xref: /openbmc/qemu/target/arm/cpu.c (revision fe1127da)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
178 
179     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181     }
182 
183     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184         /* 64 bit CPUs always start in 64 bit mode */
185         env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187         env->pstate = PSTATE_MODE_EL0t;
188         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190         /* Enable all PAC keys.  */
191         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192                                   SCTLR_EnDA | SCTLR_EnDB);
193         /* and to the FP/Neon instructions */
194         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195         /* and to the SVE instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197         /* with reasonable vector length */
198         if (cpu_isar_feature(aa64_sve, cpu)) {
199             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
200         }
201         /*
202          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
203          * turning on both here will produce smaller code and otherwise
204          * make no difference to the user-level emulation.
205          *
206          * In sve_probe_page, we assume that this is set.
207          * Do not modify this without other changes.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (cpu_isar_feature(aa32_lob, cpu)) {
259             /*
260              * LTPSIZE is constant 4 if MVE not implemented, and resets
261              * to an UNKNOWN value if MVE is implemented. We choose to
262              * always reset to 4.
263              */
264             env->v7m.ltpsize = 4;
265         }
266 
267         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
268             env->v7m.secure = true;
269         } else {
270             /* This bit resets to 0 if security is supported, but 1 if
271              * it is not. The bit is not present in v7M, but we set it
272              * here so we can avoid having to make checks on it conditional
273              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
274              */
275             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
276             /*
277              * Set NSACR to indicate "NS access permitted to everything";
278              * this avoids having to have all the tests of it being
279              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
280              * v8.1M the guest-visible value of NSACR in a CPU without the
281              * Security Extension is 0xcff.
282              */
283             env->v7m.nsacr = 0xcff;
284         }
285 
286         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
287          * that it resets to 1, so QEMU always does that rather than making
288          * it dependent on CPU model. In v8M it is RES1.
289          */
290         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
291         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
292         if (arm_feature(env, ARM_FEATURE_V8)) {
293             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
294             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
295             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
296         }
297         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
298             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
299             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
300         }
301 
302         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
303             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
304             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
305                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
306         }
307         /* Unlike A/R profile, M profile defines the reset LR value */
308         env->regs[14] = 0xffffffff;
309 
310         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
311 
312         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
313         vecbase = env->v7m.vecbase[env->v7m.secure];
314         rom = rom_ptr(vecbase, 8);
315         if (rom) {
316             /* Address zero is covered by ROM which hasn't yet been
317              * copied into physical memory.
318              */
319             initial_msp = ldl_p(rom);
320             initial_pc = ldl_p(rom + 4);
321         } else {
322             /* Address zero not covered by a ROM blob, or the ROM blob
323              * is in non-modifiable memory and this is a second reset after
324              * it got copied into memory. In the latter case, rom_ptr
325              * will return a NULL pointer and we should use ldl_phys instead.
326              */
327             initial_msp = ldl_phys(s->as, vecbase);
328             initial_pc = ldl_phys(s->as, vecbase + 4);
329         }
330 
331         env->regs[13] = initial_msp & 0xFFFFFFFC;
332         env->regs[15] = initial_pc & ~1;
333         env->thumb = initial_pc & 1;
334     }
335 
336     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
337      * executing as AArch32 then check if highvecs are enabled and
338      * adjust the PC accordingly.
339      */
340     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
341         env->regs[15] = 0xFFFF0000;
342     }
343 
344     /* M profile requires that reset clears the exclusive monitor;
345      * A profile does not, but clearing it makes more sense than having it
346      * set with an exclusive access on address zero.
347      */
348     arm_clear_exclusive(env);
349 
350     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
351 #endif
352 
353     if (arm_feature(env, ARM_FEATURE_PMSA)) {
354         if (cpu->pmsav7_dregion > 0) {
355             if (arm_feature(env, ARM_FEATURE_V8)) {
356                 memset(env->pmsav8.rbar[M_REG_NS], 0,
357                        sizeof(*env->pmsav8.rbar[M_REG_NS])
358                        * cpu->pmsav7_dregion);
359                 memset(env->pmsav8.rlar[M_REG_NS], 0,
360                        sizeof(*env->pmsav8.rlar[M_REG_NS])
361                        * cpu->pmsav7_dregion);
362                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
363                     memset(env->pmsav8.rbar[M_REG_S], 0,
364                            sizeof(*env->pmsav8.rbar[M_REG_S])
365                            * cpu->pmsav7_dregion);
366                     memset(env->pmsav8.rlar[M_REG_S], 0,
367                            sizeof(*env->pmsav8.rlar[M_REG_S])
368                            * cpu->pmsav7_dregion);
369                 }
370             } else if (arm_feature(env, ARM_FEATURE_V7)) {
371                 memset(env->pmsav7.drbar, 0,
372                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
373                 memset(env->pmsav7.drsr, 0,
374                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
375                 memset(env->pmsav7.dracr, 0,
376                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
377             }
378         }
379         env->pmsav7.rnr[M_REG_NS] = 0;
380         env->pmsav7.rnr[M_REG_S] = 0;
381         env->pmsav8.mair0[M_REG_NS] = 0;
382         env->pmsav8.mair0[M_REG_S] = 0;
383         env->pmsav8.mair1[M_REG_NS] = 0;
384         env->pmsav8.mair1[M_REG_S] = 0;
385     }
386 
387     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
388         if (cpu->sau_sregion > 0) {
389             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
390             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
391         }
392         env->sau.rnr = 0;
393         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
394          * the Cortex-M33 does.
395          */
396         env->sau.ctrl = 0;
397     }
398 
399     set_flush_to_zero(1, &env->vfp.standard_fp_status);
400     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
401     set_default_nan_mode(1, &env->vfp.standard_fp_status);
402     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
403     set_float_detect_tininess(float_tininess_before_rounding,
404                               &env->vfp.fp_status);
405     set_float_detect_tininess(float_tininess_before_rounding,
406                               &env->vfp.standard_fp_status);
407     set_float_detect_tininess(float_tininess_before_rounding,
408                               &env->vfp.fp_status_f16);
409     set_float_detect_tininess(float_tininess_before_rounding,
410                               &env->vfp.standard_fp_status_f16);
411 #ifndef CONFIG_USER_ONLY
412     if (kvm_enabled()) {
413         kvm_arm_reset_vcpu(cpu);
414     }
415 #endif
416 
417     hw_breakpoint_update_all(cpu);
418     hw_watchpoint_update_all(cpu);
419     arm_rebuild_hflags(env);
420 }
421 
422 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
423                                      unsigned int target_el,
424                                      unsigned int cur_el, bool secure,
425                                      uint64_t hcr_el2)
426 {
427     CPUARMState *env = cs->env_ptr;
428     bool pstate_unmasked;
429     bool unmasked = false;
430 
431     /*
432      * Don't take exceptions if they target a lower EL.
433      * This check should catch any exceptions that would not be taken
434      * but left pending.
435      */
436     if (cur_el > target_el) {
437         return false;
438     }
439 
440     switch (excp_idx) {
441     case EXCP_FIQ:
442         pstate_unmasked = !(env->daif & PSTATE_F);
443         break;
444 
445     case EXCP_IRQ:
446         pstate_unmasked = !(env->daif & PSTATE_I);
447         break;
448 
449     case EXCP_VFIQ:
450         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
451             /* VFIQs are only taken when hypervized and non-secure.  */
452             return false;
453         }
454         return !(env->daif & PSTATE_F);
455     case EXCP_VIRQ:
456         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
457             /* VIRQs are only taken when hypervized and non-secure.  */
458             return false;
459         }
460         return !(env->daif & PSTATE_I);
461     default:
462         g_assert_not_reached();
463     }
464 
465     /*
466      * Use the target EL, current execution state and SCR/HCR settings to
467      * determine whether the corresponding CPSR bit is used to mask the
468      * interrupt.
469      */
470     if ((target_el > cur_el) && (target_el != 1)) {
471         /* Exceptions targeting a higher EL may not be maskable */
472         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
473             /*
474              * 64-bit masking rules are simple: exceptions to EL3
475              * can't be masked, and exceptions to EL2 can only be
476              * masked from Secure state. The HCR and SCR settings
477              * don't affect the masking logic, only the interrupt routing.
478              */
479             if (target_el == 3 || !secure) {
480                 unmasked = true;
481             }
482         } else {
483             /*
484              * The old 32-bit-only environment has a more complicated
485              * masking setup. HCR and SCR bits not only affect interrupt
486              * routing but also change the behaviour of masking.
487              */
488             bool hcr, scr;
489 
490             switch (excp_idx) {
491             case EXCP_FIQ:
492                 /*
493                  * If FIQs are routed to EL3 or EL2 then there are cases where
494                  * we override the CPSR.F in determining if the exception is
495                  * masked or not. If neither of these are set then we fall back
496                  * to the CPSR.F setting otherwise we further assess the state
497                  * below.
498                  */
499                 hcr = hcr_el2 & HCR_FMO;
500                 scr = (env->cp15.scr_el3 & SCR_FIQ);
501 
502                 /*
503                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
504                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
505                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
506                  * when non-secure but only when FIQs are only routed to EL3.
507                  */
508                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
509                 break;
510             case EXCP_IRQ:
511                 /*
512                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
513                  * we may override the CPSR.I masking when in non-secure state.
514                  * The SCR.IRQ setting has already been taken into consideration
515                  * when setting the target EL, so it does not have a further
516                  * affect here.
517                  */
518                 hcr = hcr_el2 & HCR_IMO;
519                 scr = false;
520                 break;
521             default:
522                 g_assert_not_reached();
523             }
524 
525             if ((scr || hcr) && !secure) {
526                 unmasked = true;
527             }
528         }
529     }
530 
531     /*
532      * The PSTATE bits only mask the interrupt if we have not overriden the
533      * ability above.
534      */
535     return unmasked || pstate_unmasked;
536 }
537 
538 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
539 {
540     CPUClass *cc = CPU_GET_CLASS(cs);
541     CPUARMState *env = cs->env_ptr;
542     uint32_t cur_el = arm_current_el(env);
543     bool secure = arm_is_secure(env);
544     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
545     uint32_t target_el;
546     uint32_t excp_idx;
547 
548     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
549 
550     if (interrupt_request & CPU_INTERRUPT_FIQ) {
551         excp_idx = EXCP_FIQ;
552         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
553         if (arm_excp_unmasked(cs, excp_idx, target_el,
554                               cur_el, secure, hcr_el2)) {
555             goto found;
556         }
557     }
558     if (interrupt_request & CPU_INTERRUPT_HARD) {
559         excp_idx = EXCP_IRQ;
560         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
561         if (arm_excp_unmasked(cs, excp_idx, target_el,
562                               cur_el, secure, hcr_el2)) {
563             goto found;
564         }
565     }
566     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
567         excp_idx = EXCP_VIRQ;
568         target_el = 1;
569         if (arm_excp_unmasked(cs, excp_idx, target_el,
570                               cur_el, secure, hcr_el2)) {
571             goto found;
572         }
573     }
574     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
575         excp_idx = EXCP_VFIQ;
576         target_el = 1;
577         if (arm_excp_unmasked(cs, excp_idx, target_el,
578                               cur_el, secure, hcr_el2)) {
579             goto found;
580         }
581     }
582     return false;
583 
584  found:
585     cs->exception_index = excp_idx;
586     env->exception.target_el = target_el;
587     cc->do_interrupt(cs);
588     return true;
589 }
590 
591 void arm_cpu_update_virq(ARMCPU *cpu)
592 {
593     /*
594      * Update the interrupt level for VIRQ, which is the logical OR of
595      * the HCR_EL2.VI bit and the input line level from the GIC.
596      */
597     CPUARMState *env = &cpu->env;
598     CPUState *cs = CPU(cpu);
599 
600     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
601         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
602 
603     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
604         if (new_state) {
605             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
606         } else {
607             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
608         }
609     }
610 }
611 
612 void arm_cpu_update_vfiq(ARMCPU *cpu)
613 {
614     /*
615      * Update the interrupt level for VFIQ, which is the logical OR of
616      * the HCR_EL2.VF bit and the input line level from the GIC.
617      */
618     CPUARMState *env = &cpu->env;
619     CPUState *cs = CPU(cpu);
620 
621     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
622         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
623 
624     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
625         if (new_state) {
626             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
627         } else {
628             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
629         }
630     }
631 }
632 
633 #ifndef CONFIG_USER_ONLY
634 static void arm_cpu_set_irq(void *opaque, int irq, int level)
635 {
636     ARMCPU *cpu = opaque;
637     CPUARMState *env = &cpu->env;
638     CPUState *cs = CPU(cpu);
639     static const int mask[] = {
640         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
641         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
642         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
643         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
644     };
645 
646     if (level) {
647         env->irq_line_state |= mask[irq];
648     } else {
649         env->irq_line_state &= ~mask[irq];
650     }
651 
652     switch (irq) {
653     case ARM_CPU_VIRQ:
654         assert(arm_feature(env, ARM_FEATURE_EL2));
655         arm_cpu_update_virq(cpu);
656         break;
657     case ARM_CPU_VFIQ:
658         assert(arm_feature(env, ARM_FEATURE_EL2));
659         arm_cpu_update_vfiq(cpu);
660         break;
661     case ARM_CPU_IRQ:
662     case ARM_CPU_FIQ:
663         if (level) {
664             cpu_interrupt(cs, mask[irq]);
665         } else {
666             cpu_reset_interrupt(cs, mask[irq]);
667         }
668         break;
669     default:
670         g_assert_not_reached();
671     }
672 }
673 
674 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
675 {
676 #ifdef CONFIG_KVM
677     ARMCPU *cpu = opaque;
678     CPUARMState *env = &cpu->env;
679     CPUState *cs = CPU(cpu);
680     uint32_t linestate_bit;
681     int irq_id;
682 
683     switch (irq) {
684     case ARM_CPU_IRQ:
685         irq_id = KVM_ARM_IRQ_CPU_IRQ;
686         linestate_bit = CPU_INTERRUPT_HARD;
687         break;
688     case ARM_CPU_FIQ:
689         irq_id = KVM_ARM_IRQ_CPU_FIQ;
690         linestate_bit = CPU_INTERRUPT_FIQ;
691         break;
692     default:
693         g_assert_not_reached();
694     }
695 
696     if (level) {
697         env->irq_line_state |= linestate_bit;
698     } else {
699         env->irq_line_state &= ~linestate_bit;
700     }
701     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
702 #endif
703 }
704 
705 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
706 {
707     ARMCPU *cpu = ARM_CPU(cs);
708     CPUARMState *env = &cpu->env;
709 
710     cpu_synchronize_state(cs);
711     return arm_cpu_data_is_big_endian(env);
712 }
713 
714 #endif
715 
716 static int
717 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
718 {
719   return print_insn_arm(pc | 1, info);
720 }
721 
722 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
723 {
724     ARMCPU *ac = ARM_CPU(cpu);
725     CPUARMState *env = &ac->env;
726     bool sctlr_b;
727 
728     if (is_a64(env)) {
729         /* We might not be compiled with the A64 disassembler
730          * because it needs a C++ compiler. Leave print_insn
731          * unset in this case to use the caller default behaviour.
732          */
733 #if defined(CONFIG_ARM_A64_DIS)
734         info->print_insn = print_insn_arm_a64;
735 #endif
736         info->cap_arch = CS_ARCH_ARM64;
737         info->cap_insn_unit = 4;
738         info->cap_insn_split = 4;
739     } else {
740         int cap_mode;
741         if (env->thumb) {
742             info->print_insn = print_insn_thumb1;
743             info->cap_insn_unit = 2;
744             info->cap_insn_split = 4;
745             cap_mode = CS_MODE_THUMB;
746         } else {
747             info->print_insn = print_insn_arm;
748             info->cap_insn_unit = 4;
749             info->cap_insn_split = 4;
750             cap_mode = CS_MODE_ARM;
751         }
752         if (arm_feature(env, ARM_FEATURE_V8)) {
753             cap_mode |= CS_MODE_V8;
754         }
755         if (arm_feature(env, ARM_FEATURE_M)) {
756             cap_mode |= CS_MODE_MCLASS;
757         }
758         info->cap_arch = CS_ARCH_ARM;
759         info->cap_mode = cap_mode;
760     }
761 
762     sctlr_b = arm_sctlr_b(env);
763     if (bswap_code(sctlr_b)) {
764 #ifdef TARGET_WORDS_BIGENDIAN
765         info->endian = BFD_ENDIAN_LITTLE;
766 #else
767         info->endian = BFD_ENDIAN_BIG;
768 #endif
769     }
770     info->flags &= ~INSN_ARM_BE32;
771 #ifndef CONFIG_USER_ONLY
772     if (sctlr_b) {
773         info->flags |= INSN_ARM_BE32;
774     }
775 #endif
776 }
777 
778 #ifdef TARGET_AARCH64
779 
780 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
781 {
782     ARMCPU *cpu = ARM_CPU(cs);
783     CPUARMState *env = &cpu->env;
784     uint32_t psr = pstate_read(env);
785     int i;
786     int el = arm_current_el(env);
787     const char *ns_status;
788 
789     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
790     for (i = 0; i < 32; i++) {
791         if (i == 31) {
792             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
793         } else {
794             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
795                          (i + 2) % 3 ? " " : "\n");
796         }
797     }
798 
799     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
800         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
801     } else {
802         ns_status = "";
803     }
804     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
805                  psr,
806                  psr & PSTATE_N ? 'N' : '-',
807                  psr & PSTATE_Z ? 'Z' : '-',
808                  psr & PSTATE_C ? 'C' : '-',
809                  psr & PSTATE_V ? 'V' : '-',
810                  ns_status,
811                  el,
812                  psr & PSTATE_SP ? 'h' : 't');
813 
814     if (cpu_isar_feature(aa64_bti, cpu)) {
815         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
816     }
817     if (!(flags & CPU_DUMP_FPU)) {
818         qemu_fprintf(f, "\n");
819         return;
820     }
821     if (fp_exception_el(env, el) != 0) {
822         qemu_fprintf(f, "    FPU disabled\n");
823         return;
824     }
825     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
826                  vfp_get_fpcr(env), vfp_get_fpsr(env));
827 
828     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
829         int j, zcr_len = sve_zcr_len_for_el(env, el);
830 
831         for (i = 0; i <= FFR_PRED_NUM; i++) {
832             bool eol;
833             if (i == FFR_PRED_NUM) {
834                 qemu_fprintf(f, "FFR=");
835                 /* It's last, so end the line.  */
836                 eol = true;
837             } else {
838                 qemu_fprintf(f, "P%02d=", i);
839                 switch (zcr_len) {
840                 case 0:
841                     eol = i % 8 == 7;
842                     break;
843                 case 1:
844                     eol = i % 6 == 5;
845                     break;
846                 case 2:
847                 case 3:
848                     eol = i % 3 == 2;
849                     break;
850                 default:
851                     /* More than one quadword per predicate.  */
852                     eol = true;
853                     break;
854                 }
855             }
856             for (j = zcr_len / 4; j >= 0; j--) {
857                 int digits;
858                 if (j * 4 + 4 <= zcr_len + 1) {
859                     digits = 16;
860                 } else {
861                     digits = (zcr_len % 4 + 1) * 4;
862                 }
863                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
864                              env->vfp.pregs[i].p[j],
865                              j ? ":" : eol ? "\n" : " ");
866             }
867         }
868 
869         for (i = 0; i < 32; i++) {
870             if (zcr_len == 0) {
871                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
872                              i, env->vfp.zregs[i].d[1],
873                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
874             } else if (zcr_len == 1) {
875                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
876                              ":%016" PRIx64 ":%016" PRIx64 "\n",
877                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
878                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
879             } else {
880                 for (j = zcr_len; j >= 0; j--) {
881                     bool odd = (zcr_len - j) % 2 != 0;
882                     if (j == zcr_len) {
883                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
884                     } else if (!odd) {
885                         if (j > 0) {
886                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
887                         } else {
888                             qemu_fprintf(f, "     [%x]=", j);
889                         }
890                     }
891                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
892                                  env->vfp.zregs[i].d[j * 2 + 1],
893                                  env->vfp.zregs[i].d[j * 2],
894                                  odd || j == 0 ? "\n" : ":");
895                 }
896             }
897         }
898     } else {
899         for (i = 0; i < 32; i++) {
900             uint64_t *q = aa64_vfp_qreg(env, i);
901             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
902                          i, q[1], q[0], (i & 1 ? "\n" : " "));
903         }
904     }
905 }
906 
907 #else
908 
909 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
910 {
911     g_assert_not_reached();
912 }
913 
914 #endif
915 
916 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
917 {
918     ARMCPU *cpu = ARM_CPU(cs);
919     CPUARMState *env = &cpu->env;
920     int i;
921 
922     if (is_a64(env)) {
923         aarch64_cpu_dump_state(cs, f, flags);
924         return;
925     }
926 
927     for (i = 0; i < 16; i++) {
928         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
929         if ((i % 4) == 3) {
930             qemu_fprintf(f, "\n");
931         } else {
932             qemu_fprintf(f, " ");
933         }
934     }
935 
936     if (arm_feature(env, ARM_FEATURE_M)) {
937         uint32_t xpsr = xpsr_read(env);
938         const char *mode;
939         const char *ns_status = "";
940 
941         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
942             ns_status = env->v7m.secure ? "S " : "NS ";
943         }
944 
945         if (xpsr & XPSR_EXCP) {
946             mode = "handler";
947         } else {
948             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
949                 mode = "unpriv-thread";
950             } else {
951                 mode = "priv-thread";
952             }
953         }
954 
955         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
956                      xpsr,
957                      xpsr & XPSR_N ? 'N' : '-',
958                      xpsr & XPSR_Z ? 'Z' : '-',
959                      xpsr & XPSR_C ? 'C' : '-',
960                      xpsr & XPSR_V ? 'V' : '-',
961                      xpsr & XPSR_T ? 'T' : 'A',
962                      ns_status,
963                      mode);
964     } else {
965         uint32_t psr = cpsr_read(env);
966         const char *ns_status = "";
967 
968         if (arm_feature(env, ARM_FEATURE_EL3) &&
969             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
970             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
971         }
972 
973         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
974                      psr,
975                      psr & CPSR_N ? 'N' : '-',
976                      psr & CPSR_Z ? 'Z' : '-',
977                      psr & CPSR_C ? 'C' : '-',
978                      psr & CPSR_V ? 'V' : '-',
979                      psr & CPSR_T ? 'T' : 'A',
980                      ns_status,
981                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
982     }
983 
984     if (flags & CPU_DUMP_FPU) {
985         int numvfpregs = 0;
986         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
987             numvfpregs = 32;
988         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
989             numvfpregs = 16;
990         }
991         for (i = 0; i < numvfpregs; i++) {
992             uint64_t v = *aa32_vfp_dreg(env, i);
993             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
994                          i * 2, (uint32_t)v,
995                          i * 2 + 1, (uint32_t)(v >> 32),
996                          i, v);
997         }
998         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
999     }
1000 }
1001 
1002 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1003 {
1004     uint32_t Aff1 = idx / clustersz;
1005     uint32_t Aff0 = idx % clustersz;
1006     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1007 }
1008 
1009 static void cpreg_hashtable_data_destroy(gpointer data)
1010 {
1011     /*
1012      * Destroy function for cpu->cp_regs hashtable data entries.
1013      * We must free the name string because it was g_strdup()ed in
1014      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1015      * from r->name because we know we definitely allocated it.
1016      */
1017     ARMCPRegInfo *r = data;
1018 
1019     g_free((void *)r->name);
1020     g_free(r);
1021 }
1022 
1023 static void arm_cpu_initfn(Object *obj)
1024 {
1025     ARMCPU *cpu = ARM_CPU(obj);
1026 
1027     cpu_set_cpustate_pointers(cpu);
1028     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1029                                          g_free, cpreg_hashtable_data_destroy);
1030 
1031     QLIST_INIT(&cpu->pre_el_change_hooks);
1032     QLIST_INIT(&cpu->el_change_hooks);
1033 
1034 #ifndef CONFIG_USER_ONLY
1035     /* Our inbound IRQ and FIQ lines */
1036     if (kvm_enabled()) {
1037         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1038          * the same interface as non-KVM CPUs.
1039          */
1040         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1041     } else {
1042         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1043     }
1044 
1045     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1046                        ARRAY_SIZE(cpu->gt_timer_outputs));
1047 
1048     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1049                              "gicv3-maintenance-interrupt", 1);
1050     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1051                              "pmu-interrupt", 1);
1052 #endif
1053 
1054     /* DTB consumers generally don't in fact care what the 'compatible'
1055      * string is, so always provide some string and trust that a hypothetical
1056      * picky DTB consumer will also provide a helpful error message.
1057      */
1058     cpu->dtb_compatible = "qemu,unknown";
1059     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1060     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1061 
1062     if (tcg_enabled()) {
1063         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1064     }
1065 }
1066 
1067 static Property arm_cpu_gt_cntfrq_property =
1068             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1069                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1070 
1071 static Property arm_cpu_reset_cbar_property =
1072             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1073 
1074 static Property arm_cpu_reset_hivecs_property =
1075             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1076 
1077 static Property arm_cpu_rvbar_property =
1078             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1079 
1080 #ifndef CONFIG_USER_ONLY
1081 static Property arm_cpu_has_el2_property =
1082             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1083 
1084 static Property arm_cpu_has_el3_property =
1085             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1086 #endif
1087 
1088 static Property arm_cpu_cfgend_property =
1089             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1090 
1091 static Property arm_cpu_has_vfp_property =
1092             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1093 
1094 static Property arm_cpu_has_neon_property =
1095             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1096 
1097 static Property arm_cpu_has_dsp_property =
1098             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1099 
1100 static Property arm_cpu_has_mpu_property =
1101             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1102 
1103 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1104  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1105  * the right value for that particular CPU type, and we don't want
1106  * to override that with an incorrect constant value.
1107  */
1108 static Property arm_cpu_pmsav7_dregion_property =
1109             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1110                                            pmsav7_dregion,
1111                                            qdev_prop_uint32, uint32_t);
1112 
1113 static bool arm_get_pmu(Object *obj, Error **errp)
1114 {
1115     ARMCPU *cpu = ARM_CPU(obj);
1116 
1117     return cpu->has_pmu;
1118 }
1119 
1120 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1121 {
1122     ARMCPU *cpu = ARM_CPU(obj);
1123 
1124     if (value) {
1125         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1126             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1127             return;
1128         }
1129         set_feature(&cpu->env, ARM_FEATURE_PMU);
1130     } else {
1131         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1132     }
1133     cpu->has_pmu = value;
1134 }
1135 
1136 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1137 {
1138     /*
1139      * The exact approach to calculating guest ticks is:
1140      *
1141      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1142      *              NANOSECONDS_PER_SECOND);
1143      *
1144      * We don't do that. Rather we intentionally use integer division
1145      * truncation below and in the caller for the conversion of host monotonic
1146      * time to guest ticks to provide the exact inverse for the semantics of
1147      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1148      * it loses precision when representing frequencies where
1149      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1150      * provide an exact inverse leads to scheduling timers with negative
1151      * periods, which in turn leads to sticky behaviour in the guest.
1152      *
1153      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1154      * cannot become zero.
1155      */
1156     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1157       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1158 }
1159 
1160 void arm_cpu_post_init(Object *obj)
1161 {
1162     ARMCPU *cpu = ARM_CPU(obj);
1163 
1164     /* M profile implies PMSA. We have to do this here rather than
1165      * in realize with the other feature-implication checks because
1166      * we look at the PMSA bit to see if we should add some properties.
1167      */
1168     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1169         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1170     }
1171 
1172     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1173         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1174         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1175     }
1176 
1177     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1178         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1179     }
1180 
1181     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1182         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1183     }
1184 
1185 #ifndef CONFIG_USER_ONLY
1186     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1187         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1188          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1189          */
1190         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1191 
1192         object_property_add_link(obj, "secure-memory",
1193                                  TYPE_MEMORY_REGION,
1194                                  (Object **)&cpu->secure_memory,
1195                                  qdev_prop_allow_set_link_before_realize,
1196                                  OBJ_PROP_LINK_STRONG);
1197     }
1198 
1199     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1200         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1201     }
1202 #endif
1203 
1204     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1205         cpu->has_pmu = true;
1206         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1207     }
1208 
1209     /*
1210      * Allow user to turn off VFP and Neon support, but only for TCG --
1211      * KVM does not currently allow us to lie to the guest about its
1212      * ID/feature registers, so the guest always sees what the host has.
1213      */
1214     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1215         ? cpu_isar_feature(aa64_fp_simd, cpu)
1216         : cpu_isar_feature(aa32_vfp, cpu)) {
1217         cpu->has_vfp = true;
1218         if (!kvm_enabled()) {
1219             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1220         }
1221     }
1222 
1223     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1224         cpu->has_neon = true;
1225         if (!kvm_enabled()) {
1226             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1227         }
1228     }
1229 
1230     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1231         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1232         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1233     }
1234 
1235     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1236         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1237         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1238             qdev_property_add_static(DEVICE(obj),
1239                                      &arm_cpu_pmsav7_dregion_property);
1240         }
1241     }
1242 
1243     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1244         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1245                                  qdev_prop_allow_set_link_before_realize,
1246                                  OBJ_PROP_LINK_STRONG);
1247         /*
1248          * M profile: initial value of the Secure VTOR. We can't just use
1249          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1250          * the property to be set after realize.
1251          */
1252         object_property_add_uint32_ptr(obj, "init-svtor",
1253                                        &cpu->init_svtor,
1254                                        OBJ_PROP_FLAG_READWRITE);
1255     }
1256 
1257     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1258 
1259     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1260         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1261     }
1262 
1263     if (kvm_enabled()) {
1264         kvm_arm_add_vcpu_properties(obj);
1265     }
1266 
1267 #ifndef CONFIG_USER_ONLY
1268     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1269         cpu_isar_feature(aa64_mte, cpu)) {
1270         object_property_add_link(obj, "tag-memory",
1271                                  TYPE_MEMORY_REGION,
1272                                  (Object **)&cpu->tag_memory,
1273                                  qdev_prop_allow_set_link_before_realize,
1274                                  OBJ_PROP_LINK_STRONG);
1275 
1276         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1277             object_property_add_link(obj, "secure-tag-memory",
1278                                      TYPE_MEMORY_REGION,
1279                                      (Object **)&cpu->secure_tag_memory,
1280                                      qdev_prop_allow_set_link_before_realize,
1281                                      OBJ_PROP_LINK_STRONG);
1282         }
1283     }
1284 #endif
1285 }
1286 
1287 static void arm_cpu_finalizefn(Object *obj)
1288 {
1289     ARMCPU *cpu = ARM_CPU(obj);
1290     ARMELChangeHook *hook, *next;
1291 
1292     g_hash_table_destroy(cpu->cp_regs);
1293 
1294     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1295         QLIST_REMOVE(hook, node);
1296         g_free(hook);
1297     }
1298     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1299         QLIST_REMOVE(hook, node);
1300         g_free(hook);
1301     }
1302 #ifndef CONFIG_USER_ONLY
1303     if (cpu->pmu_timer) {
1304         timer_del(cpu->pmu_timer);
1305         timer_deinit(cpu->pmu_timer);
1306         timer_free(cpu->pmu_timer);
1307     }
1308 #endif
1309 }
1310 
1311 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1312 {
1313     Error *local_err = NULL;
1314 
1315     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1316         arm_cpu_sve_finalize(cpu, &local_err);
1317         if (local_err != NULL) {
1318             error_propagate(errp, local_err);
1319             return;
1320         }
1321     }
1322 
1323     if (kvm_enabled()) {
1324         kvm_arm_steal_time_finalize(cpu, &local_err);
1325         if (local_err != NULL) {
1326             error_propagate(errp, local_err);
1327             return;
1328         }
1329     }
1330 }
1331 
1332 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1333 {
1334     CPUState *cs = CPU(dev);
1335     ARMCPU *cpu = ARM_CPU(dev);
1336     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1337     CPUARMState *env = &cpu->env;
1338     int pagebits;
1339     Error *local_err = NULL;
1340     bool no_aa32 = false;
1341 
1342     /* If we needed to query the host kernel for the CPU features
1343      * then it's possible that might have failed in the initfn, but
1344      * this is the first point where we can report it.
1345      */
1346     if (cpu->host_cpu_probe_failed) {
1347         if (!kvm_enabled()) {
1348             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1349         } else {
1350             error_setg(errp, "Failed to retrieve host CPU features");
1351         }
1352         return;
1353     }
1354 
1355 #ifndef CONFIG_USER_ONLY
1356     /* The NVIC and M-profile CPU are two halves of a single piece of
1357      * hardware; trying to use one without the other is a command line
1358      * error and will result in segfaults if not caught here.
1359      */
1360     if (arm_feature(env, ARM_FEATURE_M)) {
1361         if (!env->nvic) {
1362             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1363             return;
1364         }
1365     } else {
1366         if (env->nvic) {
1367             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1368             return;
1369         }
1370     }
1371 
1372     {
1373         uint64_t scale;
1374 
1375         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1376             if (!cpu->gt_cntfrq_hz) {
1377                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1378                            cpu->gt_cntfrq_hz);
1379                 return;
1380             }
1381             scale = gt_cntfrq_period_ns(cpu);
1382         } else {
1383             scale = GTIMER_SCALE;
1384         }
1385 
1386         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1387                                                arm_gt_ptimer_cb, cpu);
1388         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1389                                                arm_gt_vtimer_cb, cpu);
1390         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1391                                               arm_gt_htimer_cb, cpu);
1392         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1393                                               arm_gt_stimer_cb, cpu);
1394         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1395                                                   arm_gt_hvtimer_cb, cpu);
1396     }
1397 #endif
1398 
1399     cpu_exec_realizefn(cs, &local_err);
1400     if (local_err != NULL) {
1401         error_propagate(errp, local_err);
1402         return;
1403     }
1404 
1405     arm_cpu_finalize_features(cpu, &local_err);
1406     if (local_err != NULL) {
1407         error_propagate(errp, local_err);
1408         return;
1409     }
1410 
1411     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1412         cpu->has_vfp != cpu->has_neon) {
1413         /*
1414          * This is an architectural requirement for AArch64; AArch32 is
1415          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1416          */
1417         error_setg(errp,
1418                    "AArch64 CPUs must have both VFP and Neon or neither");
1419         return;
1420     }
1421 
1422     if (!cpu->has_vfp) {
1423         uint64_t t;
1424         uint32_t u;
1425 
1426         t = cpu->isar.id_aa64isar1;
1427         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1428         cpu->isar.id_aa64isar1 = t;
1429 
1430         t = cpu->isar.id_aa64pfr0;
1431         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1432         cpu->isar.id_aa64pfr0 = t;
1433 
1434         u = cpu->isar.id_isar6;
1435         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1436         cpu->isar.id_isar6 = u;
1437 
1438         u = cpu->isar.mvfr0;
1439         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1440         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1441         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1442         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1443         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1444         if (!arm_feature(env, ARM_FEATURE_M)) {
1445             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1446             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1447         }
1448         cpu->isar.mvfr0 = u;
1449 
1450         u = cpu->isar.mvfr1;
1451         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1452         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1453         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1454         if (arm_feature(env, ARM_FEATURE_M)) {
1455             u = FIELD_DP32(u, MVFR1, FP16, 0);
1456         }
1457         cpu->isar.mvfr1 = u;
1458 
1459         u = cpu->isar.mvfr2;
1460         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1461         cpu->isar.mvfr2 = u;
1462     }
1463 
1464     if (!cpu->has_neon) {
1465         uint64_t t;
1466         uint32_t u;
1467 
1468         unset_feature(env, ARM_FEATURE_NEON);
1469 
1470         t = cpu->isar.id_aa64isar0;
1471         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1472         cpu->isar.id_aa64isar0 = t;
1473 
1474         t = cpu->isar.id_aa64isar1;
1475         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1476         cpu->isar.id_aa64isar1 = t;
1477 
1478         t = cpu->isar.id_aa64pfr0;
1479         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1480         cpu->isar.id_aa64pfr0 = t;
1481 
1482         u = cpu->isar.id_isar5;
1483         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1484         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1485         cpu->isar.id_isar5 = u;
1486 
1487         u = cpu->isar.id_isar6;
1488         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1489         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1490         cpu->isar.id_isar6 = u;
1491 
1492         if (!arm_feature(env, ARM_FEATURE_M)) {
1493             u = cpu->isar.mvfr1;
1494             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1495             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1496             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1497             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1498             cpu->isar.mvfr1 = u;
1499 
1500             u = cpu->isar.mvfr2;
1501             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1502             cpu->isar.mvfr2 = u;
1503         }
1504     }
1505 
1506     if (!cpu->has_neon && !cpu->has_vfp) {
1507         uint64_t t;
1508         uint32_t u;
1509 
1510         t = cpu->isar.id_aa64isar0;
1511         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1512         cpu->isar.id_aa64isar0 = t;
1513 
1514         t = cpu->isar.id_aa64isar1;
1515         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1516         cpu->isar.id_aa64isar1 = t;
1517 
1518         u = cpu->isar.mvfr0;
1519         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1520         cpu->isar.mvfr0 = u;
1521 
1522         /* Despite the name, this field covers both VFP and Neon */
1523         u = cpu->isar.mvfr1;
1524         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1525         cpu->isar.mvfr1 = u;
1526     }
1527 
1528     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1529         uint32_t u;
1530 
1531         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1532 
1533         u = cpu->isar.id_isar1;
1534         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1535         cpu->isar.id_isar1 = u;
1536 
1537         u = cpu->isar.id_isar2;
1538         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1539         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1540         cpu->isar.id_isar2 = u;
1541 
1542         u = cpu->isar.id_isar3;
1543         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1544         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1545         cpu->isar.id_isar3 = u;
1546     }
1547 
1548     /* Some features automatically imply others: */
1549     if (arm_feature(env, ARM_FEATURE_V8)) {
1550         if (arm_feature(env, ARM_FEATURE_M)) {
1551             set_feature(env, ARM_FEATURE_V7);
1552         } else {
1553             set_feature(env, ARM_FEATURE_V7VE);
1554         }
1555     }
1556 
1557     /*
1558      * There exist AArch64 cpus without AArch32 support.  When KVM
1559      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1560      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1561      * As a general principle, we also do not make ID register
1562      * consistency checks anywhere unless using TCG, because only
1563      * for TCG would a consistency-check failure be a QEMU bug.
1564      */
1565     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1566         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1567     }
1568 
1569     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1570         /* v7 Virtualization Extensions. In real hardware this implies
1571          * EL2 and also the presence of the Security Extensions.
1572          * For QEMU, for backwards-compatibility we implement some
1573          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1574          * include the various other features that V7VE implies.
1575          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1576          * Security Extensions is ARM_FEATURE_EL3.
1577          */
1578         assert(!tcg_enabled() || no_aa32 ||
1579                cpu_isar_feature(aa32_arm_div, cpu));
1580         set_feature(env, ARM_FEATURE_LPAE);
1581         set_feature(env, ARM_FEATURE_V7);
1582     }
1583     if (arm_feature(env, ARM_FEATURE_V7)) {
1584         set_feature(env, ARM_FEATURE_VAPA);
1585         set_feature(env, ARM_FEATURE_THUMB2);
1586         set_feature(env, ARM_FEATURE_MPIDR);
1587         if (!arm_feature(env, ARM_FEATURE_M)) {
1588             set_feature(env, ARM_FEATURE_V6K);
1589         } else {
1590             set_feature(env, ARM_FEATURE_V6);
1591         }
1592 
1593         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1594          * non-EL3 configs. This is needed by some legacy boards.
1595          */
1596         set_feature(env, ARM_FEATURE_VBAR);
1597     }
1598     if (arm_feature(env, ARM_FEATURE_V6K)) {
1599         set_feature(env, ARM_FEATURE_V6);
1600         set_feature(env, ARM_FEATURE_MVFR);
1601     }
1602     if (arm_feature(env, ARM_FEATURE_V6)) {
1603         set_feature(env, ARM_FEATURE_V5);
1604         if (!arm_feature(env, ARM_FEATURE_M)) {
1605             assert(!tcg_enabled() || no_aa32 ||
1606                    cpu_isar_feature(aa32_jazelle, cpu));
1607             set_feature(env, ARM_FEATURE_AUXCR);
1608         }
1609     }
1610     if (arm_feature(env, ARM_FEATURE_V5)) {
1611         set_feature(env, ARM_FEATURE_V4T);
1612     }
1613     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1614         set_feature(env, ARM_FEATURE_V7MP);
1615     }
1616     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1617         set_feature(env, ARM_FEATURE_CBAR);
1618     }
1619     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1620         !arm_feature(env, ARM_FEATURE_M)) {
1621         set_feature(env, ARM_FEATURE_THUMB_DSP);
1622     }
1623 
1624     /*
1625      * We rely on no XScale CPU having VFP so we can use the same bits in the
1626      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1627      */
1628     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1629            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1630            !arm_feature(env, ARM_FEATURE_XSCALE));
1631 
1632     if (arm_feature(env, ARM_FEATURE_V7) &&
1633         !arm_feature(env, ARM_FEATURE_M) &&
1634         !arm_feature(env, ARM_FEATURE_PMSA)) {
1635         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1636          * can use 4K pages.
1637          */
1638         pagebits = 12;
1639     } else {
1640         /* For CPUs which might have tiny 1K pages, or which have an
1641          * MPU and might have small region sizes, stick with 1K pages.
1642          */
1643         pagebits = 10;
1644     }
1645     if (!set_preferred_target_page_bits(pagebits)) {
1646         /* This can only ever happen for hotplugging a CPU, or if
1647          * the board code incorrectly creates a CPU which it has
1648          * promised via minimum_page_size that it will not.
1649          */
1650         error_setg(errp, "This CPU requires a smaller page size than the "
1651                    "system is using");
1652         return;
1653     }
1654 
1655     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1656      * We don't support setting cluster ID ([16..23]) (known as Aff2
1657      * in later ARM ARM versions), or any of the higher affinity level fields,
1658      * so these bits always RAZ.
1659      */
1660     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1661         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1662                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1663     }
1664 
1665     if (cpu->reset_hivecs) {
1666             cpu->reset_sctlr |= (1 << 13);
1667     }
1668 
1669     if (cpu->cfgend) {
1670         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1671             cpu->reset_sctlr |= SCTLR_EE;
1672         } else {
1673             cpu->reset_sctlr |= SCTLR_B;
1674         }
1675     }
1676 
1677     if (!cpu->has_el3) {
1678         /* If the has_el3 CPU property is disabled then we need to disable the
1679          * feature.
1680          */
1681         unset_feature(env, ARM_FEATURE_EL3);
1682 
1683         /* Disable the security extension feature bits in the processor feature
1684          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1685          */
1686         cpu->isar.id_pfr1 &= ~0xf0;
1687         cpu->isar.id_aa64pfr0 &= ~0xf000;
1688     }
1689 
1690     if (!cpu->has_el2) {
1691         unset_feature(env, ARM_FEATURE_EL2);
1692     }
1693 
1694     if (!cpu->has_pmu) {
1695         unset_feature(env, ARM_FEATURE_PMU);
1696     }
1697     if (arm_feature(env, ARM_FEATURE_PMU)) {
1698         pmu_init(cpu);
1699 
1700         if (!kvm_enabled()) {
1701             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1702             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1703         }
1704 
1705 #ifndef CONFIG_USER_ONLY
1706         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1707                 cpu);
1708 #endif
1709     } else {
1710         cpu->isar.id_aa64dfr0 =
1711             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1712         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1713         cpu->pmceid0 = 0;
1714         cpu->pmceid1 = 0;
1715     }
1716 
1717     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1718         /* Disable the hypervisor feature bits in the processor feature
1719          * registers if we don't have EL2. These are id_pfr1[15:12] and
1720          * id_aa64pfr0_el1[11:8].
1721          */
1722         cpu->isar.id_aa64pfr0 &= ~0xf00;
1723         cpu->isar.id_pfr1 &= ~0xf000;
1724     }
1725 
1726 #ifndef CONFIG_USER_ONLY
1727     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1728         /*
1729          * Disable the MTE feature bits if we do not have tag-memory
1730          * provided by the machine.
1731          */
1732         cpu->isar.id_aa64pfr1 =
1733             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1734     }
1735 #endif
1736 
1737     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1738      * to false or by setting pmsav7-dregion to 0.
1739      */
1740     if (!cpu->has_mpu) {
1741         cpu->pmsav7_dregion = 0;
1742     }
1743     if (cpu->pmsav7_dregion == 0) {
1744         cpu->has_mpu = false;
1745     }
1746 
1747     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1748         arm_feature(env, ARM_FEATURE_V7)) {
1749         uint32_t nr = cpu->pmsav7_dregion;
1750 
1751         if (nr > 0xff) {
1752             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1753             return;
1754         }
1755 
1756         if (nr) {
1757             if (arm_feature(env, ARM_FEATURE_V8)) {
1758                 /* PMSAv8 */
1759                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1760                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1761                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1762                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1763                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1764                 }
1765             } else {
1766                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1767                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1768                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1769             }
1770         }
1771     }
1772 
1773     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1774         uint32_t nr = cpu->sau_sregion;
1775 
1776         if (nr > 0xff) {
1777             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1778             return;
1779         }
1780 
1781         if (nr) {
1782             env->sau.rbar = g_new0(uint32_t, nr);
1783             env->sau.rlar = g_new0(uint32_t, nr);
1784         }
1785     }
1786 
1787     if (arm_feature(env, ARM_FEATURE_EL3)) {
1788         set_feature(env, ARM_FEATURE_VBAR);
1789     }
1790 
1791     register_cp_regs_for_features(cpu);
1792     arm_cpu_register_gdb_regs_for_features(cpu);
1793 
1794     init_cpreg_list(cpu);
1795 
1796 #ifndef CONFIG_USER_ONLY
1797     MachineState *ms = MACHINE(qdev_get_machine());
1798     unsigned int smp_cpus = ms->smp.cpus;
1799     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1800 
1801     /*
1802      * We must set cs->num_ases to the final value before
1803      * the first call to cpu_address_space_init.
1804      */
1805     if (cpu->tag_memory != NULL) {
1806         cs->num_ases = 3 + has_secure;
1807     } else {
1808         cs->num_ases = 1 + has_secure;
1809     }
1810 
1811     if (has_secure) {
1812         if (!cpu->secure_memory) {
1813             cpu->secure_memory = cs->memory;
1814         }
1815         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1816                                cpu->secure_memory);
1817     }
1818 
1819     if (cpu->tag_memory != NULL) {
1820         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1821                                cpu->tag_memory);
1822         if (has_secure) {
1823             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1824                                    cpu->secure_tag_memory);
1825         }
1826     }
1827 
1828     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1829 
1830     /* No core_count specified, default to smp_cpus. */
1831     if (cpu->core_count == -1) {
1832         cpu->core_count = smp_cpus;
1833     }
1834 #endif
1835 
1836     if (tcg_enabled()) {
1837         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1838 
1839         /*
1840          * We only support DCZ blocklen that fits on one page.
1841          *
1842          * Architectually this is always true.  However TARGET_PAGE_SIZE
1843          * is variable and, for compatibility with -machine virt-2.7,
1844          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1845          * But even then, while the largest architectural DCZ blocklen
1846          * is 2KiB, no cpu actually uses such a large blocklen.
1847          */
1848         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1849 
1850         /*
1851          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1852          * both nibbles of each byte storing tag data may be written at once.
1853          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1854          */
1855         if (cpu_isar_feature(aa64_mte, cpu)) {
1856             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1857         }
1858     }
1859 
1860     qemu_init_vcpu(cs);
1861     cpu_reset(cs);
1862 
1863     acc->parent_realize(dev, errp);
1864 }
1865 
1866 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1867 {
1868     ObjectClass *oc;
1869     char *typename;
1870     char **cpuname;
1871     const char *cpunamestr;
1872 
1873     cpuname = g_strsplit(cpu_model, ",", 1);
1874     cpunamestr = cpuname[0];
1875 #ifdef CONFIG_USER_ONLY
1876     /* For backwards compatibility usermode emulation allows "-cpu any",
1877      * which has the same semantics as "-cpu max".
1878      */
1879     if (!strcmp(cpunamestr, "any")) {
1880         cpunamestr = "max";
1881     }
1882 #endif
1883     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1884     oc = object_class_by_name(typename);
1885     g_strfreev(cpuname);
1886     g_free(typename);
1887     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1888         object_class_is_abstract(oc)) {
1889         return NULL;
1890     }
1891     return oc;
1892 }
1893 
1894 /* CPU models. These are not needed for the AArch64 linux-user build. */
1895 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1896 
1897 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1898     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1899       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1900     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1901       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1902     REGINFO_SENTINEL
1903 };
1904 
1905 static void cortex_a8_initfn(Object *obj)
1906 {
1907     ARMCPU *cpu = ARM_CPU(obj);
1908 
1909     cpu->dtb_compatible = "arm,cortex-a8";
1910     set_feature(&cpu->env, ARM_FEATURE_V7);
1911     set_feature(&cpu->env, ARM_FEATURE_NEON);
1912     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1913     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1914     set_feature(&cpu->env, ARM_FEATURE_EL3);
1915     cpu->midr = 0x410fc080;
1916     cpu->reset_fpsid = 0x410330c0;
1917     cpu->isar.mvfr0 = 0x11110222;
1918     cpu->isar.mvfr1 = 0x00011111;
1919     cpu->ctr = 0x82048004;
1920     cpu->reset_sctlr = 0x00c50078;
1921     cpu->isar.id_pfr0 = 0x1031;
1922     cpu->isar.id_pfr1 = 0x11;
1923     cpu->isar.id_dfr0 = 0x400;
1924     cpu->id_afr0 = 0;
1925     cpu->isar.id_mmfr0 = 0x31100003;
1926     cpu->isar.id_mmfr1 = 0x20000000;
1927     cpu->isar.id_mmfr2 = 0x01202000;
1928     cpu->isar.id_mmfr3 = 0x11;
1929     cpu->isar.id_isar0 = 0x00101111;
1930     cpu->isar.id_isar1 = 0x12112111;
1931     cpu->isar.id_isar2 = 0x21232031;
1932     cpu->isar.id_isar3 = 0x11112131;
1933     cpu->isar.id_isar4 = 0x00111142;
1934     cpu->isar.dbgdidr = 0x15141000;
1935     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1936     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1937     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1938     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1939     cpu->reset_auxcr = 2;
1940     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1941 }
1942 
1943 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1944     /* power_control should be set to maximum latency. Again,
1945      * default to 0 and set by private hook
1946      */
1947     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1948       .access = PL1_RW, .resetvalue = 0,
1949       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1950     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1951       .access = PL1_RW, .resetvalue = 0,
1952       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1953     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1954       .access = PL1_RW, .resetvalue = 0,
1955       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1956     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1957       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1958     /* TLB lockdown control */
1959     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1960       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1961     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1962       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1963     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1964       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1965     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1966       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1967     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1968       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1969     REGINFO_SENTINEL
1970 };
1971 
1972 static void cortex_a9_initfn(Object *obj)
1973 {
1974     ARMCPU *cpu = ARM_CPU(obj);
1975 
1976     cpu->dtb_compatible = "arm,cortex-a9";
1977     set_feature(&cpu->env, ARM_FEATURE_V7);
1978     set_feature(&cpu->env, ARM_FEATURE_NEON);
1979     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1980     set_feature(&cpu->env, ARM_FEATURE_EL3);
1981     /* Note that A9 supports the MP extensions even for
1982      * A9UP and single-core A9MP (which are both different
1983      * and valid configurations; we don't model A9UP).
1984      */
1985     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1986     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1987     cpu->midr = 0x410fc090;
1988     cpu->reset_fpsid = 0x41033090;
1989     cpu->isar.mvfr0 = 0x11110222;
1990     cpu->isar.mvfr1 = 0x01111111;
1991     cpu->ctr = 0x80038003;
1992     cpu->reset_sctlr = 0x00c50078;
1993     cpu->isar.id_pfr0 = 0x1031;
1994     cpu->isar.id_pfr1 = 0x11;
1995     cpu->isar.id_dfr0 = 0x000;
1996     cpu->id_afr0 = 0;
1997     cpu->isar.id_mmfr0 = 0x00100103;
1998     cpu->isar.id_mmfr1 = 0x20000000;
1999     cpu->isar.id_mmfr2 = 0x01230000;
2000     cpu->isar.id_mmfr3 = 0x00002111;
2001     cpu->isar.id_isar0 = 0x00101111;
2002     cpu->isar.id_isar1 = 0x13112111;
2003     cpu->isar.id_isar2 = 0x21232041;
2004     cpu->isar.id_isar3 = 0x11112131;
2005     cpu->isar.id_isar4 = 0x00111142;
2006     cpu->isar.dbgdidr = 0x35141000;
2007     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2008     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2009     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2010     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2011 }
2012 
2013 #ifndef CONFIG_USER_ONLY
2014 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2015 {
2016     MachineState *ms = MACHINE(qdev_get_machine());
2017 
2018     /* Linux wants the number of processors from here.
2019      * Might as well set the interrupt-controller bit too.
2020      */
2021     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2022 }
2023 #endif
2024 
2025 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2026 #ifndef CONFIG_USER_ONLY
2027     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2028       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2029       .writefn = arm_cp_write_ignore, },
2030 #endif
2031     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2032       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2033     REGINFO_SENTINEL
2034 };
2035 
2036 static void cortex_a7_initfn(Object *obj)
2037 {
2038     ARMCPU *cpu = ARM_CPU(obj);
2039 
2040     cpu->dtb_compatible = "arm,cortex-a7";
2041     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2042     set_feature(&cpu->env, ARM_FEATURE_NEON);
2043     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2044     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2045     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2046     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2047     set_feature(&cpu->env, ARM_FEATURE_EL2);
2048     set_feature(&cpu->env, ARM_FEATURE_EL3);
2049     set_feature(&cpu->env, ARM_FEATURE_PMU);
2050     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2051     cpu->midr = 0x410fc075;
2052     cpu->reset_fpsid = 0x41023075;
2053     cpu->isar.mvfr0 = 0x10110222;
2054     cpu->isar.mvfr1 = 0x11111111;
2055     cpu->ctr = 0x84448003;
2056     cpu->reset_sctlr = 0x00c50078;
2057     cpu->isar.id_pfr0 = 0x00001131;
2058     cpu->isar.id_pfr1 = 0x00011011;
2059     cpu->isar.id_dfr0 = 0x02010555;
2060     cpu->id_afr0 = 0x00000000;
2061     cpu->isar.id_mmfr0 = 0x10101105;
2062     cpu->isar.id_mmfr1 = 0x40000000;
2063     cpu->isar.id_mmfr2 = 0x01240000;
2064     cpu->isar.id_mmfr3 = 0x02102211;
2065     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2066      * table 4-41 gives 0x02101110, which includes the arm div insns.
2067      */
2068     cpu->isar.id_isar0 = 0x02101110;
2069     cpu->isar.id_isar1 = 0x13112111;
2070     cpu->isar.id_isar2 = 0x21232041;
2071     cpu->isar.id_isar3 = 0x11112131;
2072     cpu->isar.id_isar4 = 0x10011142;
2073     cpu->isar.dbgdidr = 0x3515f005;
2074     cpu->clidr = 0x0a200023;
2075     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2076     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2077     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2078     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2079 }
2080 
2081 static void cortex_a15_initfn(Object *obj)
2082 {
2083     ARMCPU *cpu = ARM_CPU(obj);
2084 
2085     cpu->dtb_compatible = "arm,cortex-a15";
2086     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2087     set_feature(&cpu->env, ARM_FEATURE_NEON);
2088     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2089     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2090     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2091     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2092     set_feature(&cpu->env, ARM_FEATURE_EL2);
2093     set_feature(&cpu->env, ARM_FEATURE_EL3);
2094     set_feature(&cpu->env, ARM_FEATURE_PMU);
2095     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2096     cpu->midr = 0x412fc0f1;
2097     cpu->reset_fpsid = 0x410430f0;
2098     cpu->isar.mvfr0 = 0x10110222;
2099     cpu->isar.mvfr1 = 0x11111111;
2100     cpu->ctr = 0x8444c004;
2101     cpu->reset_sctlr = 0x00c50078;
2102     cpu->isar.id_pfr0 = 0x00001131;
2103     cpu->isar.id_pfr1 = 0x00011011;
2104     cpu->isar.id_dfr0 = 0x02010555;
2105     cpu->id_afr0 = 0x00000000;
2106     cpu->isar.id_mmfr0 = 0x10201105;
2107     cpu->isar.id_mmfr1 = 0x20000000;
2108     cpu->isar.id_mmfr2 = 0x01240000;
2109     cpu->isar.id_mmfr3 = 0x02102211;
2110     cpu->isar.id_isar0 = 0x02101110;
2111     cpu->isar.id_isar1 = 0x13112111;
2112     cpu->isar.id_isar2 = 0x21232041;
2113     cpu->isar.id_isar3 = 0x11112131;
2114     cpu->isar.id_isar4 = 0x10011142;
2115     cpu->isar.dbgdidr = 0x3515f021;
2116     cpu->clidr = 0x0a200023;
2117     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2118     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2119     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2120     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2121 }
2122 
2123 #ifndef TARGET_AARCH64
2124 /*
2125  * -cpu max: a CPU with as many features enabled as our emulation supports.
2126  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2127  * this only needs to handle 32 bits, and need not care about KVM.
2128  */
2129 static void arm_max_initfn(Object *obj)
2130 {
2131     ARMCPU *cpu = ARM_CPU(obj);
2132 
2133     cortex_a15_initfn(obj);
2134 
2135     /* old-style VFP short-vector support */
2136     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2137 
2138 #ifdef CONFIG_USER_ONLY
2139     /*
2140      * We don't set these in system emulation mode for the moment,
2141      * since we don't correctly set (all of) the ID registers to
2142      * advertise them.
2143      */
2144     set_feature(&cpu->env, ARM_FEATURE_V8);
2145     {
2146         uint32_t t;
2147 
2148         t = cpu->isar.id_isar5;
2149         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2150         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2151         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2152         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2153         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2154         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2155         cpu->isar.id_isar5 = t;
2156 
2157         t = cpu->isar.id_isar6;
2158         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2159         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2160         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2161         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2162         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2163         cpu->isar.id_isar6 = t;
2164 
2165         t = cpu->isar.mvfr1;
2166         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2167         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2168         cpu->isar.mvfr1 = t;
2169 
2170         t = cpu->isar.mvfr2;
2171         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2172         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2173         cpu->isar.mvfr2 = t;
2174 
2175         t = cpu->isar.id_mmfr3;
2176         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2177         cpu->isar.id_mmfr3 = t;
2178 
2179         t = cpu->isar.id_mmfr4;
2180         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2181         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2182         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2183         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2184         cpu->isar.id_mmfr4 = t;
2185     }
2186 #endif
2187 }
2188 #endif
2189 
2190 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2191 
2192 static const ARMCPUInfo arm_cpus[] = {
2193 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2194     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2195     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2196     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2197     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2198 #ifndef TARGET_AARCH64
2199     { .name = "max",         .initfn = arm_max_initfn },
2200 #endif
2201 #ifdef CONFIG_USER_ONLY
2202     { .name = "any",         .initfn = arm_max_initfn },
2203 #endif
2204 #endif
2205 };
2206 
2207 static Property arm_cpu_properties[] = {
2208     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2209     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2210     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2211                         mp_affinity, ARM64_AFFINITY_INVALID),
2212     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2213     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2214     DEFINE_PROP_END_OF_LIST()
2215 };
2216 
2217 static gchar *arm_gdb_arch_name(CPUState *cs)
2218 {
2219     ARMCPU *cpu = ARM_CPU(cs);
2220     CPUARMState *env = &cpu->env;
2221 
2222     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2223         return g_strdup("iwmmxt");
2224     }
2225     return g_strdup("arm");
2226 }
2227 
2228 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2229 {
2230     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2231     CPUClass *cc = CPU_CLASS(acc);
2232     DeviceClass *dc = DEVICE_CLASS(oc);
2233 
2234     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2235                                     &acc->parent_realize);
2236 
2237     device_class_set_props(dc, arm_cpu_properties);
2238     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2239 
2240     cc->class_by_name = arm_cpu_class_by_name;
2241     cc->has_work = arm_cpu_has_work;
2242     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2243     cc->dump_state = arm_cpu_dump_state;
2244     cc->set_pc = arm_cpu_set_pc;
2245     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2246     cc->gdb_read_register = arm_cpu_gdb_read_register;
2247     cc->gdb_write_register = arm_cpu_gdb_write_register;
2248 #ifndef CONFIG_USER_ONLY
2249     cc->do_interrupt = arm_cpu_do_interrupt;
2250     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2251     cc->asidx_from_attrs = arm_asidx_from_attrs;
2252     cc->vmsd = &vmstate_arm_cpu;
2253     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2254     cc->write_elf64_note = arm_cpu_write_elf64_note;
2255     cc->write_elf32_note = arm_cpu_write_elf32_note;
2256 #endif
2257     cc->gdb_num_core_regs = 26;
2258     cc->gdb_core_xml_file = "arm-core.xml";
2259     cc->gdb_arch_name = arm_gdb_arch_name;
2260     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2261     cc->gdb_stop_before_watchpoint = true;
2262     cc->disas_set_info = arm_disas_set_info;
2263 #ifdef CONFIG_TCG
2264     cc->tcg_initialize = arm_translate_init;
2265     cc->tlb_fill = arm_cpu_tlb_fill;
2266     cc->debug_excp_handler = arm_debug_excp_handler;
2267     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2268     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2269 #if !defined(CONFIG_USER_ONLY)
2270     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2271     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2272 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2273 #endif
2274 }
2275 
2276 #ifdef CONFIG_KVM
2277 static void arm_host_initfn(Object *obj)
2278 {
2279     ARMCPU *cpu = ARM_CPU(obj);
2280 
2281     kvm_arm_set_cpu_features_from_host(cpu);
2282     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2283         aarch64_add_sve_properties(obj);
2284     }
2285     arm_cpu_post_init(obj);
2286 }
2287 
2288 static const TypeInfo host_arm_cpu_type_info = {
2289     .name = TYPE_ARM_HOST_CPU,
2290     .parent = TYPE_AARCH64_CPU,
2291     .instance_init = arm_host_initfn,
2292 };
2293 
2294 #endif
2295 
2296 static void arm_cpu_instance_init(Object *obj)
2297 {
2298     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2299 
2300     acc->info->initfn(obj);
2301     arm_cpu_post_init(obj);
2302 }
2303 
2304 static void cpu_register_class_init(ObjectClass *oc, void *data)
2305 {
2306     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2307 
2308     acc->info = data;
2309 }
2310 
2311 void arm_cpu_register(const ARMCPUInfo *info)
2312 {
2313     TypeInfo type_info = {
2314         .parent = TYPE_ARM_CPU,
2315         .instance_size = sizeof(ARMCPU),
2316         .instance_align = __alignof__(ARMCPU),
2317         .instance_init = arm_cpu_instance_init,
2318         .class_size = sizeof(ARMCPUClass),
2319         .class_init = info->class_init ?: cpu_register_class_init,
2320         .class_data = (void *)info,
2321     };
2322 
2323     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2324     type_register(&type_info);
2325     g_free((void *)type_info.name);
2326 }
2327 
2328 static const TypeInfo arm_cpu_type_info = {
2329     .name = TYPE_ARM_CPU,
2330     .parent = TYPE_CPU,
2331     .instance_size = sizeof(ARMCPU),
2332     .instance_align = __alignof__(ARMCPU),
2333     .instance_init = arm_cpu_initfn,
2334     .instance_finalize = arm_cpu_finalizefn,
2335     .abstract = true,
2336     .class_size = sizeof(ARMCPUClass),
2337     .class_init = arm_cpu_class_init,
2338 };
2339 
2340 static const TypeInfo idau_interface_type_info = {
2341     .name = TYPE_IDAU_INTERFACE,
2342     .parent = TYPE_INTERFACE,
2343     .class_size = sizeof(IDAUInterfaceClass),
2344 };
2345 
2346 static void arm_cpu_register_types(void)
2347 {
2348     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2349 
2350     type_register_static(&arm_cpu_type_info);
2351 
2352 #ifdef CONFIG_KVM
2353     type_register_static(&host_arm_cpu_type_info);
2354 #endif
2355 
2356     if (cpu_count) {
2357         size_t i;
2358 
2359         type_register_static(&idau_interface_type_info);
2360         for (i = 0; i < cpu_count; ++i) {
2361             arm_cpu_register(&arm_cpus[i]);
2362         }
2363     }
2364 }
2365 
2366 type_init(arm_cpu_register_types)
2367