xref: /openbmc/qemu/target/arm/cpu.c (revision ed3a06b1)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 #ifdef CONFIG_TCG
64 void arm_cpu_synchronize_from_tb(CPUState *cs,
65                                  const TranslationBlock *tb)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     /*
71      * It's OK to look at env for the current mode here, because it's
72      * never possible for an AArch64 TB to chain to an AArch32 TB.
73      */
74     if (is_a64(env)) {
75         env->pc = tb->pc;
76     } else {
77         env->regs[15] = tb->pc;
78     }
79 }
80 #endif /* CONFIG_TCG */
81 
82 static bool arm_cpu_has_work(CPUState *cs)
83 {
84     ARMCPU *cpu = ARM_CPU(cs);
85 
86     return (cpu->power_state != PSCI_OFF)
87         && cs->interrupt_request &
88         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
89          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
90          | CPU_INTERRUPT_EXITTB);
91 }
92 
93 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
102 }
103 
104 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
105                                  void *opaque)
106 {
107     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
108 
109     entry->hook = hook;
110     entry->opaque = opaque;
111 
112     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
113 }
114 
115 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
116 {
117     /* Reset a single ARMCPRegInfo register */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120 
121     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
122         return;
123     }
124 
125     if (ri->resetfn) {
126         ri->resetfn(&cpu->env, ri);
127         return;
128     }
129 
130     /* A zero offset is never possible as it would be regs[0]
131      * so we use it to indicate that reset is being handled elsewhere.
132      * This is basically only used for fields in non-core coprocessors
133      * (like the pxa2xx ones).
134      */
135     if (!ri->fieldoffset) {
136         return;
137     }
138 
139     if (cpreg_field_is_64bit(ri)) {
140         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
141     } else {
142         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143     }
144 }
145 
146 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
147 {
148     /* Purely an assertion check: we've already done reset once,
149      * so now check that running the reset for the cpreg doesn't
150      * change its value. This traps bugs where two different cpregs
151      * both try to reset the same state field but to different values.
152      */
153     ARMCPRegInfo *ri = value;
154     ARMCPU *cpu = opaque;
155     uint64_t oldvalue, newvalue;
156 
157     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
158         return;
159     }
160 
161     oldvalue = read_raw_cp_reg(&cpu->env, ri);
162     cp_reg_reset(key, value, opaque);
163     newvalue = read_raw_cp_reg(&cpu->env, ri);
164     assert(oldvalue == newvalue);
165 }
166 
167 static void arm_cpu_reset(DeviceState *dev)
168 {
169     CPUState *s = CPU(dev);
170     ARMCPU *cpu = ARM_CPU(s);
171     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
172     CPUARMState *env = &cpu->env;
173 
174     acc->parent_reset(dev);
175 
176     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
177 
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
179     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
180 
181     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
182     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
183     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
184     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
185 
186     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
187 
188     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
189         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
190     }
191 
192     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
193         /* 64 bit CPUs always start in 64 bit mode */
194         env->aarch64 = true;
195 #if defined(CONFIG_USER_ONLY)
196         env->pstate = PSTATE_MODE_EL0t;
197         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
198         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
199         /* Enable all PAC keys.  */
200         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
201                                   SCTLR_EnDA | SCTLR_EnDB);
202         /* Trap on btype=3 for PACIxSP. */
203         env->cp15.sctlr_el[1] |= SCTLR_BT0;
204         /* and to the FP/Neon instructions */
205         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
206                                          CPACR_EL1, FPEN, 3);
207         /* and to the SVE instructions */
208         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
209                                          CPACR_EL1, ZEN, 3);
210         /* with reasonable vector length */
211         if (cpu_isar_feature(aa64_sve, cpu)) {
212             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
213         }
214         /*
215          * Enable 48-bit address space (TODO: take reserved_va into account).
216          * Enable TBI0 but not TBI1.
217          * Note that this must match useronly_clean_ptr.
218          */
219         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
220 
221         /* Enable MTE */
222         if (cpu_isar_feature(aa64_mte, cpu)) {
223             /* Enable tag access, but leave TCF0 as No Effect (0). */
224             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
225             /*
226              * Exclude all tags, so that tag 0 is always used.
227              * This corresponds to Linux current->thread.gcr_incl = 0.
228              *
229              * Set RRND, so that helper_irg() will generate a seed later.
230              * Here in cpu_reset(), the crypto subsystem has not yet been
231              * initialized.
232              */
233             env->cp15.gcr_el1 = 0x1ffff;
234         }
235         /*
236          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
237          * This is not yet exposed from the Linux kernel in any way.
238          */
239         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
240 #else
241         /* Reset into the highest available EL */
242         if (arm_feature(env, ARM_FEATURE_EL3)) {
243             env->pstate = PSTATE_MODE_EL3h;
244         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
245             env->pstate = PSTATE_MODE_EL2h;
246         } else {
247             env->pstate = PSTATE_MODE_EL1h;
248         }
249 
250         /* Sample rvbar at reset.  */
251         env->cp15.rvbar = cpu->rvbar_prop;
252         env->pc = env->cp15.rvbar;
253 #endif
254     } else {
255 #if defined(CONFIG_USER_ONLY)
256         /* Userspace expects access to cp10 and cp11 for FP/Neon */
257         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
258                                          CPACR, CP10, 3);
259         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260                                          CPACR, CP11, 3);
261 #endif
262     }
263 
264 #if defined(CONFIG_USER_ONLY)
265     env->uncached_cpsr = ARM_CPU_MODE_USR;
266     /* For user mode we must enable access to coprocessors */
267     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
268     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
269         env->cp15.c15_cpar = 3;
270     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
271         env->cp15.c15_cpar = 1;
272     }
273 #else
274 
275     /*
276      * If the highest available EL is EL2, AArch32 will start in Hyp
277      * mode; otherwise it starts in SVC. Note that if we start in
278      * AArch64 then these values in the uncached_cpsr will be ignored.
279      */
280     if (arm_feature(env, ARM_FEATURE_EL2) &&
281         !arm_feature(env, ARM_FEATURE_EL3)) {
282         env->uncached_cpsr = ARM_CPU_MODE_HYP;
283     } else {
284         env->uncached_cpsr = ARM_CPU_MODE_SVC;
285     }
286     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
287 
288     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
289      * executing as AArch32 then check if highvecs are enabled and
290      * adjust the PC accordingly.
291      */
292     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
293         env->regs[15] = 0xFFFF0000;
294     }
295 
296     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
297 #endif
298 
299     if (arm_feature(env, ARM_FEATURE_M)) {
300 #ifndef CONFIG_USER_ONLY
301         uint32_t initial_msp; /* Loaded from 0x0 */
302         uint32_t initial_pc; /* Loaded from 0x4 */
303         uint8_t *rom;
304         uint32_t vecbase;
305 #endif
306 
307         if (cpu_isar_feature(aa32_lob, cpu)) {
308             /*
309              * LTPSIZE is constant 4 if MVE not implemented, and resets
310              * to an UNKNOWN value if MVE is implemented. We choose to
311              * always reset to 4.
312              */
313             env->v7m.ltpsize = 4;
314             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
315             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
316             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
317         }
318 
319         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320             env->v7m.secure = true;
321         } else {
322             /* This bit resets to 0 if security is supported, but 1 if
323              * it is not. The bit is not present in v7M, but we set it
324              * here so we can avoid having to make checks on it conditional
325              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
326              */
327             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
328             /*
329              * Set NSACR to indicate "NS access permitted to everything";
330              * this avoids having to have all the tests of it being
331              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
332              * v8.1M the guest-visible value of NSACR in a CPU without the
333              * Security Extension is 0xcff.
334              */
335             env->v7m.nsacr = 0xcff;
336         }
337 
338         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
339          * that it resets to 1, so QEMU always does that rather than making
340          * it dependent on CPU model. In v8M it is RES1.
341          */
342         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
343         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
344         if (arm_feature(env, ARM_FEATURE_V8)) {
345             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
346             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
348         }
349         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
350             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
352         }
353 
354         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
355             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
356             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
357                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
358         }
359 
360 #ifndef CONFIG_USER_ONLY
361         /* Unlike A/R profile, M profile defines the reset LR value */
362         env->regs[14] = 0xffffffff;
363 
364         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
365         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
366 
367         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
368         vecbase = env->v7m.vecbase[env->v7m.secure];
369         rom = rom_ptr_for_as(s->as, vecbase, 8);
370         if (rom) {
371             /* Address zero is covered by ROM which hasn't yet been
372              * copied into physical memory.
373              */
374             initial_msp = ldl_p(rom);
375             initial_pc = ldl_p(rom + 4);
376         } else {
377             /* Address zero not covered by a ROM blob, or the ROM blob
378              * is in non-modifiable memory and this is a second reset after
379              * it got copied into memory. In the latter case, rom_ptr
380              * will return a NULL pointer and we should use ldl_phys instead.
381              */
382             initial_msp = ldl_phys(s->as, vecbase);
383             initial_pc = ldl_phys(s->as, vecbase + 4);
384         }
385 
386         qemu_log_mask(CPU_LOG_INT,
387                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
388                       initial_msp, initial_pc);
389 
390         env->regs[13] = initial_msp & 0xFFFFFFFC;
391         env->regs[15] = initial_pc & ~1;
392         env->thumb = initial_pc & 1;
393 #else
394         /*
395          * For user mode we run non-secure and with access to the FPU.
396          * The FPU context is active (ie does not need further setup)
397          * and is owned by non-secure.
398          */
399         env->v7m.secure = false;
400         env->v7m.nsacr = 0xcff;
401         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
402         env->v7m.fpccr[M_REG_S] &=
403             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
404         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
405 #endif
406     }
407 
408     /* M profile requires that reset clears the exclusive monitor;
409      * A profile does not, but clearing it makes more sense than having it
410      * set with an exclusive access on address zero.
411      */
412     arm_clear_exclusive(env);
413 
414     if (arm_feature(env, ARM_FEATURE_PMSA)) {
415         if (cpu->pmsav7_dregion > 0) {
416             if (arm_feature(env, ARM_FEATURE_V8)) {
417                 memset(env->pmsav8.rbar[M_REG_NS], 0,
418                        sizeof(*env->pmsav8.rbar[M_REG_NS])
419                        * cpu->pmsav7_dregion);
420                 memset(env->pmsav8.rlar[M_REG_NS], 0,
421                        sizeof(*env->pmsav8.rlar[M_REG_NS])
422                        * cpu->pmsav7_dregion);
423                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
424                     memset(env->pmsav8.rbar[M_REG_S], 0,
425                            sizeof(*env->pmsav8.rbar[M_REG_S])
426                            * cpu->pmsav7_dregion);
427                     memset(env->pmsav8.rlar[M_REG_S], 0,
428                            sizeof(*env->pmsav8.rlar[M_REG_S])
429                            * cpu->pmsav7_dregion);
430                 }
431             } else if (arm_feature(env, ARM_FEATURE_V7)) {
432                 memset(env->pmsav7.drbar, 0,
433                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
434                 memset(env->pmsav7.drsr, 0,
435                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
436                 memset(env->pmsav7.dracr, 0,
437                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
438             }
439         }
440         env->pmsav7.rnr[M_REG_NS] = 0;
441         env->pmsav7.rnr[M_REG_S] = 0;
442         env->pmsav8.mair0[M_REG_NS] = 0;
443         env->pmsav8.mair0[M_REG_S] = 0;
444         env->pmsav8.mair1[M_REG_NS] = 0;
445         env->pmsav8.mair1[M_REG_S] = 0;
446     }
447 
448     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
449         if (cpu->sau_sregion > 0) {
450             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
451             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
452         }
453         env->sau.rnr = 0;
454         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
455          * the Cortex-M33 does.
456          */
457         env->sau.ctrl = 0;
458     }
459 
460     set_flush_to_zero(1, &env->vfp.standard_fp_status);
461     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
462     set_default_nan_mode(1, &env->vfp.standard_fp_status);
463     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
464     set_float_detect_tininess(float_tininess_before_rounding,
465                               &env->vfp.fp_status);
466     set_float_detect_tininess(float_tininess_before_rounding,
467                               &env->vfp.standard_fp_status);
468     set_float_detect_tininess(float_tininess_before_rounding,
469                               &env->vfp.fp_status_f16);
470     set_float_detect_tininess(float_tininess_before_rounding,
471                               &env->vfp.standard_fp_status_f16);
472 #ifndef CONFIG_USER_ONLY
473     if (kvm_enabled()) {
474         kvm_arm_reset_vcpu(cpu);
475     }
476 #endif
477 
478     hw_breakpoint_update_all(cpu);
479     hw_watchpoint_update_all(cpu);
480     arm_rebuild_hflags(env);
481 }
482 
483 #ifndef CONFIG_USER_ONLY
484 
485 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
486                                      unsigned int target_el,
487                                      unsigned int cur_el, bool secure,
488                                      uint64_t hcr_el2)
489 {
490     CPUARMState *env = cs->env_ptr;
491     bool pstate_unmasked;
492     bool unmasked = false;
493 
494     /*
495      * Don't take exceptions if they target a lower EL.
496      * This check should catch any exceptions that would not be taken
497      * but left pending.
498      */
499     if (cur_el > target_el) {
500         return false;
501     }
502 
503     switch (excp_idx) {
504     case EXCP_FIQ:
505         pstate_unmasked = !(env->daif & PSTATE_F);
506         break;
507 
508     case EXCP_IRQ:
509         pstate_unmasked = !(env->daif & PSTATE_I);
510         break;
511 
512     case EXCP_VFIQ:
513         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
514             /* VFIQs are only taken when hypervized.  */
515             return false;
516         }
517         return !(env->daif & PSTATE_F);
518     case EXCP_VIRQ:
519         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
520             /* VIRQs are only taken when hypervized.  */
521             return false;
522         }
523         return !(env->daif & PSTATE_I);
524     case EXCP_VSERR:
525         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
526             /* VIRQs are only taken when hypervized.  */
527             return false;
528         }
529         return !(env->daif & PSTATE_A);
530     default:
531         g_assert_not_reached();
532     }
533 
534     /*
535      * Use the target EL, current execution state and SCR/HCR settings to
536      * determine whether the corresponding CPSR bit is used to mask the
537      * interrupt.
538      */
539     if ((target_el > cur_el) && (target_el != 1)) {
540         /* Exceptions targeting a higher EL may not be maskable */
541         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
542             /*
543              * 64-bit masking rules are simple: exceptions to EL3
544              * can't be masked, and exceptions to EL2 can only be
545              * masked from Secure state. The HCR and SCR settings
546              * don't affect the masking logic, only the interrupt routing.
547              */
548             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
549                 unmasked = true;
550             }
551         } else {
552             /*
553              * The old 32-bit-only environment has a more complicated
554              * masking setup. HCR and SCR bits not only affect interrupt
555              * routing but also change the behaviour of masking.
556              */
557             bool hcr, scr;
558 
559             switch (excp_idx) {
560             case EXCP_FIQ:
561                 /*
562                  * If FIQs are routed to EL3 or EL2 then there are cases where
563                  * we override the CPSR.F in determining if the exception is
564                  * masked or not. If neither of these are set then we fall back
565                  * to the CPSR.F setting otherwise we further assess the state
566                  * below.
567                  */
568                 hcr = hcr_el2 & HCR_FMO;
569                 scr = (env->cp15.scr_el3 & SCR_FIQ);
570 
571                 /*
572                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
573                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
574                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
575                  * when non-secure but only when FIQs are only routed to EL3.
576                  */
577                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
578                 break;
579             case EXCP_IRQ:
580                 /*
581                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
582                  * we may override the CPSR.I masking when in non-secure state.
583                  * The SCR.IRQ setting has already been taken into consideration
584                  * when setting the target EL, so it does not have a further
585                  * affect here.
586                  */
587                 hcr = hcr_el2 & HCR_IMO;
588                 scr = false;
589                 break;
590             default:
591                 g_assert_not_reached();
592             }
593 
594             if ((scr || hcr) && !secure) {
595                 unmasked = true;
596             }
597         }
598     }
599 
600     /*
601      * The PSTATE bits only mask the interrupt if we have not overriden the
602      * ability above.
603      */
604     return unmasked || pstate_unmasked;
605 }
606 
607 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
608 {
609     CPUClass *cc = CPU_GET_CLASS(cs);
610     CPUARMState *env = cs->env_ptr;
611     uint32_t cur_el = arm_current_el(env);
612     bool secure = arm_is_secure(env);
613     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
614     uint32_t target_el;
615     uint32_t excp_idx;
616 
617     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
618 
619     if (interrupt_request & CPU_INTERRUPT_FIQ) {
620         excp_idx = EXCP_FIQ;
621         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
622         if (arm_excp_unmasked(cs, excp_idx, target_el,
623                               cur_el, secure, hcr_el2)) {
624             goto found;
625         }
626     }
627     if (interrupt_request & CPU_INTERRUPT_HARD) {
628         excp_idx = EXCP_IRQ;
629         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
630         if (arm_excp_unmasked(cs, excp_idx, target_el,
631                               cur_el, secure, hcr_el2)) {
632             goto found;
633         }
634     }
635     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
636         excp_idx = EXCP_VIRQ;
637         target_el = 1;
638         if (arm_excp_unmasked(cs, excp_idx, target_el,
639                               cur_el, secure, hcr_el2)) {
640             goto found;
641         }
642     }
643     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
644         excp_idx = EXCP_VFIQ;
645         target_el = 1;
646         if (arm_excp_unmasked(cs, excp_idx, target_el,
647                               cur_el, secure, hcr_el2)) {
648             goto found;
649         }
650     }
651     if (interrupt_request & CPU_INTERRUPT_VSERR) {
652         excp_idx = EXCP_VSERR;
653         target_el = 1;
654         if (arm_excp_unmasked(cs, excp_idx, target_el,
655                               cur_el, secure, hcr_el2)) {
656             /* Taking a virtual abort clears HCR_EL2.VSE */
657             env->cp15.hcr_el2 &= ~HCR_VSE;
658             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
659             goto found;
660         }
661     }
662     return false;
663 
664  found:
665     cs->exception_index = excp_idx;
666     env->exception.target_el = target_el;
667     cc->tcg_ops->do_interrupt(cs);
668     return true;
669 }
670 #endif /* !CONFIG_USER_ONLY */
671 
672 void arm_cpu_update_virq(ARMCPU *cpu)
673 {
674     /*
675      * Update the interrupt level for VIRQ, which is the logical OR of
676      * the HCR_EL2.VI bit and the input line level from the GIC.
677      */
678     CPUARMState *env = &cpu->env;
679     CPUState *cs = CPU(cpu);
680 
681     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
682         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
683 
684     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
685         if (new_state) {
686             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
687         } else {
688             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
689         }
690     }
691 }
692 
693 void arm_cpu_update_vfiq(ARMCPU *cpu)
694 {
695     /*
696      * Update the interrupt level for VFIQ, which is the logical OR of
697      * the HCR_EL2.VF bit and the input line level from the GIC.
698      */
699     CPUARMState *env = &cpu->env;
700     CPUState *cs = CPU(cpu);
701 
702     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
703         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
704 
705     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
706         if (new_state) {
707             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
708         } else {
709             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
710         }
711     }
712 }
713 
714 void arm_cpu_update_vserr(ARMCPU *cpu)
715 {
716     /*
717      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
718      */
719     CPUARMState *env = &cpu->env;
720     CPUState *cs = CPU(cpu);
721 
722     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
723 
724     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
725         if (new_state) {
726             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
727         } else {
728             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
729         }
730     }
731 }
732 
733 #ifndef CONFIG_USER_ONLY
734 static void arm_cpu_set_irq(void *opaque, int irq, int level)
735 {
736     ARMCPU *cpu = opaque;
737     CPUARMState *env = &cpu->env;
738     CPUState *cs = CPU(cpu);
739     static const int mask[] = {
740         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
741         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
742         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
743         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
744     };
745 
746     if (!arm_feature(env, ARM_FEATURE_EL2) &&
747         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
748         /*
749          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
750          * have EL2 support we don't care. (Unless the guest is doing something
751          * silly this will only be calls saying "level is still 0".)
752          */
753         return;
754     }
755 
756     if (level) {
757         env->irq_line_state |= mask[irq];
758     } else {
759         env->irq_line_state &= ~mask[irq];
760     }
761 
762     switch (irq) {
763     case ARM_CPU_VIRQ:
764         arm_cpu_update_virq(cpu);
765         break;
766     case ARM_CPU_VFIQ:
767         arm_cpu_update_vfiq(cpu);
768         break;
769     case ARM_CPU_IRQ:
770     case ARM_CPU_FIQ:
771         if (level) {
772             cpu_interrupt(cs, mask[irq]);
773         } else {
774             cpu_reset_interrupt(cs, mask[irq]);
775         }
776         break;
777     default:
778         g_assert_not_reached();
779     }
780 }
781 
782 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
783 {
784 #ifdef CONFIG_KVM
785     ARMCPU *cpu = opaque;
786     CPUARMState *env = &cpu->env;
787     CPUState *cs = CPU(cpu);
788     uint32_t linestate_bit;
789     int irq_id;
790 
791     switch (irq) {
792     case ARM_CPU_IRQ:
793         irq_id = KVM_ARM_IRQ_CPU_IRQ;
794         linestate_bit = CPU_INTERRUPT_HARD;
795         break;
796     case ARM_CPU_FIQ:
797         irq_id = KVM_ARM_IRQ_CPU_FIQ;
798         linestate_bit = CPU_INTERRUPT_FIQ;
799         break;
800     default:
801         g_assert_not_reached();
802     }
803 
804     if (level) {
805         env->irq_line_state |= linestate_bit;
806     } else {
807         env->irq_line_state &= ~linestate_bit;
808     }
809     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
810 #endif
811 }
812 
813 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
814 {
815     ARMCPU *cpu = ARM_CPU(cs);
816     CPUARMState *env = &cpu->env;
817 
818     cpu_synchronize_state(cs);
819     return arm_cpu_data_is_big_endian(env);
820 }
821 
822 #endif
823 
824 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
825 {
826     ARMCPU *ac = ARM_CPU(cpu);
827     CPUARMState *env = &ac->env;
828     bool sctlr_b;
829 
830     if (is_a64(env)) {
831         /* We might not be compiled with the A64 disassembler
832          * because it needs a C++ compiler. Leave print_insn
833          * unset in this case to use the caller default behaviour.
834          */
835 #if defined(CONFIG_ARM_A64_DIS)
836         info->print_insn = print_insn_arm_a64;
837 #endif
838         info->cap_arch = CS_ARCH_ARM64;
839         info->cap_insn_unit = 4;
840         info->cap_insn_split = 4;
841     } else {
842         int cap_mode;
843         if (env->thumb) {
844             info->cap_insn_unit = 2;
845             info->cap_insn_split = 4;
846             cap_mode = CS_MODE_THUMB;
847         } else {
848             info->cap_insn_unit = 4;
849             info->cap_insn_split = 4;
850             cap_mode = CS_MODE_ARM;
851         }
852         if (arm_feature(env, ARM_FEATURE_V8)) {
853             cap_mode |= CS_MODE_V8;
854         }
855         if (arm_feature(env, ARM_FEATURE_M)) {
856             cap_mode |= CS_MODE_MCLASS;
857         }
858         info->cap_arch = CS_ARCH_ARM;
859         info->cap_mode = cap_mode;
860     }
861 
862     sctlr_b = arm_sctlr_b(env);
863     if (bswap_code(sctlr_b)) {
864 #if TARGET_BIG_ENDIAN
865         info->endian = BFD_ENDIAN_LITTLE;
866 #else
867         info->endian = BFD_ENDIAN_BIG;
868 #endif
869     }
870     info->flags &= ~INSN_ARM_BE32;
871 #ifndef CONFIG_USER_ONLY
872     if (sctlr_b) {
873         info->flags |= INSN_ARM_BE32;
874     }
875 #endif
876 }
877 
878 #ifdef TARGET_AARCH64
879 
880 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
881 {
882     ARMCPU *cpu = ARM_CPU(cs);
883     CPUARMState *env = &cpu->env;
884     uint32_t psr = pstate_read(env);
885     int i;
886     int el = arm_current_el(env);
887     const char *ns_status;
888 
889     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
890     for (i = 0; i < 32; i++) {
891         if (i == 31) {
892             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
893         } else {
894             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
895                          (i + 2) % 3 ? " " : "\n");
896         }
897     }
898 
899     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
900         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
901     } else {
902         ns_status = "";
903     }
904     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
905                  psr,
906                  psr & PSTATE_N ? 'N' : '-',
907                  psr & PSTATE_Z ? 'Z' : '-',
908                  psr & PSTATE_C ? 'C' : '-',
909                  psr & PSTATE_V ? 'V' : '-',
910                  ns_status,
911                  el,
912                  psr & PSTATE_SP ? 'h' : 't');
913 
914     if (cpu_isar_feature(aa64_bti, cpu)) {
915         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
916     }
917     if (!(flags & CPU_DUMP_FPU)) {
918         qemu_fprintf(f, "\n");
919         return;
920     }
921     if (fp_exception_el(env, el) != 0) {
922         qemu_fprintf(f, "    FPU disabled\n");
923         return;
924     }
925     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
926                  vfp_get_fpcr(env), vfp_get_fpsr(env));
927 
928     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
929         int j, zcr_len = sve_vqm1_for_el(env, el);
930 
931         for (i = 0; i <= FFR_PRED_NUM; i++) {
932             bool eol;
933             if (i == FFR_PRED_NUM) {
934                 qemu_fprintf(f, "FFR=");
935                 /* It's last, so end the line.  */
936                 eol = true;
937             } else {
938                 qemu_fprintf(f, "P%02d=", i);
939                 switch (zcr_len) {
940                 case 0:
941                     eol = i % 8 == 7;
942                     break;
943                 case 1:
944                     eol = i % 6 == 5;
945                     break;
946                 case 2:
947                 case 3:
948                     eol = i % 3 == 2;
949                     break;
950                 default:
951                     /* More than one quadword per predicate.  */
952                     eol = true;
953                     break;
954                 }
955             }
956             for (j = zcr_len / 4; j >= 0; j--) {
957                 int digits;
958                 if (j * 4 + 4 <= zcr_len + 1) {
959                     digits = 16;
960                 } else {
961                     digits = (zcr_len % 4 + 1) * 4;
962                 }
963                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
964                              env->vfp.pregs[i].p[j],
965                              j ? ":" : eol ? "\n" : " ");
966             }
967         }
968 
969         for (i = 0; i < 32; i++) {
970             if (zcr_len == 0) {
971                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
972                              i, env->vfp.zregs[i].d[1],
973                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
974             } else if (zcr_len == 1) {
975                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
976                              ":%016" PRIx64 ":%016" PRIx64 "\n",
977                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
978                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
979             } else {
980                 for (j = zcr_len; j >= 0; j--) {
981                     bool odd = (zcr_len - j) % 2 != 0;
982                     if (j == zcr_len) {
983                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
984                     } else if (!odd) {
985                         if (j > 0) {
986                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
987                         } else {
988                             qemu_fprintf(f, "     [%x]=", j);
989                         }
990                     }
991                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
992                                  env->vfp.zregs[i].d[j * 2 + 1],
993                                  env->vfp.zregs[i].d[j * 2],
994                                  odd || j == 0 ? "\n" : ":");
995                 }
996             }
997         }
998     } else {
999         for (i = 0; i < 32; i++) {
1000             uint64_t *q = aa64_vfp_qreg(env, i);
1001             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1002                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1003         }
1004     }
1005 }
1006 
1007 #else
1008 
1009 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1010 {
1011     g_assert_not_reached();
1012 }
1013 
1014 #endif
1015 
1016 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1017 {
1018     ARMCPU *cpu = ARM_CPU(cs);
1019     CPUARMState *env = &cpu->env;
1020     int i;
1021 
1022     if (is_a64(env)) {
1023         aarch64_cpu_dump_state(cs, f, flags);
1024         return;
1025     }
1026 
1027     for (i = 0; i < 16; i++) {
1028         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1029         if ((i % 4) == 3) {
1030             qemu_fprintf(f, "\n");
1031         } else {
1032             qemu_fprintf(f, " ");
1033         }
1034     }
1035 
1036     if (arm_feature(env, ARM_FEATURE_M)) {
1037         uint32_t xpsr = xpsr_read(env);
1038         const char *mode;
1039         const char *ns_status = "";
1040 
1041         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1042             ns_status = env->v7m.secure ? "S " : "NS ";
1043         }
1044 
1045         if (xpsr & XPSR_EXCP) {
1046             mode = "handler";
1047         } else {
1048             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1049                 mode = "unpriv-thread";
1050             } else {
1051                 mode = "priv-thread";
1052             }
1053         }
1054 
1055         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1056                      xpsr,
1057                      xpsr & XPSR_N ? 'N' : '-',
1058                      xpsr & XPSR_Z ? 'Z' : '-',
1059                      xpsr & XPSR_C ? 'C' : '-',
1060                      xpsr & XPSR_V ? 'V' : '-',
1061                      xpsr & XPSR_T ? 'T' : 'A',
1062                      ns_status,
1063                      mode);
1064     } else {
1065         uint32_t psr = cpsr_read(env);
1066         const char *ns_status = "";
1067 
1068         if (arm_feature(env, ARM_FEATURE_EL3) &&
1069             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1070             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1071         }
1072 
1073         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1074                      psr,
1075                      psr & CPSR_N ? 'N' : '-',
1076                      psr & CPSR_Z ? 'Z' : '-',
1077                      psr & CPSR_C ? 'C' : '-',
1078                      psr & CPSR_V ? 'V' : '-',
1079                      psr & CPSR_T ? 'T' : 'A',
1080                      ns_status,
1081                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1082     }
1083 
1084     if (flags & CPU_DUMP_FPU) {
1085         int numvfpregs = 0;
1086         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1087             numvfpregs = 32;
1088         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1089             numvfpregs = 16;
1090         }
1091         for (i = 0; i < numvfpregs; i++) {
1092             uint64_t v = *aa32_vfp_dreg(env, i);
1093             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1094                          i * 2, (uint32_t)v,
1095                          i * 2 + 1, (uint32_t)(v >> 32),
1096                          i, v);
1097         }
1098         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1099         if (cpu_isar_feature(aa32_mve, cpu)) {
1100             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1101         }
1102     }
1103 }
1104 
1105 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1106 {
1107     uint32_t Aff1 = idx / clustersz;
1108     uint32_t Aff0 = idx % clustersz;
1109     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1110 }
1111 
1112 static void arm_cpu_initfn(Object *obj)
1113 {
1114     ARMCPU *cpu = ARM_CPU(obj);
1115 
1116     cpu_set_cpustate_pointers(cpu);
1117     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1118                                          NULL, g_free);
1119 
1120     QLIST_INIT(&cpu->pre_el_change_hooks);
1121     QLIST_INIT(&cpu->el_change_hooks);
1122 
1123 #ifdef CONFIG_USER_ONLY
1124 # ifdef TARGET_AARCH64
1125     /*
1126      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1127      * These values were chosen to fit within the default signal frame.
1128      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1129      * and our corresponding cpu property.
1130      */
1131     cpu->sve_default_vq = 4;
1132     cpu->sme_default_vq = 2;
1133 # endif
1134 #else
1135     /* Our inbound IRQ and FIQ lines */
1136     if (kvm_enabled()) {
1137         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1138          * the same interface as non-KVM CPUs.
1139          */
1140         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1141     } else {
1142         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1143     }
1144 
1145     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1146                        ARRAY_SIZE(cpu->gt_timer_outputs));
1147 
1148     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1149                              "gicv3-maintenance-interrupt", 1);
1150     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1151                              "pmu-interrupt", 1);
1152 #endif
1153 
1154     /* DTB consumers generally don't in fact care what the 'compatible'
1155      * string is, so always provide some string and trust that a hypothetical
1156      * picky DTB consumer will also provide a helpful error message.
1157      */
1158     cpu->dtb_compatible = "qemu,unknown";
1159     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1160     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1161 
1162     if (tcg_enabled() || hvf_enabled()) {
1163         /* TCG and HVF implement PSCI 1.1 */
1164         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1165     }
1166 }
1167 
1168 static Property arm_cpu_gt_cntfrq_property =
1169             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1170                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1171 
1172 static Property arm_cpu_reset_cbar_property =
1173             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1174 
1175 static Property arm_cpu_reset_hivecs_property =
1176             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1177 
1178 #ifndef CONFIG_USER_ONLY
1179 static Property arm_cpu_has_el2_property =
1180             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1181 
1182 static Property arm_cpu_has_el3_property =
1183             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1184 #endif
1185 
1186 static Property arm_cpu_cfgend_property =
1187             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1188 
1189 static Property arm_cpu_has_vfp_property =
1190             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1191 
1192 static Property arm_cpu_has_neon_property =
1193             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1194 
1195 static Property arm_cpu_has_dsp_property =
1196             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1197 
1198 static Property arm_cpu_has_mpu_property =
1199             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1200 
1201 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1202  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1203  * the right value for that particular CPU type, and we don't want
1204  * to override that with an incorrect constant value.
1205  */
1206 static Property arm_cpu_pmsav7_dregion_property =
1207             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1208                                            pmsav7_dregion,
1209                                            qdev_prop_uint32, uint32_t);
1210 
1211 static bool arm_get_pmu(Object *obj, Error **errp)
1212 {
1213     ARMCPU *cpu = ARM_CPU(obj);
1214 
1215     return cpu->has_pmu;
1216 }
1217 
1218 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1219 {
1220     ARMCPU *cpu = ARM_CPU(obj);
1221 
1222     if (value) {
1223         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1224             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1225             return;
1226         }
1227         set_feature(&cpu->env, ARM_FEATURE_PMU);
1228     } else {
1229         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1230     }
1231     cpu->has_pmu = value;
1232 }
1233 
1234 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1235 {
1236     /*
1237      * The exact approach to calculating guest ticks is:
1238      *
1239      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1240      *              NANOSECONDS_PER_SECOND);
1241      *
1242      * We don't do that. Rather we intentionally use integer division
1243      * truncation below and in the caller for the conversion of host monotonic
1244      * time to guest ticks to provide the exact inverse for the semantics of
1245      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1246      * it loses precision when representing frequencies where
1247      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1248      * provide an exact inverse leads to scheduling timers with negative
1249      * periods, which in turn leads to sticky behaviour in the guest.
1250      *
1251      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1252      * cannot become zero.
1253      */
1254     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1255       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1256 }
1257 
1258 void arm_cpu_post_init(Object *obj)
1259 {
1260     ARMCPU *cpu = ARM_CPU(obj);
1261 
1262     /* M profile implies PMSA. We have to do this here rather than
1263      * in realize with the other feature-implication checks because
1264      * we look at the PMSA bit to see if we should add some properties.
1265      */
1266     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1267         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1268     }
1269 
1270     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1271         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1272         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1273     }
1274 
1275     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1276         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1277     }
1278 
1279     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1280         object_property_add_uint64_ptr(obj, "rvbar",
1281                                        &cpu->rvbar_prop,
1282                                        OBJ_PROP_FLAG_READWRITE);
1283     }
1284 
1285 #ifndef CONFIG_USER_ONLY
1286     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1287         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1288          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1289          */
1290         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1291 
1292         object_property_add_link(obj, "secure-memory",
1293                                  TYPE_MEMORY_REGION,
1294                                  (Object **)&cpu->secure_memory,
1295                                  qdev_prop_allow_set_link_before_realize,
1296                                  OBJ_PROP_LINK_STRONG);
1297     }
1298 
1299     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1300         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1301     }
1302 #endif
1303 
1304     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1305         cpu->has_pmu = true;
1306         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1307     }
1308 
1309     /*
1310      * Allow user to turn off VFP and Neon support, but only for TCG --
1311      * KVM does not currently allow us to lie to the guest about its
1312      * ID/feature registers, so the guest always sees what the host has.
1313      */
1314     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1315         ? cpu_isar_feature(aa64_fp_simd, cpu)
1316         : cpu_isar_feature(aa32_vfp, cpu)) {
1317         cpu->has_vfp = true;
1318         if (!kvm_enabled()) {
1319             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1320         }
1321     }
1322 
1323     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1324         cpu->has_neon = true;
1325         if (!kvm_enabled()) {
1326             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1327         }
1328     }
1329 
1330     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1331         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1332         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1333     }
1334 
1335     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1336         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1337         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1338             qdev_property_add_static(DEVICE(obj),
1339                                      &arm_cpu_pmsav7_dregion_property);
1340         }
1341     }
1342 
1343     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1344         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1345                                  qdev_prop_allow_set_link_before_realize,
1346                                  OBJ_PROP_LINK_STRONG);
1347         /*
1348          * M profile: initial value of the Secure VTOR. We can't just use
1349          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1350          * the property to be set after realize.
1351          */
1352         object_property_add_uint32_ptr(obj, "init-svtor",
1353                                        &cpu->init_svtor,
1354                                        OBJ_PROP_FLAG_READWRITE);
1355     }
1356     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1357         /*
1358          * Initial value of the NS VTOR (for cores without the Security
1359          * extension, this is the only VTOR)
1360          */
1361         object_property_add_uint32_ptr(obj, "init-nsvtor",
1362                                        &cpu->init_nsvtor,
1363                                        OBJ_PROP_FLAG_READWRITE);
1364     }
1365 
1366     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1367     object_property_add_uint32_ptr(obj, "psci-conduit",
1368                                    &cpu->psci_conduit,
1369                                    OBJ_PROP_FLAG_READWRITE);
1370 
1371     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1372 
1373     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1374         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1375     }
1376 
1377     if (kvm_enabled()) {
1378         kvm_arm_add_vcpu_properties(obj);
1379     }
1380 
1381 #ifndef CONFIG_USER_ONLY
1382     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1383         cpu_isar_feature(aa64_mte, cpu)) {
1384         object_property_add_link(obj, "tag-memory",
1385                                  TYPE_MEMORY_REGION,
1386                                  (Object **)&cpu->tag_memory,
1387                                  qdev_prop_allow_set_link_before_realize,
1388                                  OBJ_PROP_LINK_STRONG);
1389 
1390         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1391             object_property_add_link(obj, "secure-tag-memory",
1392                                      TYPE_MEMORY_REGION,
1393                                      (Object **)&cpu->secure_tag_memory,
1394                                      qdev_prop_allow_set_link_before_realize,
1395                                      OBJ_PROP_LINK_STRONG);
1396         }
1397     }
1398 #endif
1399 }
1400 
1401 static void arm_cpu_finalizefn(Object *obj)
1402 {
1403     ARMCPU *cpu = ARM_CPU(obj);
1404     ARMELChangeHook *hook, *next;
1405 
1406     g_hash_table_destroy(cpu->cp_regs);
1407 
1408     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1409         QLIST_REMOVE(hook, node);
1410         g_free(hook);
1411     }
1412     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1413         QLIST_REMOVE(hook, node);
1414         g_free(hook);
1415     }
1416 #ifndef CONFIG_USER_ONLY
1417     if (cpu->pmu_timer) {
1418         timer_free(cpu->pmu_timer);
1419     }
1420 #endif
1421 }
1422 
1423 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1424 {
1425     Error *local_err = NULL;
1426 
1427 #ifdef TARGET_AARCH64
1428     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1429         arm_cpu_sve_finalize(cpu, &local_err);
1430         if (local_err != NULL) {
1431             error_propagate(errp, local_err);
1432             return;
1433         }
1434 
1435         arm_cpu_sme_finalize(cpu, &local_err);
1436         if (local_err != NULL) {
1437             error_propagate(errp, local_err);
1438             return;
1439         }
1440 
1441         arm_cpu_pauth_finalize(cpu, &local_err);
1442         if (local_err != NULL) {
1443             error_propagate(errp, local_err);
1444             return;
1445         }
1446 
1447         arm_cpu_lpa2_finalize(cpu, &local_err);
1448         if (local_err != NULL) {
1449             error_propagate(errp, local_err);
1450             return;
1451         }
1452     }
1453 #endif
1454 
1455     if (kvm_enabled()) {
1456         kvm_arm_steal_time_finalize(cpu, &local_err);
1457         if (local_err != NULL) {
1458             error_propagate(errp, local_err);
1459             return;
1460         }
1461     }
1462 }
1463 
1464 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1465 {
1466     CPUState *cs = CPU(dev);
1467     ARMCPU *cpu = ARM_CPU(dev);
1468     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1469     CPUARMState *env = &cpu->env;
1470     int pagebits;
1471     Error *local_err = NULL;
1472     bool no_aa32 = false;
1473 
1474     /* If we needed to query the host kernel for the CPU features
1475      * then it's possible that might have failed in the initfn, but
1476      * this is the first point where we can report it.
1477      */
1478     if (cpu->host_cpu_probe_failed) {
1479         if (!kvm_enabled() && !hvf_enabled()) {
1480             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1481         } else {
1482             error_setg(errp, "Failed to retrieve host CPU features");
1483         }
1484         return;
1485     }
1486 
1487 #ifndef CONFIG_USER_ONLY
1488     /* The NVIC and M-profile CPU are two halves of a single piece of
1489      * hardware; trying to use one without the other is a command line
1490      * error and will result in segfaults if not caught here.
1491      */
1492     if (arm_feature(env, ARM_FEATURE_M)) {
1493         if (!env->nvic) {
1494             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1495             return;
1496         }
1497     } else {
1498         if (env->nvic) {
1499             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1500             return;
1501         }
1502     }
1503 
1504     if (!tcg_enabled() && !qtest_enabled()) {
1505         /*
1506          * We assume that no accelerator except TCG (and the "not really an
1507          * accelerator" qtest) can handle these features, because Arm hardware
1508          * virtualization can't virtualize them.
1509          *
1510          * Catch all the cases which might cause us to create more than one
1511          * address space for the CPU (otherwise we will assert() later in
1512          * cpu_address_space_init()).
1513          */
1514         if (arm_feature(env, ARM_FEATURE_M)) {
1515             error_setg(errp,
1516                        "Cannot enable %s when using an M-profile guest CPU",
1517                        current_accel_name());
1518             return;
1519         }
1520         if (cpu->has_el3) {
1521             error_setg(errp,
1522                        "Cannot enable %s when guest CPU has EL3 enabled",
1523                        current_accel_name());
1524             return;
1525         }
1526         if (cpu->tag_memory) {
1527             error_setg(errp,
1528                        "Cannot enable %s when guest CPUs has MTE enabled",
1529                        current_accel_name());
1530             return;
1531         }
1532     }
1533 
1534     {
1535         uint64_t scale;
1536 
1537         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1538             if (!cpu->gt_cntfrq_hz) {
1539                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1540                            cpu->gt_cntfrq_hz);
1541                 return;
1542             }
1543             scale = gt_cntfrq_period_ns(cpu);
1544         } else {
1545             scale = GTIMER_SCALE;
1546         }
1547 
1548         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1549                                                arm_gt_ptimer_cb, cpu);
1550         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1551                                                arm_gt_vtimer_cb, cpu);
1552         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1553                                               arm_gt_htimer_cb, cpu);
1554         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1555                                               arm_gt_stimer_cb, cpu);
1556         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1557                                                   arm_gt_hvtimer_cb, cpu);
1558     }
1559 #endif
1560 
1561     cpu_exec_realizefn(cs, &local_err);
1562     if (local_err != NULL) {
1563         error_propagate(errp, local_err);
1564         return;
1565     }
1566 
1567     arm_cpu_finalize_features(cpu, &local_err);
1568     if (local_err != NULL) {
1569         error_propagate(errp, local_err);
1570         return;
1571     }
1572 
1573     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1574         cpu->has_vfp != cpu->has_neon) {
1575         /*
1576          * This is an architectural requirement for AArch64; AArch32 is
1577          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1578          */
1579         error_setg(errp,
1580                    "AArch64 CPUs must have both VFP and Neon or neither");
1581         return;
1582     }
1583 
1584     if (!cpu->has_vfp) {
1585         uint64_t t;
1586         uint32_t u;
1587 
1588         t = cpu->isar.id_aa64isar1;
1589         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1590         cpu->isar.id_aa64isar1 = t;
1591 
1592         t = cpu->isar.id_aa64pfr0;
1593         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1594         cpu->isar.id_aa64pfr0 = t;
1595 
1596         u = cpu->isar.id_isar6;
1597         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1598         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1599         cpu->isar.id_isar6 = u;
1600 
1601         u = cpu->isar.mvfr0;
1602         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1603         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1604         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1605         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1606         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1607         if (!arm_feature(env, ARM_FEATURE_M)) {
1608             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1609             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1610         }
1611         cpu->isar.mvfr0 = u;
1612 
1613         u = cpu->isar.mvfr1;
1614         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1615         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1616         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1617         if (arm_feature(env, ARM_FEATURE_M)) {
1618             u = FIELD_DP32(u, MVFR1, FP16, 0);
1619         }
1620         cpu->isar.mvfr1 = u;
1621 
1622         u = cpu->isar.mvfr2;
1623         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1624         cpu->isar.mvfr2 = u;
1625     }
1626 
1627     if (!cpu->has_neon) {
1628         uint64_t t;
1629         uint32_t u;
1630 
1631         unset_feature(env, ARM_FEATURE_NEON);
1632 
1633         t = cpu->isar.id_aa64isar0;
1634         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1635         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1636         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1637         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1638         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1639         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1640         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1641         cpu->isar.id_aa64isar0 = t;
1642 
1643         t = cpu->isar.id_aa64isar1;
1644         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1645         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1646         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1647         cpu->isar.id_aa64isar1 = t;
1648 
1649         t = cpu->isar.id_aa64pfr0;
1650         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1651         cpu->isar.id_aa64pfr0 = t;
1652 
1653         u = cpu->isar.id_isar5;
1654         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1655         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1656         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1657         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1658         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1659         cpu->isar.id_isar5 = u;
1660 
1661         u = cpu->isar.id_isar6;
1662         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1663         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1664         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1665         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1666         cpu->isar.id_isar6 = u;
1667 
1668         if (!arm_feature(env, ARM_FEATURE_M)) {
1669             u = cpu->isar.mvfr1;
1670             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1671             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1672             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1673             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1674             cpu->isar.mvfr1 = u;
1675 
1676             u = cpu->isar.mvfr2;
1677             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1678             cpu->isar.mvfr2 = u;
1679         }
1680     }
1681 
1682     if (!cpu->has_neon && !cpu->has_vfp) {
1683         uint64_t t;
1684         uint32_t u;
1685 
1686         t = cpu->isar.id_aa64isar0;
1687         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1688         cpu->isar.id_aa64isar0 = t;
1689 
1690         t = cpu->isar.id_aa64isar1;
1691         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1692         cpu->isar.id_aa64isar1 = t;
1693 
1694         u = cpu->isar.mvfr0;
1695         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1696         cpu->isar.mvfr0 = u;
1697 
1698         /* Despite the name, this field covers both VFP and Neon */
1699         u = cpu->isar.mvfr1;
1700         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1701         cpu->isar.mvfr1 = u;
1702     }
1703 
1704     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1705         uint32_t u;
1706 
1707         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1708 
1709         u = cpu->isar.id_isar1;
1710         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1711         cpu->isar.id_isar1 = u;
1712 
1713         u = cpu->isar.id_isar2;
1714         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1715         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1716         cpu->isar.id_isar2 = u;
1717 
1718         u = cpu->isar.id_isar3;
1719         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1720         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1721         cpu->isar.id_isar3 = u;
1722     }
1723 
1724     /* Some features automatically imply others: */
1725     if (arm_feature(env, ARM_FEATURE_V8)) {
1726         if (arm_feature(env, ARM_FEATURE_M)) {
1727             set_feature(env, ARM_FEATURE_V7);
1728         } else {
1729             set_feature(env, ARM_FEATURE_V7VE);
1730         }
1731     }
1732 
1733     /*
1734      * There exist AArch64 cpus without AArch32 support.  When KVM
1735      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1736      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1737      * As a general principle, we also do not make ID register
1738      * consistency checks anywhere unless using TCG, because only
1739      * for TCG would a consistency-check failure be a QEMU bug.
1740      */
1741     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1742         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1743     }
1744 
1745     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1746         /* v7 Virtualization Extensions. In real hardware this implies
1747          * EL2 and also the presence of the Security Extensions.
1748          * For QEMU, for backwards-compatibility we implement some
1749          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1750          * include the various other features that V7VE implies.
1751          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1752          * Security Extensions is ARM_FEATURE_EL3.
1753          */
1754         assert(!tcg_enabled() || no_aa32 ||
1755                cpu_isar_feature(aa32_arm_div, cpu));
1756         set_feature(env, ARM_FEATURE_LPAE);
1757         set_feature(env, ARM_FEATURE_V7);
1758     }
1759     if (arm_feature(env, ARM_FEATURE_V7)) {
1760         set_feature(env, ARM_FEATURE_VAPA);
1761         set_feature(env, ARM_FEATURE_THUMB2);
1762         set_feature(env, ARM_FEATURE_MPIDR);
1763         if (!arm_feature(env, ARM_FEATURE_M)) {
1764             set_feature(env, ARM_FEATURE_V6K);
1765         } else {
1766             set_feature(env, ARM_FEATURE_V6);
1767         }
1768 
1769         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1770          * non-EL3 configs. This is needed by some legacy boards.
1771          */
1772         set_feature(env, ARM_FEATURE_VBAR);
1773     }
1774     if (arm_feature(env, ARM_FEATURE_V6K)) {
1775         set_feature(env, ARM_FEATURE_V6);
1776         set_feature(env, ARM_FEATURE_MVFR);
1777     }
1778     if (arm_feature(env, ARM_FEATURE_V6)) {
1779         set_feature(env, ARM_FEATURE_V5);
1780         if (!arm_feature(env, ARM_FEATURE_M)) {
1781             assert(!tcg_enabled() || no_aa32 ||
1782                    cpu_isar_feature(aa32_jazelle, cpu));
1783             set_feature(env, ARM_FEATURE_AUXCR);
1784         }
1785     }
1786     if (arm_feature(env, ARM_FEATURE_V5)) {
1787         set_feature(env, ARM_FEATURE_V4T);
1788     }
1789     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1790         set_feature(env, ARM_FEATURE_V7MP);
1791     }
1792     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1793         set_feature(env, ARM_FEATURE_CBAR);
1794     }
1795     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1796         !arm_feature(env, ARM_FEATURE_M)) {
1797         set_feature(env, ARM_FEATURE_THUMB_DSP);
1798     }
1799 
1800     /*
1801      * We rely on no XScale CPU having VFP so we can use the same bits in the
1802      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1803      */
1804     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1805            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1806            !arm_feature(env, ARM_FEATURE_XSCALE));
1807 
1808     if (arm_feature(env, ARM_FEATURE_V7) &&
1809         !arm_feature(env, ARM_FEATURE_M) &&
1810         !arm_feature(env, ARM_FEATURE_PMSA)) {
1811         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1812          * can use 4K pages.
1813          */
1814         pagebits = 12;
1815     } else {
1816         /* For CPUs which might have tiny 1K pages, or which have an
1817          * MPU and might have small region sizes, stick with 1K pages.
1818          */
1819         pagebits = 10;
1820     }
1821     if (!set_preferred_target_page_bits(pagebits)) {
1822         /* This can only ever happen for hotplugging a CPU, or if
1823          * the board code incorrectly creates a CPU which it has
1824          * promised via minimum_page_size that it will not.
1825          */
1826         error_setg(errp, "This CPU requires a smaller page size than the "
1827                    "system is using");
1828         return;
1829     }
1830 
1831     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1832      * We don't support setting cluster ID ([16..23]) (known as Aff2
1833      * in later ARM ARM versions), or any of the higher affinity level fields,
1834      * so these bits always RAZ.
1835      */
1836     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1837         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1838                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1839     }
1840 
1841     if (cpu->reset_hivecs) {
1842             cpu->reset_sctlr |= (1 << 13);
1843     }
1844 
1845     if (cpu->cfgend) {
1846         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1847             cpu->reset_sctlr |= SCTLR_EE;
1848         } else {
1849             cpu->reset_sctlr |= SCTLR_B;
1850         }
1851     }
1852 
1853     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1854         /* If the has_el3 CPU property is disabled then we need to disable the
1855          * feature.
1856          */
1857         unset_feature(env, ARM_FEATURE_EL3);
1858 
1859         /*
1860          * Disable the security extension feature bits in the processor
1861          * feature registers as well.
1862          */
1863         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1864         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1865         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1866                                            ID_AA64PFR0, EL3, 0);
1867     }
1868 
1869     if (!cpu->has_el2) {
1870         unset_feature(env, ARM_FEATURE_EL2);
1871     }
1872 
1873     if (!cpu->has_pmu) {
1874         unset_feature(env, ARM_FEATURE_PMU);
1875     }
1876     if (arm_feature(env, ARM_FEATURE_PMU)) {
1877         pmu_init(cpu);
1878 
1879         if (!kvm_enabled()) {
1880             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1881             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1882         }
1883 
1884 #ifndef CONFIG_USER_ONLY
1885         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1886                 cpu);
1887 #endif
1888     } else {
1889         cpu->isar.id_aa64dfr0 =
1890             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1891         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1892         cpu->pmceid0 = 0;
1893         cpu->pmceid1 = 0;
1894     }
1895 
1896     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1897         /*
1898          * Disable the hypervisor feature bits in the processor feature
1899          * registers if we don't have EL2.
1900          */
1901         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1902                                            ID_AA64PFR0, EL2, 0);
1903         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1904                                        ID_PFR1, VIRTUALIZATION, 0);
1905     }
1906 
1907 #ifndef CONFIG_USER_ONLY
1908     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1909         /*
1910          * Disable the MTE feature bits if we do not have tag-memory
1911          * provided by the machine.
1912          */
1913         cpu->isar.id_aa64pfr1 =
1914             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1915     }
1916 #endif
1917 
1918     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1919      * to false or by setting pmsav7-dregion to 0.
1920      */
1921     if (!cpu->has_mpu) {
1922         cpu->pmsav7_dregion = 0;
1923     }
1924     if (cpu->pmsav7_dregion == 0) {
1925         cpu->has_mpu = false;
1926     }
1927 
1928     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1929         arm_feature(env, ARM_FEATURE_V7)) {
1930         uint32_t nr = cpu->pmsav7_dregion;
1931 
1932         if (nr > 0xff) {
1933             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1934             return;
1935         }
1936 
1937         if (nr) {
1938             if (arm_feature(env, ARM_FEATURE_V8)) {
1939                 /* PMSAv8 */
1940                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1941                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1942                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1943                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1944                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1945                 }
1946             } else {
1947                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1948                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1949                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1950             }
1951         }
1952     }
1953 
1954     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1955         uint32_t nr = cpu->sau_sregion;
1956 
1957         if (nr > 0xff) {
1958             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1959             return;
1960         }
1961 
1962         if (nr) {
1963             env->sau.rbar = g_new0(uint32_t, nr);
1964             env->sau.rlar = g_new0(uint32_t, nr);
1965         }
1966     }
1967 
1968     if (arm_feature(env, ARM_FEATURE_EL3)) {
1969         set_feature(env, ARM_FEATURE_VBAR);
1970     }
1971 
1972     register_cp_regs_for_features(cpu);
1973     arm_cpu_register_gdb_regs_for_features(cpu);
1974 
1975     init_cpreg_list(cpu);
1976 
1977 #ifndef CONFIG_USER_ONLY
1978     MachineState *ms = MACHINE(qdev_get_machine());
1979     unsigned int smp_cpus = ms->smp.cpus;
1980     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1981 
1982     /*
1983      * We must set cs->num_ases to the final value before
1984      * the first call to cpu_address_space_init.
1985      */
1986     if (cpu->tag_memory != NULL) {
1987         cs->num_ases = 3 + has_secure;
1988     } else {
1989         cs->num_ases = 1 + has_secure;
1990     }
1991 
1992     if (has_secure) {
1993         if (!cpu->secure_memory) {
1994             cpu->secure_memory = cs->memory;
1995         }
1996         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1997                                cpu->secure_memory);
1998     }
1999 
2000     if (cpu->tag_memory != NULL) {
2001         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2002                                cpu->tag_memory);
2003         if (has_secure) {
2004             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2005                                    cpu->secure_tag_memory);
2006         }
2007     }
2008 
2009     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2010 
2011     /* No core_count specified, default to smp_cpus. */
2012     if (cpu->core_count == -1) {
2013         cpu->core_count = smp_cpus;
2014     }
2015 #endif
2016 
2017     if (tcg_enabled()) {
2018         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2019 
2020         /*
2021          * We only support DCZ blocklen that fits on one page.
2022          *
2023          * Architectually this is always true.  However TARGET_PAGE_SIZE
2024          * is variable and, for compatibility with -machine virt-2.7,
2025          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2026          * But even then, while the largest architectural DCZ blocklen
2027          * is 2KiB, no cpu actually uses such a large blocklen.
2028          */
2029         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2030 
2031         /*
2032          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2033          * both nibbles of each byte storing tag data may be written at once.
2034          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2035          */
2036         if (cpu_isar_feature(aa64_mte, cpu)) {
2037             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2038         }
2039     }
2040 
2041     qemu_init_vcpu(cs);
2042     cpu_reset(cs);
2043 
2044     acc->parent_realize(dev, errp);
2045 }
2046 
2047 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2048 {
2049     ObjectClass *oc;
2050     char *typename;
2051     char **cpuname;
2052     const char *cpunamestr;
2053 
2054     cpuname = g_strsplit(cpu_model, ",", 1);
2055     cpunamestr = cpuname[0];
2056 #ifdef CONFIG_USER_ONLY
2057     /* For backwards compatibility usermode emulation allows "-cpu any",
2058      * which has the same semantics as "-cpu max".
2059      */
2060     if (!strcmp(cpunamestr, "any")) {
2061         cpunamestr = "max";
2062     }
2063 #endif
2064     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2065     oc = object_class_by_name(typename);
2066     g_strfreev(cpuname);
2067     g_free(typename);
2068     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2069         object_class_is_abstract(oc)) {
2070         return NULL;
2071     }
2072     return oc;
2073 }
2074 
2075 static Property arm_cpu_properties[] = {
2076     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2077     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2078                         mp_affinity, ARM64_AFFINITY_INVALID),
2079     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2080     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2081     DEFINE_PROP_END_OF_LIST()
2082 };
2083 
2084 static gchar *arm_gdb_arch_name(CPUState *cs)
2085 {
2086     ARMCPU *cpu = ARM_CPU(cs);
2087     CPUARMState *env = &cpu->env;
2088 
2089     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2090         return g_strdup("iwmmxt");
2091     }
2092     return g_strdup("arm");
2093 }
2094 
2095 #ifndef CONFIG_USER_ONLY
2096 #include "hw/core/sysemu-cpu-ops.h"
2097 
2098 static const struct SysemuCPUOps arm_sysemu_ops = {
2099     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2100     .asidx_from_attrs = arm_asidx_from_attrs,
2101     .write_elf32_note = arm_cpu_write_elf32_note,
2102     .write_elf64_note = arm_cpu_write_elf64_note,
2103     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2104     .legacy_vmsd = &vmstate_arm_cpu,
2105 };
2106 #endif
2107 
2108 #ifdef CONFIG_TCG
2109 static const struct TCGCPUOps arm_tcg_ops = {
2110     .initialize = arm_translate_init,
2111     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2112     .debug_excp_handler = arm_debug_excp_handler,
2113 
2114 #ifdef CONFIG_USER_ONLY
2115     .record_sigsegv = arm_cpu_record_sigsegv,
2116     .record_sigbus = arm_cpu_record_sigbus,
2117 #else
2118     .tlb_fill = arm_cpu_tlb_fill,
2119     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2120     .do_interrupt = arm_cpu_do_interrupt,
2121     .do_transaction_failed = arm_cpu_do_transaction_failed,
2122     .do_unaligned_access = arm_cpu_do_unaligned_access,
2123     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2124     .debug_check_watchpoint = arm_debug_check_watchpoint,
2125     .debug_check_breakpoint = arm_debug_check_breakpoint,
2126 #endif /* !CONFIG_USER_ONLY */
2127 };
2128 #endif /* CONFIG_TCG */
2129 
2130 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2131 {
2132     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2133     CPUClass *cc = CPU_CLASS(acc);
2134     DeviceClass *dc = DEVICE_CLASS(oc);
2135 
2136     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2137                                     &acc->parent_realize);
2138 
2139     device_class_set_props(dc, arm_cpu_properties);
2140     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2141 
2142     cc->class_by_name = arm_cpu_class_by_name;
2143     cc->has_work = arm_cpu_has_work;
2144     cc->dump_state = arm_cpu_dump_state;
2145     cc->set_pc = arm_cpu_set_pc;
2146     cc->gdb_read_register = arm_cpu_gdb_read_register;
2147     cc->gdb_write_register = arm_cpu_gdb_write_register;
2148 #ifndef CONFIG_USER_ONLY
2149     cc->sysemu_ops = &arm_sysemu_ops;
2150 #endif
2151     cc->gdb_num_core_regs = 26;
2152     cc->gdb_core_xml_file = "arm-core.xml";
2153     cc->gdb_arch_name = arm_gdb_arch_name;
2154     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2155     cc->gdb_stop_before_watchpoint = true;
2156     cc->disas_set_info = arm_disas_set_info;
2157 
2158 #ifdef CONFIG_TCG
2159     cc->tcg_ops = &arm_tcg_ops;
2160 #endif /* CONFIG_TCG */
2161 }
2162 
2163 static void arm_cpu_instance_init(Object *obj)
2164 {
2165     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2166 
2167     acc->info->initfn(obj);
2168     arm_cpu_post_init(obj);
2169 }
2170 
2171 static void cpu_register_class_init(ObjectClass *oc, void *data)
2172 {
2173     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2174 
2175     acc->info = data;
2176 }
2177 
2178 void arm_cpu_register(const ARMCPUInfo *info)
2179 {
2180     TypeInfo type_info = {
2181         .parent = TYPE_ARM_CPU,
2182         .instance_size = sizeof(ARMCPU),
2183         .instance_align = __alignof__(ARMCPU),
2184         .instance_init = arm_cpu_instance_init,
2185         .class_size = sizeof(ARMCPUClass),
2186         .class_init = info->class_init ?: cpu_register_class_init,
2187         .class_data = (void *)info,
2188     };
2189 
2190     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2191     type_register(&type_info);
2192     g_free((void *)type_info.name);
2193 }
2194 
2195 static const TypeInfo arm_cpu_type_info = {
2196     .name = TYPE_ARM_CPU,
2197     .parent = TYPE_CPU,
2198     .instance_size = sizeof(ARMCPU),
2199     .instance_align = __alignof__(ARMCPU),
2200     .instance_init = arm_cpu_initfn,
2201     .instance_finalize = arm_cpu_finalizefn,
2202     .abstract = true,
2203     .class_size = sizeof(ARMCPUClass),
2204     .class_init = arm_cpu_class_init,
2205 };
2206 
2207 static void arm_cpu_register_types(void)
2208 {
2209     type_register_static(&arm_cpu_type_info);
2210 }
2211 
2212 type_init(arm_cpu_register_types)
2213