xref: /openbmc/qemu/target/arm/cpu.c (revision f28d0dfd)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 #else
168         /* Reset into the highest available EL */
169         if (arm_feature(env, ARM_FEATURE_EL3)) {
170             env->pstate = PSTATE_MODE_EL3h;
171         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
172             env->pstate = PSTATE_MODE_EL2h;
173         } else {
174             env->pstate = PSTATE_MODE_EL1h;
175         }
176         env->pc = cpu->rvbar;
177 #endif
178     } else {
179 #if defined(CONFIG_USER_ONLY)
180         /* Userspace expects access to cp10 and cp11 for FP/Neon */
181         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
182 #endif
183     }
184 
185 #if defined(CONFIG_USER_ONLY)
186     env->uncached_cpsr = ARM_CPU_MODE_USR;
187     /* For user mode we must enable access to coprocessors */
188     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
189     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
190         env->cp15.c15_cpar = 3;
191     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
192         env->cp15.c15_cpar = 1;
193     }
194 #else
195     /* SVC mode with interrupts disabled.  */
196     env->uncached_cpsr = ARM_CPU_MODE_SVC;
197     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
198 
199     if (arm_feature(env, ARM_FEATURE_M)) {
200         uint32_t initial_msp; /* Loaded from 0x0 */
201         uint32_t initial_pc; /* Loaded from 0x4 */
202         uint8_t *rom;
203         uint32_t vecbase;
204 
205         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
206             env->v7m.secure = true;
207         } else {
208             /* This bit resets to 0 if security is supported, but 1 if
209              * it is not. The bit is not present in v7M, but we set it
210              * here so we can avoid having to make checks on it conditional
211              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
212              */
213             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
214         }
215 
216         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
217          * that it resets to 1, so QEMU always does that rather than making
218          * it dependent on CPU model. In v8M it is RES1.
219          */
220         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
221         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
222         if (arm_feature(env, ARM_FEATURE_V8)) {
223             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
224             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
225             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
226         }
227 
228         /* Unlike A/R profile, M profile defines the reset LR value */
229         env->regs[14] = 0xffffffff;
230 
231         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
232 
233         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
234         vecbase = env->v7m.vecbase[env->v7m.secure];
235         rom = rom_ptr(vecbase);
236         if (rom) {
237             /* Address zero is covered by ROM which hasn't yet been
238              * copied into physical memory.
239              */
240             initial_msp = ldl_p(rom);
241             initial_pc = ldl_p(rom + 4);
242         } else {
243             /* Address zero not covered by a ROM blob, or the ROM blob
244              * is in non-modifiable memory and this is a second reset after
245              * it got copied into memory. In the latter case, rom_ptr
246              * will return a NULL pointer and we should use ldl_phys instead.
247              */
248             initial_msp = ldl_phys(s->as, vecbase);
249             initial_pc = ldl_phys(s->as, vecbase + 4);
250         }
251 
252         env->regs[13] = initial_msp & 0xFFFFFFFC;
253         env->regs[15] = initial_pc & ~1;
254         env->thumb = initial_pc & 1;
255     }
256 
257     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
258      * executing as AArch32 then check if highvecs are enabled and
259      * adjust the PC accordingly.
260      */
261     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
262         env->regs[15] = 0xFFFF0000;
263     }
264 
265     /* M profile requires that reset clears the exclusive monitor;
266      * A profile does not, but clearing it makes more sense than having it
267      * set with an exclusive access on address zero.
268      */
269     arm_clear_exclusive(env);
270 
271     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
272 #endif
273 
274     if (arm_feature(env, ARM_FEATURE_PMSA)) {
275         if (cpu->pmsav7_dregion > 0) {
276             if (arm_feature(env, ARM_FEATURE_V8)) {
277                 memset(env->pmsav8.rbar[M_REG_NS], 0,
278                        sizeof(*env->pmsav8.rbar[M_REG_NS])
279                        * cpu->pmsav7_dregion);
280                 memset(env->pmsav8.rlar[M_REG_NS], 0,
281                        sizeof(*env->pmsav8.rlar[M_REG_NS])
282                        * cpu->pmsav7_dregion);
283                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
284                     memset(env->pmsav8.rbar[M_REG_S], 0,
285                            sizeof(*env->pmsav8.rbar[M_REG_S])
286                            * cpu->pmsav7_dregion);
287                     memset(env->pmsav8.rlar[M_REG_S], 0,
288                            sizeof(*env->pmsav8.rlar[M_REG_S])
289                            * cpu->pmsav7_dregion);
290                 }
291             } else if (arm_feature(env, ARM_FEATURE_V7)) {
292                 memset(env->pmsav7.drbar, 0,
293                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
294                 memset(env->pmsav7.drsr, 0,
295                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
296                 memset(env->pmsav7.dracr, 0,
297                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
298             }
299         }
300         env->pmsav7.rnr[M_REG_NS] = 0;
301         env->pmsav7.rnr[M_REG_S] = 0;
302         env->pmsav8.mair0[M_REG_NS] = 0;
303         env->pmsav8.mair0[M_REG_S] = 0;
304         env->pmsav8.mair1[M_REG_NS] = 0;
305         env->pmsav8.mair1[M_REG_S] = 0;
306     }
307 
308     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
309         if (cpu->sau_sregion > 0) {
310             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
311             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
312         }
313         env->sau.rnr = 0;
314         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
315          * the Cortex-M33 does.
316          */
317         env->sau.ctrl = 0;
318     }
319 
320     set_flush_to_zero(1, &env->vfp.standard_fp_status);
321     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
322     set_default_nan_mode(1, &env->vfp.standard_fp_status);
323     set_float_detect_tininess(float_tininess_before_rounding,
324                               &env->vfp.fp_status);
325     set_float_detect_tininess(float_tininess_before_rounding,
326                               &env->vfp.standard_fp_status);
327     set_float_detect_tininess(float_tininess_before_rounding,
328                               &env->vfp.fp_status_f16);
329 #ifndef CONFIG_USER_ONLY
330     if (kvm_enabled()) {
331         kvm_arm_reset_vcpu(cpu);
332     }
333 #endif
334 
335     hw_breakpoint_update_all(cpu);
336     hw_watchpoint_update_all(cpu);
337 }
338 
339 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
340 {
341     CPUClass *cc = CPU_GET_CLASS(cs);
342     CPUARMState *env = cs->env_ptr;
343     uint32_t cur_el = arm_current_el(env);
344     bool secure = arm_is_secure(env);
345     uint32_t target_el;
346     uint32_t excp_idx;
347     bool ret = false;
348 
349     if (interrupt_request & CPU_INTERRUPT_FIQ) {
350         excp_idx = EXCP_FIQ;
351         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
352         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
353             cs->exception_index = excp_idx;
354             env->exception.target_el = target_el;
355             cc->do_interrupt(cs);
356             ret = true;
357         }
358     }
359     if (interrupt_request & CPU_INTERRUPT_HARD) {
360         excp_idx = EXCP_IRQ;
361         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
362         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
363             cs->exception_index = excp_idx;
364             env->exception.target_el = target_el;
365             cc->do_interrupt(cs);
366             ret = true;
367         }
368     }
369     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
370         excp_idx = EXCP_VIRQ;
371         target_el = 1;
372         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
373             cs->exception_index = excp_idx;
374             env->exception.target_el = target_el;
375             cc->do_interrupt(cs);
376             ret = true;
377         }
378     }
379     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
380         excp_idx = EXCP_VFIQ;
381         target_el = 1;
382         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
383             cs->exception_index = excp_idx;
384             env->exception.target_el = target_el;
385             cc->do_interrupt(cs);
386             ret = true;
387         }
388     }
389 
390     return ret;
391 }
392 
393 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
394 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
395 {
396     CPUClass *cc = CPU_GET_CLASS(cs);
397     ARMCPU *cpu = ARM_CPU(cs);
398     CPUARMState *env = &cpu->env;
399     bool ret = false;
400 
401     /* ARMv7-M interrupt masking works differently than -A or -R.
402      * There is no FIQ/IRQ distinction. Instead of I and F bits
403      * masking FIQ and IRQ interrupts, an exception is taken only
404      * if it is higher priority than the current execution priority
405      * (which depends on state like BASEPRI, FAULTMASK and the
406      * currently active exception).
407      */
408     if (interrupt_request & CPU_INTERRUPT_HARD
409         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
410         cs->exception_index = EXCP_IRQ;
411         cc->do_interrupt(cs);
412         ret = true;
413     }
414     return ret;
415 }
416 #endif
417 
418 #ifndef CONFIG_USER_ONLY
419 static void arm_cpu_set_irq(void *opaque, int irq, int level)
420 {
421     ARMCPU *cpu = opaque;
422     CPUARMState *env = &cpu->env;
423     CPUState *cs = CPU(cpu);
424     static const int mask[] = {
425         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
426         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
427         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
428         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
429     };
430 
431     switch (irq) {
432     case ARM_CPU_VIRQ:
433     case ARM_CPU_VFIQ:
434         assert(arm_feature(env, ARM_FEATURE_EL2));
435         /* fall through */
436     case ARM_CPU_IRQ:
437     case ARM_CPU_FIQ:
438         if (level) {
439             cpu_interrupt(cs, mask[irq]);
440         } else {
441             cpu_reset_interrupt(cs, mask[irq]);
442         }
443         break;
444     default:
445         g_assert_not_reached();
446     }
447 }
448 
449 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
450 {
451 #ifdef CONFIG_KVM
452     ARMCPU *cpu = opaque;
453     CPUState *cs = CPU(cpu);
454     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
455 
456     switch (irq) {
457     case ARM_CPU_IRQ:
458         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
459         break;
460     case ARM_CPU_FIQ:
461         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
462         break;
463     default:
464         g_assert_not_reached();
465     }
466     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
467     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
468 #endif
469 }
470 
471 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
472 {
473     ARMCPU *cpu = ARM_CPU(cs);
474     CPUARMState *env = &cpu->env;
475 
476     cpu_synchronize_state(cs);
477     return arm_cpu_data_is_big_endian(env);
478 }
479 
480 #endif
481 
482 static inline void set_feature(CPUARMState *env, int feature)
483 {
484     env->features |= 1ULL << feature;
485 }
486 
487 static inline void unset_feature(CPUARMState *env, int feature)
488 {
489     env->features &= ~(1ULL << feature);
490 }
491 
492 static int
493 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
494 {
495   return print_insn_arm(pc | 1, info);
496 }
497 
498 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
499 {
500     ARMCPU *ac = ARM_CPU(cpu);
501     CPUARMState *env = &ac->env;
502     bool sctlr_b;
503 
504     if (is_a64(env)) {
505         /* We might not be compiled with the A64 disassembler
506          * because it needs a C++ compiler. Leave print_insn
507          * unset in this case to use the caller default behaviour.
508          */
509 #if defined(CONFIG_ARM_A64_DIS)
510         info->print_insn = print_insn_arm_a64;
511 #endif
512         info->cap_arch = CS_ARCH_ARM64;
513         info->cap_insn_unit = 4;
514         info->cap_insn_split = 4;
515     } else {
516         int cap_mode;
517         if (env->thumb) {
518             info->print_insn = print_insn_thumb1;
519             info->cap_insn_unit = 2;
520             info->cap_insn_split = 4;
521             cap_mode = CS_MODE_THUMB;
522         } else {
523             info->print_insn = print_insn_arm;
524             info->cap_insn_unit = 4;
525             info->cap_insn_split = 4;
526             cap_mode = CS_MODE_ARM;
527         }
528         if (arm_feature(env, ARM_FEATURE_V8)) {
529             cap_mode |= CS_MODE_V8;
530         }
531         if (arm_feature(env, ARM_FEATURE_M)) {
532             cap_mode |= CS_MODE_MCLASS;
533         }
534         info->cap_arch = CS_ARCH_ARM;
535         info->cap_mode = cap_mode;
536     }
537 
538     sctlr_b = arm_sctlr_b(env);
539     if (bswap_code(sctlr_b)) {
540 #ifdef TARGET_WORDS_BIGENDIAN
541         info->endian = BFD_ENDIAN_LITTLE;
542 #else
543         info->endian = BFD_ENDIAN_BIG;
544 #endif
545     }
546     info->flags &= ~INSN_ARM_BE32;
547 #ifndef CONFIG_USER_ONLY
548     if (sctlr_b) {
549         info->flags |= INSN_ARM_BE32;
550     }
551 #endif
552 }
553 
554 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
555 {
556     uint32_t Aff1 = idx / clustersz;
557     uint32_t Aff0 = idx % clustersz;
558     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
559 }
560 
561 static void arm_cpu_initfn(Object *obj)
562 {
563     CPUState *cs = CPU(obj);
564     ARMCPU *cpu = ARM_CPU(obj);
565 
566     cs->env_ptr = &cpu->env;
567     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
568                                          g_free, g_free);
569 
570     QLIST_INIT(&cpu->pre_el_change_hooks);
571     QLIST_INIT(&cpu->el_change_hooks);
572 
573 #ifndef CONFIG_USER_ONLY
574     /* Our inbound IRQ and FIQ lines */
575     if (kvm_enabled()) {
576         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
577          * the same interface as non-KVM CPUs.
578          */
579         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
580     } else {
581         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
582     }
583 
584     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
585                                                 arm_gt_ptimer_cb, cpu);
586     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
587                                                 arm_gt_vtimer_cb, cpu);
588     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
589                                                 arm_gt_htimer_cb, cpu);
590     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
591                                                 arm_gt_stimer_cb, cpu);
592     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
593                        ARRAY_SIZE(cpu->gt_timer_outputs));
594 
595     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
596                              "gicv3-maintenance-interrupt", 1);
597     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
598                              "pmu-interrupt", 1);
599 #endif
600 
601     /* DTB consumers generally don't in fact care what the 'compatible'
602      * string is, so always provide some string and trust that a hypothetical
603      * picky DTB consumer will also provide a helpful error message.
604      */
605     cpu->dtb_compatible = "qemu,unknown";
606     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
607     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
608 
609     if (tcg_enabled()) {
610         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
611     }
612 }
613 
614 static Property arm_cpu_reset_cbar_property =
615             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
616 
617 static Property arm_cpu_reset_hivecs_property =
618             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
619 
620 static Property arm_cpu_rvbar_property =
621             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
622 
623 static Property arm_cpu_has_el2_property =
624             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
625 
626 static Property arm_cpu_has_el3_property =
627             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
628 
629 static Property arm_cpu_cfgend_property =
630             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
631 
632 /* use property name "pmu" to match other archs and virt tools */
633 static Property arm_cpu_has_pmu_property =
634             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
635 
636 static Property arm_cpu_has_mpu_property =
637             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
638 
639 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
640  * because the CPU initfn will have already set cpu->pmsav7_dregion to
641  * the right value for that particular CPU type, and we don't want
642  * to override that with an incorrect constant value.
643  */
644 static Property arm_cpu_pmsav7_dregion_property =
645             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
646                                            pmsav7_dregion,
647                                            qdev_prop_uint32, uint32_t);
648 
649 /* M profile: initial value of the Secure VTOR */
650 static Property arm_cpu_initsvtor_property =
651             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
652 
653 static void arm_cpu_post_init(Object *obj)
654 {
655     ARMCPU *cpu = ARM_CPU(obj);
656 
657     /* M profile implies PMSA. We have to do this here rather than
658      * in realize with the other feature-implication checks because
659      * we look at the PMSA bit to see if we should add some properties.
660      */
661     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
662         set_feature(&cpu->env, ARM_FEATURE_PMSA);
663     }
664 
665     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
666         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
667         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
668                                  &error_abort);
669     }
670 
671     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
672         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
673                                  &error_abort);
674     }
675 
676     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
677         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
678                                  &error_abort);
679     }
680 
681     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
682         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
683          * prevent "has_el3" from existing on CPUs which cannot support EL3.
684          */
685         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
686                                  &error_abort);
687 
688 #ifndef CONFIG_USER_ONLY
689         object_property_add_link(obj, "secure-memory",
690                                  TYPE_MEMORY_REGION,
691                                  (Object **)&cpu->secure_memory,
692                                  qdev_prop_allow_set_link_before_realize,
693                                  OBJ_PROP_LINK_STRONG,
694                                  &error_abort);
695 #endif
696     }
697 
698     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
699         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
700                                  &error_abort);
701     }
702 
703     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
704         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
705                                  &error_abort);
706     }
707 
708     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
709         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
710                                  &error_abort);
711         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
712             qdev_property_add_static(DEVICE(obj),
713                                      &arm_cpu_pmsav7_dregion_property,
714                                      &error_abort);
715         }
716     }
717 
718     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
719         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
720                                  qdev_prop_allow_set_link_before_realize,
721                                  OBJ_PROP_LINK_STRONG,
722                                  &error_abort);
723         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
724                                  &error_abort);
725     }
726 
727     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
728                              &error_abort);
729 }
730 
731 static void arm_cpu_finalizefn(Object *obj)
732 {
733     ARMCPU *cpu = ARM_CPU(obj);
734     ARMELChangeHook *hook, *next;
735 
736     g_hash_table_destroy(cpu->cp_regs);
737 
738     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
739         QLIST_REMOVE(hook, node);
740         g_free(hook);
741     }
742     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
743         QLIST_REMOVE(hook, node);
744         g_free(hook);
745     }
746 }
747 
748 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
749 {
750     CPUState *cs = CPU(dev);
751     ARMCPU *cpu = ARM_CPU(dev);
752     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
753     CPUARMState *env = &cpu->env;
754     int pagebits;
755     Error *local_err = NULL;
756 
757     /* If we needed to query the host kernel for the CPU features
758      * then it's possible that might have failed in the initfn, but
759      * this is the first point where we can report it.
760      */
761     if (cpu->host_cpu_probe_failed) {
762         if (!kvm_enabled()) {
763             error_setg(errp, "The 'host' CPU type can only be used with KVM");
764         } else {
765             error_setg(errp, "Failed to retrieve host CPU features");
766         }
767         return;
768     }
769 
770 #ifndef CONFIG_USER_ONLY
771     /* The NVIC and M-profile CPU are two halves of a single piece of
772      * hardware; trying to use one without the other is a command line
773      * error and will result in segfaults if not caught here.
774      */
775     if (arm_feature(env, ARM_FEATURE_M)) {
776         if (!env->nvic) {
777             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
778             return;
779         }
780     } else {
781         if (env->nvic) {
782             error_setg(errp, "This board can only be used with Cortex-M CPUs");
783             return;
784         }
785     }
786 #endif
787 
788     cpu_exec_realizefn(cs, &local_err);
789     if (local_err != NULL) {
790         error_propagate(errp, local_err);
791         return;
792     }
793 
794     /* Some features automatically imply others: */
795     if (arm_feature(env, ARM_FEATURE_V8)) {
796         set_feature(env, ARM_FEATURE_V7);
797         set_feature(env, ARM_FEATURE_ARM_DIV);
798         set_feature(env, ARM_FEATURE_LPAE);
799     }
800     if (arm_feature(env, ARM_FEATURE_V7)) {
801         set_feature(env, ARM_FEATURE_VAPA);
802         set_feature(env, ARM_FEATURE_THUMB2);
803         set_feature(env, ARM_FEATURE_MPIDR);
804         if (!arm_feature(env, ARM_FEATURE_M)) {
805             set_feature(env, ARM_FEATURE_V6K);
806         } else {
807             set_feature(env, ARM_FEATURE_V6);
808         }
809 
810         /* Always define VBAR for V7 CPUs even if it doesn't exist in
811          * non-EL3 configs. This is needed by some legacy boards.
812          */
813         set_feature(env, ARM_FEATURE_VBAR);
814     }
815     if (arm_feature(env, ARM_FEATURE_V6K)) {
816         set_feature(env, ARM_FEATURE_V6);
817         set_feature(env, ARM_FEATURE_MVFR);
818     }
819     if (arm_feature(env, ARM_FEATURE_V6)) {
820         set_feature(env, ARM_FEATURE_V5);
821         set_feature(env, ARM_FEATURE_JAZELLE);
822         if (!arm_feature(env, ARM_FEATURE_M)) {
823             set_feature(env, ARM_FEATURE_AUXCR);
824         }
825     }
826     if (arm_feature(env, ARM_FEATURE_V5)) {
827         set_feature(env, ARM_FEATURE_V4T);
828     }
829     if (arm_feature(env, ARM_FEATURE_M)) {
830         set_feature(env, ARM_FEATURE_THUMB_DIV);
831     }
832     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
833         set_feature(env, ARM_FEATURE_THUMB_DIV);
834     }
835     if (arm_feature(env, ARM_FEATURE_VFP4)) {
836         set_feature(env, ARM_FEATURE_VFP3);
837         set_feature(env, ARM_FEATURE_VFP_FP16);
838     }
839     if (arm_feature(env, ARM_FEATURE_VFP3)) {
840         set_feature(env, ARM_FEATURE_VFP);
841     }
842     if (arm_feature(env, ARM_FEATURE_LPAE)) {
843         set_feature(env, ARM_FEATURE_V7MP);
844         set_feature(env, ARM_FEATURE_PXN);
845     }
846     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
847         set_feature(env, ARM_FEATURE_CBAR);
848     }
849     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
850         !arm_feature(env, ARM_FEATURE_M)) {
851         set_feature(env, ARM_FEATURE_THUMB_DSP);
852     }
853 
854     if (arm_feature(env, ARM_FEATURE_V7) &&
855         !arm_feature(env, ARM_FEATURE_M) &&
856         !arm_feature(env, ARM_FEATURE_PMSA)) {
857         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
858          * can use 4K pages.
859          */
860         pagebits = 12;
861     } else {
862         /* For CPUs which might have tiny 1K pages, or which have an
863          * MPU and might have small region sizes, stick with 1K pages.
864          */
865         pagebits = 10;
866     }
867     if (!set_preferred_target_page_bits(pagebits)) {
868         /* This can only ever happen for hotplugging a CPU, or if
869          * the board code incorrectly creates a CPU which it has
870          * promised via minimum_page_size that it will not.
871          */
872         error_setg(errp, "This CPU requires a smaller page size than the "
873                    "system is using");
874         return;
875     }
876 
877     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
878      * We don't support setting cluster ID ([16..23]) (known as Aff2
879      * in later ARM ARM versions), or any of the higher affinity level fields,
880      * so these bits always RAZ.
881      */
882     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
883         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
884                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
885     }
886 
887     if (cpu->reset_hivecs) {
888             cpu->reset_sctlr |= (1 << 13);
889     }
890 
891     if (cpu->cfgend) {
892         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
893             cpu->reset_sctlr |= SCTLR_EE;
894         } else {
895             cpu->reset_sctlr |= SCTLR_B;
896         }
897     }
898 
899     if (!cpu->has_el3) {
900         /* If the has_el3 CPU property is disabled then we need to disable the
901          * feature.
902          */
903         unset_feature(env, ARM_FEATURE_EL3);
904 
905         /* Disable the security extension feature bits in the processor feature
906          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
907          */
908         cpu->id_pfr1 &= ~0xf0;
909         cpu->id_aa64pfr0 &= ~0xf000;
910     }
911 
912     if (!cpu->has_el2) {
913         unset_feature(env, ARM_FEATURE_EL2);
914     }
915 
916     if (!cpu->has_pmu) {
917         unset_feature(env, ARM_FEATURE_PMU);
918         cpu->id_aa64dfr0 &= ~0xf00;
919     }
920 
921     if (!arm_feature(env, ARM_FEATURE_EL2)) {
922         /* Disable the hypervisor feature bits in the processor feature
923          * registers if we don't have EL2. These are id_pfr1[15:12] and
924          * id_aa64pfr0_el1[11:8].
925          */
926         cpu->id_aa64pfr0 &= ~0xf00;
927         cpu->id_pfr1 &= ~0xf000;
928     }
929 
930     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
931      * to false or by setting pmsav7-dregion to 0.
932      */
933     if (!cpu->has_mpu) {
934         cpu->pmsav7_dregion = 0;
935     }
936     if (cpu->pmsav7_dregion == 0) {
937         cpu->has_mpu = false;
938     }
939 
940     if (arm_feature(env, ARM_FEATURE_PMSA) &&
941         arm_feature(env, ARM_FEATURE_V7)) {
942         uint32_t nr = cpu->pmsav7_dregion;
943 
944         if (nr > 0xff) {
945             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
946             return;
947         }
948 
949         if (nr) {
950             if (arm_feature(env, ARM_FEATURE_V8)) {
951                 /* PMSAv8 */
952                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
953                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
954                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
955                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
956                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
957                 }
958             } else {
959                 env->pmsav7.drbar = g_new0(uint32_t, nr);
960                 env->pmsav7.drsr = g_new0(uint32_t, nr);
961                 env->pmsav7.dracr = g_new0(uint32_t, nr);
962             }
963         }
964     }
965 
966     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
967         uint32_t nr = cpu->sau_sregion;
968 
969         if (nr > 0xff) {
970             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
971             return;
972         }
973 
974         if (nr) {
975             env->sau.rbar = g_new0(uint32_t, nr);
976             env->sau.rlar = g_new0(uint32_t, nr);
977         }
978     }
979 
980     if (arm_feature(env, ARM_FEATURE_EL3)) {
981         set_feature(env, ARM_FEATURE_VBAR);
982     }
983 
984     register_cp_regs_for_features(cpu);
985     arm_cpu_register_gdb_regs_for_features(cpu);
986 
987     init_cpreg_list(cpu);
988 
989 #ifndef CONFIG_USER_ONLY
990     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
991         cs->num_ases = 2;
992 
993         if (!cpu->secure_memory) {
994             cpu->secure_memory = cs->memory;
995         }
996         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
997                                cpu->secure_memory);
998     } else {
999         cs->num_ases = 1;
1000     }
1001     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1002 
1003     /* No core_count specified, default to smp_cpus. */
1004     if (cpu->core_count == -1) {
1005         cpu->core_count = smp_cpus;
1006     }
1007 #endif
1008 
1009     qemu_init_vcpu(cs);
1010     cpu_reset(cs);
1011 
1012     acc->parent_realize(dev, errp);
1013 }
1014 
1015 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1016 {
1017     ObjectClass *oc;
1018     char *typename;
1019     char **cpuname;
1020     const char *cpunamestr;
1021 
1022     cpuname = g_strsplit(cpu_model, ",", 1);
1023     cpunamestr = cpuname[0];
1024 #ifdef CONFIG_USER_ONLY
1025     /* For backwards compatibility usermode emulation allows "-cpu any",
1026      * which has the same semantics as "-cpu max".
1027      */
1028     if (!strcmp(cpunamestr, "any")) {
1029         cpunamestr = "max";
1030     }
1031 #endif
1032     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1033     oc = object_class_by_name(typename);
1034     g_strfreev(cpuname);
1035     g_free(typename);
1036     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1037         object_class_is_abstract(oc)) {
1038         return NULL;
1039     }
1040     return oc;
1041 }
1042 
1043 /* CPU models. These are not needed for the AArch64 linux-user build. */
1044 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1045 
1046 static void arm926_initfn(Object *obj)
1047 {
1048     ARMCPU *cpu = ARM_CPU(obj);
1049 
1050     cpu->dtb_compatible = "arm,arm926";
1051     set_feature(&cpu->env, ARM_FEATURE_V5);
1052     set_feature(&cpu->env, ARM_FEATURE_VFP);
1053     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1054     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1055     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1056     cpu->midr = 0x41069265;
1057     cpu->reset_fpsid = 0x41011090;
1058     cpu->ctr = 0x1dd20d2;
1059     cpu->reset_sctlr = 0x00090078;
1060 }
1061 
1062 static void arm946_initfn(Object *obj)
1063 {
1064     ARMCPU *cpu = ARM_CPU(obj);
1065 
1066     cpu->dtb_compatible = "arm,arm946";
1067     set_feature(&cpu->env, ARM_FEATURE_V5);
1068     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1069     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1070     cpu->midr = 0x41059461;
1071     cpu->ctr = 0x0f004006;
1072     cpu->reset_sctlr = 0x00000078;
1073 }
1074 
1075 static void arm1026_initfn(Object *obj)
1076 {
1077     ARMCPU *cpu = ARM_CPU(obj);
1078 
1079     cpu->dtb_compatible = "arm,arm1026";
1080     set_feature(&cpu->env, ARM_FEATURE_V5);
1081     set_feature(&cpu->env, ARM_FEATURE_VFP);
1082     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1083     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1084     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1085     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1086     cpu->midr = 0x4106a262;
1087     cpu->reset_fpsid = 0x410110a0;
1088     cpu->ctr = 0x1dd20d2;
1089     cpu->reset_sctlr = 0x00090078;
1090     cpu->reset_auxcr = 1;
1091     {
1092         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1093         ARMCPRegInfo ifar = {
1094             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1095             .access = PL1_RW,
1096             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1097             .resetvalue = 0
1098         };
1099         define_one_arm_cp_reg(cpu, &ifar);
1100     }
1101 }
1102 
1103 static void arm1136_r2_initfn(Object *obj)
1104 {
1105     ARMCPU *cpu = ARM_CPU(obj);
1106     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1107      * older core than plain "arm1136". In particular this does not
1108      * have the v6K features.
1109      * These ID register values are correct for 1136 but may be wrong
1110      * for 1136_r2 (in particular r0p2 does not actually implement most
1111      * of the ID registers).
1112      */
1113 
1114     cpu->dtb_compatible = "arm,arm1136";
1115     set_feature(&cpu->env, ARM_FEATURE_V6);
1116     set_feature(&cpu->env, ARM_FEATURE_VFP);
1117     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1118     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1119     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1120     cpu->midr = 0x4107b362;
1121     cpu->reset_fpsid = 0x410120b4;
1122     cpu->mvfr0 = 0x11111111;
1123     cpu->mvfr1 = 0x00000000;
1124     cpu->ctr = 0x1dd20d2;
1125     cpu->reset_sctlr = 0x00050078;
1126     cpu->id_pfr0 = 0x111;
1127     cpu->id_pfr1 = 0x1;
1128     cpu->id_dfr0 = 0x2;
1129     cpu->id_afr0 = 0x3;
1130     cpu->id_mmfr0 = 0x01130003;
1131     cpu->id_mmfr1 = 0x10030302;
1132     cpu->id_mmfr2 = 0x01222110;
1133     cpu->id_isar0 = 0x00140011;
1134     cpu->id_isar1 = 0x12002111;
1135     cpu->id_isar2 = 0x11231111;
1136     cpu->id_isar3 = 0x01102131;
1137     cpu->id_isar4 = 0x141;
1138     cpu->reset_auxcr = 7;
1139 }
1140 
1141 static void arm1136_initfn(Object *obj)
1142 {
1143     ARMCPU *cpu = ARM_CPU(obj);
1144 
1145     cpu->dtb_compatible = "arm,arm1136";
1146     set_feature(&cpu->env, ARM_FEATURE_V6K);
1147     set_feature(&cpu->env, ARM_FEATURE_V6);
1148     set_feature(&cpu->env, ARM_FEATURE_VFP);
1149     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1150     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1151     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1152     cpu->midr = 0x4117b363;
1153     cpu->reset_fpsid = 0x410120b4;
1154     cpu->mvfr0 = 0x11111111;
1155     cpu->mvfr1 = 0x00000000;
1156     cpu->ctr = 0x1dd20d2;
1157     cpu->reset_sctlr = 0x00050078;
1158     cpu->id_pfr0 = 0x111;
1159     cpu->id_pfr1 = 0x1;
1160     cpu->id_dfr0 = 0x2;
1161     cpu->id_afr0 = 0x3;
1162     cpu->id_mmfr0 = 0x01130003;
1163     cpu->id_mmfr1 = 0x10030302;
1164     cpu->id_mmfr2 = 0x01222110;
1165     cpu->id_isar0 = 0x00140011;
1166     cpu->id_isar1 = 0x12002111;
1167     cpu->id_isar2 = 0x11231111;
1168     cpu->id_isar3 = 0x01102131;
1169     cpu->id_isar4 = 0x141;
1170     cpu->reset_auxcr = 7;
1171 }
1172 
1173 static void arm1176_initfn(Object *obj)
1174 {
1175     ARMCPU *cpu = ARM_CPU(obj);
1176 
1177     cpu->dtb_compatible = "arm,arm1176";
1178     set_feature(&cpu->env, ARM_FEATURE_V6K);
1179     set_feature(&cpu->env, ARM_FEATURE_VFP);
1180     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1181     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1182     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1183     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1184     set_feature(&cpu->env, ARM_FEATURE_EL3);
1185     cpu->midr = 0x410fb767;
1186     cpu->reset_fpsid = 0x410120b5;
1187     cpu->mvfr0 = 0x11111111;
1188     cpu->mvfr1 = 0x00000000;
1189     cpu->ctr = 0x1dd20d2;
1190     cpu->reset_sctlr = 0x00050078;
1191     cpu->id_pfr0 = 0x111;
1192     cpu->id_pfr1 = 0x11;
1193     cpu->id_dfr0 = 0x33;
1194     cpu->id_afr0 = 0;
1195     cpu->id_mmfr0 = 0x01130003;
1196     cpu->id_mmfr1 = 0x10030302;
1197     cpu->id_mmfr2 = 0x01222100;
1198     cpu->id_isar0 = 0x0140011;
1199     cpu->id_isar1 = 0x12002111;
1200     cpu->id_isar2 = 0x11231121;
1201     cpu->id_isar3 = 0x01102131;
1202     cpu->id_isar4 = 0x01141;
1203     cpu->reset_auxcr = 7;
1204 }
1205 
1206 static void arm11mpcore_initfn(Object *obj)
1207 {
1208     ARMCPU *cpu = ARM_CPU(obj);
1209 
1210     cpu->dtb_compatible = "arm,arm11mpcore";
1211     set_feature(&cpu->env, ARM_FEATURE_V6K);
1212     set_feature(&cpu->env, ARM_FEATURE_VFP);
1213     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1214     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1215     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1216     cpu->midr = 0x410fb022;
1217     cpu->reset_fpsid = 0x410120b4;
1218     cpu->mvfr0 = 0x11111111;
1219     cpu->mvfr1 = 0x00000000;
1220     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1221     cpu->id_pfr0 = 0x111;
1222     cpu->id_pfr1 = 0x1;
1223     cpu->id_dfr0 = 0;
1224     cpu->id_afr0 = 0x2;
1225     cpu->id_mmfr0 = 0x01100103;
1226     cpu->id_mmfr1 = 0x10020302;
1227     cpu->id_mmfr2 = 0x01222000;
1228     cpu->id_isar0 = 0x00100011;
1229     cpu->id_isar1 = 0x12002111;
1230     cpu->id_isar2 = 0x11221011;
1231     cpu->id_isar3 = 0x01102131;
1232     cpu->id_isar4 = 0x141;
1233     cpu->reset_auxcr = 1;
1234 }
1235 
1236 static void cortex_m3_initfn(Object *obj)
1237 {
1238     ARMCPU *cpu = ARM_CPU(obj);
1239     set_feature(&cpu->env, ARM_FEATURE_V7);
1240     set_feature(&cpu->env, ARM_FEATURE_M);
1241     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1242     cpu->midr = 0x410fc231;
1243     cpu->pmsav7_dregion = 8;
1244     cpu->id_pfr0 = 0x00000030;
1245     cpu->id_pfr1 = 0x00000200;
1246     cpu->id_dfr0 = 0x00100000;
1247     cpu->id_afr0 = 0x00000000;
1248     cpu->id_mmfr0 = 0x00000030;
1249     cpu->id_mmfr1 = 0x00000000;
1250     cpu->id_mmfr2 = 0x00000000;
1251     cpu->id_mmfr3 = 0x00000000;
1252     cpu->id_isar0 = 0x01141110;
1253     cpu->id_isar1 = 0x02111000;
1254     cpu->id_isar2 = 0x21112231;
1255     cpu->id_isar3 = 0x01111110;
1256     cpu->id_isar4 = 0x01310102;
1257     cpu->id_isar5 = 0x00000000;
1258 }
1259 
1260 static void cortex_m4_initfn(Object *obj)
1261 {
1262     ARMCPU *cpu = ARM_CPU(obj);
1263 
1264     set_feature(&cpu->env, ARM_FEATURE_V7);
1265     set_feature(&cpu->env, ARM_FEATURE_M);
1266     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1267     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1268     cpu->midr = 0x410fc240; /* r0p0 */
1269     cpu->pmsav7_dregion = 8;
1270     cpu->id_pfr0 = 0x00000030;
1271     cpu->id_pfr1 = 0x00000200;
1272     cpu->id_dfr0 = 0x00100000;
1273     cpu->id_afr0 = 0x00000000;
1274     cpu->id_mmfr0 = 0x00000030;
1275     cpu->id_mmfr1 = 0x00000000;
1276     cpu->id_mmfr2 = 0x00000000;
1277     cpu->id_mmfr3 = 0x00000000;
1278     cpu->id_isar0 = 0x01141110;
1279     cpu->id_isar1 = 0x02111000;
1280     cpu->id_isar2 = 0x21112231;
1281     cpu->id_isar3 = 0x01111110;
1282     cpu->id_isar4 = 0x01310102;
1283     cpu->id_isar5 = 0x00000000;
1284 }
1285 
1286 static void cortex_m33_initfn(Object *obj)
1287 {
1288     ARMCPU *cpu = ARM_CPU(obj);
1289 
1290     set_feature(&cpu->env, ARM_FEATURE_V8);
1291     set_feature(&cpu->env, ARM_FEATURE_M);
1292     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1293     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1294     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1295     cpu->midr = 0x410fd213; /* r0p3 */
1296     cpu->pmsav7_dregion = 16;
1297     cpu->sau_sregion = 8;
1298     cpu->id_pfr0 = 0x00000030;
1299     cpu->id_pfr1 = 0x00000210;
1300     cpu->id_dfr0 = 0x00200000;
1301     cpu->id_afr0 = 0x00000000;
1302     cpu->id_mmfr0 = 0x00101F40;
1303     cpu->id_mmfr1 = 0x00000000;
1304     cpu->id_mmfr2 = 0x01000000;
1305     cpu->id_mmfr3 = 0x00000000;
1306     cpu->id_isar0 = 0x01101110;
1307     cpu->id_isar1 = 0x02212000;
1308     cpu->id_isar2 = 0x20232232;
1309     cpu->id_isar3 = 0x01111131;
1310     cpu->id_isar4 = 0x01310132;
1311     cpu->id_isar5 = 0x00000000;
1312     cpu->clidr = 0x00000000;
1313     cpu->ctr = 0x8000c000;
1314 }
1315 
1316 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1317 {
1318     CPUClass *cc = CPU_CLASS(oc);
1319 
1320 #ifndef CONFIG_USER_ONLY
1321     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1322 #endif
1323 
1324     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1325 }
1326 
1327 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1328     /* Dummy the TCM region regs for the moment */
1329     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1330       .access = PL1_RW, .type = ARM_CP_CONST },
1331     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1332       .access = PL1_RW, .type = ARM_CP_CONST },
1333     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1334       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1335     REGINFO_SENTINEL
1336 };
1337 
1338 static void cortex_r5_initfn(Object *obj)
1339 {
1340     ARMCPU *cpu = ARM_CPU(obj);
1341 
1342     set_feature(&cpu->env, ARM_FEATURE_V7);
1343     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1344     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1345     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1346     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1347     cpu->midr = 0x411fc153; /* r1p3 */
1348     cpu->id_pfr0 = 0x0131;
1349     cpu->id_pfr1 = 0x001;
1350     cpu->id_dfr0 = 0x010400;
1351     cpu->id_afr0 = 0x0;
1352     cpu->id_mmfr0 = 0x0210030;
1353     cpu->id_mmfr1 = 0x00000000;
1354     cpu->id_mmfr2 = 0x01200000;
1355     cpu->id_mmfr3 = 0x0211;
1356     cpu->id_isar0 = 0x2101111;
1357     cpu->id_isar1 = 0x13112111;
1358     cpu->id_isar2 = 0x21232141;
1359     cpu->id_isar3 = 0x01112131;
1360     cpu->id_isar4 = 0x0010142;
1361     cpu->id_isar5 = 0x0;
1362     cpu->mp_is_up = true;
1363     cpu->pmsav7_dregion = 16;
1364     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1365 }
1366 
1367 static void cortex_r5f_initfn(Object *obj)
1368 {
1369     ARMCPU *cpu = ARM_CPU(obj);
1370 
1371     cortex_r5_initfn(obj);
1372     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1373 }
1374 
1375 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1376     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1377       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1378     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1379       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1380     REGINFO_SENTINEL
1381 };
1382 
1383 static void cortex_a8_initfn(Object *obj)
1384 {
1385     ARMCPU *cpu = ARM_CPU(obj);
1386 
1387     cpu->dtb_compatible = "arm,cortex-a8";
1388     set_feature(&cpu->env, ARM_FEATURE_V7);
1389     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1390     set_feature(&cpu->env, ARM_FEATURE_NEON);
1391     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1392     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1393     set_feature(&cpu->env, ARM_FEATURE_EL3);
1394     cpu->midr = 0x410fc080;
1395     cpu->reset_fpsid = 0x410330c0;
1396     cpu->mvfr0 = 0x11110222;
1397     cpu->mvfr1 = 0x00011111;
1398     cpu->ctr = 0x82048004;
1399     cpu->reset_sctlr = 0x00c50078;
1400     cpu->id_pfr0 = 0x1031;
1401     cpu->id_pfr1 = 0x11;
1402     cpu->id_dfr0 = 0x400;
1403     cpu->id_afr0 = 0;
1404     cpu->id_mmfr0 = 0x31100003;
1405     cpu->id_mmfr1 = 0x20000000;
1406     cpu->id_mmfr2 = 0x01202000;
1407     cpu->id_mmfr3 = 0x11;
1408     cpu->id_isar0 = 0x00101111;
1409     cpu->id_isar1 = 0x12112111;
1410     cpu->id_isar2 = 0x21232031;
1411     cpu->id_isar3 = 0x11112131;
1412     cpu->id_isar4 = 0x00111142;
1413     cpu->dbgdidr = 0x15141000;
1414     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1415     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1416     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1417     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1418     cpu->reset_auxcr = 2;
1419     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1420 }
1421 
1422 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1423     /* power_control should be set to maximum latency. Again,
1424      * default to 0 and set by private hook
1425      */
1426     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1427       .access = PL1_RW, .resetvalue = 0,
1428       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1429     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1430       .access = PL1_RW, .resetvalue = 0,
1431       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1432     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1433       .access = PL1_RW, .resetvalue = 0,
1434       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1435     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1436       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1437     /* TLB lockdown control */
1438     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1439       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1440     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1441       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1442     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1443       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1444     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1445       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1446     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1447       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1448     REGINFO_SENTINEL
1449 };
1450 
1451 static void cortex_a9_initfn(Object *obj)
1452 {
1453     ARMCPU *cpu = ARM_CPU(obj);
1454 
1455     cpu->dtb_compatible = "arm,cortex-a9";
1456     set_feature(&cpu->env, ARM_FEATURE_V7);
1457     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1458     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1459     set_feature(&cpu->env, ARM_FEATURE_NEON);
1460     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1461     set_feature(&cpu->env, ARM_FEATURE_EL3);
1462     /* Note that A9 supports the MP extensions even for
1463      * A9UP and single-core A9MP (which are both different
1464      * and valid configurations; we don't model A9UP).
1465      */
1466     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1467     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1468     cpu->midr = 0x410fc090;
1469     cpu->reset_fpsid = 0x41033090;
1470     cpu->mvfr0 = 0x11110222;
1471     cpu->mvfr1 = 0x01111111;
1472     cpu->ctr = 0x80038003;
1473     cpu->reset_sctlr = 0x00c50078;
1474     cpu->id_pfr0 = 0x1031;
1475     cpu->id_pfr1 = 0x11;
1476     cpu->id_dfr0 = 0x000;
1477     cpu->id_afr0 = 0;
1478     cpu->id_mmfr0 = 0x00100103;
1479     cpu->id_mmfr1 = 0x20000000;
1480     cpu->id_mmfr2 = 0x01230000;
1481     cpu->id_mmfr3 = 0x00002111;
1482     cpu->id_isar0 = 0x00101111;
1483     cpu->id_isar1 = 0x13112111;
1484     cpu->id_isar2 = 0x21232041;
1485     cpu->id_isar3 = 0x11112131;
1486     cpu->id_isar4 = 0x00111142;
1487     cpu->dbgdidr = 0x35141000;
1488     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1489     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1490     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1491     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1492 }
1493 
1494 #ifndef CONFIG_USER_ONLY
1495 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1496 {
1497     /* Linux wants the number of processors from here.
1498      * Might as well set the interrupt-controller bit too.
1499      */
1500     return ((smp_cpus - 1) << 24) | (1 << 23);
1501 }
1502 #endif
1503 
1504 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1505 #ifndef CONFIG_USER_ONLY
1506     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1507       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1508       .writefn = arm_cp_write_ignore, },
1509 #endif
1510     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1511       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1512     REGINFO_SENTINEL
1513 };
1514 
1515 static void cortex_a7_initfn(Object *obj)
1516 {
1517     ARMCPU *cpu = ARM_CPU(obj);
1518 
1519     cpu->dtb_compatible = "arm,cortex-a7";
1520     set_feature(&cpu->env, ARM_FEATURE_V7);
1521     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1522     set_feature(&cpu->env, ARM_FEATURE_NEON);
1523     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1524     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1525     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1526     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1527     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1528     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1529     set_feature(&cpu->env, ARM_FEATURE_EL3);
1530     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1531     cpu->midr = 0x410fc075;
1532     cpu->reset_fpsid = 0x41023075;
1533     cpu->mvfr0 = 0x10110222;
1534     cpu->mvfr1 = 0x11111111;
1535     cpu->ctr = 0x84448003;
1536     cpu->reset_sctlr = 0x00c50078;
1537     cpu->id_pfr0 = 0x00001131;
1538     cpu->id_pfr1 = 0x00011011;
1539     cpu->id_dfr0 = 0x02010555;
1540     cpu->pmceid0 = 0x00000000;
1541     cpu->pmceid1 = 0x00000000;
1542     cpu->id_afr0 = 0x00000000;
1543     cpu->id_mmfr0 = 0x10101105;
1544     cpu->id_mmfr1 = 0x40000000;
1545     cpu->id_mmfr2 = 0x01240000;
1546     cpu->id_mmfr3 = 0x02102211;
1547     cpu->id_isar0 = 0x01101110;
1548     cpu->id_isar1 = 0x13112111;
1549     cpu->id_isar2 = 0x21232041;
1550     cpu->id_isar3 = 0x11112131;
1551     cpu->id_isar4 = 0x10011142;
1552     cpu->dbgdidr = 0x3515f005;
1553     cpu->clidr = 0x0a200023;
1554     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1555     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1556     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1557     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1558 }
1559 
1560 static void cortex_a15_initfn(Object *obj)
1561 {
1562     ARMCPU *cpu = ARM_CPU(obj);
1563 
1564     cpu->dtb_compatible = "arm,cortex-a15";
1565     set_feature(&cpu->env, ARM_FEATURE_V7);
1566     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1567     set_feature(&cpu->env, ARM_FEATURE_NEON);
1568     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1569     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1570     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1571     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1572     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1573     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1574     set_feature(&cpu->env, ARM_FEATURE_EL3);
1575     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1576     cpu->midr = 0x412fc0f1;
1577     cpu->reset_fpsid = 0x410430f0;
1578     cpu->mvfr0 = 0x10110222;
1579     cpu->mvfr1 = 0x11111111;
1580     cpu->ctr = 0x8444c004;
1581     cpu->reset_sctlr = 0x00c50078;
1582     cpu->id_pfr0 = 0x00001131;
1583     cpu->id_pfr1 = 0x00011011;
1584     cpu->id_dfr0 = 0x02010555;
1585     cpu->pmceid0 = 0x0000000;
1586     cpu->pmceid1 = 0x00000000;
1587     cpu->id_afr0 = 0x00000000;
1588     cpu->id_mmfr0 = 0x10201105;
1589     cpu->id_mmfr1 = 0x20000000;
1590     cpu->id_mmfr2 = 0x01240000;
1591     cpu->id_mmfr3 = 0x02102211;
1592     cpu->id_isar0 = 0x02101110;
1593     cpu->id_isar1 = 0x13112111;
1594     cpu->id_isar2 = 0x21232041;
1595     cpu->id_isar3 = 0x11112131;
1596     cpu->id_isar4 = 0x10011142;
1597     cpu->dbgdidr = 0x3515f021;
1598     cpu->clidr = 0x0a200023;
1599     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1600     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1601     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1602     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1603 }
1604 
1605 static void ti925t_initfn(Object *obj)
1606 {
1607     ARMCPU *cpu = ARM_CPU(obj);
1608     set_feature(&cpu->env, ARM_FEATURE_V4T);
1609     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1610     cpu->midr = ARM_CPUID_TI925T;
1611     cpu->ctr = 0x5109149;
1612     cpu->reset_sctlr = 0x00000070;
1613 }
1614 
1615 static void sa1100_initfn(Object *obj)
1616 {
1617     ARMCPU *cpu = ARM_CPU(obj);
1618 
1619     cpu->dtb_compatible = "intel,sa1100";
1620     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1621     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1622     cpu->midr = 0x4401A11B;
1623     cpu->reset_sctlr = 0x00000070;
1624 }
1625 
1626 static void sa1110_initfn(Object *obj)
1627 {
1628     ARMCPU *cpu = ARM_CPU(obj);
1629     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1630     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1631     cpu->midr = 0x6901B119;
1632     cpu->reset_sctlr = 0x00000070;
1633 }
1634 
1635 static void pxa250_initfn(Object *obj)
1636 {
1637     ARMCPU *cpu = ARM_CPU(obj);
1638 
1639     cpu->dtb_compatible = "marvell,xscale";
1640     set_feature(&cpu->env, ARM_FEATURE_V5);
1641     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1642     cpu->midr = 0x69052100;
1643     cpu->ctr = 0xd172172;
1644     cpu->reset_sctlr = 0x00000078;
1645 }
1646 
1647 static void pxa255_initfn(Object *obj)
1648 {
1649     ARMCPU *cpu = ARM_CPU(obj);
1650 
1651     cpu->dtb_compatible = "marvell,xscale";
1652     set_feature(&cpu->env, ARM_FEATURE_V5);
1653     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1654     cpu->midr = 0x69052d00;
1655     cpu->ctr = 0xd172172;
1656     cpu->reset_sctlr = 0x00000078;
1657 }
1658 
1659 static void pxa260_initfn(Object *obj)
1660 {
1661     ARMCPU *cpu = ARM_CPU(obj);
1662 
1663     cpu->dtb_compatible = "marvell,xscale";
1664     set_feature(&cpu->env, ARM_FEATURE_V5);
1665     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1666     cpu->midr = 0x69052903;
1667     cpu->ctr = 0xd172172;
1668     cpu->reset_sctlr = 0x00000078;
1669 }
1670 
1671 static void pxa261_initfn(Object *obj)
1672 {
1673     ARMCPU *cpu = ARM_CPU(obj);
1674 
1675     cpu->dtb_compatible = "marvell,xscale";
1676     set_feature(&cpu->env, ARM_FEATURE_V5);
1677     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1678     cpu->midr = 0x69052d05;
1679     cpu->ctr = 0xd172172;
1680     cpu->reset_sctlr = 0x00000078;
1681 }
1682 
1683 static void pxa262_initfn(Object *obj)
1684 {
1685     ARMCPU *cpu = ARM_CPU(obj);
1686 
1687     cpu->dtb_compatible = "marvell,xscale";
1688     set_feature(&cpu->env, ARM_FEATURE_V5);
1689     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1690     cpu->midr = 0x69052d06;
1691     cpu->ctr = 0xd172172;
1692     cpu->reset_sctlr = 0x00000078;
1693 }
1694 
1695 static void pxa270a0_initfn(Object *obj)
1696 {
1697     ARMCPU *cpu = ARM_CPU(obj);
1698 
1699     cpu->dtb_compatible = "marvell,xscale";
1700     set_feature(&cpu->env, ARM_FEATURE_V5);
1701     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1702     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1703     cpu->midr = 0x69054110;
1704     cpu->ctr = 0xd172172;
1705     cpu->reset_sctlr = 0x00000078;
1706 }
1707 
1708 static void pxa270a1_initfn(Object *obj)
1709 {
1710     ARMCPU *cpu = ARM_CPU(obj);
1711 
1712     cpu->dtb_compatible = "marvell,xscale";
1713     set_feature(&cpu->env, ARM_FEATURE_V5);
1714     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1715     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1716     cpu->midr = 0x69054111;
1717     cpu->ctr = 0xd172172;
1718     cpu->reset_sctlr = 0x00000078;
1719 }
1720 
1721 static void pxa270b0_initfn(Object *obj)
1722 {
1723     ARMCPU *cpu = ARM_CPU(obj);
1724 
1725     cpu->dtb_compatible = "marvell,xscale";
1726     set_feature(&cpu->env, ARM_FEATURE_V5);
1727     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1728     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1729     cpu->midr = 0x69054112;
1730     cpu->ctr = 0xd172172;
1731     cpu->reset_sctlr = 0x00000078;
1732 }
1733 
1734 static void pxa270b1_initfn(Object *obj)
1735 {
1736     ARMCPU *cpu = ARM_CPU(obj);
1737 
1738     cpu->dtb_compatible = "marvell,xscale";
1739     set_feature(&cpu->env, ARM_FEATURE_V5);
1740     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1741     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1742     cpu->midr = 0x69054113;
1743     cpu->ctr = 0xd172172;
1744     cpu->reset_sctlr = 0x00000078;
1745 }
1746 
1747 static void pxa270c0_initfn(Object *obj)
1748 {
1749     ARMCPU *cpu = ARM_CPU(obj);
1750 
1751     cpu->dtb_compatible = "marvell,xscale";
1752     set_feature(&cpu->env, ARM_FEATURE_V5);
1753     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1754     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1755     cpu->midr = 0x69054114;
1756     cpu->ctr = 0xd172172;
1757     cpu->reset_sctlr = 0x00000078;
1758 }
1759 
1760 static void pxa270c5_initfn(Object *obj)
1761 {
1762     ARMCPU *cpu = ARM_CPU(obj);
1763 
1764     cpu->dtb_compatible = "marvell,xscale";
1765     set_feature(&cpu->env, ARM_FEATURE_V5);
1766     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1767     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1768     cpu->midr = 0x69054117;
1769     cpu->ctr = 0xd172172;
1770     cpu->reset_sctlr = 0x00000078;
1771 }
1772 
1773 #ifndef TARGET_AARCH64
1774 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1775  * otherwise, a CPU with as many features enabled as our emulation supports.
1776  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1777  * this only needs to handle 32 bits.
1778  */
1779 static void arm_max_initfn(Object *obj)
1780 {
1781     ARMCPU *cpu = ARM_CPU(obj);
1782 
1783     if (kvm_enabled()) {
1784         kvm_arm_set_cpu_features_from_host(cpu);
1785     } else {
1786         cortex_a15_initfn(obj);
1787 #ifdef CONFIG_USER_ONLY
1788         /* We don't set these in system emulation mode for the moment,
1789          * since we don't correctly set the ID registers to advertise them,
1790          */
1791         set_feature(&cpu->env, ARM_FEATURE_V8);
1792         set_feature(&cpu->env, ARM_FEATURE_VFP4);
1793         set_feature(&cpu->env, ARM_FEATURE_NEON);
1794         set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1795         set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1796         set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1797         set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1798         set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1799         set_feature(&cpu->env, ARM_FEATURE_CRC);
1800         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1801         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1802 #endif
1803     }
1804 }
1805 #endif
1806 
1807 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1808 
1809 typedef struct ARMCPUInfo {
1810     const char *name;
1811     void (*initfn)(Object *obj);
1812     void (*class_init)(ObjectClass *oc, void *data);
1813 } ARMCPUInfo;
1814 
1815 static const ARMCPUInfo arm_cpus[] = {
1816 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1817     { .name = "arm926",      .initfn = arm926_initfn },
1818     { .name = "arm946",      .initfn = arm946_initfn },
1819     { .name = "arm1026",     .initfn = arm1026_initfn },
1820     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1821      * older core than plain "arm1136". In particular this does not
1822      * have the v6K features.
1823      */
1824     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1825     { .name = "arm1136",     .initfn = arm1136_initfn },
1826     { .name = "arm1176",     .initfn = arm1176_initfn },
1827     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1828     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1829                              .class_init = arm_v7m_class_init },
1830     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1831                              .class_init = arm_v7m_class_init },
1832     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1833                              .class_init = arm_v7m_class_init },
1834     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1835     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1836     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1837     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1838     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1839     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1840     { .name = "ti925t",      .initfn = ti925t_initfn },
1841     { .name = "sa1100",      .initfn = sa1100_initfn },
1842     { .name = "sa1110",      .initfn = sa1110_initfn },
1843     { .name = "pxa250",      .initfn = pxa250_initfn },
1844     { .name = "pxa255",      .initfn = pxa255_initfn },
1845     { .name = "pxa260",      .initfn = pxa260_initfn },
1846     { .name = "pxa261",      .initfn = pxa261_initfn },
1847     { .name = "pxa262",      .initfn = pxa262_initfn },
1848     /* "pxa270" is an alias for "pxa270-a0" */
1849     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1850     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1851     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1852     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1853     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1854     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1855     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1856 #ifndef TARGET_AARCH64
1857     { .name = "max",         .initfn = arm_max_initfn },
1858 #endif
1859 #ifdef CONFIG_USER_ONLY
1860     { .name = "any",         .initfn = arm_max_initfn },
1861 #endif
1862 #endif
1863     { .name = NULL }
1864 };
1865 
1866 static Property arm_cpu_properties[] = {
1867     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1868     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1869     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1870     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1871                         mp_affinity, ARM64_AFFINITY_INVALID),
1872     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1873     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1874     DEFINE_PROP_END_OF_LIST()
1875 };
1876 
1877 #ifdef CONFIG_USER_ONLY
1878 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1879                                     int rw, int mmu_idx)
1880 {
1881     ARMCPU *cpu = ARM_CPU(cs);
1882     CPUARMState *env = &cpu->env;
1883 
1884     env->exception.vaddress = address;
1885     if (rw == 2) {
1886         cs->exception_index = EXCP_PREFETCH_ABORT;
1887     } else {
1888         cs->exception_index = EXCP_DATA_ABORT;
1889     }
1890     return 1;
1891 }
1892 #endif
1893 
1894 static gchar *arm_gdb_arch_name(CPUState *cs)
1895 {
1896     ARMCPU *cpu = ARM_CPU(cs);
1897     CPUARMState *env = &cpu->env;
1898 
1899     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1900         return g_strdup("iwmmxt");
1901     }
1902     return g_strdup("arm");
1903 }
1904 
1905 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1906 {
1907     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1908     CPUClass *cc = CPU_CLASS(acc);
1909     DeviceClass *dc = DEVICE_CLASS(oc);
1910 
1911     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1912                                     &acc->parent_realize);
1913     dc->props = arm_cpu_properties;
1914 
1915     acc->parent_reset = cc->reset;
1916     cc->reset = arm_cpu_reset;
1917 
1918     cc->class_by_name = arm_cpu_class_by_name;
1919     cc->has_work = arm_cpu_has_work;
1920     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1921     cc->dump_state = arm_cpu_dump_state;
1922     cc->set_pc = arm_cpu_set_pc;
1923     cc->gdb_read_register = arm_cpu_gdb_read_register;
1924     cc->gdb_write_register = arm_cpu_gdb_write_register;
1925 #ifdef CONFIG_USER_ONLY
1926     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1927 #else
1928     cc->do_interrupt = arm_cpu_do_interrupt;
1929     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1930     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1931     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1932     cc->asidx_from_attrs = arm_asidx_from_attrs;
1933     cc->vmsd = &vmstate_arm_cpu;
1934     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1935     cc->write_elf64_note = arm_cpu_write_elf64_note;
1936     cc->write_elf32_note = arm_cpu_write_elf32_note;
1937 #endif
1938     cc->gdb_num_core_regs = 26;
1939     cc->gdb_core_xml_file = "arm-core.xml";
1940     cc->gdb_arch_name = arm_gdb_arch_name;
1941     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1942     cc->gdb_stop_before_watchpoint = true;
1943     cc->debug_excp_handler = arm_debug_excp_handler;
1944     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1945 #if !defined(CONFIG_USER_ONLY)
1946     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1947 #endif
1948 
1949     cc->disas_set_info = arm_disas_set_info;
1950 #ifdef CONFIG_TCG
1951     cc->tcg_initialize = arm_translate_init;
1952 #endif
1953 }
1954 
1955 #ifdef CONFIG_KVM
1956 static void arm_host_initfn(Object *obj)
1957 {
1958     ARMCPU *cpu = ARM_CPU(obj);
1959 
1960     kvm_arm_set_cpu_features_from_host(cpu);
1961 }
1962 
1963 static const TypeInfo host_arm_cpu_type_info = {
1964     .name = TYPE_ARM_HOST_CPU,
1965 #ifdef TARGET_AARCH64
1966     .parent = TYPE_AARCH64_CPU,
1967 #else
1968     .parent = TYPE_ARM_CPU,
1969 #endif
1970     .instance_init = arm_host_initfn,
1971 };
1972 
1973 #endif
1974 
1975 static void cpu_register(const ARMCPUInfo *info)
1976 {
1977     TypeInfo type_info = {
1978         .parent = TYPE_ARM_CPU,
1979         .instance_size = sizeof(ARMCPU),
1980         .instance_init = info->initfn,
1981         .class_size = sizeof(ARMCPUClass),
1982         .class_init = info->class_init,
1983     };
1984 
1985     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1986     type_register(&type_info);
1987     g_free((void *)type_info.name);
1988 }
1989 
1990 static const TypeInfo arm_cpu_type_info = {
1991     .name = TYPE_ARM_CPU,
1992     .parent = TYPE_CPU,
1993     .instance_size = sizeof(ARMCPU),
1994     .instance_init = arm_cpu_initfn,
1995     .instance_post_init = arm_cpu_post_init,
1996     .instance_finalize = arm_cpu_finalizefn,
1997     .abstract = true,
1998     .class_size = sizeof(ARMCPUClass),
1999     .class_init = arm_cpu_class_init,
2000 };
2001 
2002 static const TypeInfo idau_interface_type_info = {
2003     .name = TYPE_IDAU_INTERFACE,
2004     .parent = TYPE_INTERFACE,
2005     .class_size = sizeof(IDAUInterfaceClass),
2006 };
2007 
2008 static void arm_cpu_register_types(void)
2009 {
2010     const ARMCPUInfo *info = arm_cpus;
2011 
2012     type_register_static(&arm_cpu_type_info);
2013     type_register_static(&idau_interface_type_info);
2014 
2015     while (info->name) {
2016         cpu_register(info);
2017         info++;
2018     }
2019 
2020 #ifdef CONFIG_KVM
2021     type_register_static(&host_arm_cpu_type_info);
2022 #endif
2023 }
2024 
2025 type_init(arm_cpu_register_types)
2026