xref: /openbmc/qemu/target/arm/cpu.c (revision fd38b162)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
206         /*
207          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
208          * turning on both here will produce smaller code and otherwise
209          * make no difference to the user-level emulation.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213         /* Reset into the highest available EL */
214         if (arm_feature(env, ARM_FEATURE_EL3)) {
215             env->pstate = PSTATE_MODE_EL3h;
216         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217             env->pstate = PSTATE_MODE_EL2h;
218         } else {
219             env->pstate = PSTATE_MODE_EL1h;
220         }
221         env->pc = cpu->rvbar;
222 #endif
223     } else {
224 #if defined(CONFIG_USER_ONLY)
225         /* Userspace expects access to cp10 and cp11 for FP/Neon */
226         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
228     }
229 
230 #if defined(CONFIG_USER_ONLY)
231     env->uncached_cpsr = ARM_CPU_MODE_USR;
232     /* For user mode we must enable access to coprocessors */
233     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235         env->cp15.c15_cpar = 3;
236     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237         env->cp15.c15_cpar = 1;
238     }
239 #else
240 
241     /*
242      * If the highest available EL is EL2, AArch32 will start in Hyp
243      * mode; otherwise it starts in SVC. Note that if we start in
244      * AArch64 then these values in the uncached_cpsr will be ignored.
245      */
246     if (arm_feature(env, ARM_FEATURE_EL2) &&
247         !arm_feature(env, ARM_FEATURE_EL3)) {
248         env->uncached_cpsr = ARM_CPU_MODE_HYP;
249     } else {
250         env->uncached_cpsr = ARM_CPU_MODE_SVC;
251     }
252     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 
254     if (arm_feature(env, ARM_FEATURE_M)) {
255         uint32_t initial_msp; /* Loaded from 0x0 */
256         uint32_t initial_pc; /* Loaded from 0x4 */
257         uint8_t *rom;
258         uint32_t vecbase;
259 
260         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261             env->v7m.secure = true;
262         } else {
263             /* This bit resets to 0 if security is supported, but 1 if
264              * it is not. The bit is not present in v7M, but we set it
265              * here so we can avoid having to make checks on it conditional
266              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267              */
268             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269             /*
270              * Set NSACR to indicate "NS access permitted to everything";
271              * this avoids having to have all the tests of it being
272              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
273              * v8.1M the guest-visible value of NSACR in a CPU without the
274              * Security Extension is 0xcff.
275              */
276             env->v7m.nsacr = 0xcff;
277         }
278 
279         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
280          * that it resets to 1, so QEMU always does that rather than making
281          * it dependent on CPU model. In v8M it is RES1.
282          */
283         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
284         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
285         if (arm_feature(env, ARM_FEATURE_V8)) {
286             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289         }
290         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
291             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293         }
294 
295         if (arm_feature(env, ARM_FEATURE_VFP)) {
296             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
297             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
298                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
299         }
300         /* Unlike A/R profile, M profile defines the reset LR value */
301         env->regs[14] = 0xffffffff;
302 
303         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
304 
305         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
306         vecbase = env->v7m.vecbase[env->v7m.secure];
307         rom = rom_ptr(vecbase, 8);
308         if (rom) {
309             /* Address zero is covered by ROM which hasn't yet been
310              * copied into physical memory.
311              */
312             initial_msp = ldl_p(rom);
313             initial_pc = ldl_p(rom + 4);
314         } else {
315             /* Address zero not covered by a ROM blob, or the ROM blob
316              * is in non-modifiable memory and this is a second reset after
317              * it got copied into memory. In the latter case, rom_ptr
318              * will return a NULL pointer and we should use ldl_phys instead.
319              */
320             initial_msp = ldl_phys(s->as, vecbase);
321             initial_pc = ldl_phys(s->as, vecbase + 4);
322         }
323 
324         env->regs[13] = initial_msp & 0xFFFFFFFC;
325         env->regs[15] = initial_pc & ~1;
326         env->thumb = initial_pc & 1;
327     }
328 
329     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
330      * executing as AArch32 then check if highvecs are enabled and
331      * adjust the PC accordingly.
332      */
333     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
334         env->regs[15] = 0xFFFF0000;
335     }
336 
337     /* M profile requires that reset clears the exclusive monitor;
338      * A profile does not, but clearing it makes more sense than having it
339      * set with an exclusive access on address zero.
340      */
341     arm_clear_exclusive(env);
342 
343     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
344 #endif
345 
346     if (arm_feature(env, ARM_FEATURE_PMSA)) {
347         if (cpu->pmsav7_dregion > 0) {
348             if (arm_feature(env, ARM_FEATURE_V8)) {
349                 memset(env->pmsav8.rbar[M_REG_NS], 0,
350                        sizeof(*env->pmsav8.rbar[M_REG_NS])
351                        * cpu->pmsav7_dregion);
352                 memset(env->pmsav8.rlar[M_REG_NS], 0,
353                        sizeof(*env->pmsav8.rlar[M_REG_NS])
354                        * cpu->pmsav7_dregion);
355                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
356                     memset(env->pmsav8.rbar[M_REG_S], 0,
357                            sizeof(*env->pmsav8.rbar[M_REG_S])
358                            * cpu->pmsav7_dregion);
359                     memset(env->pmsav8.rlar[M_REG_S], 0,
360                            sizeof(*env->pmsav8.rlar[M_REG_S])
361                            * cpu->pmsav7_dregion);
362                 }
363             } else if (arm_feature(env, ARM_FEATURE_V7)) {
364                 memset(env->pmsav7.drbar, 0,
365                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
366                 memset(env->pmsav7.drsr, 0,
367                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
368                 memset(env->pmsav7.dracr, 0,
369                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
370             }
371         }
372         env->pmsav7.rnr[M_REG_NS] = 0;
373         env->pmsav7.rnr[M_REG_S] = 0;
374         env->pmsav8.mair0[M_REG_NS] = 0;
375         env->pmsav8.mair0[M_REG_S] = 0;
376         env->pmsav8.mair1[M_REG_NS] = 0;
377         env->pmsav8.mair1[M_REG_S] = 0;
378     }
379 
380     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
381         if (cpu->sau_sregion > 0) {
382             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
383             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
384         }
385         env->sau.rnr = 0;
386         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
387          * the Cortex-M33 does.
388          */
389         env->sau.ctrl = 0;
390     }
391 
392     set_flush_to_zero(1, &env->vfp.standard_fp_status);
393     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
394     set_default_nan_mode(1, &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status);
397     set_float_detect_tininess(float_tininess_before_rounding,
398                               &env->vfp.standard_fp_status);
399     set_float_detect_tininess(float_tininess_before_rounding,
400                               &env->vfp.fp_status_f16);
401 #ifndef CONFIG_USER_ONLY
402     if (kvm_enabled()) {
403         kvm_arm_reset_vcpu(cpu);
404     }
405 #endif
406 
407     hw_breakpoint_update_all(cpu);
408     hw_watchpoint_update_all(cpu);
409 }
410 
411 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
412 {
413     CPUClass *cc = CPU_GET_CLASS(cs);
414     CPUARMState *env = cs->env_ptr;
415     uint32_t cur_el = arm_current_el(env);
416     bool secure = arm_is_secure(env);
417     uint32_t target_el;
418     uint32_t excp_idx;
419     bool ret = false;
420 
421     if (interrupt_request & CPU_INTERRUPT_FIQ) {
422         excp_idx = EXCP_FIQ;
423         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425             cs->exception_index = excp_idx;
426             env->exception.target_el = target_el;
427             cc->do_interrupt(cs);
428             ret = true;
429         }
430     }
431     if (interrupt_request & CPU_INTERRUPT_HARD) {
432         excp_idx = EXCP_IRQ;
433         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
434         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435             cs->exception_index = excp_idx;
436             env->exception.target_el = target_el;
437             cc->do_interrupt(cs);
438             ret = true;
439         }
440     }
441     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
442         excp_idx = EXCP_VIRQ;
443         target_el = 1;
444         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445             cs->exception_index = excp_idx;
446             env->exception.target_el = target_el;
447             cc->do_interrupt(cs);
448             ret = true;
449         }
450     }
451     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
452         excp_idx = EXCP_VFIQ;
453         target_el = 1;
454         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
455             cs->exception_index = excp_idx;
456             env->exception.target_el = target_el;
457             cc->do_interrupt(cs);
458             ret = true;
459         }
460     }
461 
462     return ret;
463 }
464 
465 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
466 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
467 {
468     CPUClass *cc = CPU_GET_CLASS(cs);
469     ARMCPU *cpu = ARM_CPU(cs);
470     CPUARMState *env = &cpu->env;
471     bool ret = false;
472 
473     /* ARMv7-M interrupt masking works differently than -A or -R.
474      * There is no FIQ/IRQ distinction. Instead of I and F bits
475      * masking FIQ and IRQ interrupts, an exception is taken only
476      * if it is higher priority than the current execution priority
477      * (which depends on state like BASEPRI, FAULTMASK and the
478      * currently active exception).
479      */
480     if (interrupt_request & CPU_INTERRUPT_HARD
481         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
482         cs->exception_index = EXCP_IRQ;
483         cc->do_interrupt(cs);
484         ret = true;
485     }
486     return ret;
487 }
488 #endif
489 
490 void arm_cpu_update_virq(ARMCPU *cpu)
491 {
492     /*
493      * Update the interrupt level for VIRQ, which is the logical OR of
494      * the HCR_EL2.VI bit and the input line level from the GIC.
495      */
496     CPUARMState *env = &cpu->env;
497     CPUState *cs = CPU(cpu);
498 
499     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
500         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
501 
502     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
503         if (new_state) {
504             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
505         } else {
506             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         }
508     }
509 }
510 
511 void arm_cpu_update_vfiq(ARMCPU *cpu)
512 {
513     /*
514      * Update the interrupt level for VFIQ, which is the logical OR of
515      * the HCR_EL2.VF bit and the input line level from the GIC.
516      */
517     CPUARMState *env = &cpu->env;
518     CPUState *cs = CPU(cpu);
519 
520     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
521         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
522 
523     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
524         if (new_state) {
525             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
526         } else {
527             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         }
529     }
530 }
531 
532 #ifndef CONFIG_USER_ONLY
533 static void arm_cpu_set_irq(void *opaque, int irq, int level)
534 {
535     ARMCPU *cpu = opaque;
536     CPUARMState *env = &cpu->env;
537     CPUState *cs = CPU(cpu);
538     static const int mask[] = {
539         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
540         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
541         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
542         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
543     };
544 
545     if (level) {
546         env->irq_line_state |= mask[irq];
547     } else {
548         env->irq_line_state &= ~mask[irq];
549     }
550 
551     switch (irq) {
552     case ARM_CPU_VIRQ:
553         assert(arm_feature(env, ARM_FEATURE_EL2));
554         arm_cpu_update_virq(cpu);
555         break;
556     case ARM_CPU_VFIQ:
557         assert(arm_feature(env, ARM_FEATURE_EL2));
558         arm_cpu_update_vfiq(cpu);
559         break;
560     case ARM_CPU_IRQ:
561     case ARM_CPU_FIQ:
562         if (level) {
563             cpu_interrupt(cs, mask[irq]);
564         } else {
565             cpu_reset_interrupt(cs, mask[irq]);
566         }
567         break;
568     default:
569         g_assert_not_reached();
570     }
571 }
572 
573 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
574 {
575 #ifdef CONFIG_KVM
576     ARMCPU *cpu = opaque;
577     CPUARMState *env = &cpu->env;
578     CPUState *cs = CPU(cpu);
579     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
580     uint32_t linestate_bit;
581 
582     switch (irq) {
583     case ARM_CPU_IRQ:
584         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
585         linestate_bit = CPU_INTERRUPT_HARD;
586         break;
587     case ARM_CPU_FIQ:
588         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
589         linestate_bit = CPU_INTERRUPT_FIQ;
590         break;
591     default:
592         g_assert_not_reached();
593     }
594 
595     if (level) {
596         env->irq_line_state |= linestate_bit;
597     } else {
598         env->irq_line_state &= ~linestate_bit;
599     }
600 
601     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
602     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
603 #endif
604 }
605 
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608     ARMCPU *cpu = ARM_CPU(cs);
609     CPUARMState *env = &cpu->env;
610 
611     cpu_synchronize_state(cs);
612     return arm_cpu_data_is_big_endian(env);
613 }
614 
615 #endif
616 
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619     env->features |= 1ULL << feature;
620 }
621 
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624     env->features &= ~(1ULL << feature);
625 }
626 
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630   return print_insn_arm(pc | 1, info);
631 }
632 
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635     ARMCPU *ac = ARM_CPU(cpu);
636     CPUARMState *env = &ac->env;
637     bool sctlr_b;
638 
639     if (is_a64(env)) {
640         /* We might not be compiled with the A64 disassembler
641          * because it needs a C++ compiler. Leave print_insn
642          * unset in this case to use the caller default behaviour.
643          */
644 #if defined(CONFIG_ARM_A64_DIS)
645         info->print_insn = print_insn_arm_a64;
646 #endif
647         info->cap_arch = CS_ARCH_ARM64;
648         info->cap_insn_unit = 4;
649         info->cap_insn_split = 4;
650     } else {
651         int cap_mode;
652         if (env->thumb) {
653             info->print_insn = print_insn_thumb1;
654             info->cap_insn_unit = 2;
655             info->cap_insn_split = 4;
656             cap_mode = CS_MODE_THUMB;
657         } else {
658             info->print_insn = print_insn_arm;
659             info->cap_insn_unit = 4;
660             info->cap_insn_split = 4;
661             cap_mode = CS_MODE_ARM;
662         }
663         if (arm_feature(env, ARM_FEATURE_V8)) {
664             cap_mode |= CS_MODE_V8;
665         }
666         if (arm_feature(env, ARM_FEATURE_M)) {
667             cap_mode |= CS_MODE_MCLASS;
668         }
669         info->cap_arch = CS_ARCH_ARM;
670         info->cap_mode = cap_mode;
671     }
672 
673     sctlr_b = arm_sctlr_b(env);
674     if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676         info->endian = BFD_ENDIAN_LITTLE;
677 #else
678         info->endian = BFD_ENDIAN_BIG;
679 #endif
680     }
681     info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683     if (sctlr_b) {
684         info->flags |= INSN_ARM_BE32;
685     }
686 #endif
687 }
688 
689 #ifdef TARGET_AARCH64
690 
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695     uint32_t psr = pstate_read(env);
696     int i;
697     int el = arm_current_el(env);
698     const char *ns_status;
699 
700     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701     for (i = 0; i < 32; i++) {
702         if (i == 31) {
703             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704         } else {
705             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706                          (i + 2) % 3 ? " " : "\n");
707         }
708     }
709 
710     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712     } else {
713         ns_status = "";
714     }
715     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716                  psr,
717                  psr & PSTATE_N ? 'N' : '-',
718                  psr & PSTATE_Z ? 'Z' : '-',
719                  psr & PSTATE_C ? 'C' : '-',
720                  psr & PSTATE_V ? 'V' : '-',
721                  ns_status,
722                  el,
723                  psr & PSTATE_SP ? 'h' : 't');
724 
725     if (cpu_isar_feature(aa64_bti, cpu)) {
726         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727     }
728     if (!(flags & CPU_DUMP_FPU)) {
729         qemu_fprintf(f, "\n");
730         return;
731     }
732     if (fp_exception_el(env, el) != 0) {
733         qemu_fprintf(f, "    FPU disabled\n");
734         return;
735     }
736     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
737                  vfp_get_fpcr(env), vfp_get_fpsr(env));
738 
739     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740         int j, zcr_len = sve_zcr_len_for_el(env, el);
741 
742         for (i = 0; i <= FFR_PRED_NUM; i++) {
743             bool eol;
744             if (i == FFR_PRED_NUM) {
745                 qemu_fprintf(f, "FFR=");
746                 /* It's last, so end the line.  */
747                 eol = true;
748             } else {
749                 qemu_fprintf(f, "P%02d=", i);
750                 switch (zcr_len) {
751                 case 0:
752                     eol = i % 8 == 7;
753                     break;
754                 case 1:
755                     eol = i % 6 == 5;
756                     break;
757                 case 2:
758                 case 3:
759                     eol = i % 3 == 2;
760                     break;
761                 default:
762                     /* More than one quadword per predicate.  */
763                     eol = true;
764                     break;
765                 }
766             }
767             for (j = zcr_len / 4; j >= 0; j--) {
768                 int digits;
769                 if (j * 4 + 4 <= zcr_len + 1) {
770                     digits = 16;
771                 } else {
772                     digits = (zcr_len % 4 + 1) * 4;
773                 }
774                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775                              env->vfp.pregs[i].p[j],
776                              j ? ":" : eol ? "\n" : " ");
777             }
778         }
779 
780         for (i = 0; i < 32; i++) {
781             if (zcr_len == 0) {
782                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783                              i, env->vfp.zregs[i].d[1],
784                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785             } else if (zcr_len == 1) {
786                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787                              ":%016" PRIx64 ":%016" PRIx64 "\n",
788                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790             } else {
791                 for (j = zcr_len; j >= 0; j--) {
792                     bool odd = (zcr_len - j) % 2 != 0;
793                     if (j == zcr_len) {
794                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795                     } else if (!odd) {
796                         if (j > 0) {
797                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
798                         } else {
799                             qemu_fprintf(f, "     [%x]=", j);
800                         }
801                     }
802                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803                                  env->vfp.zregs[i].d[j * 2 + 1],
804                                  env->vfp.zregs[i].d[j * 2],
805                                  odd || j == 0 ? "\n" : ":");
806                 }
807             }
808         }
809     } else {
810         for (i = 0; i < 32; i++) {
811             uint64_t *q = aa64_vfp_qreg(env, i);
812             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813                          i, q[1], q[0], (i & 1 ? "\n" : " "));
814         }
815     }
816 }
817 
818 #else
819 
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822     g_assert_not_reached();
823 }
824 
825 #endif
826 
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829     ARMCPU *cpu = ARM_CPU(cs);
830     CPUARMState *env = &cpu->env;
831     int i;
832 
833     if (is_a64(env)) {
834         aarch64_cpu_dump_state(cs, f, flags);
835         return;
836     }
837 
838     for (i = 0; i < 16; i++) {
839         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840         if ((i % 4) == 3) {
841             qemu_fprintf(f, "\n");
842         } else {
843             qemu_fprintf(f, " ");
844         }
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         uint32_t xpsr = xpsr_read(env);
849         const char *mode;
850         const char *ns_status = "";
851 
852         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853             ns_status = env->v7m.secure ? "S " : "NS ";
854         }
855 
856         if (xpsr & XPSR_EXCP) {
857             mode = "handler";
858         } else {
859             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860                 mode = "unpriv-thread";
861             } else {
862                 mode = "priv-thread";
863             }
864         }
865 
866         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867                      xpsr,
868                      xpsr & XPSR_N ? 'N' : '-',
869                      xpsr & XPSR_Z ? 'Z' : '-',
870                      xpsr & XPSR_C ? 'C' : '-',
871                      xpsr & XPSR_V ? 'V' : '-',
872                      xpsr & XPSR_T ? 'T' : 'A',
873                      ns_status,
874                      mode);
875     } else {
876         uint32_t psr = cpsr_read(env);
877         const char *ns_status = "";
878 
879         if (arm_feature(env, ARM_FEATURE_EL3) &&
880             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882         }
883 
884         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885                      psr,
886                      psr & CPSR_N ? 'N' : '-',
887                      psr & CPSR_Z ? 'Z' : '-',
888                      psr & CPSR_C ? 'C' : '-',
889                      psr & CPSR_V ? 'V' : '-',
890                      psr & CPSR_T ? 'T' : 'A',
891                      ns_status,
892                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893     }
894 
895     if (flags & CPU_DUMP_FPU) {
896         int numvfpregs = 0;
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             numvfpregs += 16;
899         }
900         if (arm_feature(env, ARM_FEATURE_VFP3)) {
901             numvfpregs += 16;
902         }
903         for (i = 0; i < numvfpregs; i++) {
904             uint64_t v = *aa32_vfp_dreg(env, i);
905             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906                          i * 2, (uint32_t)v,
907                          i * 2 + 1, (uint32_t)(v >> 32),
908                          i, v);
909         }
910         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911     }
912 }
913 
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916     uint32_t Aff1 = idx / clustersz;
917     uint32_t Aff0 = idx % clustersz;
918     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920 
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923     /*
924      * Destroy function for cpu->cp_regs hashtable data entries.
925      * We must free the name string because it was g_strdup()ed in
926      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927      * from r->name because we know we definitely allocated it.
928      */
929     ARMCPRegInfo *r = data;
930 
931     g_free((void *)r->name);
932     g_free(r);
933 }
934 
935 static void arm_cpu_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu_set_cpustate_pointers(cpu);
940     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941                                          g_free, cpreg_hashtable_data_destroy);
942 
943     QLIST_INIT(&cpu->pre_el_change_hooks);
944     QLIST_INIT(&cpu->el_change_hooks);
945 
946 #ifndef CONFIG_USER_ONLY
947     /* Our inbound IRQ and FIQ lines */
948     if (kvm_enabled()) {
949         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950          * the same interface as non-KVM CPUs.
951          */
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953     } else {
954         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955     }
956 
957     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958                        ARRAY_SIZE(cpu->gt_timer_outputs));
959 
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961                              "gicv3-maintenance-interrupt", 1);
962     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963                              "pmu-interrupt", 1);
964 #endif
965 
966     /* DTB consumers generally don't in fact care what the 'compatible'
967      * string is, so always provide some string and trust that a hypothetical
968      * picky DTB consumer will also provide a helpful error message.
969      */
970     cpu->dtb_compatible = "qemu,unknown";
971     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973 
974     if (tcg_enabled()) {
975         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976     }
977 }
978 
979 static Property arm_cpu_reset_cbar_property =
980             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
981 
982 static Property arm_cpu_reset_hivecs_property =
983             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
984 
985 static Property arm_cpu_rvbar_property =
986             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
987 
988 static Property arm_cpu_has_el2_property =
989             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
990 
991 static Property arm_cpu_has_el3_property =
992             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
993 
994 static Property arm_cpu_cfgend_property =
995             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
996 
997 static Property arm_cpu_has_vfp_property =
998             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
999 
1000 static Property arm_cpu_has_neon_property =
1001             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1002 
1003 static Property arm_cpu_has_dsp_property =
1004             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1005 
1006 static Property arm_cpu_has_mpu_property =
1007             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1008 
1009 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1010  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1011  * the right value for that particular CPU type, and we don't want
1012  * to override that with an incorrect constant value.
1013  */
1014 static Property arm_cpu_pmsav7_dregion_property =
1015             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1016                                            pmsav7_dregion,
1017                                            qdev_prop_uint32, uint32_t);
1018 
1019 static bool arm_get_pmu(Object *obj, Error **errp)
1020 {
1021     ARMCPU *cpu = ARM_CPU(obj);
1022 
1023     return cpu->has_pmu;
1024 }
1025 
1026 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1027 {
1028     ARMCPU *cpu = ARM_CPU(obj);
1029 
1030     if (value) {
1031         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1032             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1033             return;
1034         }
1035         set_feature(&cpu->env, ARM_FEATURE_PMU);
1036     } else {
1037         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1038     }
1039     cpu->has_pmu = value;
1040 }
1041 
1042 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1043                                void *opaque, Error **errp)
1044 {
1045     ARMCPU *cpu = ARM_CPU(obj);
1046 
1047     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1048 }
1049 
1050 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1051                                void *opaque, Error **errp)
1052 {
1053     ARMCPU *cpu = ARM_CPU(obj);
1054 
1055     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1056 }
1057 
1058 void arm_cpu_post_init(Object *obj)
1059 {
1060     ARMCPU *cpu = ARM_CPU(obj);
1061 
1062     /* M profile implies PMSA. We have to do this here rather than
1063      * in realize with the other feature-implication checks because
1064      * we look at the PMSA bit to see if we should add some properties.
1065      */
1066     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1067         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1068     }
1069     /* Similarly for the VFP feature bits */
1070     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1071         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1072     }
1073     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1074         set_feature(&cpu->env, ARM_FEATURE_VFP);
1075     }
1076 
1077     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1078         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1079         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1080                                  &error_abort);
1081     }
1082 
1083     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1084         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1085                                  &error_abort);
1086     }
1087 
1088     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1089         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1090                                  &error_abort);
1091     }
1092 
1093     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1094         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1095          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1096          */
1097         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1098                                  &error_abort);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101         object_property_add_link(obj, "secure-memory",
1102                                  TYPE_MEMORY_REGION,
1103                                  (Object **)&cpu->secure_memory,
1104                                  qdev_prop_allow_set_link_before_realize,
1105                                  OBJ_PROP_LINK_STRONG,
1106                                  &error_abort);
1107 #endif
1108     }
1109 
1110     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1111         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1112                                  &error_abort);
1113     }
1114 
1115     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1116         cpu->has_pmu = true;
1117         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1118                                  &error_abort);
1119     }
1120 
1121     /*
1122      * Allow user to turn off VFP and Neon support, but only for TCG --
1123      * KVM does not currently allow us to lie to the guest about its
1124      * ID/feature registers, so the guest always sees what the host has.
1125      */
1126     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1127         cpu->has_vfp = true;
1128         if (!kvm_enabled()) {
1129             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1130                                      &error_abort);
1131         }
1132     }
1133 
1134     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1135         cpu->has_neon = true;
1136         if (!kvm_enabled()) {
1137             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1138                                      &error_abort);
1139         }
1140     }
1141 
1142     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1143         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1144         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1145                                  &error_abort);
1146     }
1147 
1148     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1149         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1150                                  &error_abort);
1151         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1152             qdev_property_add_static(DEVICE(obj),
1153                                      &arm_cpu_pmsav7_dregion_property,
1154                                      &error_abort);
1155         }
1156     }
1157 
1158     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1159         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1160                                  qdev_prop_allow_set_link_before_realize,
1161                                  OBJ_PROP_LINK_STRONG,
1162                                  &error_abort);
1163         /*
1164          * M profile: initial value of the Secure VTOR. We can't just use
1165          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1166          * the property to be set after realize.
1167          */
1168         object_property_add(obj, "init-svtor", "uint32",
1169                             arm_get_init_svtor, arm_set_init_svtor,
1170                             NULL, NULL, &error_abort);
1171     }
1172 
1173     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1174                              &error_abort);
1175 }
1176 
1177 static void arm_cpu_finalizefn(Object *obj)
1178 {
1179     ARMCPU *cpu = ARM_CPU(obj);
1180     ARMELChangeHook *hook, *next;
1181 
1182     g_hash_table_destroy(cpu->cp_regs);
1183 
1184     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1185         QLIST_REMOVE(hook, node);
1186         g_free(hook);
1187     }
1188     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1189         QLIST_REMOVE(hook, node);
1190         g_free(hook);
1191     }
1192 #ifndef CONFIG_USER_ONLY
1193     if (cpu->pmu_timer) {
1194         timer_del(cpu->pmu_timer);
1195         timer_deinit(cpu->pmu_timer);
1196         timer_free(cpu->pmu_timer);
1197     }
1198 #endif
1199 }
1200 
1201 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1202 {
1203     CPUState *cs = CPU(dev);
1204     ARMCPU *cpu = ARM_CPU(dev);
1205     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1206     CPUARMState *env = &cpu->env;
1207     int pagebits;
1208     Error *local_err = NULL;
1209     bool no_aa32 = false;
1210 
1211     /* If we needed to query the host kernel for the CPU features
1212      * then it's possible that might have failed in the initfn, but
1213      * this is the first point where we can report it.
1214      */
1215     if (cpu->host_cpu_probe_failed) {
1216         if (!kvm_enabled()) {
1217             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1218         } else {
1219             error_setg(errp, "Failed to retrieve host CPU features");
1220         }
1221         return;
1222     }
1223 
1224 #ifndef CONFIG_USER_ONLY
1225     /* The NVIC and M-profile CPU are two halves of a single piece of
1226      * hardware; trying to use one without the other is a command line
1227      * error and will result in segfaults if not caught here.
1228      */
1229     if (arm_feature(env, ARM_FEATURE_M)) {
1230         if (!env->nvic) {
1231             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1232             return;
1233         }
1234     } else {
1235         if (env->nvic) {
1236             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1237             return;
1238         }
1239     }
1240 
1241     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1242                                            arm_gt_ptimer_cb, cpu);
1243     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1244                                            arm_gt_vtimer_cb, cpu);
1245     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1246                                           arm_gt_htimer_cb, cpu);
1247     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1248                                           arm_gt_stimer_cb, cpu);
1249 #endif
1250 
1251     cpu_exec_realizefn(cs, &local_err);
1252     if (local_err != NULL) {
1253         error_propagate(errp, local_err);
1254         return;
1255     }
1256 
1257     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1258         cpu->has_vfp != cpu->has_neon) {
1259         /*
1260          * This is an architectural requirement for AArch64; AArch32 is
1261          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1262          */
1263         error_setg(errp,
1264                    "AArch64 CPUs must have both VFP and Neon or neither");
1265         return;
1266     }
1267 
1268     if (!cpu->has_vfp) {
1269         uint64_t t;
1270         uint32_t u;
1271 
1272         unset_feature(env, ARM_FEATURE_VFP);
1273         unset_feature(env, ARM_FEATURE_VFP3);
1274         unset_feature(env, ARM_FEATURE_VFP4);
1275 
1276         t = cpu->isar.id_aa64isar1;
1277         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1278         cpu->isar.id_aa64isar1 = t;
1279 
1280         t = cpu->isar.id_aa64pfr0;
1281         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1282         cpu->isar.id_aa64pfr0 = t;
1283 
1284         u = cpu->isar.id_isar6;
1285         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1286         cpu->isar.id_isar6 = u;
1287 
1288         u = cpu->isar.mvfr0;
1289         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1290         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1291         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1292         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1293         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1294         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1295         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1296         cpu->isar.mvfr0 = u;
1297 
1298         u = cpu->isar.mvfr1;
1299         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1300         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1301         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1302         cpu->isar.mvfr1 = u;
1303 
1304         u = cpu->isar.mvfr2;
1305         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1306         cpu->isar.mvfr2 = u;
1307     }
1308 
1309     if (!cpu->has_neon) {
1310         uint64_t t;
1311         uint32_t u;
1312 
1313         unset_feature(env, ARM_FEATURE_NEON);
1314 
1315         t = cpu->isar.id_aa64isar0;
1316         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1317         cpu->isar.id_aa64isar0 = t;
1318 
1319         t = cpu->isar.id_aa64isar1;
1320         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1321         cpu->isar.id_aa64isar1 = t;
1322 
1323         t = cpu->isar.id_aa64pfr0;
1324         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1325         cpu->isar.id_aa64pfr0 = t;
1326 
1327         u = cpu->isar.id_isar5;
1328         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1329         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1330         cpu->isar.id_isar5 = u;
1331 
1332         u = cpu->isar.id_isar6;
1333         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1334         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1335         cpu->isar.id_isar6 = u;
1336 
1337         u = cpu->isar.mvfr1;
1338         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1339         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1340         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1341         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1342         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1343         cpu->isar.mvfr1 = u;
1344 
1345         u = cpu->isar.mvfr2;
1346         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1347         cpu->isar.mvfr2 = u;
1348     }
1349 
1350     if (!cpu->has_neon && !cpu->has_vfp) {
1351         uint64_t t;
1352         uint32_t u;
1353 
1354         t = cpu->isar.id_aa64isar0;
1355         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1356         cpu->isar.id_aa64isar0 = t;
1357 
1358         t = cpu->isar.id_aa64isar1;
1359         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1360         cpu->isar.id_aa64isar1 = t;
1361 
1362         u = cpu->isar.mvfr0;
1363         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1364         cpu->isar.mvfr0 = u;
1365     }
1366 
1367     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1368         uint32_t u;
1369 
1370         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1371 
1372         u = cpu->isar.id_isar1;
1373         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1374         cpu->isar.id_isar1 = u;
1375 
1376         u = cpu->isar.id_isar2;
1377         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1378         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1379         cpu->isar.id_isar2 = u;
1380 
1381         u = cpu->isar.id_isar3;
1382         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1383         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1384         cpu->isar.id_isar3 = u;
1385     }
1386 
1387     /* Some features automatically imply others: */
1388     if (arm_feature(env, ARM_FEATURE_V8)) {
1389         if (arm_feature(env, ARM_FEATURE_M)) {
1390             set_feature(env, ARM_FEATURE_V7);
1391         } else {
1392             set_feature(env, ARM_FEATURE_V7VE);
1393         }
1394     }
1395 
1396     /*
1397      * There exist AArch64 cpus without AArch32 support.  When KVM
1398      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1399      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1400      * As a general principle, we also do not make ID register
1401      * consistency checks anywhere unless using TCG, because only
1402      * for TCG would a consistency-check failure be a QEMU bug.
1403      */
1404     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1405         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1406     }
1407 
1408     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1409         /* v7 Virtualization Extensions. In real hardware this implies
1410          * EL2 and also the presence of the Security Extensions.
1411          * For QEMU, for backwards-compatibility we implement some
1412          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1413          * include the various other features that V7VE implies.
1414          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1415          * Security Extensions is ARM_FEATURE_EL3.
1416          */
1417         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1418         set_feature(env, ARM_FEATURE_LPAE);
1419         set_feature(env, ARM_FEATURE_V7);
1420     }
1421     if (arm_feature(env, ARM_FEATURE_V7)) {
1422         set_feature(env, ARM_FEATURE_VAPA);
1423         set_feature(env, ARM_FEATURE_THUMB2);
1424         set_feature(env, ARM_FEATURE_MPIDR);
1425         if (!arm_feature(env, ARM_FEATURE_M)) {
1426             set_feature(env, ARM_FEATURE_V6K);
1427         } else {
1428             set_feature(env, ARM_FEATURE_V6);
1429         }
1430 
1431         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1432          * non-EL3 configs. This is needed by some legacy boards.
1433          */
1434         set_feature(env, ARM_FEATURE_VBAR);
1435     }
1436     if (arm_feature(env, ARM_FEATURE_V6K)) {
1437         set_feature(env, ARM_FEATURE_V6);
1438         set_feature(env, ARM_FEATURE_MVFR);
1439     }
1440     if (arm_feature(env, ARM_FEATURE_V6)) {
1441         set_feature(env, ARM_FEATURE_V5);
1442         if (!arm_feature(env, ARM_FEATURE_M)) {
1443             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1444             set_feature(env, ARM_FEATURE_AUXCR);
1445         }
1446     }
1447     if (arm_feature(env, ARM_FEATURE_V5)) {
1448         set_feature(env, ARM_FEATURE_V4T);
1449     }
1450     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1451         set_feature(env, ARM_FEATURE_V7MP);
1452         set_feature(env, ARM_FEATURE_PXN);
1453     }
1454     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1455         set_feature(env, ARM_FEATURE_CBAR);
1456     }
1457     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1458         !arm_feature(env, ARM_FEATURE_M)) {
1459         set_feature(env, ARM_FEATURE_THUMB_DSP);
1460     }
1461 
1462     /*
1463      * We rely on no XScale CPU having VFP so we can use the same bits in the
1464      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1465      */
1466     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1467              arm_feature(env, ARM_FEATURE_XSCALE)));
1468 
1469     if (arm_feature(env, ARM_FEATURE_V7) &&
1470         !arm_feature(env, ARM_FEATURE_M) &&
1471         !arm_feature(env, ARM_FEATURE_PMSA)) {
1472         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1473          * can use 4K pages.
1474          */
1475         pagebits = 12;
1476     } else {
1477         /* For CPUs which might have tiny 1K pages, or which have an
1478          * MPU and might have small region sizes, stick with 1K pages.
1479          */
1480         pagebits = 10;
1481     }
1482     if (!set_preferred_target_page_bits(pagebits)) {
1483         /* This can only ever happen for hotplugging a CPU, or if
1484          * the board code incorrectly creates a CPU which it has
1485          * promised via minimum_page_size that it will not.
1486          */
1487         error_setg(errp, "This CPU requires a smaller page size than the "
1488                    "system is using");
1489         return;
1490     }
1491 
1492     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1493      * We don't support setting cluster ID ([16..23]) (known as Aff2
1494      * in later ARM ARM versions), or any of the higher affinity level fields,
1495      * so these bits always RAZ.
1496      */
1497     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1498         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1499                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1500     }
1501 
1502     if (cpu->reset_hivecs) {
1503             cpu->reset_sctlr |= (1 << 13);
1504     }
1505 
1506     if (cpu->cfgend) {
1507         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1508             cpu->reset_sctlr |= SCTLR_EE;
1509         } else {
1510             cpu->reset_sctlr |= SCTLR_B;
1511         }
1512     }
1513 
1514     if (!cpu->has_el3) {
1515         /* If the has_el3 CPU property is disabled then we need to disable the
1516          * feature.
1517          */
1518         unset_feature(env, ARM_FEATURE_EL3);
1519 
1520         /* Disable the security extension feature bits in the processor feature
1521          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1522          */
1523         cpu->id_pfr1 &= ~0xf0;
1524         cpu->isar.id_aa64pfr0 &= ~0xf000;
1525     }
1526 
1527     if (!cpu->has_el2) {
1528         unset_feature(env, ARM_FEATURE_EL2);
1529     }
1530 
1531     if (!cpu->has_pmu) {
1532         unset_feature(env, ARM_FEATURE_PMU);
1533     }
1534     if (arm_feature(env, ARM_FEATURE_PMU)) {
1535         pmu_init(cpu);
1536 
1537         if (!kvm_enabled()) {
1538             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1539             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1540         }
1541 
1542 #ifndef CONFIG_USER_ONLY
1543         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1544                 cpu);
1545 #endif
1546     } else {
1547         cpu->id_aa64dfr0 &= ~0xf00;
1548         cpu->id_dfr0 &= ~(0xf << 24);
1549         cpu->pmceid0 = 0;
1550         cpu->pmceid1 = 0;
1551     }
1552 
1553     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1554         /* Disable the hypervisor feature bits in the processor feature
1555          * registers if we don't have EL2. These are id_pfr1[15:12] and
1556          * id_aa64pfr0_el1[11:8].
1557          */
1558         cpu->isar.id_aa64pfr0 &= ~0xf00;
1559         cpu->id_pfr1 &= ~0xf000;
1560     }
1561 
1562     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1563      * to false or by setting pmsav7-dregion to 0.
1564      */
1565     if (!cpu->has_mpu) {
1566         cpu->pmsav7_dregion = 0;
1567     }
1568     if (cpu->pmsav7_dregion == 0) {
1569         cpu->has_mpu = false;
1570     }
1571 
1572     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1573         arm_feature(env, ARM_FEATURE_V7)) {
1574         uint32_t nr = cpu->pmsav7_dregion;
1575 
1576         if (nr > 0xff) {
1577             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1578             return;
1579         }
1580 
1581         if (nr) {
1582             if (arm_feature(env, ARM_FEATURE_V8)) {
1583                 /* PMSAv8 */
1584                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1585                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1586                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1587                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1588                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1589                 }
1590             } else {
1591                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1592                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1593                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1594             }
1595         }
1596     }
1597 
1598     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1599         uint32_t nr = cpu->sau_sregion;
1600 
1601         if (nr > 0xff) {
1602             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1603             return;
1604         }
1605 
1606         if (nr) {
1607             env->sau.rbar = g_new0(uint32_t, nr);
1608             env->sau.rlar = g_new0(uint32_t, nr);
1609         }
1610     }
1611 
1612     if (arm_feature(env, ARM_FEATURE_EL3)) {
1613         set_feature(env, ARM_FEATURE_VBAR);
1614     }
1615 
1616     register_cp_regs_for_features(cpu);
1617     arm_cpu_register_gdb_regs_for_features(cpu);
1618 
1619     init_cpreg_list(cpu);
1620 
1621 #ifndef CONFIG_USER_ONLY
1622     MachineState *ms = MACHINE(qdev_get_machine());
1623     unsigned int smp_cpus = ms->smp.cpus;
1624 
1625     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1626         cs->num_ases = 2;
1627 
1628         if (!cpu->secure_memory) {
1629             cpu->secure_memory = cs->memory;
1630         }
1631         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1632                                cpu->secure_memory);
1633     } else {
1634         cs->num_ases = 1;
1635     }
1636     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1637 
1638     /* No core_count specified, default to smp_cpus. */
1639     if (cpu->core_count == -1) {
1640         cpu->core_count = smp_cpus;
1641     }
1642 #endif
1643 
1644     qemu_init_vcpu(cs);
1645     cpu_reset(cs);
1646 
1647     acc->parent_realize(dev, errp);
1648 }
1649 
1650 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1651 {
1652     ObjectClass *oc;
1653     char *typename;
1654     char **cpuname;
1655     const char *cpunamestr;
1656 
1657     cpuname = g_strsplit(cpu_model, ",", 1);
1658     cpunamestr = cpuname[0];
1659 #ifdef CONFIG_USER_ONLY
1660     /* For backwards compatibility usermode emulation allows "-cpu any",
1661      * which has the same semantics as "-cpu max".
1662      */
1663     if (!strcmp(cpunamestr, "any")) {
1664         cpunamestr = "max";
1665     }
1666 #endif
1667     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1668     oc = object_class_by_name(typename);
1669     g_strfreev(cpuname);
1670     g_free(typename);
1671     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1672         object_class_is_abstract(oc)) {
1673         return NULL;
1674     }
1675     return oc;
1676 }
1677 
1678 /* CPU models. These are not needed for the AArch64 linux-user build. */
1679 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1680 
1681 static void arm926_initfn(Object *obj)
1682 {
1683     ARMCPU *cpu = ARM_CPU(obj);
1684 
1685     cpu->dtb_compatible = "arm,arm926";
1686     set_feature(&cpu->env, ARM_FEATURE_V5);
1687     set_feature(&cpu->env, ARM_FEATURE_VFP);
1688     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1689     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1690     cpu->midr = 0x41069265;
1691     cpu->reset_fpsid = 0x41011090;
1692     cpu->ctr = 0x1dd20d2;
1693     cpu->reset_sctlr = 0x00090078;
1694 
1695     /*
1696      * ARMv5 does not have the ID_ISAR registers, but we can still
1697      * set the field to indicate Jazelle support within QEMU.
1698      */
1699     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1700     /*
1701      * Similarly, we need to set MVFR0 fields to enable double precision
1702      * and short vector support even though ARMv5 doesn't have this register.
1703      */
1704     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1705     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1706 }
1707 
1708 static void arm946_initfn(Object *obj)
1709 {
1710     ARMCPU *cpu = ARM_CPU(obj);
1711 
1712     cpu->dtb_compatible = "arm,arm946";
1713     set_feature(&cpu->env, ARM_FEATURE_V5);
1714     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1715     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1716     cpu->midr = 0x41059461;
1717     cpu->ctr = 0x0f004006;
1718     cpu->reset_sctlr = 0x00000078;
1719 }
1720 
1721 static void arm1026_initfn(Object *obj)
1722 {
1723     ARMCPU *cpu = ARM_CPU(obj);
1724 
1725     cpu->dtb_compatible = "arm,arm1026";
1726     set_feature(&cpu->env, ARM_FEATURE_V5);
1727     set_feature(&cpu->env, ARM_FEATURE_VFP);
1728     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1729     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1730     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1731     cpu->midr = 0x4106a262;
1732     cpu->reset_fpsid = 0x410110a0;
1733     cpu->ctr = 0x1dd20d2;
1734     cpu->reset_sctlr = 0x00090078;
1735     cpu->reset_auxcr = 1;
1736 
1737     /*
1738      * ARMv5 does not have the ID_ISAR registers, but we can still
1739      * set the field to indicate Jazelle support within QEMU.
1740      */
1741     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1742     /*
1743      * Similarly, we need to set MVFR0 fields to enable double precision
1744      * and short vector support even though ARMv5 doesn't have this register.
1745      */
1746     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1747     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1748 
1749     {
1750         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1751         ARMCPRegInfo ifar = {
1752             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1753             .access = PL1_RW,
1754             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1755             .resetvalue = 0
1756         };
1757         define_one_arm_cp_reg(cpu, &ifar);
1758     }
1759 }
1760 
1761 static void arm1136_r2_initfn(Object *obj)
1762 {
1763     ARMCPU *cpu = ARM_CPU(obj);
1764     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1765      * older core than plain "arm1136". In particular this does not
1766      * have the v6K features.
1767      * These ID register values are correct for 1136 but may be wrong
1768      * for 1136_r2 (in particular r0p2 does not actually implement most
1769      * of the ID registers).
1770      */
1771 
1772     cpu->dtb_compatible = "arm,arm1136";
1773     set_feature(&cpu->env, ARM_FEATURE_V6);
1774     set_feature(&cpu->env, ARM_FEATURE_VFP);
1775     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1776     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1777     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1778     cpu->midr = 0x4107b362;
1779     cpu->reset_fpsid = 0x410120b4;
1780     cpu->isar.mvfr0 = 0x11111111;
1781     cpu->isar.mvfr1 = 0x00000000;
1782     cpu->ctr = 0x1dd20d2;
1783     cpu->reset_sctlr = 0x00050078;
1784     cpu->id_pfr0 = 0x111;
1785     cpu->id_pfr1 = 0x1;
1786     cpu->id_dfr0 = 0x2;
1787     cpu->id_afr0 = 0x3;
1788     cpu->id_mmfr0 = 0x01130003;
1789     cpu->id_mmfr1 = 0x10030302;
1790     cpu->id_mmfr2 = 0x01222110;
1791     cpu->isar.id_isar0 = 0x00140011;
1792     cpu->isar.id_isar1 = 0x12002111;
1793     cpu->isar.id_isar2 = 0x11231111;
1794     cpu->isar.id_isar3 = 0x01102131;
1795     cpu->isar.id_isar4 = 0x141;
1796     cpu->reset_auxcr = 7;
1797 }
1798 
1799 static void arm1136_initfn(Object *obj)
1800 {
1801     ARMCPU *cpu = ARM_CPU(obj);
1802 
1803     cpu->dtb_compatible = "arm,arm1136";
1804     set_feature(&cpu->env, ARM_FEATURE_V6K);
1805     set_feature(&cpu->env, ARM_FEATURE_V6);
1806     set_feature(&cpu->env, ARM_FEATURE_VFP);
1807     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1808     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1809     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1810     cpu->midr = 0x4117b363;
1811     cpu->reset_fpsid = 0x410120b4;
1812     cpu->isar.mvfr0 = 0x11111111;
1813     cpu->isar.mvfr1 = 0x00000000;
1814     cpu->ctr = 0x1dd20d2;
1815     cpu->reset_sctlr = 0x00050078;
1816     cpu->id_pfr0 = 0x111;
1817     cpu->id_pfr1 = 0x1;
1818     cpu->id_dfr0 = 0x2;
1819     cpu->id_afr0 = 0x3;
1820     cpu->id_mmfr0 = 0x01130003;
1821     cpu->id_mmfr1 = 0x10030302;
1822     cpu->id_mmfr2 = 0x01222110;
1823     cpu->isar.id_isar0 = 0x00140011;
1824     cpu->isar.id_isar1 = 0x12002111;
1825     cpu->isar.id_isar2 = 0x11231111;
1826     cpu->isar.id_isar3 = 0x01102131;
1827     cpu->isar.id_isar4 = 0x141;
1828     cpu->reset_auxcr = 7;
1829 }
1830 
1831 static void arm1176_initfn(Object *obj)
1832 {
1833     ARMCPU *cpu = ARM_CPU(obj);
1834 
1835     cpu->dtb_compatible = "arm,arm1176";
1836     set_feature(&cpu->env, ARM_FEATURE_V6K);
1837     set_feature(&cpu->env, ARM_FEATURE_VFP);
1838     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1839     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1840     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1841     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1842     set_feature(&cpu->env, ARM_FEATURE_EL3);
1843     cpu->midr = 0x410fb767;
1844     cpu->reset_fpsid = 0x410120b5;
1845     cpu->isar.mvfr0 = 0x11111111;
1846     cpu->isar.mvfr1 = 0x00000000;
1847     cpu->ctr = 0x1dd20d2;
1848     cpu->reset_sctlr = 0x00050078;
1849     cpu->id_pfr0 = 0x111;
1850     cpu->id_pfr1 = 0x11;
1851     cpu->id_dfr0 = 0x33;
1852     cpu->id_afr0 = 0;
1853     cpu->id_mmfr0 = 0x01130003;
1854     cpu->id_mmfr1 = 0x10030302;
1855     cpu->id_mmfr2 = 0x01222100;
1856     cpu->isar.id_isar0 = 0x0140011;
1857     cpu->isar.id_isar1 = 0x12002111;
1858     cpu->isar.id_isar2 = 0x11231121;
1859     cpu->isar.id_isar3 = 0x01102131;
1860     cpu->isar.id_isar4 = 0x01141;
1861     cpu->reset_auxcr = 7;
1862 }
1863 
1864 static void arm11mpcore_initfn(Object *obj)
1865 {
1866     ARMCPU *cpu = ARM_CPU(obj);
1867 
1868     cpu->dtb_compatible = "arm,arm11mpcore";
1869     set_feature(&cpu->env, ARM_FEATURE_V6K);
1870     set_feature(&cpu->env, ARM_FEATURE_VFP);
1871     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1872     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1873     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1874     cpu->midr = 0x410fb022;
1875     cpu->reset_fpsid = 0x410120b4;
1876     cpu->isar.mvfr0 = 0x11111111;
1877     cpu->isar.mvfr1 = 0x00000000;
1878     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1879     cpu->id_pfr0 = 0x111;
1880     cpu->id_pfr1 = 0x1;
1881     cpu->id_dfr0 = 0;
1882     cpu->id_afr0 = 0x2;
1883     cpu->id_mmfr0 = 0x01100103;
1884     cpu->id_mmfr1 = 0x10020302;
1885     cpu->id_mmfr2 = 0x01222000;
1886     cpu->isar.id_isar0 = 0x00100011;
1887     cpu->isar.id_isar1 = 0x12002111;
1888     cpu->isar.id_isar2 = 0x11221011;
1889     cpu->isar.id_isar3 = 0x01102131;
1890     cpu->isar.id_isar4 = 0x141;
1891     cpu->reset_auxcr = 1;
1892 }
1893 
1894 static void cortex_m0_initfn(Object *obj)
1895 {
1896     ARMCPU *cpu = ARM_CPU(obj);
1897     set_feature(&cpu->env, ARM_FEATURE_V6);
1898     set_feature(&cpu->env, ARM_FEATURE_M);
1899 
1900     cpu->midr = 0x410cc200;
1901 }
1902 
1903 static void cortex_m3_initfn(Object *obj)
1904 {
1905     ARMCPU *cpu = ARM_CPU(obj);
1906     set_feature(&cpu->env, ARM_FEATURE_V7);
1907     set_feature(&cpu->env, ARM_FEATURE_M);
1908     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1909     cpu->midr = 0x410fc231;
1910     cpu->pmsav7_dregion = 8;
1911     cpu->id_pfr0 = 0x00000030;
1912     cpu->id_pfr1 = 0x00000200;
1913     cpu->id_dfr0 = 0x00100000;
1914     cpu->id_afr0 = 0x00000000;
1915     cpu->id_mmfr0 = 0x00000030;
1916     cpu->id_mmfr1 = 0x00000000;
1917     cpu->id_mmfr2 = 0x00000000;
1918     cpu->id_mmfr3 = 0x00000000;
1919     cpu->isar.id_isar0 = 0x01141110;
1920     cpu->isar.id_isar1 = 0x02111000;
1921     cpu->isar.id_isar2 = 0x21112231;
1922     cpu->isar.id_isar3 = 0x01111110;
1923     cpu->isar.id_isar4 = 0x01310102;
1924     cpu->isar.id_isar5 = 0x00000000;
1925     cpu->isar.id_isar6 = 0x00000000;
1926 }
1927 
1928 static void cortex_m4_initfn(Object *obj)
1929 {
1930     ARMCPU *cpu = ARM_CPU(obj);
1931 
1932     set_feature(&cpu->env, ARM_FEATURE_V7);
1933     set_feature(&cpu->env, ARM_FEATURE_M);
1934     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1935     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1936     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1937     cpu->midr = 0x410fc240; /* r0p0 */
1938     cpu->pmsav7_dregion = 8;
1939     cpu->isar.mvfr0 = 0x10110021;
1940     cpu->isar.mvfr1 = 0x11000011;
1941     cpu->isar.mvfr2 = 0x00000000;
1942     cpu->id_pfr0 = 0x00000030;
1943     cpu->id_pfr1 = 0x00000200;
1944     cpu->id_dfr0 = 0x00100000;
1945     cpu->id_afr0 = 0x00000000;
1946     cpu->id_mmfr0 = 0x00000030;
1947     cpu->id_mmfr1 = 0x00000000;
1948     cpu->id_mmfr2 = 0x00000000;
1949     cpu->id_mmfr3 = 0x00000000;
1950     cpu->isar.id_isar0 = 0x01141110;
1951     cpu->isar.id_isar1 = 0x02111000;
1952     cpu->isar.id_isar2 = 0x21112231;
1953     cpu->isar.id_isar3 = 0x01111110;
1954     cpu->isar.id_isar4 = 0x01310102;
1955     cpu->isar.id_isar5 = 0x00000000;
1956     cpu->isar.id_isar6 = 0x00000000;
1957 }
1958 
1959 static void cortex_m33_initfn(Object *obj)
1960 {
1961     ARMCPU *cpu = ARM_CPU(obj);
1962 
1963     set_feature(&cpu->env, ARM_FEATURE_V8);
1964     set_feature(&cpu->env, ARM_FEATURE_M);
1965     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1966     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1967     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1968     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1969     cpu->midr = 0x410fd213; /* r0p3 */
1970     cpu->pmsav7_dregion = 16;
1971     cpu->sau_sregion = 8;
1972     cpu->isar.mvfr0 = 0x10110021;
1973     cpu->isar.mvfr1 = 0x11000011;
1974     cpu->isar.mvfr2 = 0x00000040;
1975     cpu->id_pfr0 = 0x00000030;
1976     cpu->id_pfr1 = 0x00000210;
1977     cpu->id_dfr0 = 0x00200000;
1978     cpu->id_afr0 = 0x00000000;
1979     cpu->id_mmfr0 = 0x00101F40;
1980     cpu->id_mmfr1 = 0x00000000;
1981     cpu->id_mmfr2 = 0x01000000;
1982     cpu->id_mmfr3 = 0x00000000;
1983     cpu->isar.id_isar0 = 0x01101110;
1984     cpu->isar.id_isar1 = 0x02212000;
1985     cpu->isar.id_isar2 = 0x20232232;
1986     cpu->isar.id_isar3 = 0x01111131;
1987     cpu->isar.id_isar4 = 0x01310132;
1988     cpu->isar.id_isar5 = 0x00000000;
1989     cpu->isar.id_isar6 = 0x00000000;
1990     cpu->clidr = 0x00000000;
1991     cpu->ctr = 0x8000c000;
1992 }
1993 
1994 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1995 {
1996     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1997     CPUClass *cc = CPU_CLASS(oc);
1998 
1999     acc->info = data;
2000 #ifndef CONFIG_USER_ONLY
2001     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2002 #endif
2003 
2004     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2005 }
2006 
2007 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2008     /* Dummy the TCM region regs for the moment */
2009     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2010       .access = PL1_RW, .type = ARM_CP_CONST },
2011     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2012       .access = PL1_RW, .type = ARM_CP_CONST },
2013     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2014       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2015     REGINFO_SENTINEL
2016 };
2017 
2018 static void cortex_r5_initfn(Object *obj)
2019 {
2020     ARMCPU *cpu = ARM_CPU(obj);
2021 
2022     set_feature(&cpu->env, ARM_FEATURE_V7);
2023     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2024     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2025     cpu->midr = 0x411fc153; /* r1p3 */
2026     cpu->id_pfr0 = 0x0131;
2027     cpu->id_pfr1 = 0x001;
2028     cpu->id_dfr0 = 0x010400;
2029     cpu->id_afr0 = 0x0;
2030     cpu->id_mmfr0 = 0x0210030;
2031     cpu->id_mmfr1 = 0x00000000;
2032     cpu->id_mmfr2 = 0x01200000;
2033     cpu->id_mmfr3 = 0x0211;
2034     cpu->isar.id_isar0 = 0x02101111;
2035     cpu->isar.id_isar1 = 0x13112111;
2036     cpu->isar.id_isar2 = 0x21232141;
2037     cpu->isar.id_isar3 = 0x01112131;
2038     cpu->isar.id_isar4 = 0x0010142;
2039     cpu->isar.id_isar5 = 0x0;
2040     cpu->isar.id_isar6 = 0x0;
2041     cpu->mp_is_up = true;
2042     cpu->pmsav7_dregion = 16;
2043     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2044 }
2045 
2046 static void cortex_r5f_initfn(Object *obj)
2047 {
2048     ARMCPU *cpu = ARM_CPU(obj);
2049 
2050     cortex_r5_initfn(obj);
2051     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2052     cpu->isar.mvfr0 = 0x10110221;
2053     cpu->isar.mvfr1 = 0x00000011;
2054 }
2055 
2056 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2057     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2058       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2059     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2060       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2061     REGINFO_SENTINEL
2062 };
2063 
2064 static void cortex_a8_initfn(Object *obj)
2065 {
2066     ARMCPU *cpu = ARM_CPU(obj);
2067 
2068     cpu->dtb_compatible = "arm,cortex-a8";
2069     set_feature(&cpu->env, ARM_FEATURE_V7);
2070     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2071     set_feature(&cpu->env, ARM_FEATURE_NEON);
2072     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2073     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2074     set_feature(&cpu->env, ARM_FEATURE_EL3);
2075     cpu->midr = 0x410fc080;
2076     cpu->reset_fpsid = 0x410330c0;
2077     cpu->isar.mvfr0 = 0x11110222;
2078     cpu->isar.mvfr1 = 0x00011111;
2079     cpu->ctr = 0x82048004;
2080     cpu->reset_sctlr = 0x00c50078;
2081     cpu->id_pfr0 = 0x1031;
2082     cpu->id_pfr1 = 0x11;
2083     cpu->id_dfr0 = 0x400;
2084     cpu->id_afr0 = 0;
2085     cpu->id_mmfr0 = 0x31100003;
2086     cpu->id_mmfr1 = 0x20000000;
2087     cpu->id_mmfr2 = 0x01202000;
2088     cpu->id_mmfr3 = 0x11;
2089     cpu->isar.id_isar0 = 0x00101111;
2090     cpu->isar.id_isar1 = 0x12112111;
2091     cpu->isar.id_isar2 = 0x21232031;
2092     cpu->isar.id_isar3 = 0x11112131;
2093     cpu->isar.id_isar4 = 0x00111142;
2094     cpu->dbgdidr = 0x15141000;
2095     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2096     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2097     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2098     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2099     cpu->reset_auxcr = 2;
2100     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2101 }
2102 
2103 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2104     /* power_control should be set to maximum latency. Again,
2105      * default to 0 and set by private hook
2106      */
2107     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2108       .access = PL1_RW, .resetvalue = 0,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2110     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2111       .access = PL1_RW, .resetvalue = 0,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2113     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2114       .access = PL1_RW, .resetvalue = 0,
2115       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2116     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2117       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2118     /* TLB lockdown control */
2119     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2120       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2121     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2122       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2123     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2124       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2125     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2126       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2127     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2128       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2129     REGINFO_SENTINEL
2130 };
2131 
2132 static void cortex_a9_initfn(Object *obj)
2133 {
2134     ARMCPU *cpu = ARM_CPU(obj);
2135 
2136     cpu->dtb_compatible = "arm,cortex-a9";
2137     set_feature(&cpu->env, ARM_FEATURE_V7);
2138     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2139     set_feature(&cpu->env, ARM_FEATURE_NEON);
2140     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2141     set_feature(&cpu->env, ARM_FEATURE_EL3);
2142     /* Note that A9 supports the MP extensions even for
2143      * A9UP and single-core A9MP (which are both different
2144      * and valid configurations; we don't model A9UP).
2145      */
2146     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2147     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2148     cpu->midr = 0x410fc090;
2149     cpu->reset_fpsid = 0x41033090;
2150     cpu->isar.mvfr0 = 0x11110222;
2151     cpu->isar.mvfr1 = 0x01111111;
2152     cpu->ctr = 0x80038003;
2153     cpu->reset_sctlr = 0x00c50078;
2154     cpu->id_pfr0 = 0x1031;
2155     cpu->id_pfr1 = 0x11;
2156     cpu->id_dfr0 = 0x000;
2157     cpu->id_afr0 = 0;
2158     cpu->id_mmfr0 = 0x00100103;
2159     cpu->id_mmfr1 = 0x20000000;
2160     cpu->id_mmfr2 = 0x01230000;
2161     cpu->id_mmfr3 = 0x00002111;
2162     cpu->isar.id_isar0 = 0x00101111;
2163     cpu->isar.id_isar1 = 0x13112111;
2164     cpu->isar.id_isar2 = 0x21232041;
2165     cpu->isar.id_isar3 = 0x11112131;
2166     cpu->isar.id_isar4 = 0x00111142;
2167     cpu->dbgdidr = 0x35141000;
2168     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2169     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2170     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2171     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2172 }
2173 
2174 #ifndef CONFIG_USER_ONLY
2175 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2176 {
2177     MachineState *ms = MACHINE(qdev_get_machine());
2178 
2179     /* Linux wants the number of processors from here.
2180      * Might as well set the interrupt-controller bit too.
2181      */
2182     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2183 }
2184 #endif
2185 
2186 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2187 #ifndef CONFIG_USER_ONLY
2188     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2189       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2190       .writefn = arm_cp_write_ignore, },
2191 #endif
2192     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2193       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2194     REGINFO_SENTINEL
2195 };
2196 
2197 static void cortex_a7_initfn(Object *obj)
2198 {
2199     ARMCPU *cpu = ARM_CPU(obj);
2200 
2201     cpu->dtb_compatible = "arm,cortex-a7";
2202     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2203     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2204     set_feature(&cpu->env, ARM_FEATURE_NEON);
2205     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2206     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2207     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2208     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2209     set_feature(&cpu->env, ARM_FEATURE_EL2);
2210     set_feature(&cpu->env, ARM_FEATURE_EL3);
2211     set_feature(&cpu->env, ARM_FEATURE_PMU);
2212     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2213     cpu->midr = 0x410fc075;
2214     cpu->reset_fpsid = 0x41023075;
2215     cpu->isar.mvfr0 = 0x10110222;
2216     cpu->isar.mvfr1 = 0x11111111;
2217     cpu->ctr = 0x84448003;
2218     cpu->reset_sctlr = 0x00c50078;
2219     cpu->id_pfr0 = 0x00001131;
2220     cpu->id_pfr1 = 0x00011011;
2221     cpu->id_dfr0 = 0x02010555;
2222     cpu->id_afr0 = 0x00000000;
2223     cpu->id_mmfr0 = 0x10101105;
2224     cpu->id_mmfr1 = 0x40000000;
2225     cpu->id_mmfr2 = 0x01240000;
2226     cpu->id_mmfr3 = 0x02102211;
2227     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2228      * table 4-41 gives 0x02101110, which includes the arm div insns.
2229      */
2230     cpu->isar.id_isar0 = 0x02101110;
2231     cpu->isar.id_isar1 = 0x13112111;
2232     cpu->isar.id_isar2 = 0x21232041;
2233     cpu->isar.id_isar3 = 0x11112131;
2234     cpu->isar.id_isar4 = 0x10011142;
2235     cpu->dbgdidr = 0x3515f005;
2236     cpu->clidr = 0x0a200023;
2237     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2238     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2239     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2240     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2241 }
2242 
2243 static void cortex_a15_initfn(Object *obj)
2244 {
2245     ARMCPU *cpu = ARM_CPU(obj);
2246 
2247     cpu->dtb_compatible = "arm,cortex-a15";
2248     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2249     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2250     set_feature(&cpu->env, ARM_FEATURE_NEON);
2251     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2252     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2253     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2254     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2255     set_feature(&cpu->env, ARM_FEATURE_EL2);
2256     set_feature(&cpu->env, ARM_FEATURE_EL3);
2257     set_feature(&cpu->env, ARM_FEATURE_PMU);
2258     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2259     cpu->midr = 0x412fc0f1;
2260     cpu->reset_fpsid = 0x410430f0;
2261     cpu->isar.mvfr0 = 0x10110222;
2262     cpu->isar.mvfr1 = 0x11111111;
2263     cpu->ctr = 0x8444c004;
2264     cpu->reset_sctlr = 0x00c50078;
2265     cpu->id_pfr0 = 0x00001131;
2266     cpu->id_pfr1 = 0x00011011;
2267     cpu->id_dfr0 = 0x02010555;
2268     cpu->id_afr0 = 0x00000000;
2269     cpu->id_mmfr0 = 0x10201105;
2270     cpu->id_mmfr1 = 0x20000000;
2271     cpu->id_mmfr2 = 0x01240000;
2272     cpu->id_mmfr3 = 0x02102211;
2273     cpu->isar.id_isar0 = 0x02101110;
2274     cpu->isar.id_isar1 = 0x13112111;
2275     cpu->isar.id_isar2 = 0x21232041;
2276     cpu->isar.id_isar3 = 0x11112131;
2277     cpu->isar.id_isar4 = 0x10011142;
2278     cpu->dbgdidr = 0x3515f021;
2279     cpu->clidr = 0x0a200023;
2280     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2281     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2282     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2283     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2284 }
2285 
2286 static void ti925t_initfn(Object *obj)
2287 {
2288     ARMCPU *cpu = ARM_CPU(obj);
2289     set_feature(&cpu->env, ARM_FEATURE_V4T);
2290     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2291     cpu->midr = ARM_CPUID_TI925T;
2292     cpu->ctr = 0x5109149;
2293     cpu->reset_sctlr = 0x00000070;
2294 }
2295 
2296 static void sa1100_initfn(Object *obj)
2297 {
2298     ARMCPU *cpu = ARM_CPU(obj);
2299 
2300     cpu->dtb_compatible = "intel,sa1100";
2301     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2302     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2303     cpu->midr = 0x4401A11B;
2304     cpu->reset_sctlr = 0x00000070;
2305 }
2306 
2307 static void sa1110_initfn(Object *obj)
2308 {
2309     ARMCPU *cpu = ARM_CPU(obj);
2310     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2311     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2312     cpu->midr = 0x6901B119;
2313     cpu->reset_sctlr = 0x00000070;
2314 }
2315 
2316 static void pxa250_initfn(Object *obj)
2317 {
2318     ARMCPU *cpu = ARM_CPU(obj);
2319 
2320     cpu->dtb_compatible = "marvell,xscale";
2321     set_feature(&cpu->env, ARM_FEATURE_V5);
2322     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2323     cpu->midr = 0x69052100;
2324     cpu->ctr = 0xd172172;
2325     cpu->reset_sctlr = 0x00000078;
2326 }
2327 
2328 static void pxa255_initfn(Object *obj)
2329 {
2330     ARMCPU *cpu = ARM_CPU(obj);
2331 
2332     cpu->dtb_compatible = "marvell,xscale";
2333     set_feature(&cpu->env, ARM_FEATURE_V5);
2334     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2335     cpu->midr = 0x69052d00;
2336     cpu->ctr = 0xd172172;
2337     cpu->reset_sctlr = 0x00000078;
2338 }
2339 
2340 static void pxa260_initfn(Object *obj)
2341 {
2342     ARMCPU *cpu = ARM_CPU(obj);
2343 
2344     cpu->dtb_compatible = "marvell,xscale";
2345     set_feature(&cpu->env, ARM_FEATURE_V5);
2346     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2347     cpu->midr = 0x69052903;
2348     cpu->ctr = 0xd172172;
2349     cpu->reset_sctlr = 0x00000078;
2350 }
2351 
2352 static void pxa261_initfn(Object *obj)
2353 {
2354     ARMCPU *cpu = ARM_CPU(obj);
2355 
2356     cpu->dtb_compatible = "marvell,xscale";
2357     set_feature(&cpu->env, ARM_FEATURE_V5);
2358     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2359     cpu->midr = 0x69052d05;
2360     cpu->ctr = 0xd172172;
2361     cpu->reset_sctlr = 0x00000078;
2362 }
2363 
2364 static void pxa262_initfn(Object *obj)
2365 {
2366     ARMCPU *cpu = ARM_CPU(obj);
2367 
2368     cpu->dtb_compatible = "marvell,xscale";
2369     set_feature(&cpu->env, ARM_FEATURE_V5);
2370     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2371     cpu->midr = 0x69052d06;
2372     cpu->ctr = 0xd172172;
2373     cpu->reset_sctlr = 0x00000078;
2374 }
2375 
2376 static void pxa270a0_initfn(Object *obj)
2377 {
2378     ARMCPU *cpu = ARM_CPU(obj);
2379 
2380     cpu->dtb_compatible = "marvell,xscale";
2381     set_feature(&cpu->env, ARM_FEATURE_V5);
2382     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2383     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2384     cpu->midr = 0x69054110;
2385     cpu->ctr = 0xd172172;
2386     cpu->reset_sctlr = 0x00000078;
2387 }
2388 
2389 static void pxa270a1_initfn(Object *obj)
2390 {
2391     ARMCPU *cpu = ARM_CPU(obj);
2392 
2393     cpu->dtb_compatible = "marvell,xscale";
2394     set_feature(&cpu->env, ARM_FEATURE_V5);
2395     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2396     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2397     cpu->midr = 0x69054111;
2398     cpu->ctr = 0xd172172;
2399     cpu->reset_sctlr = 0x00000078;
2400 }
2401 
2402 static void pxa270b0_initfn(Object *obj)
2403 {
2404     ARMCPU *cpu = ARM_CPU(obj);
2405 
2406     cpu->dtb_compatible = "marvell,xscale";
2407     set_feature(&cpu->env, ARM_FEATURE_V5);
2408     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2409     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2410     cpu->midr = 0x69054112;
2411     cpu->ctr = 0xd172172;
2412     cpu->reset_sctlr = 0x00000078;
2413 }
2414 
2415 static void pxa270b1_initfn(Object *obj)
2416 {
2417     ARMCPU *cpu = ARM_CPU(obj);
2418 
2419     cpu->dtb_compatible = "marvell,xscale";
2420     set_feature(&cpu->env, ARM_FEATURE_V5);
2421     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2422     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2423     cpu->midr = 0x69054113;
2424     cpu->ctr = 0xd172172;
2425     cpu->reset_sctlr = 0x00000078;
2426 }
2427 
2428 static void pxa270c0_initfn(Object *obj)
2429 {
2430     ARMCPU *cpu = ARM_CPU(obj);
2431 
2432     cpu->dtb_compatible = "marvell,xscale";
2433     set_feature(&cpu->env, ARM_FEATURE_V5);
2434     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2435     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2436     cpu->midr = 0x69054114;
2437     cpu->ctr = 0xd172172;
2438     cpu->reset_sctlr = 0x00000078;
2439 }
2440 
2441 static void pxa270c5_initfn(Object *obj)
2442 {
2443     ARMCPU *cpu = ARM_CPU(obj);
2444 
2445     cpu->dtb_compatible = "marvell,xscale";
2446     set_feature(&cpu->env, ARM_FEATURE_V5);
2447     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2448     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2449     cpu->midr = 0x69054117;
2450     cpu->ctr = 0xd172172;
2451     cpu->reset_sctlr = 0x00000078;
2452 }
2453 
2454 #ifndef TARGET_AARCH64
2455 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2456  * otherwise, a CPU with as many features enabled as our emulation supports.
2457  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2458  * this only needs to handle 32 bits.
2459  */
2460 static void arm_max_initfn(Object *obj)
2461 {
2462     ARMCPU *cpu = ARM_CPU(obj);
2463 
2464     if (kvm_enabled()) {
2465         kvm_arm_set_cpu_features_from_host(cpu);
2466     } else {
2467         cortex_a15_initfn(obj);
2468 
2469         /* old-style VFP short-vector support */
2470         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2471 
2472 #ifdef CONFIG_USER_ONLY
2473         /* We don't set these in system emulation mode for the moment,
2474          * since we don't correctly set (all of) the ID registers to
2475          * advertise them.
2476          */
2477         set_feature(&cpu->env, ARM_FEATURE_V8);
2478         {
2479             uint32_t t;
2480 
2481             t = cpu->isar.id_isar5;
2482             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2483             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2484             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2485             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2486             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2487             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2488             cpu->isar.id_isar5 = t;
2489 
2490             t = cpu->isar.id_isar6;
2491             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2492             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2493             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2494             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2495             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2496             cpu->isar.id_isar6 = t;
2497 
2498             t = cpu->isar.mvfr1;
2499             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2500             cpu->isar.mvfr1 = t;
2501 
2502             t = cpu->isar.mvfr2;
2503             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2504             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2505             cpu->isar.mvfr2 = t;
2506 
2507             t = cpu->id_mmfr4;
2508             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2509             cpu->id_mmfr4 = t;
2510         }
2511 #endif
2512     }
2513 }
2514 #endif
2515 
2516 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2517 
2518 struct ARMCPUInfo {
2519     const char *name;
2520     void (*initfn)(Object *obj);
2521     void (*class_init)(ObjectClass *oc, void *data);
2522 };
2523 
2524 static const ARMCPUInfo arm_cpus[] = {
2525 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2526     { .name = "arm926",      .initfn = arm926_initfn },
2527     { .name = "arm946",      .initfn = arm946_initfn },
2528     { .name = "arm1026",     .initfn = arm1026_initfn },
2529     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2530      * older core than plain "arm1136". In particular this does not
2531      * have the v6K features.
2532      */
2533     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2534     { .name = "arm1136",     .initfn = arm1136_initfn },
2535     { .name = "arm1176",     .initfn = arm1176_initfn },
2536     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2537     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2538                              .class_init = arm_v7m_class_init },
2539     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2540                              .class_init = arm_v7m_class_init },
2541     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2542                              .class_init = arm_v7m_class_init },
2543     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2544                              .class_init = arm_v7m_class_init },
2545     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2546     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2547     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2548     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2549     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2550     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2551     { .name = "ti925t",      .initfn = ti925t_initfn },
2552     { .name = "sa1100",      .initfn = sa1100_initfn },
2553     { .name = "sa1110",      .initfn = sa1110_initfn },
2554     { .name = "pxa250",      .initfn = pxa250_initfn },
2555     { .name = "pxa255",      .initfn = pxa255_initfn },
2556     { .name = "pxa260",      .initfn = pxa260_initfn },
2557     { .name = "pxa261",      .initfn = pxa261_initfn },
2558     { .name = "pxa262",      .initfn = pxa262_initfn },
2559     /* "pxa270" is an alias for "pxa270-a0" */
2560     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2561     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2562     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2563     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2564     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2565     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2566     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2567 #ifndef TARGET_AARCH64
2568     { .name = "max",         .initfn = arm_max_initfn },
2569 #endif
2570 #ifdef CONFIG_USER_ONLY
2571     { .name = "any",         .initfn = arm_max_initfn },
2572 #endif
2573 #endif
2574     { .name = NULL }
2575 };
2576 
2577 static Property arm_cpu_properties[] = {
2578     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2579     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2580     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2581     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2582                         mp_affinity, ARM64_AFFINITY_INVALID),
2583     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2584     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2585     DEFINE_PROP_END_OF_LIST()
2586 };
2587 
2588 static gchar *arm_gdb_arch_name(CPUState *cs)
2589 {
2590     ARMCPU *cpu = ARM_CPU(cs);
2591     CPUARMState *env = &cpu->env;
2592 
2593     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2594         return g_strdup("iwmmxt");
2595     }
2596     return g_strdup("arm");
2597 }
2598 
2599 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2600 {
2601     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2602     CPUClass *cc = CPU_CLASS(acc);
2603     DeviceClass *dc = DEVICE_CLASS(oc);
2604 
2605     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2606                                     &acc->parent_realize);
2607     dc->props = arm_cpu_properties;
2608 
2609     acc->parent_reset = cc->reset;
2610     cc->reset = arm_cpu_reset;
2611 
2612     cc->class_by_name = arm_cpu_class_by_name;
2613     cc->has_work = arm_cpu_has_work;
2614     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2615     cc->dump_state = arm_cpu_dump_state;
2616     cc->set_pc = arm_cpu_set_pc;
2617     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2618     cc->gdb_read_register = arm_cpu_gdb_read_register;
2619     cc->gdb_write_register = arm_cpu_gdb_write_register;
2620 #ifndef CONFIG_USER_ONLY
2621     cc->do_interrupt = arm_cpu_do_interrupt;
2622     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2623     cc->asidx_from_attrs = arm_asidx_from_attrs;
2624     cc->vmsd = &vmstate_arm_cpu;
2625     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2626     cc->write_elf64_note = arm_cpu_write_elf64_note;
2627     cc->write_elf32_note = arm_cpu_write_elf32_note;
2628 #endif
2629     cc->gdb_num_core_regs = 26;
2630     cc->gdb_core_xml_file = "arm-core.xml";
2631     cc->gdb_arch_name = arm_gdb_arch_name;
2632     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2633     cc->gdb_stop_before_watchpoint = true;
2634     cc->disas_set_info = arm_disas_set_info;
2635 #ifdef CONFIG_TCG
2636     cc->tcg_initialize = arm_translate_init;
2637     cc->tlb_fill = arm_cpu_tlb_fill;
2638     cc->debug_excp_handler = arm_debug_excp_handler;
2639     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2640 #if !defined(CONFIG_USER_ONLY)
2641     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2642     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2643     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2644 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2645 #endif
2646 }
2647 
2648 #ifdef CONFIG_KVM
2649 static void arm_host_initfn(Object *obj)
2650 {
2651     ARMCPU *cpu = ARM_CPU(obj);
2652 
2653     kvm_arm_set_cpu_features_from_host(cpu);
2654     arm_cpu_post_init(obj);
2655 }
2656 
2657 static const TypeInfo host_arm_cpu_type_info = {
2658     .name = TYPE_ARM_HOST_CPU,
2659 #ifdef TARGET_AARCH64
2660     .parent = TYPE_AARCH64_CPU,
2661 #else
2662     .parent = TYPE_ARM_CPU,
2663 #endif
2664     .instance_init = arm_host_initfn,
2665 };
2666 
2667 #endif
2668 
2669 static void arm_cpu_instance_init(Object *obj)
2670 {
2671     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2672 
2673     acc->info->initfn(obj);
2674     arm_cpu_post_init(obj);
2675 }
2676 
2677 static void cpu_register_class_init(ObjectClass *oc, void *data)
2678 {
2679     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2680 
2681     acc->info = data;
2682 }
2683 
2684 static void cpu_register(const ARMCPUInfo *info)
2685 {
2686     TypeInfo type_info = {
2687         .parent = TYPE_ARM_CPU,
2688         .instance_size = sizeof(ARMCPU),
2689         .instance_init = arm_cpu_instance_init,
2690         .class_size = sizeof(ARMCPUClass),
2691         .class_init = info->class_init ?: cpu_register_class_init,
2692         .class_data = (void *)info,
2693     };
2694 
2695     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2696     type_register(&type_info);
2697     g_free((void *)type_info.name);
2698 }
2699 
2700 static const TypeInfo arm_cpu_type_info = {
2701     .name = TYPE_ARM_CPU,
2702     .parent = TYPE_CPU,
2703     .instance_size = sizeof(ARMCPU),
2704     .instance_init = arm_cpu_initfn,
2705     .instance_finalize = arm_cpu_finalizefn,
2706     .abstract = true,
2707     .class_size = sizeof(ARMCPUClass),
2708     .class_init = arm_cpu_class_init,
2709 };
2710 
2711 static const TypeInfo idau_interface_type_info = {
2712     .name = TYPE_IDAU_INTERFACE,
2713     .parent = TYPE_INTERFACE,
2714     .class_size = sizeof(IDAUInterfaceClass),
2715 };
2716 
2717 static void arm_cpu_register_types(void)
2718 {
2719     const ARMCPUInfo *info = arm_cpus;
2720 
2721     type_register_static(&arm_cpu_type_info);
2722     type_register_static(&idau_interface_type_info);
2723 
2724     while (info->name) {
2725         cpu_register(info);
2726         info++;
2727     }
2728 
2729 #ifdef CONFIG_KVM
2730     type_register_static(&host_arm_cpu_type_info);
2731 #endif
2732 }
2733 
2734 type_init(arm_cpu_register_types)
2735