ARM_FEATURE_M)) { 511 cap_mode |= CS_MODE_MCLASS; 512 } 513 info->cap_arch = CS_ARCH_ARM; 514 info->cap_mode = cap_mode; 515 } 516 517 sctlr_b = arm_sctlr_b(env); 518 if (bswap_code(sctlr_b)) { 519 #ifdef TARGET_WORDS_BIGENDIAN 520 info->endian = BFD_ENDIAN_LITTLE; 521 #else 522 info->endian = BFD_ENDIAN_BIG; 523 #endif 524 } 525 info->flags &= ~INSN_ARM_BE32; 526 #ifndef CONFIG_USER_ONLY 527 if (sctlr_b) { 528 info->flags |= INSN_ARM_BE32; 529 } 530 #endif 531 } 532 533 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 534 { 535 uint32_t Aff1 = idx / clustersz; 536 uint32_t Aff0 = idx % clustersz; 537 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 538 } 539 540 static void arm_cpu_initfn(Object *obj) 541 { 542 CPUState *cs = CPU(obj); 543 ARMCPU *cpu = ARM_CPU(obj); 544 545 cs->env_ptr = &cpu->env; 546 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 547 g_free, g_free); 548 549 #ifndef CONFIG_USER_ONLY 550 /* Our inbound IRQ and FIQ lines */ 551 if (kvm_enabled()) { 552 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 553 * the same interface as non-KVM CPUs. 554 */ 555 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 556 } else { 557 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 558 } 559 560 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 561 arm_gt_ptimer_cb, cpu); 562 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 563 arm_gt_vtimer_cb, cpu); 564 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 565 arm_gt_htimer_cb, cpu); 566 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 567 arm_gt_stimer_cb, cpu); 568 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 569 ARRAY_SIZE(cpu->gt_timer_outputs)); 570 571 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 572 "gicv3-maintenance-interrupt", 1); 573 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 574 "pmu-interrupt", 1); 575 #endif 576 577 /* DTB consumers generally don't in fact care what the 'compatible' 578 * string is, so always provide some string and trust that a hypothetical 579 * picky DTB consumer will also provide a helpful error message. 580 */ 581 cpu->dtb_compatible = "qemu,unknown"; 582 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 583 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 584 585 if (tcg_enabled()) { 586 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 587 } 588 } 589 590 static Property arm_cpu_reset_cbar_property = 591 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 592 593 static Property arm_cpu_reset_hivecs_property = 594 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 595 596 static Property arm_cpu_rvbar_property = 597 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 598 599 static Property arm_cpu_has_el2_property = 600 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 601 602 static Property arm_cpu_has_el3_property = 603 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 604 605 static Property arm_cpu_cfgend_property = 606 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 607 608 /* use property name "pmu" to match other archs and virt tools */ 609 static Property arm_cpu_has_pmu_property = 610 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 611 612 static Property arm_cpu_has_mpu_property = 613 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 614 615 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 616 * because the CPU initfn will have already set cpu->pmsav7_dregion to 617 * the right value for that particular CPU type, and we don't want 618 * to override that with an incorrect constant value. 619 */ 620 static Property arm_cpu_pmsav7_dregion_property = 621 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 622 pmsav7_dregion, 623 qdev_prop_uint32, uint32_t); 624 625 static void arm_cpu_post_init(Object *obj) 626 { 627 ARMCPU *cpu = ARM_CPU(obj); 628 629 /* M profile implies PMSA. We have to do this here rather than 630 * in realize with the other feature-implication checks because 631 * we look at the PMSA bit to see if we should add some properties. 632 */ 633 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 634 set_feature(&cpu->env, ARM_FEATURE_PMSA); 635 } 636 637 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 638 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 639 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 640 &error_abort); 641 } 642 643 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 644 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 645 &error_abort); 646 } 647 648 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 649 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 650 &error_abort); 651 } 652 653 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 654 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 655 * prevent "has_el3" from existing on CPUs which cannot support EL3. 656 */ 657 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 658 &error_abort); 659 660 #ifndef CONFIG_USER_ONLY 661 object_property_add_link(obj, "secure-memory", 662 TYPE_MEMORY_REGION, 663 (Object **)&cpu->secure_memory, 664 qdev_prop_allow_set_link_before_realize, 665 OBJ_PROP_LINK_UNREF_ON_RELEASE, 666 &error_abort); 667 #endif 668 } 669 670 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 671 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 672 &error_abort); 673 } 674 675 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 676 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 677 &error_abort); 678 } 679 680 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 681 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 682 &error_abort); 683 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 684 qdev_property_add_static(DEVICE(obj), 685 &arm_cpu_pmsav7_dregion_property, 686 &error_abort); 687 } 688 } 689 690 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 691 &error_abort); 692 } 693 694 static void arm_cpu_finalizefn(Object *obj) 695 { 696 ARMCPU *cpu = ARM_CPU(obj); 697 g_hash_table_destroy(cpu->cp_regs); 698 } 699 700 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 701 { 702 CPUState *cs = CPU(dev); 703 ARMCPU *cpu = ARM_CPU(dev); 704 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 705 CPUARMState *env = &cpu->env; 706 int pagebits; 707 Error *local_err = NULL; 708 709 cpu_exec_realizefn(cs, &local_err); 710 if (local_err != NULL) { 711 error_propagate(errp, local_err); 712 return; 713 } 714 715 /* Some features automatically imply others: */ 716 if (arm_feature(env, ARM_FEATURE_V8)) { 717 set_feature(env, ARM_FEATURE_V7); 718 set_feature(env, ARM_FEATURE_ARM_DIV); 719 set_feature(env, ARM_FEATURE_LPAE); 720 } 721 if (arm_feature(env, ARM_FEATURE_V7)) { 722 set_feature(env, ARM_FEATURE_VAPA); 723 set_feature(env, ARM_FEATURE_THUMB2); 724 set_feature(env, ARM_FEATURE_MPIDR); 725 if (!arm_feature(env, ARM_FEATURE_M)) { 726 set_feature(env, ARM_FEATURE_V6K); 727 } else { 728 set_feature(env, ARM_FEATURE_V6); 729 } 730 731 /* Always define VBAR for V7 CPUs even if it doesn't exist in 732 * non-EL3 configs. This is needed by some legacy boards. 733 */ 734 set_feature(env, ARM_FEATURE_VBAR); 735 } 736 if (arm_feature(env, ARM_FEATURE_V6K)) { 737 set_feature(env, ARM_FEATURE_V6); 738 set_feature(env, ARM_FEATURE_MVFR); 739 } 740 if (arm_feature(env, ARM_FEATURE_V6)) { 741 set_feature(env, ARM_FEATURE_V5); 742 set_feature(env, ARM_FEATURE_JAZELLE); 743 if (!arm_feature(env, ARM_FEATURE_M)) { 744 set_feature(env, ARM_FEATURE_AUXCR); 745 } 746 } 747 if (arm_feature(env, ARM_FEATURE_V5)) { 748 set_feature(env, ARM_FEATURE_V4T); 749 } 750 if (arm_feature(env, ARM_FEATURE_M)) { 751 set_feature(env, ARM_FEATURE_THUMB_DIV); 752 } 753 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { 754 set_feature(env, ARM_FEATURE_THUMB_DIV); 755 } 756 if (arm_feature(env, ARM_FEATURE_VFP4)) { 757 set_feature(env, ARM_FEATURE_VFP3); 758 set_feature(env, ARM_FEATURE_VFP_FP16); 759 } 760 if (arm_feature(env, ARM_FEATURE_VFP3)) { 761 set_feature(env, ARM_FEATURE_VFP); 762 } 763 if (arm_feature(env, ARM_FEATURE_LPAE)) { 764 set_feature(env, ARM_FEATURE_V7MP); 765 set_feature(env, ARM_FEATURE_PXN); 766 } 767 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 768 set_feature(env, ARM_FEATURE_CBAR); 769 } 770 if (arm_feature(env, ARM_FEATURE_THUMB2) && 771 !arm_feature(env, ARM_FEATURE_M)) { 772 set_feature(env, ARM_FEATURE_THUMB_DSP); 773 } 774 775 if (arm_feature(env, ARM_FEATURE_V7) && 776 !arm_feature(env, ARM_FEATURE_M) && 777 !arm_feature(env, ARM_FEATURE_PMSA)) { 778 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 779 * can use 4K pages. 780 */ 781 pagebits = 12; 782 } else { 783 /* For CPUs which might have tiny 1K pages, or which have an 784 * MPU and might have small region sizes, stick with 1K pages. 785 */ 786 pagebits = 10; 787 } 788 if (!set_preferred_target_page_bits(pagebits)) { 789 /* This can only ever happen for hotplugging a CPU, or if 790 * the board code incorrectly creates a CPU which it has 791 * promised via minimum_page_size that it will not. 792 */ 793 error_setg(errp, "This CPU requires a smaller page size than the " 794 "system is using"); 795 return; 796 } 797 798 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 799 * We don't support setting cluster ID ([16..23]) (known as Aff2 800 * in later ARM ARM versions), or any of the higher affinity level fields, 801 * so these bits always RAZ. 802 */ 803 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 804 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 805 ARM_DEFAULT_CPUS_PER_CLUSTER); 806 } 807 808 if (cpu->reset_hivecs) { 809 cpu->reset_sctlr |= (1 << 13); 810 } 811 812 if (cpu->cfgend) { 813 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 814 cpu->reset_sctlr |= SCTLR_EE; 815 } else { 816 cpu->reset_sctlr |= SCTLR_B; 817 } 818 } 819 820 if (!cpu->has_el3) { 821 /* If the has_el3 CPU property is disabled then we need to disable the 822 * feature. 823 */ 824 unset_feature(env, ARM_FEATURE_EL3); 825 826 /* Disable the security extension feature bits in the processor feature 827 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 828 */ 829 cpu->id_pfr1 &= ~0xf0; 830 cpu->id_aa64pfr0 &= ~0xf000; 831 } 832 833 if (!cpu->has_el2) { 834 unset_feature(env, ARM_FEATURE_EL2); 835 } 836 837 if (!cpu->has_pmu) { 838 unset_feature(env, ARM_FEATURE_PMU); 839 cpu->id_aa64dfr0 &= ~0xf00; 840 } 841 842 if (!arm_feature(env, ARM_FEATURE_EL2)) { 843 /* Disable the hypervisor feature bits in the processor feature 844 * registers if we don't have EL2. These are id_pfr1[15:12] and 845 * id_aa64pfr0_el1[11:8]. 846 */ 847 cpu->id_aa64pfr0 &= ~0xf00; 848 cpu->id_pfr1 &= ~0xf000; 849 } 850 851 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 852 * to false or by setting pmsav7-dregion to 0. 853 */ 854 if (!cpu->has_mpu) { 855 cpu->pmsav7_dregion = 0; 856 } 857 if (cpu->pmsav7_dregion == 0) { 858 cpu->has_mpu = false; 859 } 860 861 if (arm_feature(env, ARM_FEATURE_PMSA) && 862 arm_feature(env, ARM_FEATURE_V7)) { 863 uint32_t nr = cpu->pmsav7_dregion; 864 865 if (nr > 0xff) { 866 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 867 return; 868 } 869 870 if (nr) { 871 if (arm_feature(env, ARM_FEATURE_V8)) { 872 /* PMSAv8 */ 873 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 874 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 875 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 876 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 877 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 878 } 879 } else { 880 env->pmsav7.drbar = g_new0(uint32_t, nr); 881 env->pmsav7.drsr = g_new0(uint32_t, nr); 882 env->pmsav7.dracr = g_new0(uint32_t, nr); 883 } 884 } 885 } 886 887 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 888 uint32_t nr = cpu->sau_sregion; 889 890 if (nr > 0xff) { 891 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 892 return; 893 } 894 895 if (nr) { 896 env->sau.rbar = g_new0(uint32_t, nr); 897 env->sau.rlar = g_new0(uint32_t, nr); 898 } 899 } 900 901 if (arm_feature(env, ARM_FEATURE_EL3)) { 902 set_feature(env, ARM_FEATURE_VBAR); 903 } 904 905 register_cp_regs_for_features(cpu); 906 arm_cpu_register_gdb_regs_for_features(cpu); 907 908 init_cpreg_list(cpu); 909 910 #ifndef CONFIG_USER_ONLY 911 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { 912 cs->num_ases = 2; 913 914 if (!cpu->secure_memory) { 915 cpu->secure_memory = cs->memory; 916 } 917 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 918 cpu->secure_memory); 919 } else { 920 cs->num_ases = 1; 921 } 922 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 923 #endif 924 925 qemu_init_vcpu(cs); 926 cpu_reset(cs); 927 928 acc->parent_realize(dev, errp); 929 } 930 931 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 932 { 933 ObjectClass *oc; 934 char *typename; 935 char **cpuname; 936 937 cpuname = g_strsplit(cpu_model, ",", 1); 938 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]); 939 oc = object_class_by_name(typename); 940 g_strfreev(cpuname); 941 g_free(typename); 942 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 943 object_class_is_abstract(oc)) { 944 return NULL; 945 } 946 return oc; 947 } 948 949 /* CPU models. These are not needed for the AArch64 linux-user build. */ 950 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 951 952 static void arm926_initfn(Object *obj) 953 { 954 ARMCPU *cpu = ARM_CPU(obj); 955 956 cpu->dtb_compatible = "arm,arm926"; 957 set_feature(&cpu->env, ARM_FEATURE_V5); 958 set_feature(&cpu->env, ARM_FEATURE_VFP); 959 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 960 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 961 set_feature(&cpu->env, ARM_FEATURE_JAZELLE); 962 cpu->midr = 0x41069265; 963 cpu->reset_fpsid = 0x41011090; 964 cpu->ctr = 0x1dd20d2; 965 cpu->reset_sctlr = 0x00090078; 966 } 967 968 static void arm946_initfn(Object *obj) 969 { 970 ARMCPU *cpu = ARM_CPU(obj); 971 972 cpu->dtb_compatible = "arm,arm946"; 973 set_feature(&cpu->env, ARM_FEATURE_V5); 974 set_feature(&cpu->env, ARM_FEATURE_PMSA); 975 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 976 cpu->midr = 0x41059461; 977 cpu->ctr = 0x0f004006; 978 cpu->reset_sctlr = 0x00000078; 979 } 980 981 static void arm1026_initfn(Object *obj) 982 { 983 ARMCPU *cpu = ARM_CPU(obj); 984 985 cpu->dtb_compatible = "arm,arm1026"; 986 set_feature(&cpu->env, ARM_FEATURE_V5); 987 set_feature(&cpu->env, ARM_FEATURE_VFP); 988 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 989 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 990 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 991 set_feature(&cpu->env, ARM_FEATURE_JAZELLE); 992 cpu->midr = 0x4106a262; 993 cpu->reset_fpsid = 0x410110a0; 994 cpu->ctr = 0x1dd20d2; 995 cpu->reset_sctlr = 0x00090078; 996 cpu->reset_auxcr = 1; 997 { 998 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 999 ARMCPRegInfo ifar = { 1000 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1001 .access = PL1_RW, 1002 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 1003 .resetvalue = 0 1004 }; 1005 define_one_arm_cp_reg(cpu, &ifar); 1006 } 1007 } 1008 1009 static void arm1136_r2_initfn(Object *obj) 1010 { 1011 ARMCPU *cpu = ARM_CPU(obj); 1012 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 1013 * older core than plain "arm1136". In particular this does not 1014 * have the v6K features. 1015 * These ID register values are correct for 1136 but may be wrong 1016 * for 1136_r2 (in particular r0p2 does not actually implement most 1017 * of the ID registers). 1018 */ 1019 1020 cpu->dtb_compatible = "arm,arm1136"; 1021 set_feature(&cpu->env, ARM_FEATURE_V6); 1022 set_feature(&cpu->env, ARM_FEATURE_VFP); 1023 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1024 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1025 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1026 cpu->midr = 0x4107b362; 1027 cpu->reset_fpsid = 0x410120b4; 1028 cpu->mvfr0 = 0x11111111; 1029 cpu->mvfr1 = 0x00000000; 1030 cpu->ctr = 0x1dd20d2; 1031 cpu->reset_sctlr = 0x00050078; 1032 cpu->id_pfr0 = 0x111; 1033 cpu->id_pfr1 = 0x1; 1034 cpu->id_dfr0 = 0x2; 1035 cpu->id_afr0 = 0x3; 1036 cpu->id_mmfr0 = 0x01130003; 1037 cpu->id_mmfr1 = 0x10030302; 1038 cpu->id_mmfr2 = 0x01222110; 1039 cpu->id_isar0 = 0x00140011; 1040 cpu->id_isar1 = 0x12002111; 1041 cpu->id_isar2 = 0x11231111; 1042 cpu->id_isar3 = 0x01102131; 1043 cpu->id_isar4 = 0x141; 1044 cpu->reset_auxcr = 7; 1045 } 1046 1047 static void arm1136_initfn(Object *obj) 1048 { 1049 ARMCPU *cpu = ARM_CPU(obj); 1050 1051 cpu->dtb_compatible = "arm,arm1136"; 1052 set_feature(&cpu->env, ARM_FEATURE_V6K); 1053 set_feature(&cpu->env, ARM_FEATURE_V6); 1054 set_feature(&cpu->env, ARM_FEATURE_VFP); 1055 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1056 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1057 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1058 cpu->midr = 0x4117b363; 1059 cpu->reset_fpsid = 0x410120b4; 1060 cpu->mvfr0 = 0x11111111; 1061 cpu->mvfr1 = 0x00000000; 1062 cpu->ctr = 0x1dd20d2; 1063 cpu->reset_sctlr = 0x00050078; 1064 cpu->id_pfr0 = 0x111; 1065 cpu->id_pfr1 = 0x1; 1066 cpu->id_dfr0 = 0x2; 1067 cpu->id_afr0 = 0x3; 1068 cpu->id_mmfr0 = 0x01130003; 1069 cpu->id_mmfr1 = 0x10030302; 1070 cpu->id_mmfr2 = 0x01222110; 1071 cpu->id_isar0 = 0x00140011; 1072 cpu->id_isar1 = 0x12002111; 1073 cpu->id_isar2 = 0x11231111; 1074 cpu->id_isar3 = 0x01102131; 1075 cpu->id_isar4 = 0x141; 1076 cpu->reset_auxcr = 7; 1077 } 1078 1079 static void arm1176_initfn(Object *obj) 1080 { 1081 ARMCPU *cpu = ARM_CPU(obj); 1082 1083 cpu->dtb_compatible = "arm,arm1176"; 1084 set_feature(&cpu->env, ARM_FEATURE_V6K); 1085 set_feature(&cpu->env, ARM_FEATURE_VFP); 1086 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1087 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1088 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1089 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1090 set_feature(&cpu->env, ARM_FEATURE_EL3); 1091 cpu->midr = 0x410fb767; 1092 cpu->reset_fpsid = 0x410120b5; 1093 cpu->mvfr0 = 0x11111111; 1094 cpu->mvfr1 = 0x00000000; 1095 cpu->ctr = 0x1dd20d2; 1096 cpu->reset_sctlr = 0x00050078; 1097 cpu->id_pfr0 = 0x111; 1098 cpu->id_pfr1 = 0x11; 1099 cpu->id_dfr0 = 0x33; 1100 cpu->id_afr0 = 0; 1101 cpu->id_mmfr0 = 0x01130003; 1102 cpu->id_mmfr1 = 0x10030302; 1103 cpu->id_mmfr2 = 0x01222100; 1104 cpu->id_isar0 = 0x0140011; 1105 cpu->id_isar1 = 0x12002111; 1106 cpu->id_isar2 = 0x11231121; 1107 cpu->id_isar3 = 0x01102131; 1108 cpu->id_isar4 = 0x01141; 1109 cpu->reset_auxcr = 7; 1110 } 1111 1112 static void arm11mpcore_initfn(Object *obj) 1113 { 1114 ARMCPU *cpu = ARM_CPU(obj); 1115 1116 cpu->dtb_compatible = "arm,arm11mpcore"; 1117 set_feature(&cpu->env, ARM_FEATURE_V6K); 1118 set_feature(&cpu->env, ARM_FEATURE_VFP); 1119 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1120 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1121 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1122 cpu->midr = 0x410fb022; 1123 cpu->reset_fpsid = 0x410120b4; 1124 cpu->mvfr0 = 0x11111111; 1125 cpu->mvfr1 = 0x00000000; 1126 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1127 cpu->id_pfr0 = 0x111; 1128 cpu->id_pfr1 = 0x1; 1129 cpu->id_dfr0 = 0; 1130 cpu->id_afr0 = 0x2; 1131 cpu->id_mmfr0 = 0x01100103; 1132 cpu->id_mmfr1 = 0x10020302; 1133 cpu->id_mmfr2 = 0x01222000; 1134 cpu->id_isar0 = 0x00100011; 1135 cpu->id_isar1 = 0x12002111; 1136 cpu->id_isar2 = 0x11221011; 1137 cpu->id_isar3 = 0x01102131; 1138 cpu->id_isar4 = 0x141; 1139 cpu->reset_auxcr = 1; 1140 } 1141 1142 static void cortex_m3_initfn(Object *obj) 1143 { 1144 ARMCPU *cpu = ARM_CPU(obj); 1145 set_feature(&cpu->env, ARM_FEATURE_V7); 1146 set_feature(&cpu->env, ARM_FEATURE_M); 1147 cpu->midr = 0x410fc231; 1148 cpu->pmsav7_dregion = 8; 1149 } 1150 1151 static void cortex_m4_initfn(Object *obj) 1152 { 1153 ARMCPU *cpu = ARM_CPU(obj); 1154 1155 set_feature(&cpu->env, ARM_FEATURE_V7); 1156 set_feature(&cpu->env, ARM_FEATURE_M); 1157 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1158 cpu->midr = 0x410fc240; /* r0p0 */ 1159 cpu->pmsav7_dregion = 8; 1160 } 1161 1162 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1163 { 1164 CPUClass *cc = CPU_CLASS(oc); 1165 1166 #ifndef CONFIG_USER_ONLY 1167 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1168 #endif 1169 1170 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1171 } 1172 1173 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1174 /* Dummy the TCM region regs for the moment */ 1175 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1176 .access = PL1_RW, .type = ARM_CP_CONST }, 1177 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1178 .access = PL1_RW, .type = ARM_CP_CONST }, 1179 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 1180 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 1181 REGINFO_SENTINEL 1182 }; 1183 1184 static void cortex_r5_initfn(Object *obj) 1185 { 1186 ARMCPU *cpu = ARM_CPU(obj); 1187 1188 set_feature(&cpu->env, ARM_FEATURE_V7); 1189 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV); 1190 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1191 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1192 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1193 cpu->midr = 0x411fc153; /* r1p3 */ 1194 cpu->id_pfr0 = 0x0131; 1195 cpu->id_pfr1 = 0x001; 1196 cpu->id_dfr0 = 0x010400; 1197 cpu->id_afr0 = 0x0; 1198 cpu->id_mmfr0 = 0x0210030; 1199 cpu->id_mmfr1 = 0x00000000; 1200 cpu->id_mmfr2 = 0x01200000; 1201 cpu->id_mmfr3 = 0x0211; 1202 cpu->id_isar0 = 0x2101111; 1203 cpu->id_isar1 = 0x13112111; 1204 cpu->id_isar2 = 0x21232141; 1205 cpu->id_isar3 = 0x01112131; 1206 cpu->id_isar4 = 0x0010142; 1207 cpu->id_isar5 = 0x0; 1208 cpu->mp_is_up = true; 1209 cpu->pmsav7_dregion = 16; 1210 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1211 } 1212 1213 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1214 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1215 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1216 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1217 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1218 REGINFO_SENTINEL 1219 }; 1220 1221 static void cortex_a8_initfn(Object *obj) 1222 { 1223 ARMCPU *cpu = ARM_CPU(obj); 1224 1225 cpu->dtb_compatible = "arm,cortex-a8"; 1226 set_feature(&cpu->env, ARM_FEATURE_V7); 1227 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1228 set_feature(&cpu->env, ARM_FEATURE_NEON); 1229 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1230 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1231 set_feature(&cpu->env, ARM_FEATURE_EL3); 1232 cpu->midr = 0x410fc080; 1233 cpu->reset_fpsid = 0x410330c0; 1234 cpu->mvfr0 = 0x11110222; 1235 cpu->mvfr1 = 0x00011111; 1236 cpu->ctr = 0x82048004; 1237 cpu->reset_sctlr = 0x00c50078; 1238 cpu->id_pfr0 = 0x1031; 1239 cpu->id_pfr1 = 0x11; 1240 cpu->id_dfr0 = 0x400; 1241 cpu->id_afr0 = 0; 1242 cpu->id_mmfr0 = 0x31100003; 1243 cpu->id_mmfr1 = 0x20000000; 1244 cpu->id_mmfr2 = 0x01202000; 1245 cpu->id_mmfr3 = 0x11; 1246 cpu->id_isar0 = 0x00101111; 1247 cpu->id_isar1 = 0x12112111; 1248 cpu->id_isar2 = 0x21232031; 1249 cpu->id_isar3 = 0x11112131; 1250 cpu->id_isar4 = 0x00111142; 1251 cpu->dbgdidr = 0x15141000; 1252 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1253 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1254 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1255 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1256 cpu->reset_auxcr = 2; 1257 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1258 } 1259 1260 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1261 /* power_control should be set to maximum latency. Again, 1262 * default to 0 and set by private hook 1263 */ 1264 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1265 .access = PL1_RW, .resetvalue = 0, 1266 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1267 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1268 .access = PL1_RW, .resetvalue = 0, 1269 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1270 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1271 .access = PL1_RW, .resetvalue = 0, 1272 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1273 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1274 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1275 /* TLB lockdown control */ 1276 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1277 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1278 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1279 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1280 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1281 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1282 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1283 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1284 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1285 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1286 REGINFO_SENTINEL 1287 }; 1288 1289 static void cortex_a9_initfn(Object *obj) 1290 { 1291 ARMCPU *cpu = ARM_CPU(obj); 1292 1293 cpu->dtb_compatible = "arm,cortex-a9"; 1294 set_feature(&cpu->env, ARM_FEATURE_V7); 1295 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1296 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16); 1297 set_feature(&cpu->env, ARM_FEATURE_NEON); 1298 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1299 set_feature(&cpu->env, ARM_FEATURE_EL3); 1300 /* Note that A9 supports the MP extensions even for 1301 * A9UP and single-core A9MP (which are both different 1302 * and valid configurations; we don't model A9UP). 1303 */ 1304 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1305 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1306 cpu->midr = 0x410fc090; 1307 cpu->reset_fpsid = 0x41033090; 1308 cpu->mvfr0 = 0x11110222; 1309 cpu->mvfr1 = 0x01111111; 1310 cpu->ctr = 0x80038003; 1311 cpu->reset_sctlr = 0x00c50078; 1312 cpu->id_pfr0 = 0x1031; 1313 cpu->id_pfr1 = 0x11; 1314 cpu->id_dfr0 = 0x000; 1315 cpu->id_afr0 = 0; 1316 cpu->id_mmfr0 = 0x00100103; 1317 cpu->id_mmfr1 = 0x20000000; 1318 cpu->id_mmfr2 = 0x01230000; 1319 cpu->id_mmfr3 = 0x00002111; 1320 cpu->id_isar0 = 0x00101111; 1321 cpu->id_isar1 = 0x13112111; 1322 cpu->id_isar2 = 0x21232041; 1323 cpu->id_isar3 = 0x11112131; 1324 cpu->id_isar4 = 0x00111142; 1325 cpu->dbgdidr = 0x35141000; 1326 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1327 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1328 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1329 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1330 } 1331 1332 #ifndef CONFIG_USER_ONLY 1333 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1334 { 1335 /* Linux wants the number of processors from here. 1336 * Might as well set the interrupt-controller bit too. 1337 */ 1338 return ((smp_cpus - 1) << 24) | (1 << 23); 1339 } 1340 #endif 1341 1342 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1343 #ifndef CONFIG_USER_ONLY 1344 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1345 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1346 .writefn = arm_cp_write_ignore, }, 1347 #endif 1348 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1349 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1350 REGINFO_SENTINEL 1351 }; 1352 1353 static void cortex_a7_initfn(Object *obj) 1354 { 1355 ARMCPU *cpu = ARM_CPU(obj); 1356 1357 cpu->dtb_compatible = "arm,cortex-a7"; 1358 set_feature(&cpu->env, ARM_FEATURE_V7); 1359 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1360 set_feature(&cpu->env, ARM_FEATURE_NEON); 1361 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1362 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1363 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1364 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1365 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1366 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1367 set_feature(&cpu->env, ARM_FEATURE_EL3); 1368 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1369 cpu->midr = 0x410fc075; 1370 cpu->reset_fpsid = 0x41023075; 1371 cpu->mvfr0 = 0x10110222; 1372 cpu->mvfr1 = 0x11111111; 1373 cpu->ctr = 0x84448003; 1374 cpu->reset_sctlr = 0x00c50078; 1375 cpu->id_pfr0 = 0x00001131; 1376 cpu->id_pfr1 = 0x00011011; 1377 cpu->id_dfr0 = 0x02010555; 1378 cpu->pmceid0 = 0x00000000; 1379 cpu->pmceid1 = 0x00000000; 1380 cpu->id_afr0 = 0x00000000; 1381 cpu->id_mmfr0 = 0x10101105; 1382 cpu->id_mmfr1 = 0x40000000; 1383 cpu->id_mmfr2 = 0x01240000; 1384 cpu->id_mmfr3 = 0x02102211; 1385 cpu->id_isar0 = 0x01101110; 1386 cpu->id_isar1 = 0x13112111; 1387 cpu->id_isar2 = 0x21232041; 1388 cpu->id_isar3 = 0x11112131; 1389 cpu->id_isar4 = 0x10011142; 1390 cpu->dbgdidr = 0x3515f005; 1391 cpu->clidr = 0x0a200023; 1392 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1393 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1394 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1395 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1396 } 1397 1398 static void cortex_a15_initfn(Object *obj) 1399 { 1400 ARMCPU *cpu = ARM_CPU(obj); 1401 1402 cpu->dtb_compatible = "arm,cortex-a15"; 1403 set_feature(&cpu->env, ARM_FEATURE_V7); 1404 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1405 set_feature(&cpu->env, ARM_FEATURE_NEON); 1406 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1407 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV); 1408 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1409 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1410 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1411 set_feature(&cpu->env, ARM_FEATURE_LPAE); 1412 set_feature(&cpu->env, ARM_FEATURE_EL3); 1413 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1414 cpu->midr = 0x412fc0f1; 1415 cpu->reset_fpsid = 0x410430f0; 1416 cpu->mvfr0 = 0x10110222; 1417 cpu->mvfr1 = 0x11111111; 1418 cpu->ctr = 0x8444c004; 1419 cpu->reset_sctlr = 0x00c50078; 1420 cpu->id_pfr0 = 0x00001131; 1421 cpu->id_pfr1 = 0x00011011; 1422 cpu->id_dfr0 = 0x02010555; 1423 cpu->pmceid0 = 0x0000000; 1424 cpu->pmceid1 = 0x00000000; 1425 cpu->id_afr0 = 0x00000000; 1426 cpu->id_mmfr0 = 0x10201105; 1427 cpu->id_mmfr1 = 0x20000000; 1428 cpu->id_mmfr2 = 0x01240000; 1429 cpu->id_mmfr3 = 0x02102211; 1430 cpu->id_isar0 = 0x02101110; 1431 cpu->id_isar1 = 0x13112111; 1432 cpu->id_isar2 = 0x21232041; 1433 cpu->id_isar3 = 0x11112131; 1434 cpu->id_isar4 = 0x10011142; 1435 cpu->dbgdidr = 0x3515f021; 1436 cpu->clidr = 0x0a200023; 1437 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1438 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1439 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1440 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1441 } 1442 1443 static void ti925t_initfn(Object *obj) 1444 { 1445 ARMCPU *cpu = ARM_CPU(obj); 1446 set_feature(&cpu->env, ARM_FEATURE_V4T); 1447 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1448 cpu->midr = ARM_CPUID_TI925T; 1449 cpu->ctr = 0x5109149; 1450 cpu->reset_sctlr = 0x00000070; 1451 } 1452 1453 static void sa1100_initfn(Object *obj) 1454 { 1455 ARMCPU *cpu = ARM_CPU(obj); 1456 1457 cpu->dtb_compatible = "intel,sa1100"; 1458 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1459 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1460 cpu->midr = 0x4401A11B; 1461 cpu->reset_sctlr = 0x00000070; 1462 } 1463 1464 static void sa1110_initfn(Object *obj) 1465 { 1466 ARMCPU *cpu = ARM_CPU(obj); 1467 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1468 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1469 cpu->midr = 0x6901B119; 1470 cpu->reset_sctlr = 0x00000070; 1471 } 1472 1473 static void pxa250_initfn(Object *obj) 1474 { 1475 ARMCPU *cpu = ARM_CPU(obj); 1476 1477 cpu->dtb_compatible = "marvell,xscale"; 1478 set_feature(&cpu->env, ARM_FEATURE_V5); 1479 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1480 cpu->midr = 0x69052100; 1481 cpu->ctr = 0xd172172; 1482 cpu->reset_sctlr = 0x00000078; 1483 } 1484 1485 static void pxa255_initfn(Object *obj) 1486 { 1487 ARMCPU *cpu = ARM_CPU(obj); 1488 1489 cpu->dtb_compatible = "marvell,xscale"; 1490 set_feature(&cpu->env, ARM_FEATURE_V5); 1491 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1492 cpu->midr = 0x69052d00; 1493 cpu->ctr = 0xd172172; 1494 cpu->reset_sctlr = 0x00000078; 1495 } 1496 1497 static void pxa260_initfn(Object *obj) 1498 { 1499 ARMCPU *cpu = ARM_CPU(obj); 1500 1501 cpu->dtb_compatible = "marvell,xscale"; 1502 set_feature(&cpu->env, ARM_FEATURE_V5); 1503 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1504 cpu->midr = 0x69052903; 1505 cpu->ctr = 0xd172172; 1506 cpu->reset_sctlr = 0x00000078; 1507 } 1508 1509 static void pxa261_initfn(Object *obj) 1510 { 1511 ARMCPU *cpu = ARM_CPU(obj); 1512 1513 cpu->dtb_compatible = "marvell,xscale"; 1514 set_feature(&cpu->env, ARM_FEATURE_V5); 1515 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1516 cpu->midr = 0x69052d05; 1517 cpu->ctr = 0xd172172; 1518 cpu->reset_sctlr = 0x00000078; 1519 } 1520 1521 static void pxa262_initfn(Object *obj) 1522 { 1523 ARMCPU *cpu = ARM_CPU(obj); 1524 1525 cpu->dtb_compatible = "marvell,xscale"; 1526 set_feature(&cpu->env, ARM_FEATURE_V5); 1527 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1528 cpu->midr = 0x69052d06; 1529 cpu->ctr = 0xd172172; 1530 cpu->reset_sctlr = 0x00000078; 1531 } 1532 1533 static void pxa270a0_initfn(Object *obj) 1534 { 1535 ARMCPU *cpu = ARM_CPU(obj); 1536 1537 cpu->dtb_compatible = "marvell,xscale"; 1538 set_feature(&cpu->env, ARM_FEATURE_V5); 1539 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1540 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1541 cpu->midr = 0x69054110; 1542 cpu->ctr = 0xd172172; 1543 cpu->reset_sctlr = 0x00000078; 1544 } 1545 1546 static void pxa270a1_initfn(Object *obj) 1547 { 1548 ARMCPU *cpu = ARM_CPU(obj); 1549 1550 cpu->dtb_compatible = "marvell,xscale"; 1551 set_feature(&cpu->env, ARM_FEATURE_V5); 1552 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1553 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1554 cpu->midr = 0x69054111; 1555 cpu->ctr = 0xd172172; 1556 cpu->reset_sctlr = 0x00000078; 1557 } 1558 1559 static void pxa270b0_initfn(Object *obj) 1560 { 1561 ARMCPU *cpu = ARM_CPU(obj); 1562 1563 cpu->dtb_compatible = "marvell,xscale"; 1564 set_feature(&cpu->env, ARM_FEATURE_V5); 1565 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1566 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1567 cpu->midr = 0x69054112; 1568 cpu->ctr = 0xd172172; 1569 cpu->reset_sctlr = 0x00000078; 1570 } 1571 1572 static void pxa270b1_initfn(Object *obj) 1573 { 1574 ARMCPU *cpu = ARM_CPU(obj); 1575 1576 cpu->dtb_compatible = "marvell,xscale"; 1577 set_feature(&cpu->env, ARM_FEATURE_V5); 1578 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1579 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1580 cpu->midr = 0x69054113; 1581 cpu->ctr = 0xd172172; 1582 cpu->reset_sctlr = 0x00000078; 1583 } 1584 1585 static void pxa270c0_initfn(Object *obj) 1586 { 1587 ARMCPU *cpu = ARM_CPU(obj); 1588 1589 cpu->dtb_compatible = "marvell,xscale"; 1590 set_feature(&cpu->env, ARM_FEATURE_V5); 1591 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1592 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1593 cpu->midr = 0x69054114; 1594 cpu->ctr = 0xd172172; 1595 cpu->reset_sctlr = 0x00000078; 1596 } 1597 1598 static void pxa270c5_initfn(Object *obj) 1599 { 1600 ARMCPU *cpu = ARM_CPU(obj); 1601 1602 cpu->dtb_compatible = "marvell,xscale"; 1603 set_feature(&cpu->env, ARM_FEATURE_V5); 1604 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1605 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1606 cpu->midr = 0x69054117; 1607 cpu->ctr = 0xd172172; 1608 cpu->reset_sctlr = 0x00000078; 1609 } 1610 1611 #ifdef CONFIG_USER_ONLY 1612 static void arm_any_initfn(Object *obj) 1613 { 1614 ARMCPU *cpu = ARM_CPU(obj); 1615 set_feature(&cpu->env, ARM_FEATURE_V8); 1616 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1617 set_feature(&cpu->env, ARM_FEATURE_NEON); 1618 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1619 set_feature(&cpu->env, ARM_FEATURE_V8_AES); 1620 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1); 1621 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256); 1622 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL); 1623 set_feature(&cpu->env, ARM_FEATURE_CRC); 1624 cpu->midr = 0xffffffff; 1625 } 1626 #endif 1627 1628 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 1629 1630 typedef struct ARMCPUInfo { 1631 const char *name; 1632 void (*initfn)(Object *obj); 1633 void (*class_init)(ObjectClass *oc, void *data); 1634 } ARMCPUInfo; 1635 1636 static const ARMCPUInfo arm_cpus[] = { 1637 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1638 { .name = "arm926", .initfn = arm926_initfn }, 1639 { .name = "arm946", .initfn = arm946_initfn }, 1640 { .name = "arm1026", .initfn = arm1026_initfn }, 1641 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 1642 * older core than plain "arm1136". In particular this does not 1643 * have the v6K features. 1644 */ 1645 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 1646 { .name = "arm1136", .initfn = arm1136_initfn }, 1647 { .name = "arm1176", .initfn = arm1176_initfn }, 1648 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 1649 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 1650 .class_init = arm_v7m_class_init }, 1651 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 1652 .class_init = arm_v7m_class_init }, 1653 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 1654 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 1655 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 1656 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 1657 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 1658 { .name = "ti925t", .initfn = ti925t_initfn }, 1659 { .name = "sa1100", .initfn = sa1100_initfn }, 1660 { .name = "sa1110", .initfn = sa1110_initfn }, 1661 { .name = "pxa250", .initfn = pxa250_initfn }, 1662 { .name = "pxa255", .initfn = pxa255_initfn }, 1663 { .name = "pxa260", .initfn = pxa260_initfn }, 1664 { .name = "pxa261", .initfn = pxa261_initfn }, 1665 { .name = "pxa262", .initfn = pxa262_initfn }, 1666 /* "pxa270" is an alias for "pxa270-a0" */ 1667 { .name = "pxa270", .initfn = pxa270a0_initfn }, 1668 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 1669 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 1670 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 1671 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 1672 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 1673 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 1674 #ifdef CONFIG_USER_ONLY 1675 { .name = "any", .initfn = arm_any_initfn }, 1676 #endif 1677 #endif 1678 { .name = NULL } 1679 }; 1680 1681 static Property arm_cpu_properties[] = { 1682 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 1683 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 1684 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 1685 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 1686 mp_affinity, ARM64_AFFINITY_INVALID), 1687 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 1688 DEFINE_PROP_END_OF_LIST() 1689 }; 1690 1691 #ifdef CONFIG_USER_ONLY 1692 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, 1693 int rw, int mmu_idx) 1694 { 1695 ARMCPU *cpu = ARM_CPU(cs); 1696 CPUARMState *env = &cpu->env; 1697 1698 env->exception.vaddress = address; 1699 if (rw == 2) { 1700 cs->exception_index = EXCP_PREFETCH_ABORT; 1701 } else { 1702 cs->exception_index = EXCP_DATA_ABORT; 1703 } 1704 return 1; 1705 } 1706 #endif 1707 1708 static gchar *arm_gdb_arch_name(CPUState *cs) 1709 { 1710 ARMCPU *cpu = ARM_CPU(cs); 1711 CPUARMState *env = &cpu->env; 1712 1713 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 1714 return g_strdup("iwmmxt"); 1715 } 1716 return g_strdup("arm"); 1717 } 1718 1719 static void arm_cpu_class_init(ObjectClass *oc, void *data) 1720 { 1721 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1722 CPUClass *cc = CPU_CLASS(acc); 1723 DeviceClass *dc = DEVICE_CLASS(oc); 1724 1725 device_class_set_parent_realize(dc, arm_cpu_realizefn, 1726 &acc->parent_realize); 1727 dc->props = arm_cpu_properties; 1728 1729 acc->parent_reset = cc->reset; 1730 cc->reset = arm_cpu_reset; 1731 1732 cc->class_by_name = arm_cpu_class_by_name; 1733 cc->has_work = arm_cpu_has_work; 1734 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 1735 cc->dump_state = arm_cpu_dump_state; 1736 cc->set_pc = arm_cpu_set_pc; 1737 cc->gdb_read_register = arm_cpu_gdb_read_register; 1738 cc->gdb_write_register = arm_cpu_gdb_write_register; 1739 #ifdef CONFIG_USER_ONLY 1740 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 1741 #else 1742 cc->do_interrupt = arm_cpu_do_interrupt; 1743 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 1744 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 1745 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 1746 cc->asidx_from_attrs = arm_asidx_from_attrs; 1747 cc->vmsd = &vmstate_arm_cpu; 1748 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 1749 cc->write_elf64_note = arm_cpu_write_elf64_note; 1750 cc->write_elf32_note = arm_cpu_write_elf32_note; 1751 #endif 1752 cc->gdb_num_core_regs = 26; 1753 cc->gdb_core_xml_file = "arm-core.xml"; 1754 cc->gdb_arch_name = arm_gdb_arch_name; 1755 cc->gdb_stop_before_watchpoint = true; 1756 cc->debug_excp_handler = arm_debug_excp_handler; 1757 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 1758 #if !defined(CONFIG_USER_ONLY) 1759 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 1760 #endif 1761 1762 cc->disas_set_info = arm_disas_set_info; 1763 #ifdef CONFIG_TCG 1764 cc->tcg_initialize = arm_translate_init; 1765 #endif 1766 } 1767 1768 static void cpu_register(const ARMCPUInfo *info) 1769 { 1770 TypeInfo type_info = { 1771 .parent = TYPE_ARM_CPU, 1772 .instance_size = sizeof(ARMCPU), 1773 .instance_init = info->initfn, 1774 .class_size = sizeof(ARMCPUClass), 1775 .class_init = info->class_init, 1776 }; 1777 1778 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 1779 type_register(&type_info); 1780 g_free((void *)type_info.name); 1781 } 1782 1783 static const TypeInfo arm_cpu_type_info = { 1784 .name = TYPE_ARM_CPU, 1785 .parent = TYPE_CPU, 1786 .instance_size = sizeof(ARMCPU), 1787 .instance_init = arm_cpu_initfn, 1788 .instance_post_init = arm_cpu_post_init, 1789 .instance_finalize = arm_cpu_finalizefn, 1790 .abstract = true, 1791 .class_size = sizeof(ARMCPUClass), 1792 .class_init = arm_cpu_class_init, 1793 }; 1794 1795 static void arm_cpu_register_types(void) 1796 { 1797 const ARMCPUInfo *info = arm_cpus; 1798 1799 type_register_static(&arm_cpu_type_info); 1800 1801 while (info->name) { 1802 cpu_register(info); 1803 info++; 1804 } 1805 } 1806 1807 type_init(arm_cpu_register_types) 1808