xref: /openbmc/qemu/target/arm/cpu.c (revision ef932e21)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
53 
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55 {
56     ARMCPU *cpu = ARM_CPU(cs);
57     CPUARMState *env = &cpu->env;
58 
59     if (is_a64(env)) {
60         env->pc = value;
61         env->thumb = false;
62     } else {
63         env->regs[15] = value & ~1;
64         env->thumb = value & 1;
65     }
66 }
67 
68 static vaddr arm_cpu_get_pc(CPUState *cs)
69 {
70     ARMCPU *cpu = ARM_CPU(cs);
71     CPUARMState *env = &cpu->env;
72 
73     if (is_a64(env)) {
74         return env->pc;
75     } else {
76         return env->regs[15];
77     }
78 }
79 
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                  const TranslationBlock *tb)
83 {
84     /* The program counter is always up to date with CF_PCREL. */
85     if (!(tb_cflags(tb) & CF_PCREL)) {
86         CPUARMState *env = cpu_env(cs);
87         /*
88          * It's OK to look at env for the current mode here, because it's
89          * never possible for an AArch64 TB to chain to an AArch32 TB.
90          */
91         if (is_a64(env)) {
92             env->pc = tb->pc;
93         } else {
94             env->regs[15] = tb->pc;
95         }
96     }
97 }
98 
99 void arm_restore_state_to_opc(CPUState *cs,
100                               const TranslationBlock *tb,
101                               const uint64_t *data)
102 {
103     CPUARMState *env = cpu_env(cs);
104 
105     if (is_a64(env)) {
106         if (tb_cflags(tb) & CF_PCREL) {
107             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108         } else {
109             env->pc = data[0];
110         }
111         env->condexec_bits = 0;
112         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113     } else {
114         if (tb_cflags(tb) & CF_PCREL) {
115             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116         } else {
117             env->regs[15] = data[0];
118         }
119         env->condexec_bits = data[1];
120         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121     }
122 }
123 #endif /* CONFIG_TCG */
124 
125 /*
126  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
127  * IRQ without Superpriority. Moreover, if the GIC is configured so that
128  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
129  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
130  * unconditionally.
131  */
132 static bool arm_cpu_has_work(CPUState *cs)
133 {
134     ARMCPU *cpu = ARM_CPU(cs);
135 
136     return (cpu->power_state != PSCI_OFF)
137         && cs->interrupt_request &
138         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
139          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
140          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
141          | CPU_INTERRUPT_EXITTB);
142 }
143 
144 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
145 {
146     return arm_env_mmu_index(cpu_env(cs));
147 }
148 
149 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
150                                  void *opaque)
151 {
152     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
153 
154     entry->hook = hook;
155     entry->opaque = opaque;
156 
157     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
158 }
159 
160 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
161                                  void *opaque)
162 {
163     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
164 
165     entry->hook = hook;
166     entry->opaque = opaque;
167 
168     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
169 }
170 
171 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
172 {
173     /* Reset a single ARMCPRegInfo register */
174     ARMCPRegInfo *ri = value;
175     ARMCPU *cpu = opaque;
176 
177     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
178         return;
179     }
180 
181     if (ri->resetfn) {
182         ri->resetfn(&cpu->env, ri);
183         return;
184     }
185 
186     /* A zero offset is never possible as it would be regs[0]
187      * so we use it to indicate that reset is being handled elsewhere.
188      * This is basically only used for fields in non-core coprocessors
189      * (like the pxa2xx ones).
190      */
191     if (!ri->fieldoffset) {
192         return;
193     }
194 
195     if (cpreg_field_is_64bit(ri)) {
196         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
197     } else {
198         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
199     }
200 }
201 
202 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
203 {
204     /* Purely an assertion check: we've already done reset once,
205      * so now check that running the reset for the cpreg doesn't
206      * change its value. This traps bugs where two different cpregs
207      * both try to reset the same state field but to different values.
208      */
209     ARMCPRegInfo *ri = value;
210     ARMCPU *cpu = opaque;
211     uint64_t oldvalue, newvalue;
212 
213     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
214         return;
215     }
216 
217     oldvalue = read_raw_cp_reg(&cpu->env, ri);
218     cp_reg_reset(key, value, opaque);
219     newvalue = read_raw_cp_reg(&cpu->env, ri);
220     assert(oldvalue == newvalue);
221 }
222 
223 static void arm_cpu_reset_hold(Object *obj, ResetType type)
224 {
225     CPUState *cs = CPU(obj);
226     ARMCPU *cpu = ARM_CPU(cs);
227     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
228     CPUARMState *env = &cpu->env;
229 
230     if (acc->parent_phases.hold) {
231         acc->parent_phases.hold(obj, type);
232     }
233 
234     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
235 
236     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
237     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
238 
239     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
240     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
241     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
242     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
243 
244     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
245 
246     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
247         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
248     }
249 
250     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
251         /* 64 bit CPUs always start in 64 bit mode */
252         env->aarch64 = true;
253 #if defined(CONFIG_USER_ONLY)
254         env->pstate = PSTATE_MODE_EL0t;
255         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
256         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
257         /* Enable all PAC keys.  */
258         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
259                                   SCTLR_EnDA | SCTLR_EnDB);
260         /* Trap on btype=3 for PACIxSP. */
261         env->cp15.sctlr_el[1] |= SCTLR_BT0;
262         /* Trap on implementation defined registers. */
263         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
264             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
265         }
266         /* and to the FP/Neon instructions */
267         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
268                                          CPACR_EL1, FPEN, 3);
269         /* and to the SVE instructions, with default vector length */
270         if (cpu_isar_feature(aa64_sve, cpu)) {
271             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
272                                              CPACR_EL1, ZEN, 3);
273             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
274         }
275         /* and for SME instructions, with default vector length, and TPIDR2 */
276         if (cpu_isar_feature(aa64_sme, cpu)) {
277             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
278             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
279                                              CPACR_EL1, SMEN, 3);
280             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
281             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
282                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
283                                                  SMCR, FA64, 1);
284             }
285         }
286         /*
287          * Enable 48-bit address space (TODO: take reserved_va into account).
288          * Enable TBI0 but not TBI1.
289          * Note that this must match useronly_clean_ptr.
290          */
291         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
292 
293         /* Enable MTE */
294         if (cpu_isar_feature(aa64_mte, cpu)) {
295             /* Enable tag access, but leave TCF0 as No Effect (0). */
296             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
297             /*
298              * Exclude all tags, so that tag 0 is always used.
299              * This corresponds to Linux current->thread.gcr_incl = 0.
300              *
301              * Set RRND, so that helper_irg() will generate a seed later.
302              * Here in cpu_reset(), the crypto subsystem has not yet been
303              * initialized.
304              */
305             env->cp15.gcr_el1 = 0x1ffff;
306         }
307         /*
308          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
309          * This is not yet exposed from the Linux kernel in any way.
310          */
311         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
312         /* Disable access to Debug Communication Channel (DCC). */
313         env->cp15.mdscr_el1 |= 1 << 12;
314         /* Enable FEAT_MOPS */
315         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
316 #else
317         /* Reset into the highest available EL */
318         if (arm_feature(env, ARM_FEATURE_EL3)) {
319             env->pstate = PSTATE_MODE_EL3h;
320         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
321             env->pstate = PSTATE_MODE_EL2h;
322         } else {
323             env->pstate = PSTATE_MODE_EL1h;
324         }
325 
326         /* Sample rvbar at reset.  */
327         env->cp15.rvbar = cpu->rvbar_prop;
328         env->pc = env->cp15.rvbar;
329 #endif
330     } else {
331 #if defined(CONFIG_USER_ONLY)
332         /* Userspace expects access to cp10 and cp11 for FP/Neon */
333         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
334                                          CPACR, CP10, 3);
335         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
336                                          CPACR, CP11, 3);
337 #endif
338         if (arm_feature(env, ARM_FEATURE_V8)) {
339             env->cp15.rvbar = cpu->rvbar_prop;
340             env->regs[15] = cpu->rvbar_prop;
341         }
342     }
343 
344 #if defined(CONFIG_USER_ONLY)
345     env->uncached_cpsr = ARM_CPU_MODE_USR;
346     /* For user mode we must enable access to coprocessors */
347     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
348     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
349         env->cp15.c15_cpar = 3;
350     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
351         env->cp15.c15_cpar = 1;
352     }
353 #else
354 
355     /*
356      * If the highest available EL is EL2, AArch32 will start in Hyp
357      * mode; otherwise it starts in SVC. Note that if we start in
358      * AArch64 then these values in the uncached_cpsr will be ignored.
359      */
360     if (arm_feature(env, ARM_FEATURE_EL2) &&
361         !arm_feature(env, ARM_FEATURE_EL3)) {
362         env->uncached_cpsr = ARM_CPU_MODE_HYP;
363     } else {
364         env->uncached_cpsr = ARM_CPU_MODE_SVC;
365     }
366     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
367 
368     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
369      * executing as AArch32 then check if highvecs are enabled and
370      * adjust the PC accordingly.
371      */
372     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
373         env->regs[15] = 0xFFFF0000;
374     }
375 
376     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
377 #endif
378 
379     if (arm_feature(env, ARM_FEATURE_M)) {
380 #ifndef CONFIG_USER_ONLY
381         uint32_t initial_msp; /* Loaded from 0x0 */
382         uint32_t initial_pc; /* Loaded from 0x4 */
383         uint8_t *rom;
384         uint32_t vecbase;
385 #endif
386 
387         if (cpu_isar_feature(aa32_lob, cpu)) {
388             /*
389              * LTPSIZE is constant 4 if MVE not implemented, and resets
390              * to an UNKNOWN value if MVE is implemented. We choose to
391              * always reset to 4.
392              */
393             env->v7m.ltpsize = 4;
394             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
395             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
396             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
397         }
398 
399         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
400             env->v7m.secure = true;
401         } else {
402             /* This bit resets to 0 if security is supported, but 1 if
403              * it is not. The bit is not present in v7M, but we set it
404              * here so we can avoid having to make checks on it conditional
405              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
406              */
407             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
408             /*
409              * Set NSACR to indicate "NS access permitted to everything";
410              * this avoids having to have all the tests of it being
411              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
412              * v8.1M the guest-visible value of NSACR in a CPU without the
413              * Security Extension is 0xcff.
414              */
415             env->v7m.nsacr = 0xcff;
416         }
417 
418         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
419          * that it resets to 1, so QEMU always does that rather than making
420          * it dependent on CPU model. In v8M it is RES1.
421          */
422         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
423         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
424         if (arm_feature(env, ARM_FEATURE_V8)) {
425             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
426             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
427             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
428         }
429         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
430             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
431             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
432         }
433 
434         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
435             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
436             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
437                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
438         }
439 
440 #ifndef CONFIG_USER_ONLY
441         /* Unlike A/R profile, M profile defines the reset LR value */
442         env->regs[14] = 0xffffffff;
443 
444         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
445         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
446 
447         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
448         vecbase = env->v7m.vecbase[env->v7m.secure];
449         rom = rom_ptr_for_as(cs->as, vecbase, 8);
450         if (rom) {
451             /* Address zero is covered by ROM which hasn't yet been
452              * copied into physical memory.
453              */
454             initial_msp = ldl_p(rom);
455             initial_pc = ldl_p(rom + 4);
456         } else {
457             /* Address zero not covered by a ROM blob, or the ROM blob
458              * is in non-modifiable memory and this is a second reset after
459              * it got copied into memory. In the latter case, rom_ptr
460              * will return a NULL pointer and we should use ldl_phys instead.
461              */
462             initial_msp = ldl_phys(cs->as, vecbase);
463             initial_pc = ldl_phys(cs->as, vecbase + 4);
464         }
465 
466         qemu_log_mask(CPU_LOG_INT,
467                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
468                       initial_msp, initial_pc);
469 
470         env->regs[13] = initial_msp & 0xFFFFFFFC;
471         env->regs[15] = initial_pc & ~1;
472         env->thumb = initial_pc & 1;
473 #else
474         /*
475          * For user mode we run non-secure and with access to the FPU.
476          * The FPU context is active (ie does not need further setup)
477          * and is owned by non-secure.
478          */
479         env->v7m.secure = false;
480         env->v7m.nsacr = 0xcff;
481         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
482         env->v7m.fpccr[M_REG_S] &=
483             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
484         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
485 #endif
486     }
487 
488     /* M profile requires that reset clears the exclusive monitor;
489      * A profile does not, but clearing it makes more sense than having it
490      * set with an exclusive access on address zero.
491      */
492     arm_clear_exclusive(env);
493 
494     if (arm_feature(env, ARM_FEATURE_PMSA)) {
495         if (cpu->pmsav7_dregion > 0) {
496             if (arm_feature(env, ARM_FEATURE_V8)) {
497                 memset(env->pmsav8.rbar[M_REG_NS], 0,
498                        sizeof(*env->pmsav8.rbar[M_REG_NS])
499                        * cpu->pmsav7_dregion);
500                 memset(env->pmsav8.rlar[M_REG_NS], 0,
501                        sizeof(*env->pmsav8.rlar[M_REG_NS])
502                        * cpu->pmsav7_dregion);
503                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
504                     memset(env->pmsav8.rbar[M_REG_S], 0,
505                            sizeof(*env->pmsav8.rbar[M_REG_S])
506                            * cpu->pmsav7_dregion);
507                     memset(env->pmsav8.rlar[M_REG_S], 0,
508                            sizeof(*env->pmsav8.rlar[M_REG_S])
509                            * cpu->pmsav7_dregion);
510                 }
511             } else if (arm_feature(env, ARM_FEATURE_V7)) {
512                 memset(env->pmsav7.drbar, 0,
513                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
514                 memset(env->pmsav7.drsr, 0,
515                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
516                 memset(env->pmsav7.dracr, 0,
517                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
518             }
519         }
520 
521         if (cpu->pmsav8r_hdregion > 0) {
522             memset(env->pmsav8.hprbar, 0,
523                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
524             memset(env->pmsav8.hprlar, 0,
525                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
526         }
527 
528         env->pmsav7.rnr[M_REG_NS] = 0;
529         env->pmsav7.rnr[M_REG_S] = 0;
530         env->pmsav8.mair0[M_REG_NS] = 0;
531         env->pmsav8.mair0[M_REG_S] = 0;
532         env->pmsav8.mair1[M_REG_NS] = 0;
533         env->pmsav8.mair1[M_REG_S] = 0;
534     }
535 
536     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
537         if (cpu->sau_sregion > 0) {
538             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
539             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
540         }
541         env->sau.rnr = 0;
542         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
543          * the Cortex-M33 does.
544          */
545         env->sau.ctrl = 0;
546     }
547 
548     set_flush_to_zero(1, &env->vfp.standard_fp_status);
549     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
550     set_default_nan_mode(1, &env->vfp.standard_fp_status);
551     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
552     set_float_detect_tininess(float_tininess_before_rounding,
553                               &env->vfp.fp_status);
554     set_float_detect_tininess(float_tininess_before_rounding,
555                               &env->vfp.standard_fp_status);
556     set_float_detect_tininess(float_tininess_before_rounding,
557                               &env->vfp.fp_status_f16);
558     set_float_detect_tininess(float_tininess_before_rounding,
559                               &env->vfp.standard_fp_status_f16);
560 #ifndef CONFIG_USER_ONLY
561     if (kvm_enabled()) {
562         kvm_arm_reset_vcpu(cpu);
563     }
564 #endif
565 
566     if (tcg_enabled()) {
567         hw_breakpoint_update_all(cpu);
568         hw_watchpoint_update_all(cpu);
569 
570         arm_rebuild_hflags(env);
571     }
572 }
573 
574 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
575 {
576     ARMCPU *cpu = ARM_CPU(cpustate);
577     CPUARMState *env = &cpu->env;
578     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
579     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
580 
581     /*
582      * Check we have the EL we're aiming for. If that is the
583      * highest implemented EL, then cpu_reset has already done
584      * all the work.
585      */
586     switch (target_el) {
587     case 3:
588         assert(have_el3);
589         return;
590     case 2:
591         assert(have_el2);
592         if (!have_el3) {
593             return;
594         }
595         break;
596     case 1:
597         if (!have_el3 && !have_el2) {
598             return;
599         }
600         break;
601     default:
602         g_assert_not_reached();
603     }
604 
605     if (have_el3) {
606         /*
607          * Set the EL3 state so code can run at EL2. This should match
608          * the requirements set by Linux in its booting spec.
609          */
610         if (env->aarch64) {
611             env->cp15.scr_el3 |= SCR_RW;
612             if (cpu_isar_feature(aa64_pauth, cpu)) {
613                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
614             }
615             if (cpu_isar_feature(aa64_mte, cpu)) {
616                 env->cp15.scr_el3 |= SCR_ATA;
617             }
618             if (cpu_isar_feature(aa64_sve, cpu)) {
619                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
620                 env->vfp.zcr_el[3] = 0xf;
621             }
622             if (cpu_isar_feature(aa64_sme, cpu)) {
623                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
624                 env->cp15.scr_el3 |= SCR_ENTP2;
625                 env->vfp.smcr_el[3] = 0xf;
626             }
627             if (cpu_isar_feature(aa64_hcx, cpu)) {
628                 env->cp15.scr_el3 |= SCR_HXEN;
629             }
630             if (cpu_isar_feature(aa64_fgt, cpu)) {
631                 env->cp15.scr_el3 |= SCR_FGTEN;
632             }
633         }
634 
635         if (target_el == 2) {
636             /* If the guest is at EL2 then Linux expects the HVC insn to work */
637             env->cp15.scr_el3 |= SCR_HCE;
638         }
639 
640         /* Put CPU into non-secure state */
641         env->cp15.scr_el3 |= SCR_NS;
642         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
643         env->cp15.nsacr |= 3 << 10;
644     }
645 
646     if (have_el2 && target_el < 2) {
647         /* Set EL2 state so code can run at EL1. */
648         if (env->aarch64) {
649             env->cp15.hcr_el2 |= HCR_RW;
650         }
651     }
652 
653     /* Set the CPU to the desired state */
654     if (env->aarch64) {
655         env->pstate = aarch64_pstate_mode(target_el, true);
656     } else {
657         static const uint32_t mode_for_el[] = {
658             0,
659             ARM_CPU_MODE_SVC,
660             ARM_CPU_MODE_HYP,
661             ARM_CPU_MODE_SVC,
662         };
663 
664         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
665     }
666 }
667 
668 
669 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
670 
671 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
672                                      unsigned int target_el,
673                                      unsigned int cur_el, bool secure,
674                                      uint64_t hcr_el2)
675 {
676     CPUARMState *env = cpu_env(cs);
677     bool pstate_unmasked;
678     bool unmasked = false;
679     bool allIntMask = false;
680 
681     /*
682      * Don't take exceptions if they target a lower EL.
683      * This check should catch any exceptions that would not be taken
684      * but left pending.
685      */
686     if (cur_el > target_el) {
687         return false;
688     }
689 
690     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
691         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
692         allIntMask = env->pstate & PSTATE_ALLINT ||
693                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
694                       (env->pstate & PSTATE_SP));
695     }
696 
697     switch (excp_idx) {
698     case EXCP_NMI:
699         pstate_unmasked = !allIntMask;
700         break;
701 
702     case EXCP_VINMI:
703         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
704             /* VINMIs are only taken when hypervized.  */
705             return false;
706         }
707         return !allIntMask;
708     case EXCP_VFNMI:
709         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
710             /* VFNMIs are only taken when hypervized.  */
711             return false;
712         }
713         return !allIntMask;
714     case EXCP_FIQ:
715         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
716         break;
717 
718     case EXCP_IRQ:
719         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
720         break;
721 
722     case EXCP_VFIQ:
723         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
724             /* VFIQs are only taken when hypervized.  */
725             return false;
726         }
727         return !(env->daif & PSTATE_F) && (!allIntMask);
728     case EXCP_VIRQ:
729         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
730             /* VIRQs are only taken when hypervized.  */
731             return false;
732         }
733         return !(env->daif & PSTATE_I) && (!allIntMask);
734     case EXCP_VSERR:
735         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
736             /* VIRQs are only taken when hypervized.  */
737             return false;
738         }
739         return !(env->daif & PSTATE_A);
740     default:
741         g_assert_not_reached();
742     }
743 
744     /*
745      * Use the target EL, current execution state and SCR/HCR settings to
746      * determine whether the corresponding CPSR bit is used to mask the
747      * interrupt.
748      */
749     if ((target_el > cur_el) && (target_el != 1)) {
750         /* Exceptions targeting a higher EL may not be maskable */
751         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
752             switch (target_el) {
753             case 2:
754                 /*
755                  * According to ARM DDI 0487H.a, an interrupt can be masked
756                  * when HCR_E2H and HCR_TGE are both set regardless of the
757                  * current Security state. Note that we need to revisit this
758                  * part again once we need to support NMI.
759                  */
760                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
761                         unmasked = true;
762                 }
763                 break;
764             case 3:
765                 /* Interrupt cannot be masked when the target EL is 3 */
766                 unmasked = true;
767                 break;
768             default:
769                 g_assert_not_reached();
770             }
771         } else {
772             /*
773              * The old 32-bit-only environment has a more complicated
774              * masking setup. HCR and SCR bits not only affect interrupt
775              * routing but also change the behaviour of masking.
776              */
777             bool hcr, scr;
778 
779             switch (excp_idx) {
780             case EXCP_FIQ:
781                 /*
782                  * If FIQs are routed to EL3 or EL2 then there are cases where
783                  * we override the CPSR.F in determining if the exception is
784                  * masked or not. If neither of these are set then we fall back
785                  * to the CPSR.F setting otherwise we further assess the state
786                  * below.
787                  */
788                 hcr = hcr_el2 & HCR_FMO;
789                 scr = (env->cp15.scr_el3 & SCR_FIQ);
790 
791                 /*
792                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
793                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
794                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
795                  * when non-secure but only when FIQs are only routed to EL3.
796                  */
797                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
798                 break;
799             case EXCP_IRQ:
800                 /*
801                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
802                  * we may override the CPSR.I masking when in non-secure state.
803                  * The SCR.IRQ setting has already been taken into consideration
804                  * when setting the target EL, so it does not have a further
805                  * affect here.
806                  */
807                 hcr = hcr_el2 & HCR_IMO;
808                 scr = false;
809                 break;
810             default:
811                 g_assert_not_reached();
812             }
813 
814             if ((scr || hcr) && !secure) {
815                 unmasked = true;
816             }
817         }
818     }
819 
820     /*
821      * The PSTATE bits only mask the interrupt if we have not overridden the
822      * ability above.
823      */
824     return unmasked || pstate_unmasked;
825 }
826 
827 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
828 {
829     CPUClass *cc = CPU_GET_CLASS(cs);
830     CPUARMState *env = cpu_env(cs);
831     uint32_t cur_el = arm_current_el(env);
832     bool secure = arm_is_secure(env);
833     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
834     uint32_t target_el;
835     uint32_t excp_idx;
836 
837     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
838 
839     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
840         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
841         if (interrupt_request & CPU_INTERRUPT_NMI) {
842             excp_idx = EXCP_NMI;
843             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
844             if (arm_excp_unmasked(cs, excp_idx, target_el,
845                                   cur_el, secure, hcr_el2)) {
846                 goto found;
847             }
848         }
849         if (interrupt_request & CPU_INTERRUPT_VINMI) {
850             excp_idx = EXCP_VINMI;
851             target_el = 1;
852             if (arm_excp_unmasked(cs, excp_idx, target_el,
853                                   cur_el, secure, hcr_el2)) {
854                 goto found;
855             }
856         }
857         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
858             excp_idx = EXCP_VFNMI;
859             target_el = 1;
860             if (arm_excp_unmasked(cs, excp_idx, target_el,
861                                   cur_el, secure, hcr_el2)) {
862                 goto found;
863             }
864         }
865     } else {
866         /*
867          * NMI disabled: interrupts with superpriority are handled
868          * as if they didn't have it
869          */
870         if (interrupt_request & CPU_INTERRUPT_NMI) {
871             interrupt_request |= CPU_INTERRUPT_HARD;
872         }
873         if (interrupt_request & CPU_INTERRUPT_VINMI) {
874             interrupt_request |= CPU_INTERRUPT_VIRQ;
875         }
876         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
877             interrupt_request |= CPU_INTERRUPT_VFIQ;
878         }
879     }
880 
881     if (interrupt_request & CPU_INTERRUPT_FIQ) {
882         excp_idx = EXCP_FIQ;
883         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
884         if (arm_excp_unmasked(cs, excp_idx, target_el,
885                               cur_el, secure, hcr_el2)) {
886             goto found;
887         }
888     }
889     if (interrupt_request & CPU_INTERRUPT_HARD) {
890         excp_idx = EXCP_IRQ;
891         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
892         if (arm_excp_unmasked(cs, excp_idx, target_el,
893                               cur_el, secure, hcr_el2)) {
894             goto found;
895         }
896     }
897     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
898         excp_idx = EXCP_VIRQ;
899         target_el = 1;
900         if (arm_excp_unmasked(cs, excp_idx, target_el,
901                               cur_el, secure, hcr_el2)) {
902             goto found;
903         }
904     }
905     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
906         excp_idx = EXCP_VFIQ;
907         target_el = 1;
908         if (arm_excp_unmasked(cs, excp_idx, target_el,
909                               cur_el, secure, hcr_el2)) {
910             goto found;
911         }
912     }
913     if (interrupt_request & CPU_INTERRUPT_VSERR) {
914         excp_idx = EXCP_VSERR;
915         target_el = 1;
916         if (arm_excp_unmasked(cs, excp_idx, target_el,
917                               cur_el, secure, hcr_el2)) {
918             /* Taking a virtual abort clears HCR_EL2.VSE */
919             env->cp15.hcr_el2 &= ~HCR_VSE;
920             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
921             goto found;
922         }
923     }
924     return false;
925 
926  found:
927     cs->exception_index = excp_idx;
928     env->exception.target_el = target_el;
929     cc->tcg_ops->do_interrupt(cs);
930     return true;
931 }
932 
933 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
934 
935 void arm_cpu_update_virq(ARMCPU *cpu)
936 {
937     /*
938      * Update the interrupt level for VIRQ, which is the logical OR of
939      * the HCR_EL2.VI bit and the input line level from the GIC.
940      */
941     CPUARMState *env = &cpu->env;
942     CPUState *cs = CPU(cpu);
943 
944     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
945         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
946         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
947 
948     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
949         if (new_state) {
950             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
951         } else {
952             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
953         }
954     }
955 }
956 
957 void arm_cpu_update_vfiq(ARMCPU *cpu)
958 {
959     /*
960      * Update the interrupt level for VFIQ, which is the logical OR of
961      * the HCR_EL2.VF bit and the input line level from the GIC.
962      */
963     CPUARMState *env = &cpu->env;
964     CPUState *cs = CPU(cpu);
965 
966     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
967         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
968         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
969 
970     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
971         if (new_state) {
972             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
973         } else {
974             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
975         }
976     }
977 }
978 
979 void arm_cpu_update_vinmi(ARMCPU *cpu)
980 {
981     /*
982      * Update the interrupt level for VINMI, which is the logical OR of
983      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
984      */
985     CPUARMState *env = &cpu->env;
986     CPUState *cs = CPU(cpu);
987 
988     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
989                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
990         (env->irq_line_state & CPU_INTERRUPT_VINMI);
991 
992     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
993         if (new_state) {
994             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
995         } else {
996             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
997         }
998     }
999 }
1000 
1001 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1002 {
1003     /*
1004      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1005      */
1006     CPUARMState *env = &cpu->env;
1007     CPUState *cs = CPU(cpu);
1008 
1009     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1010                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1011 
1012     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1013         if (new_state) {
1014             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1015         } else {
1016             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1017         }
1018     }
1019 }
1020 
1021 void arm_cpu_update_vserr(ARMCPU *cpu)
1022 {
1023     /*
1024      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1025      */
1026     CPUARMState *env = &cpu->env;
1027     CPUState *cs = CPU(cpu);
1028 
1029     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1030 
1031     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1032         if (new_state) {
1033             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1034         } else {
1035             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1036         }
1037     }
1038 }
1039 
1040 #ifndef CONFIG_USER_ONLY
1041 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1042 {
1043     ARMCPU *cpu = opaque;
1044     CPUARMState *env = &cpu->env;
1045     CPUState *cs = CPU(cpu);
1046     static const int mask[] = {
1047         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1048         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1049         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1050         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1051         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1052         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1053     };
1054 
1055     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1056         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1057         /*
1058          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1059          * have EL2 support we don't care. (Unless the guest is doing something
1060          * silly this will only be calls saying "level is still 0".)
1061          */
1062         return;
1063     }
1064 
1065     if (level) {
1066         env->irq_line_state |= mask[irq];
1067     } else {
1068         env->irq_line_state &= ~mask[irq];
1069     }
1070 
1071     switch (irq) {
1072     case ARM_CPU_VIRQ:
1073         arm_cpu_update_virq(cpu);
1074         break;
1075     case ARM_CPU_VFIQ:
1076         arm_cpu_update_vfiq(cpu);
1077         break;
1078     case ARM_CPU_VINMI:
1079         arm_cpu_update_vinmi(cpu);
1080         break;
1081     case ARM_CPU_IRQ:
1082     case ARM_CPU_FIQ:
1083     case ARM_CPU_NMI:
1084         if (level) {
1085             cpu_interrupt(cs, mask[irq]);
1086         } else {
1087             cpu_reset_interrupt(cs, mask[irq]);
1088         }
1089         break;
1090     default:
1091         g_assert_not_reached();
1092     }
1093 }
1094 
1095 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1096 {
1097 #ifdef CONFIG_KVM
1098     ARMCPU *cpu = opaque;
1099     CPUARMState *env = &cpu->env;
1100     CPUState *cs = CPU(cpu);
1101     uint32_t linestate_bit;
1102     int irq_id;
1103 
1104     switch (irq) {
1105     case ARM_CPU_IRQ:
1106         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1107         linestate_bit = CPU_INTERRUPT_HARD;
1108         break;
1109     case ARM_CPU_FIQ:
1110         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1111         linestate_bit = CPU_INTERRUPT_FIQ;
1112         break;
1113     default:
1114         g_assert_not_reached();
1115     }
1116 
1117     if (level) {
1118         env->irq_line_state |= linestate_bit;
1119     } else {
1120         env->irq_line_state &= ~linestate_bit;
1121     }
1122     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1123 #endif
1124 }
1125 
1126 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1127 {
1128     ARMCPU *cpu = ARM_CPU(cs);
1129     CPUARMState *env = &cpu->env;
1130 
1131     cpu_synchronize_state(cs);
1132     return arm_cpu_data_is_big_endian(env);
1133 }
1134 
1135 #endif
1136 
1137 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1138 {
1139     ARMCPU *ac = ARM_CPU(cpu);
1140     CPUARMState *env = &ac->env;
1141     bool sctlr_b;
1142 
1143     if (is_a64(env)) {
1144         info->cap_arch = CS_ARCH_ARM64;
1145         info->cap_insn_unit = 4;
1146         info->cap_insn_split = 4;
1147     } else {
1148         int cap_mode;
1149         if (env->thumb) {
1150             info->cap_insn_unit = 2;
1151             info->cap_insn_split = 4;
1152             cap_mode = CS_MODE_THUMB;
1153         } else {
1154             info->cap_insn_unit = 4;
1155             info->cap_insn_split = 4;
1156             cap_mode = CS_MODE_ARM;
1157         }
1158         if (arm_feature(env, ARM_FEATURE_V8)) {
1159             cap_mode |= CS_MODE_V8;
1160         }
1161         if (arm_feature(env, ARM_FEATURE_M)) {
1162             cap_mode |= CS_MODE_MCLASS;
1163         }
1164         info->cap_arch = CS_ARCH_ARM;
1165         info->cap_mode = cap_mode;
1166     }
1167 
1168     sctlr_b = arm_sctlr_b(env);
1169     if (bswap_code(sctlr_b)) {
1170 #if TARGET_BIG_ENDIAN
1171         info->endian = BFD_ENDIAN_LITTLE;
1172 #else
1173         info->endian = BFD_ENDIAN_BIG;
1174 #endif
1175     }
1176     info->flags &= ~INSN_ARM_BE32;
1177 #ifndef CONFIG_USER_ONLY
1178     if (sctlr_b) {
1179         info->flags |= INSN_ARM_BE32;
1180     }
1181 #endif
1182 }
1183 
1184 #ifdef TARGET_AARCH64
1185 
1186 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1187 {
1188     ARMCPU *cpu = ARM_CPU(cs);
1189     CPUARMState *env = &cpu->env;
1190     uint32_t psr = pstate_read(env);
1191     int i, j;
1192     int el = arm_current_el(env);
1193     uint64_t hcr = arm_hcr_el2_eff(env);
1194     const char *ns_status;
1195     bool sve;
1196 
1197     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1198     for (i = 0; i < 32; i++) {
1199         if (i == 31) {
1200             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1201         } else {
1202             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1203                          (i + 2) % 3 ? " " : "\n");
1204         }
1205     }
1206 
1207     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1208         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1209     } else {
1210         ns_status = "";
1211     }
1212     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1213                  psr,
1214                  psr & PSTATE_N ? 'N' : '-',
1215                  psr & PSTATE_Z ? 'Z' : '-',
1216                  psr & PSTATE_C ? 'C' : '-',
1217                  psr & PSTATE_V ? 'V' : '-',
1218                  ns_status,
1219                  el,
1220                  psr & PSTATE_SP ? 'h' : 't');
1221 
1222     if (cpu_isar_feature(aa64_sme, cpu)) {
1223         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1224                      env->svcr,
1225                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1226                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1227     }
1228     if (cpu_isar_feature(aa64_bti, cpu)) {
1229         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1230     }
1231     qemu_fprintf(f, "%s%s%s",
1232                  (hcr & HCR_NV) ? " NV" : "",
1233                  (hcr & HCR_NV1) ? " NV1" : "",
1234                  (hcr & HCR_NV2) ? " NV2" : "");
1235     if (!(flags & CPU_DUMP_FPU)) {
1236         qemu_fprintf(f, "\n");
1237         return;
1238     }
1239     if (fp_exception_el(env, el) != 0) {
1240         qemu_fprintf(f, "    FPU disabled\n");
1241         return;
1242     }
1243     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1244                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1245 
1246     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1247         sve = sme_exception_el(env, el) == 0;
1248     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1249         sve = sve_exception_el(env, el) == 0;
1250     } else {
1251         sve = false;
1252     }
1253 
1254     if (sve) {
1255         int zcr_len = sve_vqm1_for_el(env, el);
1256 
1257         for (i = 0; i <= FFR_PRED_NUM; i++) {
1258             bool eol;
1259             if (i == FFR_PRED_NUM) {
1260                 qemu_fprintf(f, "FFR=");
1261                 /* It's last, so end the line.  */
1262                 eol = true;
1263             } else {
1264                 qemu_fprintf(f, "P%02d=", i);
1265                 switch (zcr_len) {
1266                 case 0:
1267                     eol = i % 8 == 7;
1268                     break;
1269                 case 1:
1270                     eol = i % 6 == 5;
1271                     break;
1272                 case 2:
1273                 case 3:
1274                     eol = i % 3 == 2;
1275                     break;
1276                 default:
1277                     /* More than one quadword per predicate.  */
1278                     eol = true;
1279                     break;
1280                 }
1281             }
1282             for (j = zcr_len / 4; j >= 0; j--) {
1283                 int digits;
1284                 if (j * 4 + 4 <= zcr_len + 1) {
1285                     digits = 16;
1286                 } else {
1287                     digits = (zcr_len % 4 + 1) * 4;
1288                 }
1289                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1290                              env->vfp.pregs[i].p[j],
1291                              j ? ":" : eol ? "\n" : " ");
1292             }
1293         }
1294 
1295         if (zcr_len == 0) {
1296             /*
1297              * With vl=16, there are only 37 columns per register,
1298              * so output two registers per line.
1299              */
1300             for (i = 0; i < 32; i++) {
1301                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1302                              i, env->vfp.zregs[i].d[1],
1303                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1304             }
1305         } else {
1306             for (i = 0; i < 32; i++) {
1307                 qemu_fprintf(f, "Z%02d=", i);
1308                 for (j = zcr_len; j >= 0; j--) {
1309                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1310                                  env->vfp.zregs[i].d[j * 2 + 1],
1311                                  env->vfp.zregs[i].d[j * 2 + 0],
1312                                  j ? ":" : "\n");
1313                 }
1314             }
1315         }
1316     } else {
1317         for (i = 0; i < 32; i++) {
1318             uint64_t *q = aa64_vfp_qreg(env, i);
1319             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1320                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1321         }
1322     }
1323 
1324     if (cpu_isar_feature(aa64_sme, cpu) &&
1325         FIELD_EX64(env->svcr, SVCR, ZA) &&
1326         sme_exception_el(env, el) == 0) {
1327         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1328         int svl = (zcr_len + 1) * 16;
1329         int svl_lg10 = svl < 100 ? 2 : 3;
1330 
1331         for (i = 0; i < svl; i++) {
1332             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1333             for (j = zcr_len; j >= 0; --j) {
1334                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1335                              env->zarray[i].d[2 * j + 1],
1336                              env->zarray[i].d[2 * j],
1337                              j ? ':' : '\n');
1338             }
1339         }
1340     }
1341 }
1342 
1343 #else
1344 
1345 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1346 {
1347     g_assert_not_reached();
1348 }
1349 
1350 #endif
1351 
1352 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1353 {
1354     ARMCPU *cpu = ARM_CPU(cs);
1355     CPUARMState *env = &cpu->env;
1356     int i;
1357 
1358     if (is_a64(env)) {
1359         aarch64_cpu_dump_state(cs, f, flags);
1360         return;
1361     }
1362 
1363     for (i = 0; i < 16; i++) {
1364         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1365         if ((i % 4) == 3) {
1366             qemu_fprintf(f, "\n");
1367         } else {
1368             qemu_fprintf(f, " ");
1369         }
1370     }
1371 
1372     if (arm_feature(env, ARM_FEATURE_M)) {
1373         uint32_t xpsr = xpsr_read(env);
1374         const char *mode;
1375         const char *ns_status = "";
1376 
1377         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1378             ns_status = env->v7m.secure ? "S " : "NS ";
1379         }
1380 
1381         if (xpsr & XPSR_EXCP) {
1382             mode = "handler";
1383         } else {
1384             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1385                 mode = "unpriv-thread";
1386             } else {
1387                 mode = "priv-thread";
1388             }
1389         }
1390 
1391         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1392                      xpsr,
1393                      xpsr & XPSR_N ? 'N' : '-',
1394                      xpsr & XPSR_Z ? 'Z' : '-',
1395                      xpsr & XPSR_C ? 'C' : '-',
1396                      xpsr & XPSR_V ? 'V' : '-',
1397                      xpsr & XPSR_T ? 'T' : 'A',
1398                      ns_status,
1399                      mode);
1400     } else {
1401         uint32_t psr = cpsr_read(env);
1402         const char *ns_status = "";
1403 
1404         if (arm_feature(env, ARM_FEATURE_EL3) &&
1405             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1406             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1407         }
1408 
1409         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1410                      psr,
1411                      psr & CPSR_N ? 'N' : '-',
1412                      psr & CPSR_Z ? 'Z' : '-',
1413                      psr & CPSR_C ? 'C' : '-',
1414                      psr & CPSR_V ? 'V' : '-',
1415                      psr & CPSR_T ? 'T' : 'A',
1416                      ns_status,
1417                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1418     }
1419 
1420     if (flags & CPU_DUMP_FPU) {
1421         int numvfpregs = 0;
1422         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1423             numvfpregs = 32;
1424         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1425             numvfpregs = 16;
1426         }
1427         for (i = 0; i < numvfpregs; i++) {
1428             uint64_t v = *aa32_vfp_dreg(env, i);
1429             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1430                          i * 2, (uint32_t)v,
1431                          i * 2 + 1, (uint32_t)(v >> 32),
1432                          i, v);
1433         }
1434         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1435         if (cpu_isar_feature(aa32_mve, cpu)) {
1436             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1437         }
1438     }
1439 }
1440 
1441 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1442 {
1443     uint32_t Aff1 = idx / clustersz;
1444     uint32_t Aff0 = idx % clustersz;
1445     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1446 }
1447 
1448 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1449 {
1450     return cpu->mp_affinity;
1451 }
1452 
1453 static void arm_cpu_initfn(Object *obj)
1454 {
1455     ARMCPU *cpu = ARM_CPU(obj);
1456 
1457     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1458                                          NULL, g_free);
1459 
1460     QLIST_INIT(&cpu->pre_el_change_hooks);
1461     QLIST_INIT(&cpu->el_change_hooks);
1462 
1463 #ifdef CONFIG_USER_ONLY
1464 # ifdef TARGET_AARCH64
1465     /*
1466      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1467      * These values were chosen to fit within the default signal frame.
1468      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1469      * and our corresponding cpu property.
1470      */
1471     cpu->sve_default_vq = 4;
1472     cpu->sme_default_vq = 2;
1473 # endif
1474 #else
1475     /* Our inbound IRQ and FIQ lines */
1476     if (kvm_enabled()) {
1477         /*
1478          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1479          * them to maintain the same interface as non-KVM CPUs.
1480          */
1481         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1482     } else {
1483         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1484     }
1485 
1486     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1487                        ARRAY_SIZE(cpu->gt_timer_outputs));
1488 
1489     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1490                              "gicv3-maintenance-interrupt", 1);
1491     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1492                              "pmu-interrupt", 1);
1493 #endif
1494 
1495     /* DTB consumers generally don't in fact care what the 'compatible'
1496      * string is, so always provide some string and trust that a hypothetical
1497      * picky DTB consumer will also provide a helpful error message.
1498      */
1499     cpu->dtb_compatible = "qemu,unknown";
1500     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1501     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1502 
1503     if (tcg_enabled() || hvf_enabled()) {
1504         /* TCG and HVF implement PSCI 1.1 */
1505         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1506     }
1507 }
1508 
1509 /*
1510  * 0 means "unset, use the default value". That default might vary depending
1511  * on the CPU type, and is set in the realize fn.
1512  */
1513 static Property arm_cpu_gt_cntfrq_property =
1514             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1515 
1516 static Property arm_cpu_reset_cbar_property =
1517             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1518 
1519 static Property arm_cpu_reset_hivecs_property =
1520             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1521 
1522 #ifndef CONFIG_USER_ONLY
1523 static Property arm_cpu_has_el2_property =
1524             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1525 
1526 static Property arm_cpu_has_el3_property =
1527             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1528 #endif
1529 
1530 static Property arm_cpu_cfgend_property =
1531             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1532 
1533 static Property arm_cpu_has_vfp_property =
1534             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1535 
1536 static Property arm_cpu_has_vfp_d32_property =
1537             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1538 
1539 static Property arm_cpu_has_neon_property =
1540             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1541 
1542 static Property arm_cpu_has_dsp_property =
1543             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1544 
1545 static Property arm_cpu_has_mpu_property =
1546             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1547 
1548 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1549  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1550  * the right value for that particular CPU type, and we don't want
1551  * to override that with an incorrect constant value.
1552  */
1553 static Property arm_cpu_pmsav7_dregion_property =
1554             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1555                                            pmsav7_dregion,
1556                                            qdev_prop_uint32, uint32_t);
1557 
1558 static bool arm_get_pmu(Object *obj, Error **errp)
1559 {
1560     ARMCPU *cpu = ARM_CPU(obj);
1561 
1562     return cpu->has_pmu;
1563 }
1564 
1565 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1566 {
1567     ARMCPU *cpu = ARM_CPU(obj);
1568 
1569     if (value) {
1570         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1571             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1572             return;
1573         }
1574         set_feature(&cpu->env, ARM_FEATURE_PMU);
1575     } else {
1576         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1577     }
1578     cpu->has_pmu = value;
1579 }
1580 
1581 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1582 {
1583     /*
1584      * The exact approach to calculating guest ticks is:
1585      *
1586      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1587      *              NANOSECONDS_PER_SECOND);
1588      *
1589      * We don't do that. Rather we intentionally use integer division
1590      * truncation below and in the caller for the conversion of host monotonic
1591      * time to guest ticks to provide the exact inverse for the semantics of
1592      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1593      * it loses precision when representing frequencies where
1594      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1595      * provide an exact inverse leads to scheduling timers with negative
1596      * periods, which in turn leads to sticky behaviour in the guest.
1597      *
1598      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1599      * cannot become zero.
1600      */
1601     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1602       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1603 }
1604 
1605 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1606 {
1607     CPUARMState *env = &cpu->env;
1608     bool no_aa32 = false;
1609 
1610     /*
1611      * Some features automatically imply others: set the feature
1612      * bits explicitly for these cases.
1613      */
1614 
1615     if (arm_feature(env, ARM_FEATURE_M)) {
1616         set_feature(env, ARM_FEATURE_PMSA);
1617     }
1618 
1619     if (arm_feature(env, ARM_FEATURE_V8)) {
1620         if (arm_feature(env, ARM_FEATURE_M)) {
1621             set_feature(env, ARM_FEATURE_V7);
1622         } else {
1623             set_feature(env, ARM_FEATURE_V7VE);
1624         }
1625     }
1626 
1627     /*
1628      * There exist AArch64 cpus without AArch32 support.  When KVM
1629      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1630      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1631      * As a general principle, we also do not make ID register
1632      * consistency checks anywhere unless using TCG, because only
1633      * for TCG would a consistency-check failure be a QEMU bug.
1634      */
1635     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1636         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1637     }
1638 
1639     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1640         /*
1641          * v7 Virtualization Extensions. In real hardware this implies
1642          * EL2 and also the presence of the Security Extensions.
1643          * For QEMU, for backwards-compatibility we implement some
1644          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1645          * include the various other features that V7VE implies.
1646          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1647          * Security Extensions is ARM_FEATURE_EL3.
1648          */
1649         assert(!tcg_enabled() || no_aa32 ||
1650                cpu_isar_feature(aa32_arm_div, cpu));
1651         set_feature(env, ARM_FEATURE_LPAE);
1652         set_feature(env, ARM_FEATURE_V7);
1653     }
1654     if (arm_feature(env, ARM_FEATURE_V7)) {
1655         set_feature(env, ARM_FEATURE_VAPA);
1656         set_feature(env, ARM_FEATURE_THUMB2);
1657         set_feature(env, ARM_FEATURE_MPIDR);
1658         if (!arm_feature(env, ARM_FEATURE_M)) {
1659             set_feature(env, ARM_FEATURE_V6K);
1660         } else {
1661             set_feature(env, ARM_FEATURE_V6);
1662         }
1663 
1664         /*
1665          * Always define VBAR for V7 CPUs even if it doesn't exist in
1666          * non-EL3 configs. This is needed by some legacy boards.
1667          */
1668         set_feature(env, ARM_FEATURE_VBAR);
1669     }
1670     if (arm_feature(env, ARM_FEATURE_V6K)) {
1671         set_feature(env, ARM_FEATURE_V6);
1672         set_feature(env, ARM_FEATURE_MVFR);
1673     }
1674     if (arm_feature(env, ARM_FEATURE_V6)) {
1675         set_feature(env, ARM_FEATURE_V5);
1676         if (!arm_feature(env, ARM_FEATURE_M)) {
1677             assert(!tcg_enabled() || no_aa32 ||
1678                    cpu_isar_feature(aa32_jazelle, cpu));
1679             set_feature(env, ARM_FEATURE_AUXCR);
1680         }
1681     }
1682     if (arm_feature(env, ARM_FEATURE_V5)) {
1683         set_feature(env, ARM_FEATURE_V4T);
1684     }
1685     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1686         set_feature(env, ARM_FEATURE_V7MP);
1687     }
1688     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1689         set_feature(env, ARM_FEATURE_CBAR);
1690     }
1691     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1692         !arm_feature(env, ARM_FEATURE_M)) {
1693         set_feature(env, ARM_FEATURE_THUMB_DSP);
1694     }
1695 }
1696 
1697 void arm_cpu_post_init(Object *obj)
1698 {
1699     ARMCPU *cpu = ARM_CPU(obj);
1700 
1701     /*
1702      * Some features imply others. Figure this out now, because we
1703      * are going to look at the feature bits in deciding which
1704      * properties to add.
1705      */
1706     arm_cpu_propagate_feature_implications(cpu);
1707 
1708     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1709         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1710         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1711     }
1712 
1713     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1714         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1715     }
1716 
1717     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1718         object_property_add_uint64_ptr(obj, "rvbar",
1719                                        &cpu->rvbar_prop,
1720                                        OBJ_PROP_FLAG_READWRITE);
1721     }
1722 
1723 #ifndef CONFIG_USER_ONLY
1724     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1725         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1726          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1727          */
1728         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1729 
1730         object_property_add_link(obj, "secure-memory",
1731                                  TYPE_MEMORY_REGION,
1732                                  (Object **)&cpu->secure_memory,
1733                                  qdev_prop_allow_set_link_before_realize,
1734                                  OBJ_PROP_LINK_STRONG);
1735     }
1736 
1737     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1738         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1739     }
1740 #endif
1741 
1742     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1743         cpu->has_pmu = true;
1744         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1745     }
1746 
1747     /*
1748      * Allow user to turn off VFP and Neon support, but only for TCG --
1749      * KVM does not currently allow us to lie to the guest about its
1750      * ID/feature registers, so the guest always sees what the host has.
1751      */
1752     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1753         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1754             cpu->has_vfp = true;
1755             cpu->has_vfp_d32 = true;
1756             if (tcg_enabled() || qtest_enabled()) {
1757                 qdev_property_add_static(DEVICE(obj),
1758                                          &arm_cpu_has_vfp_property);
1759             }
1760         }
1761     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1762         cpu->has_vfp = true;
1763         if (tcg_enabled() || qtest_enabled()) {
1764             qdev_property_add_static(DEVICE(obj),
1765                                      &arm_cpu_has_vfp_property);
1766         }
1767         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1768             cpu->has_vfp_d32 = true;
1769             /*
1770              * The permitted values of the SIMDReg bits [3:0] on
1771              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1772              * make sure that has_vfp_d32 can not be set to false.
1773              */
1774             if ((tcg_enabled() || qtest_enabled())
1775                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1776                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1777                 qdev_property_add_static(DEVICE(obj),
1778                                          &arm_cpu_has_vfp_d32_property);
1779             }
1780         }
1781     }
1782 
1783     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1784         cpu->has_neon = true;
1785         if (!kvm_enabled()) {
1786             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1787         }
1788     }
1789 
1790     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1791         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1792         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1793     }
1794 
1795     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1796         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1797         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1798             qdev_property_add_static(DEVICE(obj),
1799                                      &arm_cpu_pmsav7_dregion_property);
1800         }
1801     }
1802 
1803     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1804         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1805                                  qdev_prop_allow_set_link_before_realize,
1806                                  OBJ_PROP_LINK_STRONG);
1807         /*
1808          * M profile: initial value of the Secure VTOR. We can't just use
1809          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1810          * the property to be set after realize.
1811          */
1812         object_property_add_uint32_ptr(obj, "init-svtor",
1813                                        &cpu->init_svtor,
1814                                        OBJ_PROP_FLAG_READWRITE);
1815     }
1816     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1817         /*
1818          * Initial value of the NS VTOR (for cores without the Security
1819          * extension, this is the only VTOR)
1820          */
1821         object_property_add_uint32_ptr(obj, "init-nsvtor",
1822                                        &cpu->init_nsvtor,
1823                                        OBJ_PROP_FLAG_READWRITE);
1824     }
1825 
1826     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1827     object_property_add_uint32_ptr(obj, "psci-conduit",
1828                                    &cpu->psci_conduit,
1829                                    OBJ_PROP_FLAG_READWRITE);
1830 
1831     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1832 
1833     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1834         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1835     }
1836 
1837     if (kvm_enabled()) {
1838         kvm_arm_add_vcpu_properties(cpu);
1839     }
1840 
1841 #ifndef CONFIG_USER_ONLY
1842     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1843         cpu_isar_feature(aa64_mte, cpu)) {
1844         object_property_add_link(obj, "tag-memory",
1845                                  TYPE_MEMORY_REGION,
1846                                  (Object **)&cpu->tag_memory,
1847                                  qdev_prop_allow_set_link_before_realize,
1848                                  OBJ_PROP_LINK_STRONG);
1849 
1850         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1851             object_property_add_link(obj, "secure-tag-memory",
1852                                      TYPE_MEMORY_REGION,
1853                                      (Object **)&cpu->secure_tag_memory,
1854                                      qdev_prop_allow_set_link_before_realize,
1855                                      OBJ_PROP_LINK_STRONG);
1856         }
1857     }
1858 #endif
1859 }
1860 
1861 static void arm_cpu_finalizefn(Object *obj)
1862 {
1863     ARMCPU *cpu = ARM_CPU(obj);
1864     ARMELChangeHook *hook, *next;
1865 
1866     g_hash_table_destroy(cpu->cp_regs);
1867 
1868     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1869         QLIST_REMOVE(hook, node);
1870         g_free(hook);
1871     }
1872     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1873         QLIST_REMOVE(hook, node);
1874         g_free(hook);
1875     }
1876 #ifndef CONFIG_USER_ONLY
1877     if (cpu->pmu_timer) {
1878         timer_free(cpu->pmu_timer);
1879     }
1880 #endif
1881 }
1882 
1883 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1884 {
1885     Error *local_err = NULL;
1886 
1887 #ifdef TARGET_AARCH64
1888     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1889         arm_cpu_sve_finalize(cpu, &local_err);
1890         if (local_err != NULL) {
1891             error_propagate(errp, local_err);
1892             return;
1893         }
1894 
1895         /*
1896          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1897          * FEAT_SME_FA64 is present). However our implementation currently
1898          * assumes it, so if the user asked for sve=off then turn off SME also.
1899          * (KVM doesn't currently support SME at all.)
1900          */
1901         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1902             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1903         }
1904 
1905         arm_cpu_sme_finalize(cpu, &local_err);
1906         if (local_err != NULL) {
1907             error_propagate(errp, local_err);
1908             return;
1909         }
1910 
1911         arm_cpu_pauth_finalize(cpu, &local_err);
1912         if (local_err != NULL) {
1913             error_propagate(errp, local_err);
1914             return;
1915         }
1916 
1917         arm_cpu_lpa2_finalize(cpu, &local_err);
1918         if (local_err != NULL) {
1919             error_propagate(errp, local_err);
1920             return;
1921         }
1922     }
1923 #endif
1924 
1925     if (kvm_enabled()) {
1926         kvm_arm_steal_time_finalize(cpu, &local_err);
1927         if (local_err != NULL) {
1928             error_propagate(errp, local_err);
1929             return;
1930         }
1931     }
1932 }
1933 
1934 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1935 {
1936     CPUState *cs = CPU(dev);
1937     ARMCPU *cpu = ARM_CPU(dev);
1938     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1939     CPUARMState *env = &cpu->env;
1940     Error *local_err = NULL;
1941 
1942 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1943     /* Use pc-relative instructions in system-mode */
1944     tcg_cflags_set(cs, CF_PCREL);
1945 #endif
1946 
1947     /* If we needed to query the host kernel for the CPU features
1948      * then it's possible that might have failed in the initfn, but
1949      * this is the first point where we can report it.
1950      */
1951     if (cpu->host_cpu_probe_failed) {
1952         if (!kvm_enabled() && !hvf_enabled()) {
1953             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1954         } else {
1955             error_setg(errp, "Failed to retrieve host CPU features");
1956         }
1957         return;
1958     }
1959 
1960     if (!cpu->gt_cntfrq_hz) {
1961         /*
1962          * 0 means "the board didn't set a value, use the default". (We also
1963          * get here for the CONFIG_USER_ONLY case.)
1964          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1965          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1966          * which gives a 16ns tick period.
1967          *
1968          * We will use the back-compat value:
1969          *  - for QEMU CPU types added before we standardized on 1GHz
1970          *  - for versioned machine types with a version of 9.0 or earlier
1971          */
1972         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
1973             cpu->backcompat_cntfrq) {
1974             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
1975         } else {
1976             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
1977         }
1978     }
1979 
1980 #ifndef CONFIG_USER_ONLY
1981     /* The NVIC and M-profile CPU are two halves of a single piece of
1982      * hardware; trying to use one without the other is a command line
1983      * error and will result in segfaults if not caught here.
1984      */
1985     if (arm_feature(env, ARM_FEATURE_M)) {
1986         if (!env->nvic) {
1987             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1988             return;
1989         }
1990     } else {
1991         if (env->nvic) {
1992             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1993             return;
1994         }
1995     }
1996 
1997     if (!tcg_enabled() && !qtest_enabled()) {
1998         /*
1999          * We assume that no accelerator except TCG (and the "not really an
2000          * accelerator" qtest) can handle these features, because Arm hardware
2001          * virtualization can't virtualize them.
2002          *
2003          * Catch all the cases which might cause us to create more than one
2004          * address space for the CPU (otherwise we will assert() later in
2005          * cpu_address_space_init()).
2006          */
2007         if (arm_feature(env, ARM_FEATURE_M)) {
2008             error_setg(errp,
2009                        "Cannot enable %s when using an M-profile guest CPU",
2010                        current_accel_name());
2011             return;
2012         }
2013         if (cpu->has_el3) {
2014             error_setg(errp,
2015                        "Cannot enable %s when guest CPU has EL3 enabled",
2016                        current_accel_name());
2017             return;
2018         }
2019         if (cpu->tag_memory) {
2020             error_setg(errp,
2021                        "Cannot enable %s when guest CPUs has MTE enabled",
2022                        current_accel_name());
2023             return;
2024         }
2025     }
2026 
2027     {
2028         uint64_t scale = gt_cntfrq_period_ns(cpu);
2029 
2030         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2031                                                arm_gt_ptimer_cb, cpu);
2032         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2033                                                arm_gt_vtimer_cb, cpu);
2034         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2035                                               arm_gt_htimer_cb, cpu);
2036         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2037                                               arm_gt_stimer_cb, cpu);
2038         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2039                                                   arm_gt_hvtimer_cb, cpu);
2040     }
2041 #endif
2042 
2043     cpu_exec_realizefn(cs, &local_err);
2044     if (local_err != NULL) {
2045         error_propagate(errp, local_err);
2046         return;
2047     }
2048 
2049     arm_cpu_finalize_features(cpu, &local_err);
2050     if (local_err != NULL) {
2051         error_propagate(errp, local_err);
2052         return;
2053     }
2054 
2055 #ifdef CONFIG_USER_ONLY
2056     /*
2057      * User mode relies on IC IVAU instructions to catch modification of
2058      * dual-mapped code.
2059      *
2060      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2061      * IC IVAU even if the emulated processor does not normally require it.
2062      */
2063     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2064 #endif
2065 
2066     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2067         cpu->has_vfp != cpu->has_neon) {
2068         /*
2069          * This is an architectural requirement for AArch64; AArch32 is
2070          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2071          */
2072         error_setg(errp,
2073                    "AArch64 CPUs must have both VFP and Neon or neither");
2074         return;
2075     }
2076 
2077     if (cpu->has_vfp_d32 != cpu->has_neon) {
2078         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2079         return;
2080     }
2081 
2082    if (!cpu->has_vfp_d32) {
2083         uint32_t u;
2084 
2085         u = cpu->isar.mvfr0;
2086         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2087         cpu->isar.mvfr0 = u;
2088     }
2089 
2090     if (!cpu->has_vfp) {
2091         uint64_t t;
2092         uint32_t u;
2093 
2094         t = cpu->isar.id_aa64isar1;
2095         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2096         cpu->isar.id_aa64isar1 = t;
2097 
2098         t = cpu->isar.id_aa64pfr0;
2099         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2100         cpu->isar.id_aa64pfr0 = t;
2101 
2102         u = cpu->isar.id_isar6;
2103         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2104         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2105         cpu->isar.id_isar6 = u;
2106 
2107         u = cpu->isar.mvfr0;
2108         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2109         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2110         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2111         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2112         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2113         if (!arm_feature(env, ARM_FEATURE_M)) {
2114             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2115             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2116         }
2117         cpu->isar.mvfr0 = u;
2118 
2119         u = cpu->isar.mvfr1;
2120         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2121         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2122         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2123         if (arm_feature(env, ARM_FEATURE_M)) {
2124             u = FIELD_DP32(u, MVFR1, FP16, 0);
2125         }
2126         cpu->isar.mvfr1 = u;
2127 
2128         u = cpu->isar.mvfr2;
2129         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2130         cpu->isar.mvfr2 = u;
2131     }
2132 
2133     if (!cpu->has_neon) {
2134         uint64_t t;
2135         uint32_t u;
2136 
2137         unset_feature(env, ARM_FEATURE_NEON);
2138 
2139         t = cpu->isar.id_aa64isar0;
2140         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2141         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2142         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2143         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2144         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2145         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2146         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2147         cpu->isar.id_aa64isar0 = t;
2148 
2149         t = cpu->isar.id_aa64isar1;
2150         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2151         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2152         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2153         cpu->isar.id_aa64isar1 = t;
2154 
2155         t = cpu->isar.id_aa64pfr0;
2156         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2157         cpu->isar.id_aa64pfr0 = t;
2158 
2159         u = cpu->isar.id_isar5;
2160         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2161         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2162         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2163         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2164         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2165         cpu->isar.id_isar5 = u;
2166 
2167         u = cpu->isar.id_isar6;
2168         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2169         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2170         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2171         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2172         cpu->isar.id_isar6 = u;
2173 
2174         if (!arm_feature(env, ARM_FEATURE_M)) {
2175             u = cpu->isar.mvfr1;
2176             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2177             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2178             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2179             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2180             cpu->isar.mvfr1 = u;
2181 
2182             u = cpu->isar.mvfr2;
2183             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2184             cpu->isar.mvfr2 = u;
2185         }
2186     }
2187 
2188     if (!cpu->has_neon && !cpu->has_vfp) {
2189         uint64_t t;
2190         uint32_t u;
2191 
2192         t = cpu->isar.id_aa64isar0;
2193         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2194         cpu->isar.id_aa64isar0 = t;
2195 
2196         t = cpu->isar.id_aa64isar1;
2197         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2198         cpu->isar.id_aa64isar1 = t;
2199 
2200         u = cpu->isar.mvfr0;
2201         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2202         cpu->isar.mvfr0 = u;
2203 
2204         /* Despite the name, this field covers both VFP and Neon */
2205         u = cpu->isar.mvfr1;
2206         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2207         cpu->isar.mvfr1 = u;
2208     }
2209 
2210     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2211         uint32_t u;
2212 
2213         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2214 
2215         u = cpu->isar.id_isar1;
2216         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2217         cpu->isar.id_isar1 = u;
2218 
2219         u = cpu->isar.id_isar2;
2220         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2221         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2222         cpu->isar.id_isar2 = u;
2223 
2224         u = cpu->isar.id_isar3;
2225         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2226         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2227         cpu->isar.id_isar3 = u;
2228     }
2229 
2230 
2231     /*
2232      * We rely on no XScale CPU having VFP so we can use the same bits in the
2233      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2234      */
2235     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2236            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2237            !arm_feature(env, ARM_FEATURE_XSCALE));
2238 
2239 #ifndef CONFIG_USER_ONLY
2240     {
2241         int pagebits;
2242         if (arm_feature(env, ARM_FEATURE_V7) &&
2243             !arm_feature(env, ARM_FEATURE_M) &&
2244             !arm_feature(env, ARM_FEATURE_PMSA)) {
2245             /*
2246              * v7VMSA drops support for the old ARMv5 tiny pages,
2247              * so we can use 4K pages.
2248              */
2249             pagebits = 12;
2250         } else {
2251             /*
2252              * For CPUs which might have tiny 1K pages, or which have an
2253              * MPU and might have small region sizes, stick with 1K pages.
2254              */
2255             pagebits = 10;
2256         }
2257         if (!set_preferred_target_page_bits(pagebits)) {
2258             /*
2259              * This can only ever happen for hotplugging a CPU, or if
2260              * the board code incorrectly creates a CPU which it has
2261              * promised via minimum_page_size that it will not.
2262              */
2263             error_setg(errp, "This CPU requires a smaller page size "
2264                        "than the system is using");
2265             return;
2266         }
2267     }
2268 #endif
2269 
2270     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2271      * We don't support setting cluster ID ([16..23]) (known as Aff2
2272      * in later ARM ARM versions), or any of the higher affinity level fields,
2273      * so these bits always RAZ.
2274      */
2275     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2276         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2277                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2278     }
2279 
2280     if (cpu->reset_hivecs) {
2281             cpu->reset_sctlr |= (1 << 13);
2282     }
2283 
2284     if (cpu->cfgend) {
2285         if (arm_feature(env, ARM_FEATURE_V7)) {
2286             cpu->reset_sctlr |= SCTLR_EE;
2287         } else {
2288             cpu->reset_sctlr |= SCTLR_B;
2289         }
2290     }
2291 
2292     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2293         /* If the has_el3 CPU property is disabled then we need to disable the
2294          * feature.
2295          */
2296         unset_feature(env, ARM_FEATURE_EL3);
2297 
2298         /*
2299          * Disable the security extension feature bits in the processor
2300          * feature registers as well.
2301          */
2302         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2303         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2304         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2305                                            ID_AA64PFR0, EL3, 0);
2306 
2307         /* Disable the realm management extension, which requires EL3. */
2308         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2309                                            ID_AA64PFR0, RME, 0);
2310     }
2311 
2312     if (!cpu->has_el2) {
2313         unset_feature(env, ARM_FEATURE_EL2);
2314     }
2315 
2316     if (!cpu->has_pmu) {
2317         unset_feature(env, ARM_FEATURE_PMU);
2318     }
2319     if (arm_feature(env, ARM_FEATURE_PMU)) {
2320         pmu_init(cpu);
2321 
2322         if (!kvm_enabled()) {
2323             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2324             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2325         }
2326 
2327 #ifndef CONFIG_USER_ONLY
2328         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2329                 cpu);
2330 #endif
2331     } else {
2332         cpu->isar.id_aa64dfr0 =
2333             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2334         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2335         cpu->pmceid0 = 0;
2336         cpu->pmceid1 = 0;
2337     }
2338 
2339     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2340         /*
2341          * Disable the hypervisor feature bits in the processor feature
2342          * registers if we don't have EL2.
2343          */
2344         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2345                                            ID_AA64PFR0, EL2, 0);
2346         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2347                                        ID_PFR1, VIRTUALIZATION, 0);
2348     }
2349 
2350     if (cpu_isar_feature(aa64_mte, cpu)) {
2351         /*
2352          * The architectural range of GM blocksize is 2-6, however qemu
2353          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2354          */
2355         if (tcg_enabled()) {
2356             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2357         }
2358 
2359 #ifndef CONFIG_USER_ONLY
2360         /*
2361          * If we do not have tag-memory provided by the machine,
2362          * reduce MTE support to instructions enabled at EL0.
2363          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2364          */
2365         if (cpu->tag_memory == NULL) {
2366             cpu->isar.id_aa64pfr1 =
2367                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2368         }
2369 #endif
2370     }
2371 
2372     if (tcg_enabled()) {
2373         /*
2374          * Don't report some architectural features in the ID registers
2375          * where TCG does not yet implement it (not even a minimal
2376          * stub version). This avoids guests falling over when they
2377          * try to access the non-existent system registers for them.
2378          */
2379         /* FEAT_SPE (Statistical Profiling Extension) */
2380         cpu->isar.id_aa64dfr0 =
2381             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2382         /* FEAT_TRBE (Trace Buffer Extension) */
2383         cpu->isar.id_aa64dfr0 =
2384             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2385         /* FEAT_TRF (Self-hosted Trace Extension) */
2386         cpu->isar.id_aa64dfr0 =
2387             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2388         cpu->isar.id_dfr0 =
2389             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2390         /* Trace Macrocell system register access */
2391         cpu->isar.id_aa64dfr0 =
2392             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2393         cpu->isar.id_dfr0 =
2394             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2395         /* Memory mapped trace */
2396         cpu->isar.id_dfr0 =
2397             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2398         /* FEAT_AMU (Activity Monitors Extension) */
2399         cpu->isar.id_aa64pfr0 =
2400             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2401         cpu->isar.id_pfr0 =
2402             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2403         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2404         cpu->isar.id_aa64pfr0 =
2405             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2406     }
2407 
2408     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2409      * to false or by setting pmsav7-dregion to 0.
2410      */
2411     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2412         cpu->has_mpu = false;
2413         cpu->pmsav7_dregion = 0;
2414         cpu->pmsav8r_hdregion = 0;
2415     }
2416 
2417     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2418         arm_feature(env, ARM_FEATURE_V7)) {
2419         uint32_t nr = cpu->pmsav7_dregion;
2420 
2421         if (nr > 0xff) {
2422             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2423             return;
2424         }
2425 
2426         if (nr) {
2427             if (arm_feature(env, ARM_FEATURE_V8)) {
2428                 /* PMSAv8 */
2429                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2430                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2431                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2432                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2433                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2434                 }
2435             } else {
2436                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2437                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2438                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2439             }
2440         }
2441 
2442         if (cpu->pmsav8r_hdregion > 0xff) {
2443             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2444                               cpu->pmsav8r_hdregion);
2445             return;
2446         }
2447 
2448         if (cpu->pmsav8r_hdregion) {
2449             env->pmsav8.hprbar = g_new0(uint32_t,
2450                                         cpu->pmsav8r_hdregion);
2451             env->pmsav8.hprlar = g_new0(uint32_t,
2452                                         cpu->pmsav8r_hdregion);
2453         }
2454     }
2455 
2456     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2457         uint32_t nr = cpu->sau_sregion;
2458 
2459         if (nr > 0xff) {
2460             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2461             return;
2462         }
2463 
2464         if (nr) {
2465             env->sau.rbar = g_new0(uint32_t, nr);
2466             env->sau.rlar = g_new0(uint32_t, nr);
2467         }
2468     }
2469 
2470     if (arm_feature(env, ARM_FEATURE_EL3)) {
2471         set_feature(env, ARM_FEATURE_VBAR);
2472     }
2473 
2474 #ifndef CONFIG_USER_ONLY
2475     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2476         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2477     }
2478 #endif
2479 
2480     register_cp_regs_for_features(cpu);
2481     arm_cpu_register_gdb_regs_for_features(cpu);
2482 
2483     init_cpreg_list(cpu);
2484 
2485 #ifndef CONFIG_USER_ONLY
2486     MachineState *ms = MACHINE(qdev_get_machine());
2487     unsigned int smp_cpus = ms->smp.cpus;
2488     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2489 
2490     /*
2491      * We must set cs->num_ases to the final value before
2492      * the first call to cpu_address_space_init.
2493      */
2494     if (cpu->tag_memory != NULL) {
2495         cs->num_ases = 3 + has_secure;
2496     } else {
2497         cs->num_ases = 1 + has_secure;
2498     }
2499 
2500     if (has_secure) {
2501         if (!cpu->secure_memory) {
2502             cpu->secure_memory = cs->memory;
2503         }
2504         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2505                                cpu->secure_memory);
2506     }
2507 
2508     if (cpu->tag_memory != NULL) {
2509         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2510                                cpu->tag_memory);
2511         if (has_secure) {
2512             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2513                                    cpu->secure_tag_memory);
2514         }
2515     }
2516 
2517     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2518 
2519     /* No core_count specified, default to smp_cpus. */
2520     if (cpu->core_count == -1) {
2521         cpu->core_count = smp_cpus;
2522     }
2523 #endif
2524 
2525     if (tcg_enabled()) {
2526         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2527 
2528         /*
2529          * We only support DCZ blocklen that fits on one page.
2530          *
2531          * Architectually this is always true.  However TARGET_PAGE_SIZE
2532          * is variable and, for compatibility with -machine virt-2.7,
2533          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2534          * But even then, while the largest architectural DCZ blocklen
2535          * is 2KiB, no cpu actually uses such a large blocklen.
2536          */
2537         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2538 
2539         /*
2540          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2541          * both nibbles of each byte storing tag data may be written at once.
2542          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2543          */
2544         if (cpu_isar_feature(aa64_mte, cpu)) {
2545             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2546         }
2547     }
2548 
2549     qemu_init_vcpu(cs);
2550     cpu_reset(cs);
2551 
2552     acc->parent_realize(dev, errp);
2553 }
2554 
2555 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2556 {
2557     ObjectClass *oc;
2558     char *typename;
2559     char **cpuname;
2560     const char *cpunamestr;
2561 
2562     cpuname = g_strsplit(cpu_model, ",", 1);
2563     cpunamestr = cpuname[0];
2564 #ifdef CONFIG_USER_ONLY
2565     /* For backwards compatibility usermode emulation allows "-cpu any",
2566      * which has the same semantics as "-cpu max".
2567      */
2568     if (!strcmp(cpunamestr, "any")) {
2569         cpunamestr = "max";
2570     }
2571 #endif
2572     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2573     oc = object_class_by_name(typename);
2574     g_strfreev(cpuname);
2575     g_free(typename);
2576 
2577     return oc;
2578 }
2579 
2580 static Property arm_cpu_properties[] = {
2581     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2582     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2583                         mp_affinity, ARM64_AFFINITY_INVALID),
2584     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2585     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2586     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2587     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2588     DEFINE_PROP_END_OF_LIST()
2589 };
2590 
2591 static const gchar *arm_gdb_arch_name(CPUState *cs)
2592 {
2593     ARMCPU *cpu = ARM_CPU(cs);
2594     CPUARMState *env = &cpu->env;
2595 
2596     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2597         return "iwmmxt";
2598     }
2599     return "arm";
2600 }
2601 
2602 #ifndef CONFIG_USER_ONLY
2603 #include "hw/core/sysemu-cpu-ops.h"
2604 
2605 static const struct SysemuCPUOps arm_sysemu_ops = {
2606     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2607     .asidx_from_attrs = arm_asidx_from_attrs,
2608     .write_elf32_note = arm_cpu_write_elf32_note,
2609     .write_elf64_note = arm_cpu_write_elf64_note,
2610     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2611     .legacy_vmsd = &vmstate_arm_cpu,
2612 };
2613 #endif
2614 
2615 #ifdef CONFIG_TCG
2616 static const TCGCPUOps arm_tcg_ops = {
2617     .initialize = arm_translate_init,
2618     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2619     .debug_excp_handler = arm_debug_excp_handler,
2620     .restore_state_to_opc = arm_restore_state_to_opc,
2621 
2622 #ifdef CONFIG_USER_ONLY
2623     .record_sigsegv = arm_cpu_record_sigsegv,
2624     .record_sigbus = arm_cpu_record_sigbus,
2625 #else
2626     .tlb_fill = arm_cpu_tlb_fill,
2627     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2628     .do_interrupt = arm_cpu_do_interrupt,
2629     .do_transaction_failed = arm_cpu_do_transaction_failed,
2630     .do_unaligned_access = arm_cpu_do_unaligned_access,
2631     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2632     .debug_check_watchpoint = arm_debug_check_watchpoint,
2633     .debug_check_breakpoint = arm_debug_check_breakpoint,
2634 #endif /* !CONFIG_USER_ONLY */
2635 };
2636 #endif /* CONFIG_TCG */
2637 
2638 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2639 {
2640     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2641     CPUClass *cc = CPU_CLASS(acc);
2642     DeviceClass *dc = DEVICE_CLASS(oc);
2643     ResettableClass *rc = RESETTABLE_CLASS(oc);
2644 
2645     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2646                                     &acc->parent_realize);
2647 
2648     device_class_set_props(dc, arm_cpu_properties);
2649 
2650     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2651                                        &acc->parent_phases);
2652 
2653     cc->class_by_name = arm_cpu_class_by_name;
2654     cc->has_work = arm_cpu_has_work;
2655     cc->mmu_index = arm_cpu_mmu_index;
2656     cc->dump_state = arm_cpu_dump_state;
2657     cc->set_pc = arm_cpu_set_pc;
2658     cc->get_pc = arm_cpu_get_pc;
2659     cc->gdb_read_register = arm_cpu_gdb_read_register;
2660     cc->gdb_write_register = arm_cpu_gdb_write_register;
2661 #ifndef CONFIG_USER_ONLY
2662     cc->sysemu_ops = &arm_sysemu_ops;
2663 #endif
2664     cc->gdb_arch_name = arm_gdb_arch_name;
2665     cc->gdb_stop_before_watchpoint = true;
2666     cc->disas_set_info = arm_disas_set_info;
2667 
2668 #ifdef CONFIG_TCG
2669     cc->tcg_ops = &arm_tcg_ops;
2670 #endif /* CONFIG_TCG */
2671 }
2672 
2673 static void arm_cpu_instance_init(Object *obj)
2674 {
2675     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2676 
2677     acc->info->initfn(obj);
2678     arm_cpu_post_init(obj);
2679 }
2680 
2681 static void cpu_register_class_init(ObjectClass *oc, void *data)
2682 {
2683     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2684     CPUClass *cc = CPU_CLASS(acc);
2685 
2686     acc->info = data;
2687     cc->gdb_core_xml_file = "arm-core.xml";
2688 }
2689 
2690 void arm_cpu_register(const ARMCPUInfo *info)
2691 {
2692     TypeInfo type_info = {
2693         .parent = TYPE_ARM_CPU,
2694         .instance_init = arm_cpu_instance_init,
2695         .class_init = info->class_init ?: cpu_register_class_init,
2696         .class_data = (void *)info,
2697     };
2698 
2699     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2700     type_register(&type_info);
2701     g_free((void *)type_info.name);
2702 }
2703 
2704 static const TypeInfo arm_cpu_type_info = {
2705     .name = TYPE_ARM_CPU,
2706     .parent = TYPE_CPU,
2707     .instance_size = sizeof(ARMCPU),
2708     .instance_align = __alignof__(ARMCPU),
2709     .instance_init = arm_cpu_initfn,
2710     .instance_finalize = arm_cpu_finalizefn,
2711     .abstract = true,
2712     .class_size = sizeof(ARMCPUClass),
2713     .class_init = arm_cpu_class_init,
2714 };
2715 
2716 static void arm_cpu_register_types(void)
2717 {
2718     type_register_static(&arm_cpu_type_info);
2719 }
2720 
2721 type_init(arm_cpu_register_types)
2722