1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu/timer.h" 24 #include "qemu/log.h" 25 #include "exec/page-vary.h" 26 #include "target/arm/idau.h" 27 #include "qemu/module.h" 28 #include "qapi/error.h" 29 #include "cpu.h" 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 #include "internals.h" 34 #include "cpu-features.h" 35 #include "exec/exec-all.h" 36 #include "hw/qdev-properties.h" 37 #if !defined(CONFIG_USER_ONLY) 38 #include "hw/loader.h" 39 #include "hw/boards.h" 40 #ifdef CONFIG_TCG 41 #include "hw/intc/armv7m_nvic.h" 42 #endif /* CONFIG_TCG */ 43 #endif /* !CONFIG_USER_ONLY */ 44 #include "sysemu/tcg.h" 45 #include "sysemu/qtest.h" 46 #include "sysemu/hw_accel.h" 47 #include "kvm_arm.h" 48 #include "disas/capstone.h" 49 #include "fpu/softfloat.h" 50 #include "cpregs.h" 51 #include "target/arm/cpu-qom.h" 52 #include "target/arm/gtimer.h" 53 54 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 55 { 56 ARMCPU *cpu = ARM_CPU(cs); 57 CPUARMState *env = &cpu->env; 58 59 if (is_a64(env)) { 60 env->pc = value; 61 env->thumb = false; 62 } else { 63 env->regs[15] = value & ~1; 64 env->thumb = value & 1; 65 } 66 } 67 68 static vaddr arm_cpu_get_pc(CPUState *cs) 69 { 70 ARMCPU *cpu = ARM_CPU(cs); 71 CPUARMState *env = &cpu->env; 72 73 if (is_a64(env)) { 74 return env->pc; 75 } else { 76 return env->regs[15]; 77 } 78 } 79 80 #ifdef CONFIG_TCG 81 void arm_cpu_synchronize_from_tb(CPUState *cs, 82 const TranslationBlock *tb) 83 { 84 /* The program counter is always up to date with CF_PCREL. */ 85 if (!(tb_cflags(tb) & CF_PCREL)) { 86 CPUARMState *env = cpu_env(cs); 87 /* 88 * It's OK to look at env for the current mode here, because it's 89 * never possible for an AArch64 TB to chain to an AArch32 TB. 90 */ 91 if (is_a64(env)) { 92 env->pc = tb->pc; 93 } else { 94 env->regs[15] = tb->pc; 95 } 96 } 97 } 98 99 void arm_restore_state_to_opc(CPUState *cs, 100 const TranslationBlock *tb, 101 const uint64_t *data) 102 { 103 CPUARMState *env = cpu_env(cs); 104 105 if (is_a64(env)) { 106 if (tb_cflags(tb) & CF_PCREL) { 107 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; 108 } else { 109 env->pc = data[0]; 110 } 111 env->condexec_bits = 0; 112 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 113 } else { 114 if (tb_cflags(tb) & CF_PCREL) { 115 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; 116 } else { 117 env->regs[15] = data[0]; 118 } 119 env->condexec_bits = data[1]; 120 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 121 } 122 } 123 #endif /* CONFIG_TCG */ 124 125 static bool arm_cpu_has_work(CPUState *cs) 126 { 127 ARMCPU *cpu = ARM_CPU(cs); 128 129 return (cpu->power_state != PSCI_OFF) 130 && cs->interrupt_request & 131 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 132 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR 133 | CPU_INTERRUPT_EXITTB); 134 } 135 136 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch) 137 { 138 return arm_env_mmu_index(cpu_env(cs)); 139 } 140 141 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 142 void *opaque) 143 { 144 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 145 146 entry->hook = hook; 147 entry->opaque = opaque; 148 149 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 150 } 151 152 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 153 void *opaque) 154 { 155 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 156 157 entry->hook = hook; 158 entry->opaque = opaque; 159 160 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 161 } 162 163 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 164 { 165 /* Reset a single ARMCPRegInfo register */ 166 ARMCPRegInfo *ri = value; 167 ARMCPU *cpu = opaque; 168 169 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { 170 return; 171 } 172 173 if (ri->resetfn) { 174 ri->resetfn(&cpu->env, ri); 175 return; 176 } 177 178 /* A zero offset is never possible as it would be regs[0] 179 * so we use it to indicate that reset is being handled elsewhere. 180 * This is basically only used for fields in non-core coprocessors 181 * (like the pxa2xx ones). 182 */ 183 if (!ri->fieldoffset) { 184 return; 185 } 186 187 if (cpreg_field_is_64bit(ri)) { 188 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 189 } else { 190 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 191 } 192 } 193 194 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 195 { 196 /* Purely an assertion check: we've already done reset once, 197 * so now check that running the reset for the cpreg doesn't 198 * change its value. This traps bugs where two different cpregs 199 * both try to reset the same state field but to different values. 200 */ 201 ARMCPRegInfo *ri = value; 202 ARMCPU *cpu = opaque; 203 uint64_t oldvalue, newvalue; 204 205 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 206 return; 207 } 208 209 oldvalue = read_raw_cp_reg(&cpu->env, ri); 210 cp_reg_reset(key, value, opaque); 211 newvalue = read_raw_cp_reg(&cpu->env, ri); 212 assert(oldvalue == newvalue); 213 } 214 215 static void arm_cpu_reset_hold(Object *obj) 216 { 217 CPUState *s = CPU(obj); 218 ARMCPU *cpu = ARM_CPU(s); 219 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 220 CPUARMState *env = &cpu->env; 221 222 if (acc->parent_phases.hold) { 223 acc->parent_phases.hold(obj); 224 } 225 226 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 227 228 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 229 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 230 231 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 232 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 233 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 234 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 235 236 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 237 238 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 239 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 240 } 241 242 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 243 /* 64 bit CPUs always start in 64 bit mode */ 244 env->aarch64 = true; 245 #if defined(CONFIG_USER_ONLY) 246 env->pstate = PSTATE_MODE_EL0t; 247 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 248 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 249 /* Enable all PAC keys. */ 250 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 251 SCTLR_EnDA | SCTLR_EnDB); 252 /* Trap on btype=3 for PACIxSP. */ 253 env->cp15.sctlr_el[1] |= SCTLR_BT0; 254 /* Trap on implementation defined registers. */ 255 if (cpu_isar_feature(aa64_tidcp1, cpu)) { 256 env->cp15.sctlr_el[1] |= SCTLR_TIDCP; 257 } 258 /* and to the FP/Neon instructions */ 259 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 260 CPACR_EL1, FPEN, 3); 261 /* and to the SVE instructions, with default vector length */ 262 if (cpu_isar_feature(aa64_sve, cpu)) { 263 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 264 CPACR_EL1, ZEN, 3); 265 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; 266 } 267 /* and for SME instructions, with default vector length, and TPIDR2 */ 268 if (cpu_isar_feature(aa64_sme, cpu)) { 269 env->cp15.sctlr_el[1] |= SCTLR_EnTP2; 270 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 271 CPACR_EL1, SMEN, 3); 272 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; 273 if (cpu_isar_feature(aa64_sme_fa64, cpu)) { 274 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], 275 SMCR, FA64, 1); 276 } 277 } 278 /* 279 * Enable 48-bit address space (TODO: take reserved_va into account). 280 * Enable TBI0 but not TBI1. 281 * Note that this must match useronly_clean_ptr. 282 */ 283 env->cp15.tcr_el[1] = 5 | (1ULL << 37); 284 285 /* Enable MTE */ 286 if (cpu_isar_feature(aa64_mte, cpu)) { 287 /* Enable tag access, but leave TCF0 as No Effect (0). */ 288 env->cp15.sctlr_el[1] |= SCTLR_ATA0; 289 /* 290 * Exclude all tags, so that tag 0 is always used. 291 * This corresponds to Linux current->thread.gcr_incl = 0. 292 * 293 * Set RRND, so that helper_irg() will generate a seed later. 294 * Here in cpu_reset(), the crypto subsystem has not yet been 295 * initialized. 296 */ 297 env->cp15.gcr_el1 = 0x1ffff; 298 } 299 /* 300 * Disable access to SCXTNUM_EL0 from CSV2_1p2. 301 * This is not yet exposed from the Linux kernel in any way. 302 */ 303 env->cp15.sctlr_el[1] |= SCTLR_TSCXT; 304 /* Disable access to Debug Communication Channel (DCC). */ 305 env->cp15.mdscr_el1 |= 1 << 12; 306 /* Enable FEAT_MOPS */ 307 env->cp15.sctlr_el[1] |= SCTLR_MSCEN; 308 #else 309 /* Reset into the highest available EL */ 310 if (arm_feature(env, ARM_FEATURE_EL3)) { 311 env->pstate = PSTATE_MODE_EL3h; 312 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 313 env->pstate = PSTATE_MODE_EL2h; 314 } else { 315 env->pstate = PSTATE_MODE_EL1h; 316 } 317 318 /* Sample rvbar at reset. */ 319 env->cp15.rvbar = cpu->rvbar_prop; 320 env->pc = env->cp15.rvbar; 321 #endif 322 } else { 323 #if defined(CONFIG_USER_ONLY) 324 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 325 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 326 CPACR, CP10, 3); 327 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 328 CPACR, CP11, 3); 329 #endif 330 if (arm_feature(env, ARM_FEATURE_V8)) { 331 env->cp15.rvbar = cpu->rvbar_prop; 332 env->regs[15] = cpu->rvbar_prop; 333 } 334 } 335 336 #if defined(CONFIG_USER_ONLY) 337 env->uncached_cpsr = ARM_CPU_MODE_USR; 338 /* For user mode we must enable access to coprocessors */ 339 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 340 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 341 env->cp15.c15_cpar = 3; 342 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 343 env->cp15.c15_cpar = 1; 344 } 345 #else 346 347 /* 348 * If the highest available EL is EL2, AArch32 will start in Hyp 349 * mode; otherwise it starts in SVC. Note that if we start in 350 * AArch64 then these values in the uncached_cpsr will be ignored. 351 */ 352 if (arm_feature(env, ARM_FEATURE_EL2) && 353 !arm_feature(env, ARM_FEATURE_EL3)) { 354 env->uncached_cpsr = ARM_CPU_MODE_HYP; 355 } else { 356 env->uncached_cpsr = ARM_CPU_MODE_SVC; 357 } 358 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 359 360 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 361 * executing as AArch32 then check if highvecs are enabled and 362 * adjust the PC accordingly. 363 */ 364 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 365 env->regs[15] = 0xFFFF0000; 366 } 367 368 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 369 #endif 370 371 if (arm_feature(env, ARM_FEATURE_M)) { 372 #ifndef CONFIG_USER_ONLY 373 uint32_t initial_msp; /* Loaded from 0x0 */ 374 uint32_t initial_pc; /* Loaded from 0x4 */ 375 uint8_t *rom; 376 uint32_t vecbase; 377 #endif 378 379 if (cpu_isar_feature(aa32_lob, cpu)) { 380 /* 381 * LTPSIZE is constant 4 if MVE not implemented, and resets 382 * to an UNKNOWN value if MVE is implemented. We choose to 383 * always reset to 4. 384 */ 385 env->v7m.ltpsize = 4; 386 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 387 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 388 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 389 } 390 391 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 392 env->v7m.secure = true; 393 } else { 394 /* This bit resets to 0 if security is supported, but 1 if 395 * it is not. The bit is not present in v7M, but we set it 396 * here so we can avoid having to make checks on it conditional 397 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 398 */ 399 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 400 /* 401 * Set NSACR to indicate "NS access permitted to everything"; 402 * this avoids having to have all the tests of it being 403 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 404 * v8.1M the guest-visible value of NSACR in a CPU without the 405 * Security Extension is 0xcff. 406 */ 407 env->v7m.nsacr = 0xcff; 408 } 409 410 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 411 * that it resets to 1, so QEMU always does that rather than making 412 * it dependent on CPU model. In v8M it is RES1. 413 */ 414 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 415 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 416 if (arm_feature(env, ARM_FEATURE_V8)) { 417 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 418 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 419 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 420 } 421 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 422 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 423 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 424 } 425 426 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 427 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 428 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 429 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 430 } 431 432 #ifndef CONFIG_USER_ONLY 433 /* Unlike A/R profile, M profile defines the reset LR value */ 434 env->regs[14] = 0xffffffff; 435 436 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 437 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; 438 439 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 440 vecbase = env->v7m.vecbase[env->v7m.secure]; 441 rom = rom_ptr_for_as(s->as, vecbase, 8); 442 if (rom) { 443 /* Address zero is covered by ROM which hasn't yet been 444 * copied into physical memory. 445 */ 446 initial_msp = ldl_p(rom); 447 initial_pc = ldl_p(rom + 4); 448 } else { 449 /* Address zero not covered by a ROM blob, or the ROM blob 450 * is in non-modifiable memory and this is a second reset after 451 * it got copied into memory. In the latter case, rom_ptr 452 * will return a NULL pointer and we should use ldl_phys instead. 453 */ 454 initial_msp = ldl_phys(s->as, vecbase); 455 initial_pc = ldl_phys(s->as, vecbase + 4); 456 } 457 458 qemu_log_mask(CPU_LOG_INT, 459 "Loaded reset SP 0x%x PC 0x%x from vector table\n", 460 initial_msp, initial_pc); 461 462 env->regs[13] = initial_msp & 0xFFFFFFFC; 463 env->regs[15] = initial_pc & ~1; 464 env->thumb = initial_pc & 1; 465 #else 466 /* 467 * For user mode we run non-secure and with access to the FPU. 468 * The FPU context is active (ie does not need further setup) 469 * and is owned by non-secure. 470 */ 471 env->v7m.secure = false; 472 env->v7m.nsacr = 0xcff; 473 env->v7m.cpacr[M_REG_NS] = 0xf0ffff; 474 env->v7m.fpccr[M_REG_S] &= 475 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); 476 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 477 #endif 478 } 479 480 /* M profile requires that reset clears the exclusive monitor; 481 * A profile does not, but clearing it makes more sense than having it 482 * set with an exclusive access on address zero. 483 */ 484 arm_clear_exclusive(env); 485 486 if (arm_feature(env, ARM_FEATURE_PMSA)) { 487 if (cpu->pmsav7_dregion > 0) { 488 if (arm_feature(env, ARM_FEATURE_V8)) { 489 memset(env->pmsav8.rbar[M_REG_NS], 0, 490 sizeof(*env->pmsav8.rbar[M_REG_NS]) 491 * cpu->pmsav7_dregion); 492 memset(env->pmsav8.rlar[M_REG_NS], 0, 493 sizeof(*env->pmsav8.rlar[M_REG_NS]) 494 * cpu->pmsav7_dregion); 495 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 496 memset(env->pmsav8.rbar[M_REG_S], 0, 497 sizeof(*env->pmsav8.rbar[M_REG_S]) 498 * cpu->pmsav7_dregion); 499 memset(env->pmsav8.rlar[M_REG_S], 0, 500 sizeof(*env->pmsav8.rlar[M_REG_S]) 501 * cpu->pmsav7_dregion); 502 } 503 } else if (arm_feature(env, ARM_FEATURE_V7)) { 504 memset(env->pmsav7.drbar, 0, 505 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 506 memset(env->pmsav7.drsr, 0, 507 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 508 memset(env->pmsav7.dracr, 0, 509 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 510 } 511 } 512 513 if (cpu->pmsav8r_hdregion > 0) { 514 memset(env->pmsav8.hprbar, 0, 515 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion); 516 memset(env->pmsav8.hprlar, 0, 517 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion); 518 } 519 520 env->pmsav7.rnr[M_REG_NS] = 0; 521 env->pmsav7.rnr[M_REG_S] = 0; 522 env->pmsav8.mair0[M_REG_NS] = 0; 523 env->pmsav8.mair0[M_REG_S] = 0; 524 env->pmsav8.mair1[M_REG_NS] = 0; 525 env->pmsav8.mair1[M_REG_S] = 0; 526 } 527 528 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 529 if (cpu->sau_sregion > 0) { 530 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 531 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 532 } 533 env->sau.rnr = 0; 534 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 535 * the Cortex-M33 does. 536 */ 537 env->sau.ctrl = 0; 538 } 539 540 set_flush_to_zero(1, &env->vfp.standard_fp_status); 541 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 542 set_default_nan_mode(1, &env->vfp.standard_fp_status); 543 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 544 set_float_detect_tininess(float_tininess_before_rounding, 545 &env->vfp.fp_status); 546 set_float_detect_tininess(float_tininess_before_rounding, 547 &env->vfp.standard_fp_status); 548 set_float_detect_tininess(float_tininess_before_rounding, 549 &env->vfp.fp_status_f16); 550 set_float_detect_tininess(float_tininess_before_rounding, 551 &env->vfp.standard_fp_status_f16); 552 #ifndef CONFIG_USER_ONLY 553 if (kvm_enabled()) { 554 kvm_arm_reset_vcpu(cpu); 555 } 556 #endif 557 558 if (tcg_enabled()) { 559 hw_breakpoint_update_all(cpu); 560 hw_watchpoint_update_all(cpu); 561 562 arm_rebuild_hflags(env); 563 } 564 } 565 566 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el) 567 { 568 ARMCPU *cpu = ARM_CPU(cpustate); 569 CPUARMState *env = &cpu->env; 570 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3); 571 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2); 572 573 /* 574 * Check we have the EL we're aiming for. If that is the 575 * highest implemented EL, then cpu_reset has already done 576 * all the work. 577 */ 578 switch (target_el) { 579 case 3: 580 assert(have_el3); 581 return; 582 case 2: 583 assert(have_el2); 584 if (!have_el3) { 585 return; 586 } 587 break; 588 case 1: 589 if (!have_el3 && !have_el2) { 590 return; 591 } 592 break; 593 default: 594 g_assert_not_reached(); 595 } 596 597 if (have_el3) { 598 /* 599 * Set the EL3 state so code can run at EL2. This should match 600 * the requirements set by Linux in its booting spec. 601 */ 602 if (env->aarch64) { 603 env->cp15.scr_el3 |= SCR_RW; 604 if (cpu_isar_feature(aa64_pauth, cpu)) { 605 env->cp15.scr_el3 |= SCR_API | SCR_APK; 606 } 607 if (cpu_isar_feature(aa64_mte, cpu)) { 608 env->cp15.scr_el3 |= SCR_ATA; 609 } 610 if (cpu_isar_feature(aa64_sve, cpu)) { 611 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK; 612 env->vfp.zcr_el[3] = 0xf; 613 } 614 if (cpu_isar_feature(aa64_sme, cpu)) { 615 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK; 616 env->cp15.scr_el3 |= SCR_ENTP2; 617 env->vfp.smcr_el[3] = 0xf; 618 } 619 if (cpu_isar_feature(aa64_hcx, cpu)) { 620 env->cp15.scr_el3 |= SCR_HXEN; 621 } 622 if (cpu_isar_feature(aa64_fgt, cpu)) { 623 env->cp15.scr_el3 |= SCR_FGTEN; 624 } 625 } 626 627 if (target_el == 2) { 628 /* If the guest is at EL2 then Linux expects the HVC insn to work */ 629 env->cp15.scr_el3 |= SCR_HCE; 630 } 631 632 /* Put CPU into non-secure state */ 633 env->cp15.scr_el3 |= SCR_NS; 634 /* Set NSACR.{CP11,CP10} so NS can access the FPU */ 635 env->cp15.nsacr |= 3 << 10; 636 } 637 638 if (have_el2 && target_el < 2) { 639 /* Set EL2 state so code can run at EL1. */ 640 if (env->aarch64) { 641 env->cp15.hcr_el2 |= HCR_RW; 642 } 643 } 644 645 /* Set the CPU to the desired state */ 646 if (env->aarch64) { 647 env->pstate = aarch64_pstate_mode(target_el, true); 648 } else { 649 static const uint32_t mode_for_el[] = { 650 0, 651 ARM_CPU_MODE_SVC, 652 ARM_CPU_MODE_HYP, 653 ARM_CPU_MODE_SVC, 654 }; 655 656 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw); 657 } 658 } 659 660 661 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) 662 663 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 664 unsigned int target_el, 665 unsigned int cur_el, bool secure, 666 uint64_t hcr_el2) 667 { 668 CPUARMState *env = cpu_env(cs); 669 bool pstate_unmasked; 670 bool unmasked = false; 671 672 /* 673 * Don't take exceptions if they target a lower EL. 674 * This check should catch any exceptions that would not be taken 675 * but left pending. 676 */ 677 if (cur_el > target_el) { 678 return false; 679 } 680 681 switch (excp_idx) { 682 case EXCP_FIQ: 683 pstate_unmasked = !(env->daif & PSTATE_F); 684 break; 685 686 case EXCP_IRQ: 687 pstate_unmasked = !(env->daif & PSTATE_I); 688 break; 689 690 case EXCP_VFIQ: 691 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 692 /* VFIQs are only taken when hypervized. */ 693 return false; 694 } 695 return !(env->daif & PSTATE_F); 696 case EXCP_VIRQ: 697 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 698 /* VIRQs are only taken when hypervized. */ 699 return false; 700 } 701 return !(env->daif & PSTATE_I); 702 case EXCP_VSERR: 703 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { 704 /* VIRQs are only taken when hypervized. */ 705 return false; 706 } 707 return !(env->daif & PSTATE_A); 708 default: 709 g_assert_not_reached(); 710 } 711 712 /* 713 * Use the target EL, current execution state and SCR/HCR settings to 714 * determine whether the corresponding CPSR bit is used to mask the 715 * interrupt. 716 */ 717 if ((target_el > cur_el) && (target_el != 1)) { 718 /* Exceptions targeting a higher EL may not be maskable */ 719 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 720 switch (target_el) { 721 case 2: 722 /* 723 * According to ARM DDI 0487H.a, an interrupt can be masked 724 * when HCR_E2H and HCR_TGE are both set regardless of the 725 * current Security state. Note that we need to revisit this 726 * part again once we need to support NMI. 727 */ 728 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 729 unmasked = true; 730 } 731 break; 732 case 3: 733 /* Interrupt cannot be masked when the target EL is 3 */ 734 unmasked = true; 735 break; 736 default: 737 g_assert_not_reached(); 738 } 739 } else { 740 /* 741 * The old 32-bit-only environment has a more complicated 742 * masking setup. HCR and SCR bits not only affect interrupt 743 * routing but also change the behaviour of masking. 744 */ 745 bool hcr, scr; 746 747 switch (excp_idx) { 748 case EXCP_FIQ: 749 /* 750 * If FIQs are routed to EL3 or EL2 then there are cases where 751 * we override the CPSR.F in determining if the exception is 752 * masked or not. If neither of these are set then we fall back 753 * to the CPSR.F setting otherwise we further assess the state 754 * below. 755 */ 756 hcr = hcr_el2 & HCR_FMO; 757 scr = (env->cp15.scr_el3 & SCR_FIQ); 758 759 /* 760 * When EL3 is 32-bit, the SCR.FW bit controls whether the 761 * CPSR.F bit masks FIQ interrupts when taken in non-secure 762 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 763 * when non-secure but only when FIQs are only routed to EL3. 764 */ 765 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 766 break; 767 case EXCP_IRQ: 768 /* 769 * When EL3 execution state is 32-bit, if HCR.IMO is set then 770 * we may override the CPSR.I masking when in non-secure state. 771 * The SCR.IRQ setting has already been taken into consideration 772 * when setting the target EL, so it does not have a further 773 * affect here. 774 */ 775 hcr = hcr_el2 & HCR_IMO; 776 scr = false; 777 break; 778 default: 779 g_assert_not_reached(); 780 } 781 782 if ((scr || hcr) && !secure) { 783 unmasked = true; 784 } 785 } 786 } 787 788 /* 789 * The PSTATE bits only mask the interrupt if we have not overridden the 790 * ability above. 791 */ 792 return unmasked || pstate_unmasked; 793 } 794 795 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 796 { 797 CPUClass *cc = CPU_GET_CLASS(cs); 798 CPUARMState *env = cpu_env(cs); 799 uint32_t cur_el = arm_current_el(env); 800 bool secure = arm_is_secure(env); 801 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 802 uint32_t target_el; 803 uint32_t excp_idx; 804 805 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 806 807 if (interrupt_request & CPU_INTERRUPT_FIQ) { 808 excp_idx = EXCP_FIQ; 809 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 810 if (arm_excp_unmasked(cs, excp_idx, target_el, 811 cur_el, secure, hcr_el2)) { 812 goto found; 813 } 814 } 815 if (interrupt_request & CPU_INTERRUPT_HARD) { 816 excp_idx = EXCP_IRQ; 817 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 818 if (arm_excp_unmasked(cs, excp_idx, target_el, 819 cur_el, secure, hcr_el2)) { 820 goto found; 821 } 822 } 823 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 824 excp_idx = EXCP_VIRQ; 825 target_el = 1; 826 if (arm_excp_unmasked(cs, excp_idx, target_el, 827 cur_el, secure, hcr_el2)) { 828 goto found; 829 } 830 } 831 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 832 excp_idx = EXCP_VFIQ; 833 target_el = 1; 834 if (arm_excp_unmasked(cs, excp_idx, target_el, 835 cur_el, secure, hcr_el2)) { 836 goto found; 837 } 838 } 839 if (interrupt_request & CPU_INTERRUPT_VSERR) { 840 excp_idx = EXCP_VSERR; 841 target_el = 1; 842 if (arm_excp_unmasked(cs, excp_idx, target_el, 843 cur_el, secure, hcr_el2)) { 844 /* Taking a virtual abort clears HCR_EL2.VSE */ 845 env->cp15.hcr_el2 &= ~HCR_VSE; 846 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 847 goto found; 848 } 849 } 850 return false; 851 852 found: 853 cs->exception_index = excp_idx; 854 env->exception.target_el = target_el; 855 cc->tcg_ops->do_interrupt(cs); 856 return true; 857 } 858 859 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 860 861 void arm_cpu_update_virq(ARMCPU *cpu) 862 { 863 /* 864 * Update the interrupt level for VIRQ, which is the logical OR of 865 * the HCR_EL2.VI bit and the input line level from the GIC. 866 */ 867 CPUARMState *env = &cpu->env; 868 CPUState *cs = CPU(cpu); 869 870 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 871 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 872 873 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 874 if (new_state) { 875 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 876 } else { 877 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 878 } 879 } 880 } 881 882 void arm_cpu_update_vfiq(ARMCPU *cpu) 883 { 884 /* 885 * Update the interrupt level for VFIQ, which is the logical OR of 886 * the HCR_EL2.VF bit and the input line level from the GIC. 887 */ 888 CPUARMState *env = &cpu->env; 889 CPUState *cs = CPU(cpu); 890 891 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 892 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 893 894 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 895 if (new_state) { 896 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 897 } else { 898 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 899 } 900 } 901 } 902 903 void arm_cpu_update_vserr(ARMCPU *cpu) 904 { 905 /* 906 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. 907 */ 908 CPUARMState *env = &cpu->env; 909 CPUState *cs = CPU(cpu); 910 911 bool new_state = env->cp15.hcr_el2 & HCR_VSE; 912 913 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { 914 if (new_state) { 915 cpu_interrupt(cs, CPU_INTERRUPT_VSERR); 916 } else { 917 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 918 } 919 } 920 } 921 922 #ifndef CONFIG_USER_ONLY 923 static void arm_cpu_set_irq(void *opaque, int irq, int level) 924 { 925 ARMCPU *cpu = opaque; 926 CPUARMState *env = &cpu->env; 927 CPUState *cs = CPU(cpu); 928 static const int mask[] = { 929 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 930 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 931 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 932 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 933 }; 934 935 if (!arm_feature(env, ARM_FEATURE_EL2) && 936 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { 937 /* 938 * The GIC might tell us about VIRQ and VFIQ state, but if we don't 939 * have EL2 support we don't care. (Unless the guest is doing something 940 * silly this will only be calls saying "level is still 0".) 941 */ 942 return; 943 } 944 945 if (level) { 946 env->irq_line_state |= mask[irq]; 947 } else { 948 env->irq_line_state &= ~mask[irq]; 949 } 950 951 switch (irq) { 952 case ARM_CPU_VIRQ: 953 arm_cpu_update_virq(cpu); 954 break; 955 case ARM_CPU_VFIQ: 956 arm_cpu_update_vfiq(cpu); 957 break; 958 case ARM_CPU_IRQ: 959 case ARM_CPU_FIQ: 960 if (level) { 961 cpu_interrupt(cs, mask[irq]); 962 } else { 963 cpu_reset_interrupt(cs, mask[irq]); 964 } 965 break; 966 default: 967 g_assert_not_reached(); 968 } 969 } 970 971 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 972 { 973 #ifdef CONFIG_KVM 974 ARMCPU *cpu = opaque; 975 CPUARMState *env = &cpu->env; 976 CPUState *cs = CPU(cpu); 977 uint32_t linestate_bit; 978 int irq_id; 979 980 switch (irq) { 981 case ARM_CPU_IRQ: 982 irq_id = KVM_ARM_IRQ_CPU_IRQ; 983 linestate_bit = CPU_INTERRUPT_HARD; 984 break; 985 case ARM_CPU_FIQ: 986 irq_id = KVM_ARM_IRQ_CPU_FIQ; 987 linestate_bit = CPU_INTERRUPT_FIQ; 988 break; 989 default: 990 g_assert_not_reached(); 991 } 992 993 if (level) { 994 env->irq_line_state |= linestate_bit; 995 } else { 996 env->irq_line_state &= ~linestate_bit; 997 } 998 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 999 #endif 1000 } 1001 1002 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 1003 { 1004 ARMCPU *cpu = ARM_CPU(cs); 1005 CPUARMState *env = &cpu->env; 1006 1007 cpu_synchronize_state(cs); 1008 return arm_cpu_data_is_big_endian(env); 1009 } 1010 1011 #endif 1012 1013 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 1014 { 1015 ARMCPU *ac = ARM_CPU(cpu); 1016 CPUARMState *env = &ac->env; 1017 bool sctlr_b; 1018 1019 if (is_a64(env)) { 1020 info->cap_arch = CS_ARCH_ARM64; 1021 info->cap_insn_unit = 4; 1022 info->cap_insn_split = 4; 1023 } else { 1024 int cap_mode; 1025 if (env->thumb) { 1026 info->cap_insn_unit = 2; 1027 info->cap_insn_split = 4; 1028 cap_mode = CS_MODE_THUMB; 1029 } else { 1030 info->cap_insn_unit = 4; 1031 info->cap_insn_split = 4; 1032 cap_mode = CS_MODE_ARM; 1033 } 1034 if (arm_feature(env, ARM_FEATURE_V8)) { 1035 cap_mode |= CS_MODE_V8; 1036 } 1037 if (arm_feature(env, ARM_FEATURE_M)) { 1038 cap_mode |= CS_MODE_MCLASS; 1039 } 1040 info->cap_arch = CS_ARCH_ARM; 1041 info->cap_mode = cap_mode; 1042 } 1043 1044 sctlr_b = arm_sctlr_b(env); 1045 if (bswap_code(sctlr_b)) { 1046 #if TARGET_BIG_ENDIAN 1047 info->endian = BFD_ENDIAN_LITTLE; 1048 #else 1049 info->endian = BFD_ENDIAN_BIG; 1050 #endif 1051 } 1052 info->flags &= ~INSN_ARM_BE32; 1053 #ifndef CONFIG_USER_ONLY 1054 if (sctlr_b) { 1055 info->flags |= INSN_ARM_BE32; 1056 } 1057 #endif 1058 } 1059 1060 #ifdef TARGET_AARCH64 1061 1062 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1063 { 1064 ARMCPU *cpu = ARM_CPU(cs); 1065 CPUARMState *env = &cpu->env; 1066 uint32_t psr = pstate_read(env); 1067 int i, j; 1068 int el = arm_current_el(env); 1069 uint64_t hcr = arm_hcr_el2_eff(env); 1070 const char *ns_status; 1071 bool sve; 1072 1073 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 1074 for (i = 0; i < 32; i++) { 1075 if (i == 31) { 1076 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 1077 } else { 1078 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 1079 (i + 2) % 3 ? " " : "\n"); 1080 } 1081 } 1082 1083 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 1084 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1085 } else { 1086 ns_status = ""; 1087 } 1088 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 1089 psr, 1090 psr & PSTATE_N ? 'N' : '-', 1091 psr & PSTATE_Z ? 'Z' : '-', 1092 psr & PSTATE_C ? 'C' : '-', 1093 psr & PSTATE_V ? 'V' : '-', 1094 ns_status, 1095 el, 1096 psr & PSTATE_SP ? 'h' : 't'); 1097 1098 if (cpu_isar_feature(aa64_sme, cpu)) { 1099 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", 1100 env->svcr, 1101 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), 1102 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); 1103 } 1104 if (cpu_isar_feature(aa64_bti, cpu)) { 1105 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 1106 } 1107 qemu_fprintf(f, "%s%s%s", 1108 (hcr & HCR_NV) ? " NV" : "", 1109 (hcr & HCR_NV1) ? " NV1" : "", 1110 (hcr & HCR_NV2) ? " NV2" : ""); 1111 if (!(flags & CPU_DUMP_FPU)) { 1112 qemu_fprintf(f, "\n"); 1113 return; 1114 } 1115 if (fp_exception_el(env, el) != 0) { 1116 qemu_fprintf(f, " FPU disabled\n"); 1117 return; 1118 } 1119 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 1120 vfp_get_fpcr(env), vfp_get_fpsr(env)); 1121 1122 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { 1123 sve = sme_exception_el(env, el) == 0; 1124 } else if (cpu_isar_feature(aa64_sve, cpu)) { 1125 sve = sve_exception_el(env, el) == 0; 1126 } else { 1127 sve = false; 1128 } 1129 1130 if (sve) { 1131 int zcr_len = sve_vqm1_for_el(env, el); 1132 1133 for (i = 0; i <= FFR_PRED_NUM; i++) { 1134 bool eol; 1135 if (i == FFR_PRED_NUM) { 1136 qemu_fprintf(f, "FFR="); 1137 /* It's last, so end the line. */ 1138 eol = true; 1139 } else { 1140 qemu_fprintf(f, "P%02d=", i); 1141 switch (zcr_len) { 1142 case 0: 1143 eol = i % 8 == 7; 1144 break; 1145 case 1: 1146 eol = i % 6 == 5; 1147 break; 1148 case 2: 1149 case 3: 1150 eol = i % 3 == 2; 1151 break; 1152 default: 1153 /* More than one quadword per predicate. */ 1154 eol = true; 1155 break; 1156 } 1157 } 1158 for (j = zcr_len / 4; j >= 0; j--) { 1159 int digits; 1160 if (j * 4 + 4 <= zcr_len + 1) { 1161 digits = 16; 1162 } else { 1163 digits = (zcr_len % 4 + 1) * 4; 1164 } 1165 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 1166 env->vfp.pregs[i].p[j], 1167 j ? ":" : eol ? "\n" : " "); 1168 } 1169 } 1170 1171 if (zcr_len == 0) { 1172 /* 1173 * With vl=16, there are only 37 columns per register, 1174 * so output two registers per line. 1175 */ 1176 for (i = 0; i < 32; i++) { 1177 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1178 i, env->vfp.zregs[i].d[1], 1179 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 1180 } 1181 } else { 1182 for (i = 0; i < 32; i++) { 1183 qemu_fprintf(f, "Z%02d=", i); 1184 for (j = zcr_len; j >= 0; j--) { 1185 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 1186 env->vfp.zregs[i].d[j * 2 + 1], 1187 env->vfp.zregs[i].d[j * 2 + 0], 1188 j ? ":" : "\n"); 1189 } 1190 } 1191 } 1192 } else { 1193 for (i = 0; i < 32; i++) { 1194 uint64_t *q = aa64_vfp_qreg(env, i); 1195 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1196 i, q[1], q[0], (i & 1 ? "\n" : " ")); 1197 } 1198 } 1199 1200 if (cpu_isar_feature(aa64_sme, cpu) && 1201 FIELD_EX64(env->svcr, SVCR, ZA) && 1202 sme_exception_el(env, el) == 0) { 1203 int zcr_len = sve_vqm1_for_el_sm(env, el, true); 1204 int svl = (zcr_len + 1) * 16; 1205 int svl_lg10 = svl < 100 ? 2 : 3; 1206 1207 for (i = 0; i < svl; i++) { 1208 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i); 1209 for (j = zcr_len; j >= 0; --j) { 1210 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c", 1211 env->zarray[i].d[2 * j + 1], 1212 env->zarray[i].d[2 * j], 1213 j ? ':' : '\n'); 1214 } 1215 } 1216 } 1217 } 1218 1219 #else 1220 1221 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1222 { 1223 g_assert_not_reached(); 1224 } 1225 1226 #endif 1227 1228 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1229 { 1230 ARMCPU *cpu = ARM_CPU(cs); 1231 CPUARMState *env = &cpu->env; 1232 int i; 1233 1234 if (is_a64(env)) { 1235 aarch64_cpu_dump_state(cs, f, flags); 1236 return; 1237 } 1238 1239 for (i = 0; i < 16; i++) { 1240 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 1241 if ((i % 4) == 3) { 1242 qemu_fprintf(f, "\n"); 1243 } else { 1244 qemu_fprintf(f, " "); 1245 } 1246 } 1247 1248 if (arm_feature(env, ARM_FEATURE_M)) { 1249 uint32_t xpsr = xpsr_read(env); 1250 const char *mode; 1251 const char *ns_status = ""; 1252 1253 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1254 ns_status = env->v7m.secure ? "S " : "NS "; 1255 } 1256 1257 if (xpsr & XPSR_EXCP) { 1258 mode = "handler"; 1259 } else { 1260 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 1261 mode = "unpriv-thread"; 1262 } else { 1263 mode = "priv-thread"; 1264 } 1265 } 1266 1267 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 1268 xpsr, 1269 xpsr & XPSR_N ? 'N' : '-', 1270 xpsr & XPSR_Z ? 'Z' : '-', 1271 xpsr & XPSR_C ? 'C' : '-', 1272 xpsr & XPSR_V ? 'V' : '-', 1273 xpsr & XPSR_T ? 'T' : 'A', 1274 ns_status, 1275 mode); 1276 } else { 1277 uint32_t psr = cpsr_read(env); 1278 const char *ns_status = ""; 1279 1280 if (arm_feature(env, ARM_FEATURE_EL3) && 1281 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 1282 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1283 } 1284 1285 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1286 psr, 1287 psr & CPSR_N ? 'N' : '-', 1288 psr & CPSR_Z ? 'Z' : '-', 1289 psr & CPSR_C ? 'C' : '-', 1290 psr & CPSR_V ? 'V' : '-', 1291 psr & CPSR_T ? 'T' : 'A', 1292 ns_status, 1293 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1294 } 1295 1296 if (flags & CPU_DUMP_FPU) { 1297 int numvfpregs = 0; 1298 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1299 numvfpregs = 32; 1300 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1301 numvfpregs = 16; 1302 } 1303 for (i = 0; i < numvfpregs; i++) { 1304 uint64_t v = *aa32_vfp_dreg(env, i); 1305 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1306 i * 2, (uint32_t)v, 1307 i * 2 + 1, (uint32_t)(v >> 32), 1308 i, v); 1309 } 1310 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1311 if (cpu_isar_feature(aa32_mve, cpu)) { 1312 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); 1313 } 1314 } 1315 } 1316 1317 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz) 1318 { 1319 uint32_t Aff1 = idx / clustersz; 1320 uint32_t Aff0 = idx % clustersz; 1321 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1322 } 1323 1324 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu) 1325 { 1326 return cpu->mp_affinity; 1327 } 1328 1329 static void arm_cpu_initfn(Object *obj) 1330 { 1331 ARMCPU *cpu = ARM_CPU(obj); 1332 1333 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, 1334 NULL, g_free); 1335 1336 QLIST_INIT(&cpu->pre_el_change_hooks); 1337 QLIST_INIT(&cpu->el_change_hooks); 1338 1339 #ifdef CONFIG_USER_ONLY 1340 # ifdef TARGET_AARCH64 1341 /* 1342 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. 1343 * These values were chosen to fit within the default signal frame. 1344 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, 1345 * and our corresponding cpu property. 1346 */ 1347 cpu->sve_default_vq = 4; 1348 cpu->sme_default_vq = 2; 1349 # endif 1350 #else 1351 /* Our inbound IRQ and FIQ lines */ 1352 if (kvm_enabled()) { 1353 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1354 * the same interface as non-KVM CPUs. 1355 */ 1356 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1357 } else { 1358 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1359 } 1360 1361 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1362 ARRAY_SIZE(cpu->gt_timer_outputs)); 1363 1364 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1365 "gicv3-maintenance-interrupt", 1); 1366 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1367 "pmu-interrupt", 1); 1368 #endif 1369 1370 /* DTB consumers generally don't in fact care what the 'compatible' 1371 * string is, so always provide some string and trust that a hypothetical 1372 * picky DTB consumer will also provide a helpful error message. 1373 */ 1374 cpu->dtb_compatible = "qemu,unknown"; 1375 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ 1376 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1377 1378 if (tcg_enabled() || hvf_enabled()) { 1379 /* TCG and HVF implement PSCI 1.1 */ 1380 cpu->psci_version = QEMU_PSCI_VERSION_1_1; 1381 } 1382 } 1383 1384 static Property arm_cpu_gt_cntfrq_property = 1385 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1386 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1387 1388 static Property arm_cpu_reset_cbar_property = 1389 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1390 1391 static Property arm_cpu_reset_hivecs_property = 1392 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1393 1394 #ifndef CONFIG_USER_ONLY 1395 static Property arm_cpu_has_el2_property = 1396 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1397 1398 static Property arm_cpu_has_el3_property = 1399 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1400 #endif 1401 1402 static Property arm_cpu_cfgend_property = 1403 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1404 1405 static Property arm_cpu_has_vfp_property = 1406 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1407 1408 static Property arm_cpu_has_vfp_d32_property = 1409 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true); 1410 1411 static Property arm_cpu_has_neon_property = 1412 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1413 1414 static Property arm_cpu_has_dsp_property = 1415 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1416 1417 static Property arm_cpu_has_mpu_property = 1418 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1419 1420 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1421 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1422 * the right value for that particular CPU type, and we don't want 1423 * to override that with an incorrect constant value. 1424 */ 1425 static Property arm_cpu_pmsav7_dregion_property = 1426 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1427 pmsav7_dregion, 1428 qdev_prop_uint32, uint32_t); 1429 1430 static bool arm_get_pmu(Object *obj, Error **errp) 1431 { 1432 ARMCPU *cpu = ARM_CPU(obj); 1433 1434 return cpu->has_pmu; 1435 } 1436 1437 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1438 { 1439 ARMCPU *cpu = ARM_CPU(obj); 1440 1441 if (value) { 1442 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1443 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1444 return; 1445 } 1446 set_feature(&cpu->env, ARM_FEATURE_PMU); 1447 } else { 1448 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1449 } 1450 cpu->has_pmu = value; 1451 } 1452 1453 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1454 { 1455 /* 1456 * The exact approach to calculating guest ticks is: 1457 * 1458 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1459 * NANOSECONDS_PER_SECOND); 1460 * 1461 * We don't do that. Rather we intentionally use integer division 1462 * truncation below and in the caller for the conversion of host monotonic 1463 * time to guest ticks to provide the exact inverse for the semantics of 1464 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1465 * it loses precision when representing frequencies where 1466 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1467 * provide an exact inverse leads to scheduling timers with negative 1468 * periods, which in turn leads to sticky behaviour in the guest. 1469 * 1470 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1471 * cannot become zero. 1472 */ 1473 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1474 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1475 } 1476 1477 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu) 1478 { 1479 CPUARMState *env = &cpu->env; 1480 bool no_aa32 = false; 1481 1482 /* 1483 * Some features automatically imply others: set the feature 1484 * bits explicitly for these cases. 1485 */ 1486 1487 if (arm_feature(env, ARM_FEATURE_M)) { 1488 set_feature(env, ARM_FEATURE_PMSA); 1489 } 1490 1491 if (arm_feature(env, ARM_FEATURE_V8)) { 1492 if (arm_feature(env, ARM_FEATURE_M)) { 1493 set_feature(env, ARM_FEATURE_V7); 1494 } else { 1495 set_feature(env, ARM_FEATURE_V7VE); 1496 } 1497 } 1498 1499 /* 1500 * There exist AArch64 cpus without AArch32 support. When KVM 1501 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1502 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1503 * As a general principle, we also do not make ID register 1504 * consistency checks anywhere unless using TCG, because only 1505 * for TCG would a consistency-check failure be a QEMU bug. 1506 */ 1507 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1508 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1509 } 1510 1511 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1512 /* 1513 * v7 Virtualization Extensions. In real hardware this implies 1514 * EL2 and also the presence of the Security Extensions. 1515 * For QEMU, for backwards-compatibility we implement some 1516 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1517 * include the various other features that V7VE implies. 1518 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1519 * Security Extensions is ARM_FEATURE_EL3. 1520 */ 1521 assert(!tcg_enabled() || no_aa32 || 1522 cpu_isar_feature(aa32_arm_div, cpu)); 1523 set_feature(env, ARM_FEATURE_LPAE); 1524 set_feature(env, ARM_FEATURE_V7); 1525 } 1526 if (arm_feature(env, ARM_FEATURE_V7)) { 1527 set_feature(env, ARM_FEATURE_VAPA); 1528 set_feature(env, ARM_FEATURE_THUMB2); 1529 set_feature(env, ARM_FEATURE_MPIDR); 1530 if (!arm_feature(env, ARM_FEATURE_M)) { 1531 set_feature(env, ARM_FEATURE_V6K); 1532 } else { 1533 set_feature(env, ARM_FEATURE_V6); 1534 } 1535 1536 /* 1537 * Always define VBAR for V7 CPUs even if it doesn't exist in 1538 * non-EL3 configs. This is needed by some legacy boards. 1539 */ 1540 set_feature(env, ARM_FEATURE_VBAR); 1541 } 1542 if (arm_feature(env, ARM_FEATURE_V6K)) { 1543 set_feature(env, ARM_FEATURE_V6); 1544 set_feature(env, ARM_FEATURE_MVFR); 1545 } 1546 if (arm_feature(env, ARM_FEATURE_V6)) { 1547 set_feature(env, ARM_FEATURE_V5); 1548 if (!arm_feature(env, ARM_FEATURE_M)) { 1549 assert(!tcg_enabled() || no_aa32 || 1550 cpu_isar_feature(aa32_jazelle, cpu)); 1551 set_feature(env, ARM_FEATURE_AUXCR); 1552 } 1553 } 1554 if (arm_feature(env, ARM_FEATURE_V5)) { 1555 set_feature(env, ARM_FEATURE_V4T); 1556 } 1557 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1558 set_feature(env, ARM_FEATURE_V7MP); 1559 } 1560 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1561 set_feature(env, ARM_FEATURE_CBAR); 1562 } 1563 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1564 !arm_feature(env, ARM_FEATURE_M)) { 1565 set_feature(env, ARM_FEATURE_THUMB_DSP); 1566 } 1567 } 1568 1569 void arm_cpu_post_init(Object *obj) 1570 { 1571 ARMCPU *cpu = ARM_CPU(obj); 1572 1573 /* 1574 * Some features imply others. Figure this out now, because we 1575 * are going to look at the feature bits in deciding which 1576 * properties to add. 1577 */ 1578 arm_cpu_propagate_feature_implications(cpu); 1579 1580 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1581 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1582 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1583 } 1584 1585 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1586 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1587 } 1588 1589 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1590 object_property_add_uint64_ptr(obj, "rvbar", 1591 &cpu->rvbar_prop, 1592 OBJ_PROP_FLAG_READWRITE); 1593 } 1594 1595 #ifndef CONFIG_USER_ONLY 1596 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1597 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1598 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1599 */ 1600 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1601 1602 object_property_add_link(obj, "secure-memory", 1603 TYPE_MEMORY_REGION, 1604 (Object **)&cpu->secure_memory, 1605 qdev_prop_allow_set_link_before_realize, 1606 OBJ_PROP_LINK_STRONG); 1607 } 1608 1609 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1610 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1611 } 1612 #endif 1613 1614 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1615 cpu->has_pmu = true; 1616 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1617 } 1618 1619 /* 1620 * Allow user to turn off VFP and Neon support, but only for TCG -- 1621 * KVM does not currently allow us to lie to the guest about its 1622 * ID/feature registers, so the guest always sees what the host has. 1623 */ 1624 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1625 if (cpu_isar_feature(aa64_fp_simd, cpu)) { 1626 cpu->has_vfp = true; 1627 cpu->has_vfp_d32 = true; 1628 if (tcg_enabled() || qtest_enabled()) { 1629 qdev_property_add_static(DEVICE(obj), 1630 &arm_cpu_has_vfp_property); 1631 } 1632 } 1633 } else if (cpu_isar_feature(aa32_vfp, cpu)) { 1634 cpu->has_vfp = true; 1635 if (tcg_enabled() || qtest_enabled()) { 1636 qdev_property_add_static(DEVICE(obj), 1637 &arm_cpu_has_vfp_property); 1638 } 1639 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1640 cpu->has_vfp_d32 = true; 1641 /* 1642 * The permitted values of the SIMDReg bits [3:0] on 1643 * Armv8-A are either 0b0000 and 0b0010. On such CPUs, 1644 * make sure that has_vfp_d32 can not be set to false. 1645 */ 1646 if ((tcg_enabled() || qtest_enabled()) 1647 && !(arm_feature(&cpu->env, ARM_FEATURE_V8) 1648 && !arm_feature(&cpu->env, ARM_FEATURE_M))) { 1649 qdev_property_add_static(DEVICE(obj), 1650 &arm_cpu_has_vfp_d32_property); 1651 } 1652 } 1653 } 1654 1655 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1656 cpu->has_neon = true; 1657 if (!kvm_enabled()) { 1658 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1659 } 1660 } 1661 1662 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1663 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1664 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1665 } 1666 1667 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1668 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1669 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1670 qdev_property_add_static(DEVICE(obj), 1671 &arm_cpu_pmsav7_dregion_property); 1672 } 1673 } 1674 1675 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1676 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1677 qdev_prop_allow_set_link_before_realize, 1678 OBJ_PROP_LINK_STRONG); 1679 /* 1680 * M profile: initial value of the Secure VTOR. We can't just use 1681 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1682 * the property to be set after realize. 1683 */ 1684 object_property_add_uint32_ptr(obj, "init-svtor", 1685 &cpu->init_svtor, 1686 OBJ_PROP_FLAG_READWRITE); 1687 } 1688 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1689 /* 1690 * Initial value of the NS VTOR (for cores without the Security 1691 * extension, this is the only VTOR) 1692 */ 1693 object_property_add_uint32_ptr(obj, "init-nsvtor", 1694 &cpu->init_nsvtor, 1695 OBJ_PROP_FLAG_READWRITE); 1696 } 1697 1698 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ 1699 object_property_add_uint32_ptr(obj, "psci-conduit", 1700 &cpu->psci_conduit, 1701 OBJ_PROP_FLAG_READWRITE); 1702 1703 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1704 1705 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1706 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1707 } 1708 1709 if (kvm_enabled()) { 1710 kvm_arm_add_vcpu_properties(cpu); 1711 } 1712 1713 #ifndef CONFIG_USER_ONLY 1714 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1715 cpu_isar_feature(aa64_mte, cpu)) { 1716 object_property_add_link(obj, "tag-memory", 1717 TYPE_MEMORY_REGION, 1718 (Object **)&cpu->tag_memory, 1719 qdev_prop_allow_set_link_before_realize, 1720 OBJ_PROP_LINK_STRONG); 1721 1722 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1723 object_property_add_link(obj, "secure-tag-memory", 1724 TYPE_MEMORY_REGION, 1725 (Object **)&cpu->secure_tag_memory, 1726 qdev_prop_allow_set_link_before_realize, 1727 OBJ_PROP_LINK_STRONG); 1728 } 1729 } 1730 #endif 1731 } 1732 1733 static void arm_cpu_finalizefn(Object *obj) 1734 { 1735 ARMCPU *cpu = ARM_CPU(obj); 1736 ARMELChangeHook *hook, *next; 1737 1738 g_hash_table_destroy(cpu->cp_regs); 1739 1740 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1741 QLIST_REMOVE(hook, node); 1742 g_free(hook); 1743 } 1744 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1745 QLIST_REMOVE(hook, node); 1746 g_free(hook); 1747 } 1748 #ifndef CONFIG_USER_ONLY 1749 if (cpu->pmu_timer) { 1750 timer_free(cpu->pmu_timer); 1751 } 1752 #endif 1753 } 1754 1755 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1756 { 1757 Error *local_err = NULL; 1758 1759 #ifdef TARGET_AARCH64 1760 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1761 arm_cpu_sve_finalize(cpu, &local_err); 1762 if (local_err != NULL) { 1763 error_propagate(errp, local_err); 1764 return; 1765 } 1766 1767 /* 1768 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless 1769 * FEAT_SME_FA64 is present). However our implementation currently 1770 * assumes it, so if the user asked for sve=off then turn off SME also. 1771 * (KVM doesn't currently support SME at all.) 1772 */ 1773 if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) { 1774 object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort); 1775 } 1776 1777 arm_cpu_sme_finalize(cpu, &local_err); 1778 if (local_err != NULL) { 1779 error_propagate(errp, local_err); 1780 return; 1781 } 1782 1783 arm_cpu_pauth_finalize(cpu, &local_err); 1784 if (local_err != NULL) { 1785 error_propagate(errp, local_err); 1786 return; 1787 } 1788 1789 arm_cpu_lpa2_finalize(cpu, &local_err); 1790 if (local_err != NULL) { 1791 error_propagate(errp, local_err); 1792 return; 1793 } 1794 } 1795 #endif 1796 1797 if (kvm_enabled()) { 1798 kvm_arm_steal_time_finalize(cpu, &local_err); 1799 if (local_err != NULL) { 1800 error_propagate(errp, local_err); 1801 return; 1802 } 1803 } 1804 } 1805 1806 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1807 { 1808 CPUState *cs = CPU(dev); 1809 ARMCPU *cpu = ARM_CPU(dev); 1810 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1811 CPUARMState *env = &cpu->env; 1812 int pagebits; 1813 Error *local_err = NULL; 1814 1815 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) 1816 /* Use pc-relative instructions in system-mode */ 1817 cs->tcg_cflags |= CF_PCREL; 1818 #endif 1819 1820 /* If we needed to query the host kernel for the CPU features 1821 * then it's possible that might have failed in the initfn, but 1822 * this is the first point where we can report it. 1823 */ 1824 if (cpu->host_cpu_probe_failed) { 1825 if (!kvm_enabled() && !hvf_enabled()) { 1826 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); 1827 } else { 1828 error_setg(errp, "Failed to retrieve host CPU features"); 1829 } 1830 return; 1831 } 1832 1833 #ifndef CONFIG_USER_ONLY 1834 /* The NVIC and M-profile CPU are two halves of a single piece of 1835 * hardware; trying to use one without the other is a command line 1836 * error and will result in segfaults if not caught here. 1837 */ 1838 if (arm_feature(env, ARM_FEATURE_M)) { 1839 if (!env->nvic) { 1840 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1841 return; 1842 } 1843 } else { 1844 if (env->nvic) { 1845 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1846 return; 1847 } 1848 } 1849 1850 if (!tcg_enabled() && !qtest_enabled()) { 1851 /* 1852 * We assume that no accelerator except TCG (and the "not really an 1853 * accelerator" qtest) can handle these features, because Arm hardware 1854 * virtualization can't virtualize them. 1855 * 1856 * Catch all the cases which might cause us to create more than one 1857 * address space for the CPU (otherwise we will assert() later in 1858 * cpu_address_space_init()). 1859 */ 1860 if (arm_feature(env, ARM_FEATURE_M)) { 1861 error_setg(errp, 1862 "Cannot enable %s when using an M-profile guest CPU", 1863 current_accel_name()); 1864 return; 1865 } 1866 if (cpu->has_el3) { 1867 error_setg(errp, 1868 "Cannot enable %s when guest CPU has EL3 enabled", 1869 current_accel_name()); 1870 return; 1871 } 1872 if (cpu->tag_memory) { 1873 error_setg(errp, 1874 "Cannot enable %s when guest CPUs has MTE enabled", 1875 current_accel_name()); 1876 return; 1877 } 1878 } 1879 1880 { 1881 uint64_t scale; 1882 1883 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1884 if (!cpu->gt_cntfrq_hz) { 1885 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1886 cpu->gt_cntfrq_hz); 1887 return; 1888 } 1889 scale = gt_cntfrq_period_ns(cpu); 1890 } else { 1891 scale = GTIMER_SCALE; 1892 } 1893 1894 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1895 arm_gt_ptimer_cb, cpu); 1896 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1897 arm_gt_vtimer_cb, cpu); 1898 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1899 arm_gt_htimer_cb, cpu); 1900 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1901 arm_gt_stimer_cb, cpu); 1902 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1903 arm_gt_hvtimer_cb, cpu); 1904 } 1905 #endif 1906 1907 cpu_exec_realizefn(cs, &local_err); 1908 if (local_err != NULL) { 1909 error_propagate(errp, local_err); 1910 return; 1911 } 1912 1913 arm_cpu_finalize_features(cpu, &local_err); 1914 if (local_err != NULL) { 1915 error_propagate(errp, local_err); 1916 return; 1917 } 1918 1919 #ifdef CONFIG_USER_ONLY 1920 /* 1921 * User mode relies on IC IVAU instructions to catch modification of 1922 * dual-mapped code. 1923 * 1924 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses 1925 * IC IVAU even if the emulated processor does not normally require it. 1926 */ 1927 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0); 1928 #endif 1929 1930 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1931 cpu->has_vfp != cpu->has_neon) { 1932 /* 1933 * This is an architectural requirement for AArch64; AArch32 is 1934 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1935 */ 1936 error_setg(errp, 1937 "AArch64 CPUs must have both VFP and Neon or neither"); 1938 return; 1939 } 1940 1941 if (cpu->has_vfp_d32 != cpu->has_neon) { 1942 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither"); 1943 return; 1944 } 1945 1946 if (!cpu->has_vfp_d32) { 1947 uint32_t u; 1948 1949 u = cpu->isar.mvfr0; 1950 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */ 1951 cpu->isar.mvfr0 = u; 1952 } 1953 1954 if (!cpu->has_vfp) { 1955 uint64_t t; 1956 uint32_t u; 1957 1958 t = cpu->isar.id_aa64isar1; 1959 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1960 cpu->isar.id_aa64isar1 = t; 1961 1962 t = cpu->isar.id_aa64pfr0; 1963 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1964 cpu->isar.id_aa64pfr0 = t; 1965 1966 u = cpu->isar.id_isar6; 1967 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1968 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1969 cpu->isar.id_isar6 = u; 1970 1971 u = cpu->isar.mvfr0; 1972 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1973 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1974 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1975 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1976 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1977 if (!arm_feature(env, ARM_FEATURE_M)) { 1978 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1979 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1980 } 1981 cpu->isar.mvfr0 = u; 1982 1983 u = cpu->isar.mvfr1; 1984 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1985 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1986 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1987 if (arm_feature(env, ARM_FEATURE_M)) { 1988 u = FIELD_DP32(u, MVFR1, FP16, 0); 1989 } 1990 cpu->isar.mvfr1 = u; 1991 1992 u = cpu->isar.mvfr2; 1993 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1994 cpu->isar.mvfr2 = u; 1995 } 1996 1997 if (!cpu->has_neon) { 1998 uint64_t t; 1999 uint32_t u; 2000 2001 unset_feature(env, ARM_FEATURE_NEON); 2002 2003 t = cpu->isar.id_aa64isar0; 2004 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); 2005 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); 2006 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); 2007 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); 2008 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); 2009 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); 2010 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 2011 cpu->isar.id_aa64isar0 = t; 2012 2013 t = cpu->isar.id_aa64isar1; 2014 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 2015 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); 2016 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); 2017 cpu->isar.id_aa64isar1 = t; 2018 2019 t = cpu->isar.id_aa64pfr0; 2020 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 2021 cpu->isar.id_aa64pfr0 = t; 2022 2023 u = cpu->isar.id_isar5; 2024 u = FIELD_DP32(u, ID_ISAR5, AES, 0); 2025 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); 2026 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); 2027 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 2028 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 2029 cpu->isar.id_isar5 = u; 2030 2031 u = cpu->isar.id_isar6; 2032 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 2033 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 2034 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 2035 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); 2036 cpu->isar.id_isar6 = u; 2037 2038 if (!arm_feature(env, ARM_FEATURE_M)) { 2039 u = cpu->isar.mvfr1; 2040 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 2041 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 2042 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 2043 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 2044 cpu->isar.mvfr1 = u; 2045 2046 u = cpu->isar.mvfr2; 2047 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 2048 cpu->isar.mvfr2 = u; 2049 } 2050 } 2051 2052 if (!cpu->has_neon && !cpu->has_vfp) { 2053 uint64_t t; 2054 uint32_t u; 2055 2056 t = cpu->isar.id_aa64isar0; 2057 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 2058 cpu->isar.id_aa64isar0 = t; 2059 2060 t = cpu->isar.id_aa64isar1; 2061 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 2062 cpu->isar.id_aa64isar1 = t; 2063 2064 u = cpu->isar.mvfr0; 2065 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 2066 cpu->isar.mvfr0 = u; 2067 2068 /* Despite the name, this field covers both VFP and Neon */ 2069 u = cpu->isar.mvfr1; 2070 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 2071 cpu->isar.mvfr1 = u; 2072 } 2073 2074 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 2075 uint32_t u; 2076 2077 unset_feature(env, ARM_FEATURE_THUMB_DSP); 2078 2079 u = cpu->isar.id_isar1; 2080 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 2081 cpu->isar.id_isar1 = u; 2082 2083 u = cpu->isar.id_isar2; 2084 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 2085 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 2086 cpu->isar.id_isar2 = u; 2087 2088 u = cpu->isar.id_isar3; 2089 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 2090 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 2091 cpu->isar.id_isar3 = u; 2092 } 2093 2094 2095 /* 2096 * We rely on no XScale CPU having VFP so we can use the same bits in the 2097 * TB flags field for VECSTRIDE and XSCALE_CPAR. 2098 */ 2099 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 2100 !cpu_isar_feature(aa32_vfp_simd, cpu) || 2101 !arm_feature(env, ARM_FEATURE_XSCALE)); 2102 2103 if (arm_feature(env, ARM_FEATURE_V7) && 2104 !arm_feature(env, ARM_FEATURE_M) && 2105 !arm_feature(env, ARM_FEATURE_PMSA)) { 2106 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 2107 * can use 4K pages. 2108 */ 2109 pagebits = 12; 2110 } else { 2111 /* For CPUs which might have tiny 1K pages, or which have an 2112 * MPU and might have small region sizes, stick with 1K pages. 2113 */ 2114 pagebits = 10; 2115 } 2116 if (!set_preferred_target_page_bits(pagebits)) { 2117 /* This can only ever happen for hotplugging a CPU, or if 2118 * the board code incorrectly creates a CPU which it has 2119 * promised via minimum_page_size that it will not. 2120 */ 2121 error_setg(errp, "This CPU requires a smaller page size than the " 2122 "system is using"); 2123 return; 2124 } 2125 2126 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 2127 * We don't support setting cluster ID ([16..23]) (known as Aff2 2128 * in later ARM ARM versions), or any of the higher affinity level fields, 2129 * so these bits always RAZ. 2130 */ 2131 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 2132 cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index, 2133 ARM_DEFAULT_CPUS_PER_CLUSTER); 2134 } 2135 2136 if (cpu->reset_hivecs) { 2137 cpu->reset_sctlr |= (1 << 13); 2138 } 2139 2140 if (cpu->cfgend) { 2141 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 2142 cpu->reset_sctlr |= SCTLR_EE; 2143 } else { 2144 cpu->reset_sctlr |= SCTLR_B; 2145 } 2146 } 2147 2148 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 2149 /* If the has_el3 CPU property is disabled then we need to disable the 2150 * feature. 2151 */ 2152 unset_feature(env, ARM_FEATURE_EL3); 2153 2154 /* 2155 * Disable the security extension feature bits in the processor 2156 * feature registers as well. 2157 */ 2158 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); 2159 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); 2160 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2161 ID_AA64PFR0, EL3, 0); 2162 2163 /* Disable the realm management extension, which requires EL3. */ 2164 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2165 ID_AA64PFR0, RME, 0); 2166 } 2167 2168 if (!cpu->has_el2) { 2169 unset_feature(env, ARM_FEATURE_EL2); 2170 } 2171 2172 if (!cpu->has_pmu) { 2173 unset_feature(env, ARM_FEATURE_PMU); 2174 } 2175 if (arm_feature(env, ARM_FEATURE_PMU)) { 2176 pmu_init(cpu); 2177 2178 if (!kvm_enabled()) { 2179 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 2180 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 2181 } 2182 2183 #ifndef CONFIG_USER_ONLY 2184 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 2185 cpu); 2186 #endif 2187 } else { 2188 cpu->isar.id_aa64dfr0 = 2189 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 2190 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 2191 cpu->pmceid0 = 0; 2192 cpu->pmceid1 = 0; 2193 } 2194 2195 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2196 /* 2197 * Disable the hypervisor feature bits in the processor feature 2198 * registers if we don't have EL2. 2199 */ 2200 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2201 ID_AA64PFR0, EL2, 0); 2202 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, 2203 ID_PFR1, VIRTUALIZATION, 0); 2204 } 2205 2206 if (cpu_isar_feature(aa64_mte, cpu)) { 2207 /* 2208 * The architectural range of GM blocksize is 2-6, however qemu 2209 * doesn't support blocksize of 2 (see HELPER(ldgm)). 2210 */ 2211 if (tcg_enabled()) { 2212 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6); 2213 } 2214 2215 #ifndef CONFIG_USER_ONLY 2216 /* 2217 * If we do not have tag-memory provided by the machine, 2218 * reduce MTE support to instructions enabled at EL0. 2219 * This matches Cortex-A710 BROADCASTMTE input being LOW. 2220 */ 2221 if (cpu->tag_memory == NULL) { 2222 cpu->isar.id_aa64pfr1 = 2223 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1); 2224 } 2225 #endif 2226 } 2227 2228 if (tcg_enabled()) { 2229 /* 2230 * Don't report some architectural features in the ID registers 2231 * where TCG does not yet implement it (not even a minimal 2232 * stub version). This avoids guests falling over when they 2233 * try to access the non-existent system registers for them. 2234 */ 2235 /* FEAT_SPE (Statistical Profiling Extension) */ 2236 cpu->isar.id_aa64dfr0 = 2237 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); 2238 /* FEAT_TRBE (Trace Buffer Extension) */ 2239 cpu->isar.id_aa64dfr0 = 2240 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0); 2241 /* FEAT_TRF (Self-hosted Trace Extension) */ 2242 cpu->isar.id_aa64dfr0 = 2243 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0); 2244 cpu->isar.id_dfr0 = 2245 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0); 2246 /* Trace Macrocell system register access */ 2247 cpu->isar.id_aa64dfr0 = 2248 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0); 2249 cpu->isar.id_dfr0 = 2250 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0); 2251 /* Memory mapped trace */ 2252 cpu->isar.id_dfr0 = 2253 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0); 2254 /* FEAT_AMU (Activity Monitors Extension) */ 2255 cpu->isar.id_aa64pfr0 = 2256 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0); 2257 cpu->isar.id_pfr0 = 2258 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0); 2259 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */ 2260 cpu->isar.id_aa64pfr0 = 2261 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0); 2262 } 2263 2264 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 2265 * to false or by setting pmsav7-dregion to 0. 2266 */ 2267 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) { 2268 cpu->has_mpu = false; 2269 cpu->pmsav7_dregion = 0; 2270 cpu->pmsav8r_hdregion = 0; 2271 } 2272 2273 if (arm_feature(env, ARM_FEATURE_PMSA) && 2274 arm_feature(env, ARM_FEATURE_V7)) { 2275 uint32_t nr = cpu->pmsav7_dregion; 2276 2277 if (nr > 0xff) { 2278 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 2279 return; 2280 } 2281 2282 if (nr) { 2283 if (arm_feature(env, ARM_FEATURE_V8)) { 2284 /* PMSAv8 */ 2285 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 2286 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 2287 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2288 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 2289 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 2290 } 2291 } else { 2292 env->pmsav7.drbar = g_new0(uint32_t, nr); 2293 env->pmsav7.drsr = g_new0(uint32_t, nr); 2294 env->pmsav7.dracr = g_new0(uint32_t, nr); 2295 } 2296 } 2297 2298 if (cpu->pmsav8r_hdregion > 0xff) { 2299 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32, 2300 cpu->pmsav8r_hdregion); 2301 return; 2302 } 2303 2304 if (cpu->pmsav8r_hdregion) { 2305 env->pmsav8.hprbar = g_new0(uint32_t, 2306 cpu->pmsav8r_hdregion); 2307 env->pmsav8.hprlar = g_new0(uint32_t, 2308 cpu->pmsav8r_hdregion); 2309 } 2310 } 2311 2312 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2313 uint32_t nr = cpu->sau_sregion; 2314 2315 if (nr > 0xff) { 2316 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 2317 return; 2318 } 2319 2320 if (nr) { 2321 env->sau.rbar = g_new0(uint32_t, nr); 2322 env->sau.rlar = g_new0(uint32_t, nr); 2323 } 2324 } 2325 2326 if (arm_feature(env, ARM_FEATURE_EL3)) { 2327 set_feature(env, ARM_FEATURE_VBAR); 2328 } 2329 2330 #ifndef CONFIG_USER_ONLY 2331 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) { 2332 arm_register_el_change_hook(cpu, >_rme_post_el_change, 0); 2333 } 2334 #endif 2335 2336 register_cp_regs_for_features(cpu); 2337 arm_cpu_register_gdb_regs_for_features(cpu); 2338 2339 init_cpreg_list(cpu); 2340 2341 #ifndef CONFIG_USER_ONLY 2342 MachineState *ms = MACHINE(qdev_get_machine()); 2343 unsigned int smp_cpus = ms->smp.cpus; 2344 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 2345 2346 /* 2347 * We must set cs->num_ases to the final value before 2348 * the first call to cpu_address_space_init. 2349 */ 2350 if (cpu->tag_memory != NULL) { 2351 cs->num_ases = 3 + has_secure; 2352 } else { 2353 cs->num_ases = 1 + has_secure; 2354 } 2355 2356 if (has_secure) { 2357 if (!cpu->secure_memory) { 2358 cpu->secure_memory = cs->memory; 2359 } 2360 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 2361 cpu->secure_memory); 2362 } 2363 2364 if (cpu->tag_memory != NULL) { 2365 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 2366 cpu->tag_memory); 2367 if (has_secure) { 2368 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 2369 cpu->secure_tag_memory); 2370 } 2371 } 2372 2373 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 2374 2375 /* No core_count specified, default to smp_cpus. */ 2376 if (cpu->core_count == -1) { 2377 cpu->core_count = smp_cpus; 2378 } 2379 #endif 2380 2381 if (tcg_enabled()) { 2382 int dcz_blocklen = 4 << cpu->dcz_blocksize; 2383 2384 /* 2385 * We only support DCZ blocklen that fits on one page. 2386 * 2387 * Architectually this is always true. However TARGET_PAGE_SIZE 2388 * is variable and, for compatibility with -machine virt-2.7, 2389 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 2390 * But even then, while the largest architectural DCZ blocklen 2391 * is 2KiB, no cpu actually uses such a large blocklen. 2392 */ 2393 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 2394 2395 /* 2396 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 2397 * both nibbles of each byte storing tag data may be written at once. 2398 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 2399 */ 2400 if (cpu_isar_feature(aa64_mte, cpu)) { 2401 assert(dcz_blocklen >= 2 * TAG_GRANULE); 2402 } 2403 } 2404 2405 qemu_init_vcpu(cs); 2406 cpu_reset(cs); 2407 2408 acc->parent_realize(dev, errp); 2409 } 2410 2411 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 2412 { 2413 ObjectClass *oc; 2414 char *typename; 2415 char **cpuname; 2416 const char *cpunamestr; 2417 2418 cpuname = g_strsplit(cpu_model, ",", 1); 2419 cpunamestr = cpuname[0]; 2420 #ifdef CONFIG_USER_ONLY 2421 /* For backwards compatibility usermode emulation allows "-cpu any", 2422 * which has the same semantics as "-cpu max". 2423 */ 2424 if (!strcmp(cpunamestr, "any")) { 2425 cpunamestr = "max"; 2426 } 2427 #endif 2428 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 2429 oc = object_class_by_name(typename); 2430 g_strfreev(cpuname); 2431 g_free(typename); 2432 2433 return oc; 2434 } 2435 2436 static Property arm_cpu_properties[] = { 2437 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2438 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2439 mp_affinity, ARM64_AFFINITY_INVALID), 2440 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2441 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2442 DEFINE_PROP_END_OF_LIST() 2443 }; 2444 2445 static const gchar *arm_gdb_arch_name(CPUState *cs) 2446 { 2447 ARMCPU *cpu = ARM_CPU(cs); 2448 CPUARMState *env = &cpu->env; 2449 2450 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2451 return "iwmmxt"; 2452 } 2453 return "arm"; 2454 } 2455 2456 #ifndef CONFIG_USER_ONLY 2457 #include "hw/core/sysemu-cpu-ops.h" 2458 2459 static const struct SysemuCPUOps arm_sysemu_ops = { 2460 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, 2461 .asidx_from_attrs = arm_asidx_from_attrs, 2462 .write_elf32_note = arm_cpu_write_elf32_note, 2463 .write_elf64_note = arm_cpu_write_elf64_note, 2464 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, 2465 .legacy_vmsd = &vmstate_arm_cpu, 2466 }; 2467 #endif 2468 2469 #ifdef CONFIG_TCG 2470 static const TCGCPUOps arm_tcg_ops = { 2471 .initialize = arm_translate_init, 2472 .synchronize_from_tb = arm_cpu_synchronize_from_tb, 2473 .debug_excp_handler = arm_debug_excp_handler, 2474 .restore_state_to_opc = arm_restore_state_to_opc, 2475 2476 #ifdef CONFIG_USER_ONLY 2477 .record_sigsegv = arm_cpu_record_sigsegv, 2478 .record_sigbus = arm_cpu_record_sigbus, 2479 #else 2480 .tlb_fill = arm_cpu_tlb_fill, 2481 .cpu_exec_interrupt = arm_cpu_exec_interrupt, 2482 .do_interrupt = arm_cpu_do_interrupt, 2483 .do_transaction_failed = arm_cpu_do_transaction_failed, 2484 .do_unaligned_access = arm_cpu_do_unaligned_access, 2485 .adjust_watchpoint_address = arm_adjust_watchpoint_address, 2486 .debug_check_watchpoint = arm_debug_check_watchpoint, 2487 .debug_check_breakpoint = arm_debug_check_breakpoint, 2488 #endif /* !CONFIG_USER_ONLY */ 2489 }; 2490 #endif /* CONFIG_TCG */ 2491 2492 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2493 { 2494 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2495 CPUClass *cc = CPU_CLASS(acc); 2496 DeviceClass *dc = DEVICE_CLASS(oc); 2497 ResettableClass *rc = RESETTABLE_CLASS(oc); 2498 2499 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2500 &acc->parent_realize); 2501 2502 device_class_set_props(dc, arm_cpu_properties); 2503 2504 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL, 2505 &acc->parent_phases); 2506 2507 cc->class_by_name = arm_cpu_class_by_name; 2508 cc->has_work = arm_cpu_has_work; 2509 cc->mmu_index = arm_cpu_mmu_index; 2510 cc->dump_state = arm_cpu_dump_state; 2511 cc->set_pc = arm_cpu_set_pc; 2512 cc->get_pc = arm_cpu_get_pc; 2513 cc->gdb_read_register = arm_cpu_gdb_read_register; 2514 cc->gdb_write_register = arm_cpu_gdb_write_register; 2515 #ifndef CONFIG_USER_ONLY 2516 cc->sysemu_ops = &arm_sysemu_ops; 2517 #endif 2518 cc->gdb_num_core_regs = 26; 2519 cc->gdb_arch_name = arm_gdb_arch_name; 2520 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2521 cc->gdb_stop_before_watchpoint = true; 2522 cc->disas_set_info = arm_disas_set_info; 2523 2524 #ifdef CONFIG_TCG 2525 cc->tcg_ops = &arm_tcg_ops; 2526 #endif /* CONFIG_TCG */ 2527 } 2528 2529 static void arm_cpu_instance_init(Object *obj) 2530 { 2531 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2532 2533 acc->info->initfn(obj); 2534 arm_cpu_post_init(obj); 2535 } 2536 2537 static void cpu_register_class_init(ObjectClass *oc, void *data) 2538 { 2539 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2540 CPUClass *cc = CPU_CLASS(acc); 2541 2542 acc->info = data; 2543 cc->gdb_core_xml_file = "arm-core.xml"; 2544 } 2545 2546 void arm_cpu_register(const ARMCPUInfo *info) 2547 { 2548 TypeInfo type_info = { 2549 .parent = TYPE_ARM_CPU, 2550 .instance_init = arm_cpu_instance_init, 2551 .class_init = info->class_init ?: cpu_register_class_init, 2552 .class_data = (void *)info, 2553 }; 2554 2555 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2556 type_register(&type_info); 2557 g_free((void *)type_info.name); 2558 } 2559 2560 static const TypeInfo arm_cpu_type_info = { 2561 .name = TYPE_ARM_CPU, 2562 .parent = TYPE_CPU, 2563 .instance_size = sizeof(ARMCPU), 2564 .instance_align = __alignof__(ARMCPU), 2565 .instance_init = arm_cpu_initfn, 2566 .instance_finalize = arm_cpu_finalizefn, 2567 .abstract = true, 2568 .class_size = sizeof(ARMCPUClass), 2569 .class_init = arm_cpu_class_init, 2570 }; 2571 2572 static void arm_cpu_register_types(void) 2573 { 2574 type_register_static(&arm_cpu_type_info); 2575 } 2576 2577 type_init(arm_cpu_register_types) 2578