xref: /openbmc/qemu/target/arm/cpu.c (revision f3635813)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204                              cpu->sve_max_vq - 1 : 0;
205         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262             env->v7m.secure = true;
263         } else {
264             /* This bit resets to 0 if security is supported, but 1 if
265              * it is not. The bit is not present in v7M, but we set it
266              * here so we can avoid having to make checks on it conditional
267              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268              */
269             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270             /*
271              * Set NSACR to indicate "NS access permitted to everything";
272              * this avoids having to have all the tests of it being
273              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274              * v8.1M the guest-visible value of NSACR in a CPU without the
275              * Security Extension is 0xcff.
276              */
277             env->v7m.nsacr = 0xcff;
278         }
279 
280         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281          * that it resets to 1, so QEMU always does that rather than making
282          * it dependent on CPU model. In v8M it is RES1.
283          */
284         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286         if (arm_feature(env, ARM_FEATURE_V8)) {
287             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290         }
291         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294         }
295 
296         if (arm_feature(env, ARM_FEATURE_VFP)) {
297             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300         }
301         /* Unlike A/R profile, M profile defines the reset LR value */
302         env->regs[14] = 0xffffffff;
303 
304         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305 
306         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307         vecbase = env->v7m.vecbase[env->v7m.secure];
308         rom = rom_ptr(vecbase, 8);
309         if (rom) {
310             /* Address zero is covered by ROM which hasn't yet been
311              * copied into physical memory.
312              */
313             initial_msp = ldl_p(rom);
314             initial_pc = ldl_p(rom + 4);
315         } else {
316             /* Address zero not covered by a ROM blob, or the ROM blob
317              * is in non-modifiable memory and this is a second reset after
318              * it got copied into memory. In the latter case, rom_ptr
319              * will return a NULL pointer and we should use ldl_phys instead.
320              */
321             initial_msp = ldl_phys(s->as, vecbase);
322             initial_pc = ldl_phys(s->as, vecbase + 4);
323         }
324 
325         env->regs[13] = initial_msp & 0xFFFFFFFC;
326         env->regs[15] = initial_pc & ~1;
327         env->thumb = initial_pc & 1;
328     }
329 
330     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
331      * executing as AArch32 then check if highvecs are enabled and
332      * adjust the PC accordingly.
333      */
334     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335         env->regs[15] = 0xFFFF0000;
336     }
337 
338     /* M profile requires that reset clears the exclusive monitor;
339      * A profile does not, but clearing it makes more sense than having it
340      * set with an exclusive access on address zero.
341      */
342     arm_clear_exclusive(env);
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_PMSA)) {
348         if (cpu->pmsav7_dregion > 0) {
349             if (arm_feature(env, ARM_FEATURE_V8)) {
350                 memset(env->pmsav8.rbar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rbar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 memset(env->pmsav8.rlar[M_REG_NS], 0,
354                        sizeof(*env->pmsav8.rlar[M_REG_NS])
355                        * cpu->pmsav7_dregion);
356                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357                     memset(env->pmsav8.rbar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rbar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                     memset(env->pmsav8.rlar[M_REG_S], 0,
361                            sizeof(*env->pmsav8.rlar[M_REG_S])
362                            * cpu->pmsav7_dregion);
363                 }
364             } else if (arm_feature(env, ARM_FEATURE_V7)) {
365                 memset(env->pmsav7.drbar, 0,
366                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.drsr, 0,
368                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369                 memset(env->pmsav7.dracr, 0,
370                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371             }
372         }
373         env->pmsav7.rnr[M_REG_NS] = 0;
374         env->pmsav7.rnr[M_REG_S] = 0;
375         env->pmsav8.mair0[M_REG_NS] = 0;
376         env->pmsav8.mair0[M_REG_S] = 0;
377         env->pmsav8.mair1[M_REG_NS] = 0;
378         env->pmsav8.mair1[M_REG_S] = 0;
379     }
380 
381     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382         if (cpu->sau_sregion > 0) {
383             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385         }
386         env->sau.rnr = 0;
387         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388          * the Cortex-M33 does.
389          */
390         env->sau.ctrl = 0;
391     }
392 
393     set_flush_to_zero(1, &env->vfp.standard_fp_status);
394     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395     set_default_nan_mode(1, &env->vfp.standard_fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.standard_fp_status);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
414 {
415     CPUClass *cc = CPU_GET_CLASS(cs);
416     CPUARMState *env = cs->env_ptr;
417     uint32_t cur_el = arm_current_el(env);
418     bool secure = arm_is_secure(env);
419     uint32_t target_el;
420     uint32_t excp_idx;
421     bool ret = false;
422 
423     if (interrupt_request & CPU_INTERRUPT_FIQ) {
424         excp_idx = EXCP_FIQ;
425         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427             cs->exception_index = excp_idx;
428             env->exception.target_el = target_el;
429             cc->do_interrupt(cs);
430             ret = true;
431         }
432     }
433     if (interrupt_request & CPU_INTERRUPT_HARD) {
434         excp_idx = EXCP_IRQ;
435         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
436         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437             cs->exception_index = excp_idx;
438             env->exception.target_el = target_el;
439             cc->do_interrupt(cs);
440             ret = true;
441         }
442     }
443     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
444         excp_idx = EXCP_VIRQ;
445         target_el = 1;
446         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447             cs->exception_index = excp_idx;
448             env->exception.target_el = target_el;
449             cc->do_interrupt(cs);
450             ret = true;
451         }
452     }
453     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
454         excp_idx = EXCP_VFIQ;
455         target_el = 1;
456         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
457             cs->exception_index = excp_idx;
458             env->exception.target_el = target_el;
459             cc->do_interrupt(cs);
460             ret = true;
461         }
462     }
463 
464     return ret;
465 }
466 
467 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
468 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
469 {
470     CPUClass *cc = CPU_GET_CLASS(cs);
471     ARMCPU *cpu = ARM_CPU(cs);
472     CPUARMState *env = &cpu->env;
473     bool ret = false;
474 
475     /* ARMv7-M interrupt masking works differently than -A or -R.
476      * There is no FIQ/IRQ distinction. Instead of I and F bits
477      * masking FIQ and IRQ interrupts, an exception is taken only
478      * if it is higher priority than the current execution priority
479      * (which depends on state like BASEPRI, FAULTMASK and the
480      * currently active exception).
481      */
482     if (interrupt_request & CPU_INTERRUPT_HARD
483         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
484         cs->exception_index = EXCP_IRQ;
485         cc->do_interrupt(cs);
486         ret = true;
487     }
488     return ret;
489 }
490 #endif
491 
492 void arm_cpu_update_virq(ARMCPU *cpu)
493 {
494     /*
495      * Update the interrupt level for VIRQ, which is the logical OR of
496      * the HCR_EL2.VI bit and the input line level from the GIC.
497      */
498     CPUARMState *env = &cpu->env;
499     CPUState *cs = CPU(cpu);
500 
501     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
502         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
503 
504     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
505         if (new_state) {
506             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         } else {
508             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
509         }
510     }
511 }
512 
513 void arm_cpu_update_vfiq(ARMCPU *cpu)
514 {
515     /*
516      * Update the interrupt level for VFIQ, which is the logical OR of
517      * the HCR_EL2.VF bit and the input line level from the GIC.
518      */
519     CPUARMState *env = &cpu->env;
520     CPUState *cs = CPU(cpu);
521 
522     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
523         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
524 
525     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
526         if (new_state) {
527             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         } else {
529             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
530         }
531     }
532 }
533 
534 #ifndef CONFIG_USER_ONLY
535 static void arm_cpu_set_irq(void *opaque, int irq, int level)
536 {
537     ARMCPU *cpu = opaque;
538     CPUARMState *env = &cpu->env;
539     CPUState *cs = CPU(cpu);
540     static const int mask[] = {
541         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
542         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
543         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
544         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
545     };
546 
547     if (level) {
548         env->irq_line_state |= mask[irq];
549     } else {
550         env->irq_line_state &= ~mask[irq];
551     }
552 
553     switch (irq) {
554     case ARM_CPU_VIRQ:
555         assert(arm_feature(env, ARM_FEATURE_EL2));
556         arm_cpu_update_virq(cpu);
557         break;
558     case ARM_CPU_VFIQ:
559         assert(arm_feature(env, ARM_FEATURE_EL2));
560         arm_cpu_update_vfiq(cpu);
561         break;
562     case ARM_CPU_IRQ:
563     case ARM_CPU_FIQ:
564         if (level) {
565             cpu_interrupt(cs, mask[irq]);
566         } else {
567             cpu_reset_interrupt(cs, mask[irq]);
568         }
569         break;
570     default:
571         g_assert_not_reached();
572     }
573 }
574 
575 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
576 {
577 #ifdef CONFIG_KVM
578     ARMCPU *cpu = opaque;
579     CPUARMState *env = &cpu->env;
580     CPUState *cs = CPU(cpu);
581     uint32_t linestate_bit;
582     int irq_id;
583 
584     switch (irq) {
585     case ARM_CPU_IRQ:
586         irq_id = KVM_ARM_IRQ_CPU_IRQ;
587         linestate_bit = CPU_INTERRUPT_HARD;
588         break;
589     case ARM_CPU_FIQ:
590         irq_id = KVM_ARM_IRQ_CPU_FIQ;
591         linestate_bit = CPU_INTERRUPT_FIQ;
592         break;
593     default:
594         g_assert_not_reached();
595     }
596 
597     if (level) {
598         env->irq_line_state |= linestate_bit;
599     } else {
600         env->irq_line_state &= ~linestate_bit;
601     }
602     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
603 #endif
604 }
605 
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608     ARMCPU *cpu = ARM_CPU(cs);
609     CPUARMState *env = &cpu->env;
610 
611     cpu_synchronize_state(cs);
612     return arm_cpu_data_is_big_endian(env);
613 }
614 
615 #endif
616 
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619     env->features |= 1ULL << feature;
620 }
621 
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624     env->features &= ~(1ULL << feature);
625 }
626 
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630   return print_insn_arm(pc | 1, info);
631 }
632 
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635     ARMCPU *ac = ARM_CPU(cpu);
636     CPUARMState *env = &ac->env;
637     bool sctlr_b;
638 
639     if (is_a64(env)) {
640         /* We might not be compiled with the A64 disassembler
641          * because it needs a C++ compiler. Leave print_insn
642          * unset in this case to use the caller default behaviour.
643          */
644 #if defined(CONFIG_ARM_A64_DIS)
645         info->print_insn = print_insn_arm_a64;
646 #endif
647         info->cap_arch = CS_ARCH_ARM64;
648         info->cap_insn_unit = 4;
649         info->cap_insn_split = 4;
650     } else {
651         int cap_mode;
652         if (env->thumb) {
653             info->print_insn = print_insn_thumb1;
654             info->cap_insn_unit = 2;
655             info->cap_insn_split = 4;
656             cap_mode = CS_MODE_THUMB;
657         } else {
658             info->print_insn = print_insn_arm;
659             info->cap_insn_unit = 4;
660             info->cap_insn_split = 4;
661             cap_mode = CS_MODE_ARM;
662         }
663         if (arm_feature(env, ARM_FEATURE_V8)) {
664             cap_mode |= CS_MODE_V8;
665         }
666         if (arm_feature(env, ARM_FEATURE_M)) {
667             cap_mode |= CS_MODE_MCLASS;
668         }
669         info->cap_arch = CS_ARCH_ARM;
670         info->cap_mode = cap_mode;
671     }
672 
673     sctlr_b = arm_sctlr_b(env);
674     if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676         info->endian = BFD_ENDIAN_LITTLE;
677 #else
678         info->endian = BFD_ENDIAN_BIG;
679 #endif
680     }
681     info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683     if (sctlr_b) {
684         info->flags |= INSN_ARM_BE32;
685     }
686 #endif
687 }
688 
689 #ifdef TARGET_AARCH64
690 
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695     uint32_t psr = pstate_read(env);
696     int i;
697     int el = arm_current_el(env);
698     const char *ns_status;
699 
700     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701     for (i = 0; i < 32; i++) {
702         if (i == 31) {
703             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704         } else {
705             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706                          (i + 2) % 3 ? " " : "\n");
707         }
708     }
709 
710     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712     } else {
713         ns_status = "";
714     }
715     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716                  psr,
717                  psr & PSTATE_N ? 'N' : '-',
718                  psr & PSTATE_Z ? 'Z' : '-',
719                  psr & PSTATE_C ? 'C' : '-',
720                  psr & PSTATE_V ? 'V' : '-',
721                  ns_status,
722                  el,
723                  psr & PSTATE_SP ? 'h' : 't');
724 
725     if (cpu_isar_feature(aa64_bti, cpu)) {
726         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727     }
728     if (!(flags & CPU_DUMP_FPU)) {
729         qemu_fprintf(f, "\n");
730         return;
731     }
732     if (fp_exception_el(env, el) != 0) {
733         qemu_fprintf(f, "    FPU disabled\n");
734         return;
735     }
736     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
737                  vfp_get_fpcr(env), vfp_get_fpsr(env));
738 
739     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740         int j, zcr_len = sve_zcr_len_for_el(env, el);
741 
742         for (i = 0; i <= FFR_PRED_NUM; i++) {
743             bool eol;
744             if (i == FFR_PRED_NUM) {
745                 qemu_fprintf(f, "FFR=");
746                 /* It's last, so end the line.  */
747                 eol = true;
748             } else {
749                 qemu_fprintf(f, "P%02d=", i);
750                 switch (zcr_len) {
751                 case 0:
752                     eol = i % 8 == 7;
753                     break;
754                 case 1:
755                     eol = i % 6 == 5;
756                     break;
757                 case 2:
758                 case 3:
759                     eol = i % 3 == 2;
760                     break;
761                 default:
762                     /* More than one quadword per predicate.  */
763                     eol = true;
764                     break;
765                 }
766             }
767             for (j = zcr_len / 4; j >= 0; j--) {
768                 int digits;
769                 if (j * 4 + 4 <= zcr_len + 1) {
770                     digits = 16;
771                 } else {
772                     digits = (zcr_len % 4 + 1) * 4;
773                 }
774                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775                              env->vfp.pregs[i].p[j],
776                              j ? ":" : eol ? "\n" : " ");
777             }
778         }
779 
780         for (i = 0; i < 32; i++) {
781             if (zcr_len == 0) {
782                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783                              i, env->vfp.zregs[i].d[1],
784                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785             } else if (zcr_len == 1) {
786                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787                              ":%016" PRIx64 ":%016" PRIx64 "\n",
788                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790             } else {
791                 for (j = zcr_len; j >= 0; j--) {
792                     bool odd = (zcr_len - j) % 2 != 0;
793                     if (j == zcr_len) {
794                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795                     } else if (!odd) {
796                         if (j > 0) {
797                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
798                         } else {
799                             qemu_fprintf(f, "     [%x]=", j);
800                         }
801                     }
802                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803                                  env->vfp.zregs[i].d[j * 2 + 1],
804                                  env->vfp.zregs[i].d[j * 2],
805                                  odd || j == 0 ? "\n" : ":");
806                 }
807             }
808         }
809     } else {
810         for (i = 0; i < 32; i++) {
811             uint64_t *q = aa64_vfp_qreg(env, i);
812             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813                          i, q[1], q[0], (i & 1 ? "\n" : " "));
814         }
815     }
816 }
817 
818 #else
819 
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822     g_assert_not_reached();
823 }
824 
825 #endif
826 
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829     ARMCPU *cpu = ARM_CPU(cs);
830     CPUARMState *env = &cpu->env;
831     int i;
832 
833     if (is_a64(env)) {
834         aarch64_cpu_dump_state(cs, f, flags);
835         return;
836     }
837 
838     for (i = 0; i < 16; i++) {
839         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840         if ((i % 4) == 3) {
841             qemu_fprintf(f, "\n");
842         } else {
843             qemu_fprintf(f, " ");
844         }
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         uint32_t xpsr = xpsr_read(env);
849         const char *mode;
850         const char *ns_status = "";
851 
852         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853             ns_status = env->v7m.secure ? "S " : "NS ";
854         }
855 
856         if (xpsr & XPSR_EXCP) {
857             mode = "handler";
858         } else {
859             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860                 mode = "unpriv-thread";
861             } else {
862                 mode = "priv-thread";
863             }
864         }
865 
866         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867                      xpsr,
868                      xpsr & XPSR_N ? 'N' : '-',
869                      xpsr & XPSR_Z ? 'Z' : '-',
870                      xpsr & XPSR_C ? 'C' : '-',
871                      xpsr & XPSR_V ? 'V' : '-',
872                      xpsr & XPSR_T ? 'T' : 'A',
873                      ns_status,
874                      mode);
875     } else {
876         uint32_t psr = cpsr_read(env);
877         const char *ns_status = "";
878 
879         if (arm_feature(env, ARM_FEATURE_EL3) &&
880             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882         }
883 
884         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885                      psr,
886                      psr & CPSR_N ? 'N' : '-',
887                      psr & CPSR_Z ? 'Z' : '-',
888                      psr & CPSR_C ? 'C' : '-',
889                      psr & CPSR_V ? 'V' : '-',
890                      psr & CPSR_T ? 'T' : 'A',
891                      ns_status,
892                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893     }
894 
895     if (flags & CPU_DUMP_FPU) {
896         int numvfpregs = 0;
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             numvfpregs += 16;
899         }
900         if (arm_feature(env, ARM_FEATURE_VFP3)) {
901             numvfpregs += 16;
902         }
903         for (i = 0; i < numvfpregs; i++) {
904             uint64_t v = *aa32_vfp_dreg(env, i);
905             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906                          i * 2, (uint32_t)v,
907                          i * 2 + 1, (uint32_t)(v >> 32),
908                          i, v);
909         }
910         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911     }
912 }
913 
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916     uint32_t Aff1 = idx / clustersz;
917     uint32_t Aff0 = idx % clustersz;
918     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920 
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923     /*
924      * Destroy function for cpu->cp_regs hashtable data entries.
925      * We must free the name string because it was g_strdup()ed in
926      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927      * from r->name because we know we definitely allocated it.
928      */
929     ARMCPRegInfo *r = data;
930 
931     g_free((void *)r->name);
932     g_free(r);
933 }
934 
935 static void arm_cpu_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu_set_cpustate_pointers(cpu);
940     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941                                          g_free, cpreg_hashtable_data_destroy);
942 
943     QLIST_INIT(&cpu->pre_el_change_hooks);
944     QLIST_INIT(&cpu->el_change_hooks);
945 
946 #ifndef CONFIG_USER_ONLY
947     /* Our inbound IRQ and FIQ lines */
948     if (kvm_enabled()) {
949         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950          * the same interface as non-KVM CPUs.
951          */
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953     } else {
954         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955     }
956 
957     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958                        ARRAY_SIZE(cpu->gt_timer_outputs));
959 
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961                              "gicv3-maintenance-interrupt", 1);
962     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963                              "pmu-interrupt", 1);
964 #endif
965 
966     /* DTB consumers generally don't in fact care what the 'compatible'
967      * string is, so always provide some string and trust that a hypothetical
968      * picky DTB consumer will also provide a helpful error message.
969      */
970     cpu->dtb_compatible = "qemu,unknown";
971     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973 
974     if (tcg_enabled()) {
975         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976     }
977 }
978 
979 static Property arm_cpu_reset_cbar_property =
980             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
981 
982 static Property arm_cpu_reset_hivecs_property =
983             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
984 
985 static Property arm_cpu_rvbar_property =
986             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
987 
988 static Property arm_cpu_has_el2_property =
989             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
990 
991 static Property arm_cpu_has_el3_property =
992             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
993 
994 static Property arm_cpu_cfgend_property =
995             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
996 
997 static Property arm_cpu_has_vfp_property =
998             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
999 
1000 static Property arm_cpu_has_neon_property =
1001             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1002 
1003 static Property arm_cpu_has_dsp_property =
1004             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1005 
1006 static Property arm_cpu_has_mpu_property =
1007             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1008 
1009 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1010  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1011  * the right value for that particular CPU type, and we don't want
1012  * to override that with an incorrect constant value.
1013  */
1014 static Property arm_cpu_pmsav7_dregion_property =
1015             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1016                                            pmsav7_dregion,
1017                                            qdev_prop_uint32, uint32_t);
1018 
1019 static bool arm_get_pmu(Object *obj, Error **errp)
1020 {
1021     ARMCPU *cpu = ARM_CPU(obj);
1022 
1023     return cpu->has_pmu;
1024 }
1025 
1026 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1027 {
1028     ARMCPU *cpu = ARM_CPU(obj);
1029 
1030     if (value) {
1031         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1032             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1033             return;
1034         }
1035         set_feature(&cpu->env, ARM_FEATURE_PMU);
1036     } else {
1037         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1038     }
1039     cpu->has_pmu = value;
1040 }
1041 
1042 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1043                                void *opaque, Error **errp)
1044 {
1045     ARMCPU *cpu = ARM_CPU(obj);
1046 
1047     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1048 }
1049 
1050 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1051                                void *opaque, Error **errp)
1052 {
1053     ARMCPU *cpu = ARM_CPU(obj);
1054 
1055     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1056 }
1057 
1058 void arm_cpu_post_init(Object *obj)
1059 {
1060     ARMCPU *cpu = ARM_CPU(obj);
1061 
1062     /* M profile implies PMSA. We have to do this here rather than
1063      * in realize with the other feature-implication checks because
1064      * we look at the PMSA bit to see if we should add some properties.
1065      */
1066     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1067         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1068     }
1069     /* Similarly for the VFP feature bits */
1070     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1071         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1072     }
1073     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1074         set_feature(&cpu->env, ARM_FEATURE_VFP);
1075     }
1076 
1077     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1078         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1079         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1080                                  &error_abort);
1081     }
1082 
1083     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1084         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1085                                  &error_abort);
1086     }
1087 
1088     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1089         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1090                                  &error_abort);
1091     }
1092 
1093     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1094         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1095          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1096          */
1097         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1098                                  &error_abort);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101         object_property_add_link(obj, "secure-memory",
1102                                  TYPE_MEMORY_REGION,
1103                                  (Object **)&cpu->secure_memory,
1104                                  qdev_prop_allow_set_link_before_realize,
1105                                  OBJ_PROP_LINK_STRONG,
1106                                  &error_abort);
1107 #endif
1108     }
1109 
1110     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1111         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1112                                  &error_abort);
1113     }
1114 
1115     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1116         cpu->has_pmu = true;
1117         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1118                                  &error_abort);
1119     }
1120 
1121     /*
1122      * Allow user to turn off VFP and Neon support, but only for TCG --
1123      * KVM does not currently allow us to lie to the guest about its
1124      * ID/feature registers, so the guest always sees what the host has.
1125      */
1126     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1127         cpu->has_vfp = true;
1128         if (!kvm_enabled()) {
1129             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1130                                      &error_abort);
1131         }
1132     }
1133 
1134     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1135         cpu->has_neon = true;
1136         if (!kvm_enabled()) {
1137             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1138                                      &error_abort);
1139         }
1140     }
1141 
1142     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1143         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1144         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1145                                  &error_abort);
1146     }
1147 
1148     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1149         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1150                                  &error_abort);
1151         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1152             qdev_property_add_static(DEVICE(obj),
1153                                      &arm_cpu_pmsav7_dregion_property,
1154                                      &error_abort);
1155         }
1156     }
1157 
1158     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1159         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1160                                  qdev_prop_allow_set_link_before_realize,
1161                                  OBJ_PROP_LINK_STRONG,
1162                                  &error_abort);
1163         /*
1164          * M profile: initial value of the Secure VTOR. We can't just use
1165          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1166          * the property to be set after realize.
1167          */
1168         object_property_add(obj, "init-svtor", "uint32",
1169                             arm_get_init_svtor, arm_set_init_svtor,
1170                             NULL, NULL, &error_abort);
1171     }
1172 
1173     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1174                              &error_abort);
1175 }
1176 
1177 static void arm_cpu_finalizefn(Object *obj)
1178 {
1179     ARMCPU *cpu = ARM_CPU(obj);
1180     ARMELChangeHook *hook, *next;
1181 
1182     g_hash_table_destroy(cpu->cp_regs);
1183 
1184     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1185         QLIST_REMOVE(hook, node);
1186         g_free(hook);
1187     }
1188     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1189         QLIST_REMOVE(hook, node);
1190         g_free(hook);
1191     }
1192 #ifndef CONFIG_USER_ONLY
1193     if (cpu->pmu_timer) {
1194         timer_del(cpu->pmu_timer);
1195         timer_deinit(cpu->pmu_timer);
1196         timer_free(cpu->pmu_timer);
1197     }
1198 #endif
1199 }
1200 
1201 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1202 {
1203     Error *local_err = NULL;
1204 
1205     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1206         arm_cpu_sve_finalize(cpu, &local_err);
1207         if (local_err != NULL) {
1208             error_propagate(errp, local_err);
1209             return;
1210         }
1211     }
1212 }
1213 
1214 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1215 {
1216     CPUState *cs = CPU(dev);
1217     ARMCPU *cpu = ARM_CPU(dev);
1218     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1219     CPUARMState *env = &cpu->env;
1220     int pagebits;
1221     Error *local_err = NULL;
1222     bool no_aa32 = false;
1223 
1224     /* If we needed to query the host kernel for the CPU features
1225      * then it's possible that might have failed in the initfn, but
1226      * this is the first point where we can report it.
1227      */
1228     if (cpu->host_cpu_probe_failed) {
1229         if (!kvm_enabled()) {
1230             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1231         } else {
1232             error_setg(errp, "Failed to retrieve host CPU features");
1233         }
1234         return;
1235     }
1236 
1237 #ifndef CONFIG_USER_ONLY
1238     /* The NVIC and M-profile CPU are two halves of a single piece of
1239      * hardware; trying to use one without the other is a command line
1240      * error and will result in segfaults if not caught here.
1241      */
1242     if (arm_feature(env, ARM_FEATURE_M)) {
1243         if (!env->nvic) {
1244             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1245             return;
1246         }
1247     } else {
1248         if (env->nvic) {
1249             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1250             return;
1251         }
1252     }
1253 
1254     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1255                                            arm_gt_ptimer_cb, cpu);
1256     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1257                                            arm_gt_vtimer_cb, cpu);
1258     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1259                                           arm_gt_htimer_cb, cpu);
1260     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1261                                           arm_gt_stimer_cb, cpu);
1262 #endif
1263 
1264     cpu_exec_realizefn(cs, &local_err);
1265     if (local_err != NULL) {
1266         error_propagate(errp, local_err);
1267         return;
1268     }
1269 
1270     arm_cpu_finalize_features(cpu, &local_err);
1271     if (local_err != NULL) {
1272         error_propagate(errp, local_err);
1273         return;
1274     }
1275 
1276     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1277         cpu->has_vfp != cpu->has_neon) {
1278         /*
1279          * This is an architectural requirement for AArch64; AArch32 is
1280          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1281          */
1282         error_setg(errp,
1283                    "AArch64 CPUs must have both VFP and Neon or neither");
1284         return;
1285     }
1286 
1287     if (!cpu->has_vfp) {
1288         uint64_t t;
1289         uint32_t u;
1290 
1291         unset_feature(env, ARM_FEATURE_VFP);
1292         unset_feature(env, ARM_FEATURE_VFP3);
1293         unset_feature(env, ARM_FEATURE_VFP4);
1294 
1295         t = cpu->isar.id_aa64isar1;
1296         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1297         cpu->isar.id_aa64isar1 = t;
1298 
1299         t = cpu->isar.id_aa64pfr0;
1300         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1301         cpu->isar.id_aa64pfr0 = t;
1302 
1303         u = cpu->isar.id_isar6;
1304         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1305         cpu->isar.id_isar6 = u;
1306 
1307         u = cpu->isar.mvfr0;
1308         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1309         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1310         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1311         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1312         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1313         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1314         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1315         cpu->isar.mvfr0 = u;
1316 
1317         u = cpu->isar.mvfr1;
1318         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1319         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1320         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1321         cpu->isar.mvfr1 = u;
1322 
1323         u = cpu->isar.mvfr2;
1324         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1325         cpu->isar.mvfr2 = u;
1326     }
1327 
1328     if (!cpu->has_neon) {
1329         uint64_t t;
1330         uint32_t u;
1331 
1332         unset_feature(env, ARM_FEATURE_NEON);
1333 
1334         t = cpu->isar.id_aa64isar0;
1335         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1336         cpu->isar.id_aa64isar0 = t;
1337 
1338         t = cpu->isar.id_aa64isar1;
1339         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1340         cpu->isar.id_aa64isar1 = t;
1341 
1342         t = cpu->isar.id_aa64pfr0;
1343         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1344         cpu->isar.id_aa64pfr0 = t;
1345 
1346         u = cpu->isar.id_isar5;
1347         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1348         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1349         cpu->isar.id_isar5 = u;
1350 
1351         u = cpu->isar.id_isar6;
1352         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1353         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1354         cpu->isar.id_isar6 = u;
1355 
1356         u = cpu->isar.mvfr1;
1357         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1358         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1359         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1360         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1361         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1362         cpu->isar.mvfr1 = u;
1363 
1364         u = cpu->isar.mvfr2;
1365         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1366         cpu->isar.mvfr2 = u;
1367     }
1368 
1369     if (!cpu->has_neon && !cpu->has_vfp) {
1370         uint64_t t;
1371         uint32_t u;
1372 
1373         t = cpu->isar.id_aa64isar0;
1374         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1375         cpu->isar.id_aa64isar0 = t;
1376 
1377         t = cpu->isar.id_aa64isar1;
1378         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1379         cpu->isar.id_aa64isar1 = t;
1380 
1381         u = cpu->isar.mvfr0;
1382         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1383         cpu->isar.mvfr0 = u;
1384     }
1385 
1386     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1387         uint32_t u;
1388 
1389         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1390 
1391         u = cpu->isar.id_isar1;
1392         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1393         cpu->isar.id_isar1 = u;
1394 
1395         u = cpu->isar.id_isar2;
1396         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1397         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1398         cpu->isar.id_isar2 = u;
1399 
1400         u = cpu->isar.id_isar3;
1401         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1402         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1403         cpu->isar.id_isar3 = u;
1404     }
1405 
1406     /* Some features automatically imply others: */
1407     if (arm_feature(env, ARM_FEATURE_V8)) {
1408         if (arm_feature(env, ARM_FEATURE_M)) {
1409             set_feature(env, ARM_FEATURE_V7);
1410         } else {
1411             set_feature(env, ARM_FEATURE_V7VE);
1412         }
1413     }
1414 
1415     /*
1416      * There exist AArch64 cpus without AArch32 support.  When KVM
1417      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1418      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1419      * As a general principle, we also do not make ID register
1420      * consistency checks anywhere unless using TCG, because only
1421      * for TCG would a consistency-check failure be a QEMU bug.
1422      */
1423     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1424         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1425     }
1426 
1427     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1428         /* v7 Virtualization Extensions. In real hardware this implies
1429          * EL2 and also the presence of the Security Extensions.
1430          * For QEMU, for backwards-compatibility we implement some
1431          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1432          * include the various other features that V7VE implies.
1433          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1434          * Security Extensions is ARM_FEATURE_EL3.
1435          */
1436         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1437         set_feature(env, ARM_FEATURE_LPAE);
1438         set_feature(env, ARM_FEATURE_V7);
1439     }
1440     if (arm_feature(env, ARM_FEATURE_V7)) {
1441         set_feature(env, ARM_FEATURE_VAPA);
1442         set_feature(env, ARM_FEATURE_THUMB2);
1443         set_feature(env, ARM_FEATURE_MPIDR);
1444         if (!arm_feature(env, ARM_FEATURE_M)) {
1445             set_feature(env, ARM_FEATURE_V6K);
1446         } else {
1447             set_feature(env, ARM_FEATURE_V6);
1448         }
1449 
1450         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1451          * non-EL3 configs. This is needed by some legacy boards.
1452          */
1453         set_feature(env, ARM_FEATURE_VBAR);
1454     }
1455     if (arm_feature(env, ARM_FEATURE_V6K)) {
1456         set_feature(env, ARM_FEATURE_V6);
1457         set_feature(env, ARM_FEATURE_MVFR);
1458     }
1459     if (arm_feature(env, ARM_FEATURE_V6)) {
1460         set_feature(env, ARM_FEATURE_V5);
1461         if (!arm_feature(env, ARM_FEATURE_M)) {
1462             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1463             set_feature(env, ARM_FEATURE_AUXCR);
1464         }
1465     }
1466     if (arm_feature(env, ARM_FEATURE_V5)) {
1467         set_feature(env, ARM_FEATURE_V4T);
1468     }
1469     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1470         set_feature(env, ARM_FEATURE_V7MP);
1471         set_feature(env, ARM_FEATURE_PXN);
1472     }
1473     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1474         set_feature(env, ARM_FEATURE_CBAR);
1475     }
1476     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1477         !arm_feature(env, ARM_FEATURE_M)) {
1478         set_feature(env, ARM_FEATURE_THUMB_DSP);
1479     }
1480 
1481     /*
1482      * We rely on no XScale CPU having VFP so we can use the same bits in the
1483      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1484      */
1485     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1486              arm_feature(env, ARM_FEATURE_XSCALE)));
1487 
1488     if (arm_feature(env, ARM_FEATURE_V7) &&
1489         !arm_feature(env, ARM_FEATURE_M) &&
1490         !arm_feature(env, ARM_FEATURE_PMSA)) {
1491         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1492          * can use 4K pages.
1493          */
1494         pagebits = 12;
1495     } else {
1496         /* For CPUs which might have tiny 1K pages, or which have an
1497          * MPU and might have small region sizes, stick with 1K pages.
1498          */
1499         pagebits = 10;
1500     }
1501     if (!set_preferred_target_page_bits(pagebits)) {
1502         /* This can only ever happen for hotplugging a CPU, or if
1503          * the board code incorrectly creates a CPU which it has
1504          * promised via minimum_page_size that it will not.
1505          */
1506         error_setg(errp, "This CPU requires a smaller page size than the "
1507                    "system is using");
1508         return;
1509     }
1510 
1511     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1512      * We don't support setting cluster ID ([16..23]) (known as Aff2
1513      * in later ARM ARM versions), or any of the higher affinity level fields,
1514      * so these bits always RAZ.
1515      */
1516     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1517         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1518                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1519     }
1520 
1521     if (cpu->reset_hivecs) {
1522             cpu->reset_sctlr |= (1 << 13);
1523     }
1524 
1525     if (cpu->cfgend) {
1526         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1527             cpu->reset_sctlr |= SCTLR_EE;
1528         } else {
1529             cpu->reset_sctlr |= SCTLR_B;
1530         }
1531     }
1532 
1533     if (!cpu->has_el3) {
1534         /* If the has_el3 CPU property is disabled then we need to disable the
1535          * feature.
1536          */
1537         unset_feature(env, ARM_FEATURE_EL3);
1538 
1539         /* Disable the security extension feature bits in the processor feature
1540          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1541          */
1542         cpu->id_pfr1 &= ~0xf0;
1543         cpu->isar.id_aa64pfr0 &= ~0xf000;
1544     }
1545 
1546     if (!cpu->has_el2) {
1547         unset_feature(env, ARM_FEATURE_EL2);
1548     }
1549 
1550     if (!cpu->has_pmu) {
1551         unset_feature(env, ARM_FEATURE_PMU);
1552     }
1553     if (arm_feature(env, ARM_FEATURE_PMU)) {
1554         pmu_init(cpu);
1555 
1556         if (!kvm_enabled()) {
1557             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1558             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1559         }
1560 
1561 #ifndef CONFIG_USER_ONLY
1562         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1563                 cpu);
1564 #endif
1565     } else {
1566         cpu->id_aa64dfr0 &= ~0xf00;
1567         cpu->id_dfr0 &= ~(0xf << 24);
1568         cpu->pmceid0 = 0;
1569         cpu->pmceid1 = 0;
1570     }
1571 
1572     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1573         /* Disable the hypervisor feature bits in the processor feature
1574          * registers if we don't have EL2. These are id_pfr1[15:12] and
1575          * id_aa64pfr0_el1[11:8].
1576          */
1577         cpu->isar.id_aa64pfr0 &= ~0xf00;
1578         cpu->id_pfr1 &= ~0xf000;
1579     }
1580 
1581     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1582      * to false or by setting pmsav7-dregion to 0.
1583      */
1584     if (!cpu->has_mpu) {
1585         cpu->pmsav7_dregion = 0;
1586     }
1587     if (cpu->pmsav7_dregion == 0) {
1588         cpu->has_mpu = false;
1589     }
1590 
1591     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1592         arm_feature(env, ARM_FEATURE_V7)) {
1593         uint32_t nr = cpu->pmsav7_dregion;
1594 
1595         if (nr > 0xff) {
1596             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1597             return;
1598         }
1599 
1600         if (nr) {
1601             if (arm_feature(env, ARM_FEATURE_V8)) {
1602                 /* PMSAv8 */
1603                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1604                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1605                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1606                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1607                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1608                 }
1609             } else {
1610                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1611                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1612                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1613             }
1614         }
1615     }
1616 
1617     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1618         uint32_t nr = cpu->sau_sregion;
1619 
1620         if (nr > 0xff) {
1621             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1622             return;
1623         }
1624 
1625         if (nr) {
1626             env->sau.rbar = g_new0(uint32_t, nr);
1627             env->sau.rlar = g_new0(uint32_t, nr);
1628         }
1629     }
1630 
1631     if (arm_feature(env, ARM_FEATURE_EL3)) {
1632         set_feature(env, ARM_FEATURE_VBAR);
1633     }
1634 
1635     register_cp_regs_for_features(cpu);
1636     arm_cpu_register_gdb_regs_for_features(cpu);
1637 
1638     init_cpreg_list(cpu);
1639 
1640 #ifndef CONFIG_USER_ONLY
1641     MachineState *ms = MACHINE(qdev_get_machine());
1642     unsigned int smp_cpus = ms->smp.cpus;
1643 
1644     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1645         cs->num_ases = 2;
1646 
1647         if (!cpu->secure_memory) {
1648             cpu->secure_memory = cs->memory;
1649         }
1650         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1651                                cpu->secure_memory);
1652     } else {
1653         cs->num_ases = 1;
1654     }
1655     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1656 
1657     /* No core_count specified, default to smp_cpus. */
1658     if (cpu->core_count == -1) {
1659         cpu->core_count = smp_cpus;
1660     }
1661 #endif
1662 
1663     qemu_init_vcpu(cs);
1664     cpu_reset(cs);
1665 
1666     acc->parent_realize(dev, errp);
1667 }
1668 
1669 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1670 {
1671     ObjectClass *oc;
1672     char *typename;
1673     char **cpuname;
1674     const char *cpunamestr;
1675 
1676     cpuname = g_strsplit(cpu_model, ",", 1);
1677     cpunamestr = cpuname[0];
1678 #ifdef CONFIG_USER_ONLY
1679     /* For backwards compatibility usermode emulation allows "-cpu any",
1680      * which has the same semantics as "-cpu max".
1681      */
1682     if (!strcmp(cpunamestr, "any")) {
1683         cpunamestr = "max";
1684     }
1685 #endif
1686     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1687     oc = object_class_by_name(typename);
1688     g_strfreev(cpuname);
1689     g_free(typename);
1690     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1691         object_class_is_abstract(oc)) {
1692         return NULL;
1693     }
1694     return oc;
1695 }
1696 
1697 /* CPU models. These are not needed for the AArch64 linux-user build. */
1698 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1699 
1700 static void arm926_initfn(Object *obj)
1701 {
1702     ARMCPU *cpu = ARM_CPU(obj);
1703 
1704     cpu->dtb_compatible = "arm,arm926";
1705     set_feature(&cpu->env, ARM_FEATURE_V5);
1706     set_feature(&cpu->env, ARM_FEATURE_VFP);
1707     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1708     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1709     cpu->midr = 0x41069265;
1710     cpu->reset_fpsid = 0x41011090;
1711     cpu->ctr = 0x1dd20d2;
1712     cpu->reset_sctlr = 0x00090078;
1713 
1714     /*
1715      * ARMv5 does not have the ID_ISAR registers, but we can still
1716      * set the field to indicate Jazelle support within QEMU.
1717      */
1718     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1719     /*
1720      * Similarly, we need to set MVFR0 fields to enable double precision
1721      * and short vector support even though ARMv5 doesn't have this register.
1722      */
1723     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1724     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1725 }
1726 
1727 static void arm946_initfn(Object *obj)
1728 {
1729     ARMCPU *cpu = ARM_CPU(obj);
1730 
1731     cpu->dtb_compatible = "arm,arm946";
1732     set_feature(&cpu->env, ARM_FEATURE_V5);
1733     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1734     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1735     cpu->midr = 0x41059461;
1736     cpu->ctr = 0x0f004006;
1737     cpu->reset_sctlr = 0x00000078;
1738 }
1739 
1740 static void arm1026_initfn(Object *obj)
1741 {
1742     ARMCPU *cpu = ARM_CPU(obj);
1743 
1744     cpu->dtb_compatible = "arm,arm1026";
1745     set_feature(&cpu->env, ARM_FEATURE_V5);
1746     set_feature(&cpu->env, ARM_FEATURE_VFP);
1747     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1748     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1750     cpu->midr = 0x4106a262;
1751     cpu->reset_fpsid = 0x410110a0;
1752     cpu->ctr = 0x1dd20d2;
1753     cpu->reset_sctlr = 0x00090078;
1754     cpu->reset_auxcr = 1;
1755 
1756     /*
1757      * ARMv5 does not have the ID_ISAR registers, but we can still
1758      * set the field to indicate Jazelle support within QEMU.
1759      */
1760     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1761     /*
1762      * Similarly, we need to set MVFR0 fields to enable double precision
1763      * and short vector support even though ARMv5 doesn't have this register.
1764      */
1765     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1766     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1767 
1768     {
1769         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1770         ARMCPRegInfo ifar = {
1771             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1772             .access = PL1_RW,
1773             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1774             .resetvalue = 0
1775         };
1776         define_one_arm_cp_reg(cpu, &ifar);
1777     }
1778 }
1779 
1780 static void arm1136_r2_initfn(Object *obj)
1781 {
1782     ARMCPU *cpu = ARM_CPU(obj);
1783     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1784      * older core than plain "arm1136". In particular this does not
1785      * have the v6K features.
1786      * These ID register values are correct for 1136 but may be wrong
1787      * for 1136_r2 (in particular r0p2 does not actually implement most
1788      * of the ID registers).
1789      */
1790 
1791     cpu->dtb_compatible = "arm,arm1136";
1792     set_feature(&cpu->env, ARM_FEATURE_V6);
1793     set_feature(&cpu->env, ARM_FEATURE_VFP);
1794     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1795     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1796     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1797     cpu->midr = 0x4107b362;
1798     cpu->reset_fpsid = 0x410120b4;
1799     cpu->isar.mvfr0 = 0x11111111;
1800     cpu->isar.mvfr1 = 0x00000000;
1801     cpu->ctr = 0x1dd20d2;
1802     cpu->reset_sctlr = 0x00050078;
1803     cpu->id_pfr0 = 0x111;
1804     cpu->id_pfr1 = 0x1;
1805     cpu->id_dfr0 = 0x2;
1806     cpu->id_afr0 = 0x3;
1807     cpu->id_mmfr0 = 0x01130003;
1808     cpu->id_mmfr1 = 0x10030302;
1809     cpu->id_mmfr2 = 0x01222110;
1810     cpu->isar.id_isar0 = 0x00140011;
1811     cpu->isar.id_isar1 = 0x12002111;
1812     cpu->isar.id_isar2 = 0x11231111;
1813     cpu->isar.id_isar3 = 0x01102131;
1814     cpu->isar.id_isar4 = 0x141;
1815     cpu->reset_auxcr = 7;
1816 }
1817 
1818 static void arm1136_initfn(Object *obj)
1819 {
1820     ARMCPU *cpu = ARM_CPU(obj);
1821 
1822     cpu->dtb_compatible = "arm,arm1136";
1823     set_feature(&cpu->env, ARM_FEATURE_V6K);
1824     set_feature(&cpu->env, ARM_FEATURE_V6);
1825     set_feature(&cpu->env, ARM_FEATURE_VFP);
1826     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1827     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1828     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1829     cpu->midr = 0x4117b363;
1830     cpu->reset_fpsid = 0x410120b4;
1831     cpu->isar.mvfr0 = 0x11111111;
1832     cpu->isar.mvfr1 = 0x00000000;
1833     cpu->ctr = 0x1dd20d2;
1834     cpu->reset_sctlr = 0x00050078;
1835     cpu->id_pfr0 = 0x111;
1836     cpu->id_pfr1 = 0x1;
1837     cpu->id_dfr0 = 0x2;
1838     cpu->id_afr0 = 0x3;
1839     cpu->id_mmfr0 = 0x01130003;
1840     cpu->id_mmfr1 = 0x10030302;
1841     cpu->id_mmfr2 = 0x01222110;
1842     cpu->isar.id_isar0 = 0x00140011;
1843     cpu->isar.id_isar1 = 0x12002111;
1844     cpu->isar.id_isar2 = 0x11231111;
1845     cpu->isar.id_isar3 = 0x01102131;
1846     cpu->isar.id_isar4 = 0x141;
1847     cpu->reset_auxcr = 7;
1848 }
1849 
1850 static void arm1176_initfn(Object *obj)
1851 {
1852     ARMCPU *cpu = ARM_CPU(obj);
1853 
1854     cpu->dtb_compatible = "arm,arm1176";
1855     set_feature(&cpu->env, ARM_FEATURE_V6K);
1856     set_feature(&cpu->env, ARM_FEATURE_VFP);
1857     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1858     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1859     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1860     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1861     set_feature(&cpu->env, ARM_FEATURE_EL3);
1862     cpu->midr = 0x410fb767;
1863     cpu->reset_fpsid = 0x410120b5;
1864     cpu->isar.mvfr0 = 0x11111111;
1865     cpu->isar.mvfr1 = 0x00000000;
1866     cpu->ctr = 0x1dd20d2;
1867     cpu->reset_sctlr = 0x00050078;
1868     cpu->id_pfr0 = 0x111;
1869     cpu->id_pfr1 = 0x11;
1870     cpu->id_dfr0 = 0x33;
1871     cpu->id_afr0 = 0;
1872     cpu->id_mmfr0 = 0x01130003;
1873     cpu->id_mmfr1 = 0x10030302;
1874     cpu->id_mmfr2 = 0x01222100;
1875     cpu->isar.id_isar0 = 0x0140011;
1876     cpu->isar.id_isar1 = 0x12002111;
1877     cpu->isar.id_isar2 = 0x11231121;
1878     cpu->isar.id_isar3 = 0x01102131;
1879     cpu->isar.id_isar4 = 0x01141;
1880     cpu->reset_auxcr = 7;
1881 }
1882 
1883 static void arm11mpcore_initfn(Object *obj)
1884 {
1885     ARMCPU *cpu = ARM_CPU(obj);
1886 
1887     cpu->dtb_compatible = "arm,arm11mpcore";
1888     set_feature(&cpu->env, ARM_FEATURE_V6K);
1889     set_feature(&cpu->env, ARM_FEATURE_VFP);
1890     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1891     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1892     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1893     cpu->midr = 0x410fb022;
1894     cpu->reset_fpsid = 0x410120b4;
1895     cpu->isar.mvfr0 = 0x11111111;
1896     cpu->isar.mvfr1 = 0x00000000;
1897     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1898     cpu->id_pfr0 = 0x111;
1899     cpu->id_pfr1 = 0x1;
1900     cpu->id_dfr0 = 0;
1901     cpu->id_afr0 = 0x2;
1902     cpu->id_mmfr0 = 0x01100103;
1903     cpu->id_mmfr1 = 0x10020302;
1904     cpu->id_mmfr2 = 0x01222000;
1905     cpu->isar.id_isar0 = 0x00100011;
1906     cpu->isar.id_isar1 = 0x12002111;
1907     cpu->isar.id_isar2 = 0x11221011;
1908     cpu->isar.id_isar3 = 0x01102131;
1909     cpu->isar.id_isar4 = 0x141;
1910     cpu->reset_auxcr = 1;
1911 }
1912 
1913 static void cortex_m0_initfn(Object *obj)
1914 {
1915     ARMCPU *cpu = ARM_CPU(obj);
1916     set_feature(&cpu->env, ARM_FEATURE_V6);
1917     set_feature(&cpu->env, ARM_FEATURE_M);
1918 
1919     cpu->midr = 0x410cc200;
1920 }
1921 
1922 static void cortex_m3_initfn(Object *obj)
1923 {
1924     ARMCPU *cpu = ARM_CPU(obj);
1925     set_feature(&cpu->env, ARM_FEATURE_V7);
1926     set_feature(&cpu->env, ARM_FEATURE_M);
1927     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1928     cpu->midr = 0x410fc231;
1929     cpu->pmsav7_dregion = 8;
1930     cpu->id_pfr0 = 0x00000030;
1931     cpu->id_pfr1 = 0x00000200;
1932     cpu->id_dfr0 = 0x00100000;
1933     cpu->id_afr0 = 0x00000000;
1934     cpu->id_mmfr0 = 0x00000030;
1935     cpu->id_mmfr1 = 0x00000000;
1936     cpu->id_mmfr2 = 0x00000000;
1937     cpu->id_mmfr3 = 0x00000000;
1938     cpu->isar.id_isar0 = 0x01141110;
1939     cpu->isar.id_isar1 = 0x02111000;
1940     cpu->isar.id_isar2 = 0x21112231;
1941     cpu->isar.id_isar3 = 0x01111110;
1942     cpu->isar.id_isar4 = 0x01310102;
1943     cpu->isar.id_isar5 = 0x00000000;
1944     cpu->isar.id_isar6 = 0x00000000;
1945 }
1946 
1947 static void cortex_m4_initfn(Object *obj)
1948 {
1949     ARMCPU *cpu = ARM_CPU(obj);
1950 
1951     set_feature(&cpu->env, ARM_FEATURE_V7);
1952     set_feature(&cpu->env, ARM_FEATURE_M);
1953     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1954     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1955     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1956     cpu->midr = 0x410fc240; /* r0p0 */
1957     cpu->pmsav7_dregion = 8;
1958     cpu->isar.mvfr0 = 0x10110021;
1959     cpu->isar.mvfr1 = 0x11000011;
1960     cpu->isar.mvfr2 = 0x00000000;
1961     cpu->id_pfr0 = 0x00000030;
1962     cpu->id_pfr1 = 0x00000200;
1963     cpu->id_dfr0 = 0x00100000;
1964     cpu->id_afr0 = 0x00000000;
1965     cpu->id_mmfr0 = 0x00000030;
1966     cpu->id_mmfr1 = 0x00000000;
1967     cpu->id_mmfr2 = 0x00000000;
1968     cpu->id_mmfr3 = 0x00000000;
1969     cpu->isar.id_isar0 = 0x01141110;
1970     cpu->isar.id_isar1 = 0x02111000;
1971     cpu->isar.id_isar2 = 0x21112231;
1972     cpu->isar.id_isar3 = 0x01111110;
1973     cpu->isar.id_isar4 = 0x01310102;
1974     cpu->isar.id_isar5 = 0x00000000;
1975     cpu->isar.id_isar6 = 0x00000000;
1976 }
1977 
1978 static void cortex_m7_initfn(Object *obj)
1979 {
1980     ARMCPU *cpu = ARM_CPU(obj);
1981 
1982     set_feature(&cpu->env, ARM_FEATURE_V7);
1983     set_feature(&cpu->env, ARM_FEATURE_M);
1984     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1985     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1986     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1987     cpu->midr = 0x411fc272; /* r1p2 */
1988     cpu->pmsav7_dregion = 8;
1989     cpu->isar.mvfr0 = 0x10110221;
1990     cpu->isar.mvfr1 = 0x12000011;
1991     cpu->isar.mvfr2 = 0x00000040;
1992     cpu->id_pfr0 = 0x00000030;
1993     cpu->id_pfr1 = 0x00000200;
1994     cpu->id_dfr0 = 0x00100000;
1995     cpu->id_afr0 = 0x00000000;
1996     cpu->id_mmfr0 = 0x00100030;
1997     cpu->id_mmfr1 = 0x00000000;
1998     cpu->id_mmfr2 = 0x01000000;
1999     cpu->id_mmfr3 = 0x00000000;
2000     cpu->isar.id_isar0 = 0x01101110;
2001     cpu->isar.id_isar1 = 0x02112000;
2002     cpu->isar.id_isar2 = 0x20232231;
2003     cpu->isar.id_isar3 = 0x01111131;
2004     cpu->isar.id_isar4 = 0x01310132;
2005     cpu->isar.id_isar5 = 0x00000000;
2006     cpu->isar.id_isar6 = 0x00000000;
2007 }
2008 
2009 static void cortex_m33_initfn(Object *obj)
2010 {
2011     ARMCPU *cpu = ARM_CPU(obj);
2012 
2013     set_feature(&cpu->env, ARM_FEATURE_V8);
2014     set_feature(&cpu->env, ARM_FEATURE_M);
2015     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2016     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2017     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2018     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2019     cpu->midr = 0x410fd213; /* r0p3 */
2020     cpu->pmsav7_dregion = 16;
2021     cpu->sau_sregion = 8;
2022     cpu->isar.mvfr0 = 0x10110021;
2023     cpu->isar.mvfr1 = 0x11000011;
2024     cpu->isar.mvfr2 = 0x00000040;
2025     cpu->id_pfr0 = 0x00000030;
2026     cpu->id_pfr1 = 0x00000210;
2027     cpu->id_dfr0 = 0x00200000;
2028     cpu->id_afr0 = 0x00000000;
2029     cpu->id_mmfr0 = 0x00101F40;
2030     cpu->id_mmfr1 = 0x00000000;
2031     cpu->id_mmfr2 = 0x01000000;
2032     cpu->id_mmfr3 = 0x00000000;
2033     cpu->isar.id_isar0 = 0x01101110;
2034     cpu->isar.id_isar1 = 0x02212000;
2035     cpu->isar.id_isar2 = 0x20232232;
2036     cpu->isar.id_isar3 = 0x01111131;
2037     cpu->isar.id_isar4 = 0x01310132;
2038     cpu->isar.id_isar5 = 0x00000000;
2039     cpu->isar.id_isar6 = 0x00000000;
2040     cpu->clidr = 0x00000000;
2041     cpu->ctr = 0x8000c000;
2042 }
2043 
2044 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2045 {
2046     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2047     CPUClass *cc = CPU_CLASS(oc);
2048 
2049     acc->info = data;
2050 #ifndef CONFIG_USER_ONLY
2051     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2052 #endif
2053 
2054     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2055 }
2056 
2057 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2058     /* Dummy the TCM region regs for the moment */
2059     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2060       .access = PL1_RW, .type = ARM_CP_CONST },
2061     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2062       .access = PL1_RW, .type = ARM_CP_CONST },
2063     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2064       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2065     REGINFO_SENTINEL
2066 };
2067 
2068 static void cortex_r5_initfn(Object *obj)
2069 {
2070     ARMCPU *cpu = ARM_CPU(obj);
2071 
2072     set_feature(&cpu->env, ARM_FEATURE_V7);
2073     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2074     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2075     cpu->midr = 0x411fc153; /* r1p3 */
2076     cpu->id_pfr0 = 0x0131;
2077     cpu->id_pfr1 = 0x001;
2078     cpu->id_dfr0 = 0x010400;
2079     cpu->id_afr0 = 0x0;
2080     cpu->id_mmfr0 = 0x0210030;
2081     cpu->id_mmfr1 = 0x00000000;
2082     cpu->id_mmfr2 = 0x01200000;
2083     cpu->id_mmfr3 = 0x0211;
2084     cpu->isar.id_isar0 = 0x02101111;
2085     cpu->isar.id_isar1 = 0x13112111;
2086     cpu->isar.id_isar2 = 0x21232141;
2087     cpu->isar.id_isar3 = 0x01112131;
2088     cpu->isar.id_isar4 = 0x0010142;
2089     cpu->isar.id_isar5 = 0x0;
2090     cpu->isar.id_isar6 = 0x0;
2091     cpu->mp_is_up = true;
2092     cpu->pmsav7_dregion = 16;
2093     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2094 }
2095 
2096 static void cortex_r5f_initfn(Object *obj)
2097 {
2098     ARMCPU *cpu = ARM_CPU(obj);
2099 
2100     cortex_r5_initfn(obj);
2101     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2102     cpu->isar.mvfr0 = 0x10110221;
2103     cpu->isar.mvfr1 = 0x00000011;
2104 }
2105 
2106 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2107     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2108       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2109     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2110       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2111     REGINFO_SENTINEL
2112 };
2113 
2114 static void cortex_a8_initfn(Object *obj)
2115 {
2116     ARMCPU *cpu = ARM_CPU(obj);
2117 
2118     cpu->dtb_compatible = "arm,cortex-a8";
2119     set_feature(&cpu->env, ARM_FEATURE_V7);
2120     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2121     set_feature(&cpu->env, ARM_FEATURE_NEON);
2122     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2123     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2124     set_feature(&cpu->env, ARM_FEATURE_EL3);
2125     cpu->midr = 0x410fc080;
2126     cpu->reset_fpsid = 0x410330c0;
2127     cpu->isar.mvfr0 = 0x11110222;
2128     cpu->isar.mvfr1 = 0x00011111;
2129     cpu->ctr = 0x82048004;
2130     cpu->reset_sctlr = 0x00c50078;
2131     cpu->id_pfr0 = 0x1031;
2132     cpu->id_pfr1 = 0x11;
2133     cpu->id_dfr0 = 0x400;
2134     cpu->id_afr0 = 0;
2135     cpu->id_mmfr0 = 0x31100003;
2136     cpu->id_mmfr1 = 0x20000000;
2137     cpu->id_mmfr2 = 0x01202000;
2138     cpu->id_mmfr3 = 0x11;
2139     cpu->isar.id_isar0 = 0x00101111;
2140     cpu->isar.id_isar1 = 0x12112111;
2141     cpu->isar.id_isar2 = 0x21232031;
2142     cpu->isar.id_isar3 = 0x11112131;
2143     cpu->isar.id_isar4 = 0x00111142;
2144     cpu->dbgdidr = 0x15141000;
2145     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2146     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2147     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2148     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2149     cpu->reset_auxcr = 2;
2150     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2151 }
2152 
2153 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2154     /* power_control should be set to maximum latency. Again,
2155      * default to 0 and set by private hook
2156      */
2157     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2158       .access = PL1_RW, .resetvalue = 0,
2159       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2160     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2161       .access = PL1_RW, .resetvalue = 0,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2163     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2164       .access = PL1_RW, .resetvalue = 0,
2165       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2166     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2167       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2168     /* TLB lockdown control */
2169     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2170       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2171     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2172       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2173     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2174       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2175     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2176       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2177     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2178       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2179     REGINFO_SENTINEL
2180 };
2181 
2182 static void cortex_a9_initfn(Object *obj)
2183 {
2184     ARMCPU *cpu = ARM_CPU(obj);
2185 
2186     cpu->dtb_compatible = "arm,cortex-a9";
2187     set_feature(&cpu->env, ARM_FEATURE_V7);
2188     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2189     set_feature(&cpu->env, ARM_FEATURE_NEON);
2190     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2191     set_feature(&cpu->env, ARM_FEATURE_EL3);
2192     /* Note that A9 supports the MP extensions even for
2193      * A9UP and single-core A9MP (which are both different
2194      * and valid configurations; we don't model A9UP).
2195      */
2196     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2197     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2198     cpu->midr = 0x410fc090;
2199     cpu->reset_fpsid = 0x41033090;
2200     cpu->isar.mvfr0 = 0x11110222;
2201     cpu->isar.mvfr1 = 0x01111111;
2202     cpu->ctr = 0x80038003;
2203     cpu->reset_sctlr = 0x00c50078;
2204     cpu->id_pfr0 = 0x1031;
2205     cpu->id_pfr1 = 0x11;
2206     cpu->id_dfr0 = 0x000;
2207     cpu->id_afr0 = 0;
2208     cpu->id_mmfr0 = 0x00100103;
2209     cpu->id_mmfr1 = 0x20000000;
2210     cpu->id_mmfr2 = 0x01230000;
2211     cpu->id_mmfr3 = 0x00002111;
2212     cpu->isar.id_isar0 = 0x00101111;
2213     cpu->isar.id_isar1 = 0x13112111;
2214     cpu->isar.id_isar2 = 0x21232041;
2215     cpu->isar.id_isar3 = 0x11112131;
2216     cpu->isar.id_isar4 = 0x00111142;
2217     cpu->dbgdidr = 0x35141000;
2218     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2219     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2220     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2221     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2222 }
2223 
2224 #ifndef CONFIG_USER_ONLY
2225 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2226 {
2227     MachineState *ms = MACHINE(qdev_get_machine());
2228 
2229     /* Linux wants the number of processors from here.
2230      * Might as well set the interrupt-controller bit too.
2231      */
2232     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2233 }
2234 #endif
2235 
2236 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2237 #ifndef CONFIG_USER_ONLY
2238     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2239       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2240       .writefn = arm_cp_write_ignore, },
2241 #endif
2242     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2243       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2244     REGINFO_SENTINEL
2245 };
2246 
2247 static void cortex_a7_initfn(Object *obj)
2248 {
2249     ARMCPU *cpu = ARM_CPU(obj);
2250 
2251     cpu->dtb_compatible = "arm,cortex-a7";
2252     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2253     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2254     set_feature(&cpu->env, ARM_FEATURE_NEON);
2255     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2256     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2257     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2258     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2259     set_feature(&cpu->env, ARM_FEATURE_EL2);
2260     set_feature(&cpu->env, ARM_FEATURE_EL3);
2261     set_feature(&cpu->env, ARM_FEATURE_PMU);
2262     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2263     cpu->midr = 0x410fc075;
2264     cpu->reset_fpsid = 0x41023075;
2265     cpu->isar.mvfr0 = 0x10110222;
2266     cpu->isar.mvfr1 = 0x11111111;
2267     cpu->ctr = 0x84448003;
2268     cpu->reset_sctlr = 0x00c50078;
2269     cpu->id_pfr0 = 0x00001131;
2270     cpu->id_pfr1 = 0x00011011;
2271     cpu->id_dfr0 = 0x02010555;
2272     cpu->id_afr0 = 0x00000000;
2273     cpu->id_mmfr0 = 0x10101105;
2274     cpu->id_mmfr1 = 0x40000000;
2275     cpu->id_mmfr2 = 0x01240000;
2276     cpu->id_mmfr3 = 0x02102211;
2277     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2278      * table 4-41 gives 0x02101110, which includes the arm div insns.
2279      */
2280     cpu->isar.id_isar0 = 0x02101110;
2281     cpu->isar.id_isar1 = 0x13112111;
2282     cpu->isar.id_isar2 = 0x21232041;
2283     cpu->isar.id_isar3 = 0x11112131;
2284     cpu->isar.id_isar4 = 0x10011142;
2285     cpu->dbgdidr = 0x3515f005;
2286     cpu->clidr = 0x0a200023;
2287     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2288     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2289     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2290     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2291 }
2292 
2293 static void cortex_a15_initfn(Object *obj)
2294 {
2295     ARMCPU *cpu = ARM_CPU(obj);
2296 
2297     cpu->dtb_compatible = "arm,cortex-a15";
2298     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2299     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2300     set_feature(&cpu->env, ARM_FEATURE_NEON);
2301     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2302     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2303     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2304     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2305     set_feature(&cpu->env, ARM_FEATURE_EL2);
2306     set_feature(&cpu->env, ARM_FEATURE_EL3);
2307     set_feature(&cpu->env, ARM_FEATURE_PMU);
2308     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2309     cpu->midr = 0x412fc0f1;
2310     cpu->reset_fpsid = 0x410430f0;
2311     cpu->isar.mvfr0 = 0x10110222;
2312     cpu->isar.mvfr1 = 0x11111111;
2313     cpu->ctr = 0x8444c004;
2314     cpu->reset_sctlr = 0x00c50078;
2315     cpu->id_pfr0 = 0x00001131;
2316     cpu->id_pfr1 = 0x00011011;
2317     cpu->id_dfr0 = 0x02010555;
2318     cpu->id_afr0 = 0x00000000;
2319     cpu->id_mmfr0 = 0x10201105;
2320     cpu->id_mmfr1 = 0x20000000;
2321     cpu->id_mmfr2 = 0x01240000;
2322     cpu->id_mmfr3 = 0x02102211;
2323     cpu->isar.id_isar0 = 0x02101110;
2324     cpu->isar.id_isar1 = 0x13112111;
2325     cpu->isar.id_isar2 = 0x21232041;
2326     cpu->isar.id_isar3 = 0x11112131;
2327     cpu->isar.id_isar4 = 0x10011142;
2328     cpu->dbgdidr = 0x3515f021;
2329     cpu->clidr = 0x0a200023;
2330     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2331     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2332     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2333     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2334 }
2335 
2336 static void ti925t_initfn(Object *obj)
2337 {
2338     ARMCPU *cpu = ARM_CPU(obj);
2339     set_feature(&cpu->env, ARM_FEATURE_V4T);
2340     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2341     cpu->midr = ARM_CPUID_TI925T;
2342     cpu->ctr = 0x5109149;
2343     cpu->reset_sctlr = 0x00000070;
2344 }
2345 
2346 static void sa1100_initfn(Object *obj)
2347 {
2348     ARMCPU *cpu = ARM_CPU(obj);
2349 
2350     cpu->dtb_compatible = "intel,sa1100";
2351     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2352     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2353     cpu->midr = 0x4401A11B;
2354     cpu->reset_sctlr = 0x00000070;
2355 }
2356 
2357 static void sa1110_initfn(Object *obj)
2358 {
2359     ARMCPU *cpu = ARM_CPU(obj);
2360     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2361     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2362     cpu->midr = 0x6901B119;
2363     cpu->reset_sctlr = 0x00000070;
2364 }
2365 
2366 static void pxa250_initfn(Object *obj)
2367 {
2368     ARMCPU *cpu = ARM_CPU(obj);
2369 
2370     cpu->dtb_compatible = "marvell,xscale";
2371     set_feature(&cpu->env, ARM_FEATURE_V5);
2372     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2373     cpu->midr = 0x69052100;
2374     cpu->ctr = 0xd172172;
2375     cpu->reset_sctlr = 0x00000078;
2376 }
2377 
2378 static void pxa255_initfn(Object *obj)
2379 {
2380     ARMCPU *cpu = ARM_CPU(obj);
2381 
2382     cpu->dtb_compatible = "marvell,xscale";
2383     set_feature(&cpu->env, ARM_FEATURE_V5);
2384     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2385     cpu->midr = 0x69052d00;
2386     cpu->ctr = 0xd172172;
2387     cpu->reset_sctlr = 0x00000078;
2388 }
2389 
2390 static void pxa260_initfn(Object *obj)
2391 {
2392     ARMCPU *cpu = ARM_CPU(obj);
2393 
2394     cpu->dtb_compatible = "marvell,xscale";
2395     set_feature(&cpu->env, ARM_FEATURE_V5);
2396     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2397     cpu->midr = 0x69052903;
2398     cpu->ctr = 0xd172172;
2399     cpu->reset_sctlr = 0x00000078;
2400 }
2401 
2402 static void pxa261_initfn(Object *obj)
2403 {
2404     ARMCPU *cpu = ARM_CPU(obj);
2405 
2406     cpu->dtb_compatible = "marvell,xscale";
2407     set_feature(&cpu->env, ARM_FEATURE_V5);
2408     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2409     cpu->midr = 0x69052d05;
2410     cpu->ctr = 0xd172172;
2411     cpu->reset_sctlr = 0x00000078;
2412 }
2413 
2414 static void pxa262_initfn(Object *obj)
2415 {
2416     ARMCPU *cpu = ARM_CPU(obj);
2417 
2418     cpu->dtb_compatible = "marvell,xscale";
2419     set_feature(&cpu->env, ARM_FEATURE_V5);
2420     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2421     cpu->midr = 0x69052d06;
2422     cpu->ctr = 0xd172172;
2423     cpu->reset_sctlr = 0x00000078;
2424 }
2425 
2426 static void pxa270a0_initfn(Object *obj)
2427 {
2428     ARMCPU *cpu = ARM_CPU(obj);
2429 
2430     cpu->dtb_compatible = "marvell,xscale";
2431     set_feature(&cpu->env, ARM_FEATURE_V5);
2432     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2433     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2434     cpu->midr = 0x69054110;
2435     cpu->ctr = 0xd172172;
2436     cpu->reset_sctlr = 0x00000078;
2437 }
2438 
2439 static void pxa270a1_initfn(Object *obj)
2440 {
2441     ARMCPU *cpu = ARM_CPU(obj);
2442 
2443     cpu->dtb_compatible = "marvell,xscale";
2444     set_feature(&cpu->env, ARM_FEATURE_V5);
2445     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2446     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2447     cpu->midr = 0x69054111;
2448     cpu->ctr = 0xd172172;
2449     cpu->reset_sctlr = 0x00000078;
2450 }
2451 
2452 static void pxa270b0_initfn(Object *obj)
2453 {
2454     ARMCPU *cpu = ARM_CPU(obj);
2455 
2456     cpu->dtb_compatible = "marvell,xscale";
2457     set_feature(&cpu->env, ARM_FEATURE_V5);
2458     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2459     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2460     cpu->midr = 0x69054112;
2461     cpu->ctr = 0xd172172;
2462     cpu->reset_sctlr = 0x00000078;
2463 }
2464 
2465 static void pxa270b1_initfn(Object *obj)
2466 {
2467     ARMCPU *cpu = ARM_CPU(obj);
2468 
2469     cpu->dtb_compatible = "marvell,xscale";
2470     set_feature(&cpu->env, ARM_FEATURE_V5);
2471     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2472     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2473     cpu->midr = 0x69054113;
2474     cpu->ctr = 0xd172172;
2475     cpu->reset_sctlr = 0x00000078;
2476 }
2477 
2478 static void pxa270c0_initfn(Object *obj)
2479 {
2480     ARMCPU *cpu = ARM_CPU(obj);
2481 
2482     cpu->dtb_compatible = "marvell,xscale";
2483     set_feature(&cpu->env, ARM_FEATURE_V5);
2484     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2485     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2486     cpu->midr = 0x69054114;
2487     cpu->ctr = 0xd172172;
2488     cpu->reset_sctlr = 0x00000078;
2489 }
2490 
2491 static void pxa270c5_initfn(Object *obj)
2492 {
2493     ARMCPU *cpu = ARM_CPU(obj);
2494 
2495     cpu->dtb_compatible = "marvell,xscale";
2496     set_feature(&cpu->env, ARM_FEATURE_V5);
2497     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2498     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2499     cpu->midr = 0x69054117;
2500     cpu->ctr = 0xd172172;
2501     cpu->reset_sctlr = 0x00000078;
2502 }
2503 
2504 #ifndef TARGET_AARCH64
2505 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2506  * otherwise, a CPU with as many features enabled as our emulation supports.
2507  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2508  * this only needs to handle 32 bits.
2509  */
2510 static void arm_max_initfn(Object *obj)
2511 {
2512     ARMCPU *cpu = ARM_CPU(obj);
2513 
2514     if (kvm_enabled()) {
2515         kvm_arm_set_cpu_features_from_host(cpu);
2516     } else {
2517         cortex_a15_initfn(obj);
2518 
2519         /* old-style VFP short-vector support */
2520         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2521 
2522 #ifdef CONFIG_USER_ONLY
2523         /* We don't set these in system emulation mode for the moment,
2524          * since we don't correctly set (all of) the ID registers to
2525          * advertise them.
2526          */
2527         set_feature(&cpu->env, ARM_FEATURE_V8);
2528         {
2529             uint32_t t;
2530 
2531             t = cpu->isar.id_isar5;
2532             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2533             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2534             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2535             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2536             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2537             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2538             cpu->isar.id_isar5 = t;
2539 
2540             t = cpu->isar.id_isar6;
2541             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2542             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2543             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2544             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2545             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2546             cpu->isar.id_isar6 = t;
2547 
2548             t = cpu->isar.mvfr1;
2549             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2550             cpu->isar.mvfr1 = t;
2551 
2552             t = cpu->isar.mvfr2;
2553             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2554             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2555             cpu->isar.mvfr2 = t;
2556 
2557             t = cpu->id_mmfr4;
2558             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2559             cpu->id_mmfr4 = t;
2560         }
2561 #endif
2562     }
2563 }
2564 #endif
2565 
2566 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2567 
2568 struct ARMCPUInfo {
2569     const char *name;
2570     void (*initfn)(Object *obj);
2571     void (*class_init)(ObjectClass *oc, void *data);
2572 };
2573 
2574 static const ARMCPUInfo arm_cpus[] = {
2575 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2576     { .name = "arm926",      .initfn = arm926_initfn },
2577     { .name = "arm946",      .initfn = arm946_initfn },
2578     { .name = "arm1026",     .initfn = arm1026_initfn },
2579     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2580      * older core than plain "arm1136". In particular this does not
2581      * have the v6K features.
2582      */
2583     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2584     { .name = "arm1136",     .initfn = arm1136_initfn },
2585     { .name = "arm1176",     .initfn = arm1176_initfn },
2586     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2587     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2588                              .class_init = arm_v7m_class_init },
2589     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2590                              .class_init = arm_v7m_class_init },
2591     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2592                              .class_init = arm_v7m_class_init },
2593     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2594                              .class_init = arm_v7m_class_init },
2595     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2596                              .class_init = arm_v7m_class_init },
2597     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2598     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2599     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2600     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2601     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2602     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2603     { .name = "ti925t",      .initfn = ti925t_initfn },
2604     { .name = "sa1100",      .initfn = sa1100_initfn },
2605     { .name = "sa1110",      .initfn = sa1110_initfn },
2606     { .name = "pxa250",      .initfn = pxa250_initfn },
2607     { .name = "pxa255",      .initfn = pxa255_initfn },
2608     { .name = "pxa260",      .initfn = pxa260_initfn },
2609     { .name = "pxa261",      .initfn = pxa261_initfn },
2610     { .name = "pxa262",      .initfn = pxa262_initfn },
2611     /* "pxa270" is an alias for "pxa270-a0" */
2612     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2613     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2614     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2615     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2616     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2617     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2618     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2619 #ifndef TARGET_AARCH64
2620     { .name = "max",         .initfn = arm_max_initfn },
2621 #endif
2622 #ifdef CONFIG_USER_ONLY
2623     { .name = "any",         .initfn = arm_max_initfn },
2624 #endif
2625 #endif
2626     { .name = NULL }
2627 };
2628 
2629 static Property arm_cpu_properties[] = {
2630     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2631     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2632     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2633     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2634                         mp_affinity, ARM64_AFFINITY_INVALID),
2635     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2636     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2637     DEFINE_PROP_END_OF_LIST()
2638 };
2639 
2640 static gchar *arm_gdb_arch_name(CPUState *cs)
2641 {
2642     ARMCPU *cpu = ARM_CPU(cs);
2643     CPUARMState *env = &cpu->env;
2644 
2645     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2646         return g_strdup("iwmmxt");
2647     }
2648     return g_strdup("arm");
2649 }
2650 
2651 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2652 {
2653     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2654     CPUClass *cc = CPU_CLASS(acc);
2655     DeviceClass *dc = DEVICE_CLASS(oc);
2656 
2657     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2658                                     &acc->parent_realize);
2659     dc->props = arm_cpu_properties;
2660 
2661     acc->parent_reset = cc->reset;
2662     cc->reset = arm_cpu_reset;
2663 
2664     cc->class_by_name = arm_cpu_class_by_name;
2665     cc->has_work = arm_cpu_has_work;
2666     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2667     cc->dump_state = arm_cpu_dump_state;
2668     cc->set_pc = arm_cpu_set_pc;
2669     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2670     cc->gdb_read_register = arm_cpu_gdb_read_register;
2671     cc->gdb_write_register = arm_cpu_gdb_write_register;
2672 #ifndef CONFIG_USER_ONLY
2673     cc->do_interrupt = arm_cpu_do_interrupt;
2674     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2675     cc->asidx_from_attrs = arm_asidx_from_attrs;
2676     cc->vmsd = &vmstate_arm_cpu;
2677     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2678     cc->write_elf64_note = arm_cpu_write_elf64_note;
2679     cc->write_elf32_note = arm_cpu_write_elf32_note;
2680 #endif
2681     cc->gdb_num_core_regs = 26;
2682     cc->gdb_core_xml_file = "arm-core.xml";
2683     cc->gdb_arch_name = arm_gdb_arch_name;
2684     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2685     cc->gdb_stop_before_watchpoint = true;
2686     cc->disas_set_info = arm_disas_set_info;
2687 #ifdef CONFIG_TCG
2688     cc->tcg_initialize = arm_translate_init;
2689     cc->tlb_fill = arm_cpu_tlb_fill;
2690     cc->debug_excp_handler = arm_debug_excp_handler;
2691     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2692 #if !defined(CONFIG_USER_ONLY)
2693     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2694     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2695     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2696 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2697 #endif
2698 }
2699 
2700 #ifdef CONFIG_KVM
2701 static void arm_host_initfn(Object *obj)
2702 {
2703     ARMCPU *cpu = ARM_CPU(obj);
2704 
2705     kvm_arm_set_cpu_features_from_host(cpu);
2706     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2707         aarch64_add_sve_properties(obj);
2708     }
2709     arm_cpu_post_init(obj);
2710 }
2711 
2712 static const TypeInfo host_arm_cpu_type_info = {
2713     .name = TYPE_ARM_HOST_CPU,
2714 #ifdef TARGET_AARCH64
2715     .parent = TYPE_AARCH64_CPU,
2716 #else
2717     .parent = TYPE_ARM_CPU,
2718 #endif
2719     .instance_init = arm_host_initfn,
2720 };
2721 
2722 #endif
2723 
2724 static void arm_cpu_instance_init(Object *obj)
2725 {
2726     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2727 
2728     acc->info->initfn(obj);
2729     arm_cpu_post_init(obj);
2730 }
2731 
2732 static void cpu_register_class_init(ObjectClass *oc, void *data)
2733 {
2734     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2735 
2736     acc->info = data;
2737 }
2738 
2739 static void cpu_register(const ARMCPUInfo *info)
2740 {
2741     TypeInfo type_info = {
2742         .parent = TYPE_ARM_CPU,
2743         .instance_size = sizeof(ARMCPU),
2744         .instance_init = arm_cpu_instance_init,
2745         .class_size = sizeof(ARMCPUClass),
2746         .class_init = info->class_init ?: cpu_register_class_init,
2747         .class_data = (void *)info,
2748     };
2749 
2750     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2751     type_register(&type_info);
2752     g_free((void *)type_info.name);
2753 }
2754 
2755 static const TypeInfo arm_cpu_type_info = {
2756     .name = TYPE_ARM_CPU,
2757     .parent = TYPE_CPU,
2758     .instance_size = sizeof(ARMCPU),
2759     .instance_init = arm_cpu_initfn,
2760     .instance_finalize = arm_cpu_finalizefn,
2761     .abstract = true,
2762     .class_size = sizeof(ARMCPUClass),
2763     .class_init = arm_cpu_class_init,
2764 };
2765 
2766 static const TypeInfo idau_interface_type_info = {
2767     .name = TYPE_IDAU_INTERFACE,
2768     .parent = TYPE_INTERFACE,
2769     .class_size = sizeof(IDAUInterfaceClass),
2770 };
2771 
2772 static void arm_cpu_register_types(void)
2773 {
2774     const ARMCPUInfo *info = arm_cpus;
2775 
2776     type_register_static(&arm_cpu_type_info);
2777     type_register_static(&idau_interface_type_info);
2778 
2779     while (info->name) {
2780         cpu_register(info);
2781         info++;
2782     }
2783 
2784 #ifdef CONFIG_KVM
2785     type_register_static(&host_arm_cpu_type_info);
2786 #endif
2787 }
2788 
2789 type_init(arm_cpu_register_types)
2790