xref: /openbmc/qemu/target/arm/cpu.c (revision eabfeb0c)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          *
207          * In sve_probe_page, we assume that this is set.
208          * Do not modify this without other changes.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 #else
212         /* Reset into the highest available EL */
213         if (arm_feature(env, ARM_FEATURE_EL3)) {
214             env->pstate = PSTATE_MODE_EL3h;
215         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216             env->pstate = PSTATE_MODE_EL2h;
217         } else {
218             env->pstate = PSTATE_MODE_EL1h;
219         }
220         env->pc = cpu->rvbar;
221 #endif
222     } else {
223 #if defined(CONFIG_USER_ONLY)
224         /* Userspace expects access to cp10 and cp11 for FP/Neon */
225         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
226 #endif
227     }
228 
229 #if defined(CONFIG_USER_ONLY)
230     env->uncached_cpsr = ARM_CPU_MODE_USR;
231     /* For user mode we must enable access to coprocessors */
232     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234         env->cp15.c15_cpar = 3;
235     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236         env->cp15.c15_cpar = 1;
237     }
238 #else
239 
240     /*
241      * If the highest available EL is EL2, AArch32 will start in Hyp
242      * mode; otherwise it starts in SVC. Note that if we start in
243      * AArch64 then these values in the uncached_cpsr will be ignored.
244      */
245     if (arm_feature(env, ARM_FEATURE_EL2) &&
246         !arm_feature(env, ARM_FEATURE_EL3)) {
247         env->uncached_cpsr = ARM_CPU_MODE_HYP;
248     } else {
249         env->uncached_cpsr = ARM_CPU_MODE_SVC;
250     }
251     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 
253     if (arm_feature(env, ARM_FEATURE_M)) {
254         uint32_t initial_msp; /* Loaded from 0x0 */
255         uint32_t initial_pc; /* Loaded from 0x4 */
256         uint8_t *rom;
257         uint32_t vecbase;
258 
259         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
260             env->v7m.secure = true;
261         } else {
262             /* This bit resets to 0 if security is supported, but 1 if
263              * it is not. The bit is not present in v7M, but we set it
264              * here so we can avoid having to make checks on it conditional
265              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266              */
267             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
268             /*
269              * Set NSACR to indicate "NS access permitted to everything";
270              * this avoids having to have all the tests of it being
271              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
272              * v8.1M the guest-visible value of NSACR in a CPU without the
273              * Security Extension is 0xcff.
274              */
275             env->v7m.nsacr = 0xcff;
276         }
277 
278         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
279          * that it resets to 1, so QEMU always does that rather than making
280          * it dependent on CPU model. In v8M it is RES1.
281          */
282         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
283         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
284         if (arm_feature(env, ARM_FEATURE_V8)) {
285             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
286             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288         }
289         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
290             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292         }
293 
294         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
295             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
296             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
297                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
298         }
299         /* Unlike A/R profile, M profile defines the reset LR value */
300         env->regs[14] = 0xffffffff;
301 
302         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
303 
304         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
305         vecbase = env->v7m.vecbase[env->v7m.secure];
306         rom = rom_ptr(vecbase, 8);
307         if (rom) {
308             /* Address zero is covered by ROM which hasn't yet been
309              * copied into physical memory.
310              */
311             initial_msp = ldl_p(rom);
312             initial_pc = ldl_p(rom + 4);
313         } else {
314             /* Address zero not covered by a ROM blob, or the ROM blob
315              * is in non-modifiable memory and this is a second reset after
316              * it got copied into memory. In the latter case, rom_ptr
317              * will return a NULL pointer and we should use ldl_phys instead.
318              */
319             initial_msp = ldl_phys(s->as, vecbase);
320             initial_pc = ldl_phys(s->as, vecbase + 4);
321         }
322 
323         env->regs[13] = initial_msp & 0xFFFFFFFC;
324         env->regs[15] = initial_pc & ~1;
325         env->thumb = initial_pc & 1;
326     }
327 
328     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
329      * executing as AArch32 then check if highvecs are enabled and
330      * adjust the PC accordingly.
331      */
332     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
333         env->regs[15] = 0xFFFF0000;
334     }
335 
336     /* M profile requires that reset clears the exclusive monitor;
337      * A profile does not, but clearing it makes more sense than having it
338      * set with an exclusive access on address zero.
339      */
340     arm_clear_exclusive(env);
341 
342     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
343 #endif
344 
345     if (arm_feature(env, ARM_FEATURE_PMSA)) {
346         if (cpu->pmsav7_dregion > 0) {
347             if (arm_feature(env, ARM_FEATURE_V8)) {
348                 memset(env->pmsav8.rbar[M_REG_NS], 0,
349                        sizeof(*env->pmsav8.rbar[M_REG_NS])
350                        * cpu->pmsav7_dregion);
351                 memset(env->pmsav8.rlar[M_REG_NS], 0,
352                        sizeof(*env->pmsav8.rlar[M_REG_NS])
353                        * cpu->pmsav7_dregion);
354                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
355                     memset(env->pmsav8.rbar[M_REG_S], 0,
356                            sizeof(*env->pmsav8.rbar[M_REG_S])
357                            * cpu->pmsav7_dregion);
358                     memset(env->pmsav8.rlar[M_REG_S], 0,
359                            sizeof(*env->pmsav8.rlar[M_REG_S])
360                            * cpu->pmsav7_dregion);
361                 }
362             } else if (arm_feature(env, ARM_FEATURE_V7)) {
363                 memset(env->pmsav7.drbar, 0,
364                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
365                 memset(env->pmsav7.drsr, 0,
366                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.dracr, 0,
368                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
369             }
370         }
371         env->pmsav7.rnr[M_REG_NS] = 0;
372         env->pmsav7.rnr[M_REG_S] = 0;
373         env->pmsav8.mair0[M_REG_NS] = 0;
374         env->pmsav8.mair0[M_REG_S] = 0;
375         env->pmsav8.mair1[M_REG_NS] = 0;
376         env->pmsav8.mair1[M_REG_S] = 0;
377     }
378 
379     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
380         if (cpu->sau_sregion > 0) {
381             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
382             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
383         }
384         env->sau.rnr = 0;
385         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
386          * the Cortex-M33 does.
387          */
388         env->sau.ctrl = 0;
389     }
390 
391     set_flush_to_zero(1, &env->vfp.standard_fp_status);
392     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
393     set_default_nan_mode(1, &env->vfp.standard_fp_status);
394     set_float_detect_tininess(float_tininess_before_rounding,
395                               &env->vfp.fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.standard_fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.fp_status_f16);
400 #ifndef CONFIG_USER_ONLY
401     if (kvm_enabled()) {
402         kvm_arm_reset_vcpu(cpu);
403     }
404 #endif
405 
406     hw_breakpoint_update_all(cpu);
407     hw_watchpoint_update_all(cpu);
408     arm_rebuild_hflags(env);
409 }
410 
411 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
412                                      unsigned int target_el,
413                                      unsigned int cur_el, bool secure,
414                                      uint64_t hcr_el2)
415 {
416     CPUARMState *env = cs->env_ptr;
417     bool pstate_unmasked;
418     bool unmasked = false;
419 
420     /*
421      * Don't take exceptions if they target a lower EL.
422      * This check should catch any exceptions that would not be taken
423      * but left pending.
424      */
425     if (cur_el > target_el) {
426         return false;
427     }
428 
429     switch (excp_idx) {
430     case EXCP_FIQ:
431         pstate_unmasked = !(env->daif & PSTATE_F);
432         break;
433 
434     case EXCP_IRQ:
435         pstate_unmasked = !(env->daif & PSTATE_I);
436         break;
437 
438     case EXCP_VFIQ:
439         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
440             /* VFIQs are only taken when hypervized and non-secure.  */
441             return false;
442         }
443         return !(env->daif & PSTATE_F);
444     case EXCP_VIRQ:
445         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
446             /* VIRQs are only taken when hypervized and non-secure.  */
447             return false;
448         }
449         return !(env->daif & PSTATE_I);
450     default:
451         g_assert_not_reached();
452     }
453 
454     /*
455      * Use the target EL, current execution state and SCR/HCR settings to
456      * determine whether the corresponding CPSR bit is used to mask the
457      * interrupt.
458      */
459     if ((target_el > cur_el) && (target_el != 1)) {
460         /* Exceptions targeting a higher EL may not be maskable */
461         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
462             /*
463              * 64-bit masking rules are simple: exceptions to EL3
464              * can't be masked, and exceptions to EL2 can only be
465              * masked from Secure state. The HCR and SCR settings
466              * don't affect the masking logic, only the interrupt routing.
467              */
468             if (target_el == 3 || !secure) {
469                 unmasked = true;
470             }
471         } else {
472             /*
473              * The old 32-bit-only environment has a more complicated
474              * masking setup. HCR and SCR bits not only affect interrupt
475              * routing but also change the behaviour of masking.
476              */
477             bool hcr, scr;
478 
479             switch (excp_idx) {
480             case EXCP_FIQ:
481                 /*
482                  * If FIQs are routed to EL3 or EL2 then there are cases where
483                  * we override the CPSR.F in determining if the exception is
484                  * masked or not. If neither of these are set then we fall back
485                  * to the CPSR.F setting otherwise we further assess the state
486                  * below.
487                  */
488                 hcr = hcr_el2 & HCR_FMO;
489                 scr = (env->cp15.scr_el3 & SCR_FIQ);
490 
491                 /*
492                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
493                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
494                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
495                  * when non-secure but only when FIQs are only routed to EL3.
496                  */
497                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
498                 break;
499             case EXCP_IRQ:
500                 /*
501                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
502                  * we may override the CPSR.I masking when in non-secure state.
503                  * The SCR.IRQ setting has already been taken into consideration
504                  * when setting the target EL, so it does not have a further
505                  * affect here.
506                  */
507                 hcr = hcr_el2 & HCR_IMO;
508                 scr = false;
509                 break;
510             default:
511                 g_assert_not_reached();
512             }
513 
514             if ((scr || hcr) && !secure) {
515                 unmasked = true;
516             }
517         }
518     }
519 
520     /*
521      * The PSTATE bits only mask the interrupt if we have not overriden the
522      * ability above.
523      */
524     return unmasked || pstate_unmasked;
525 }
526 
527 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
528 {
529     CPUClass *cc = CPU_GET_CLASS(cs);
530     CPUARMState *env = cs->env_ptr;
531     uint32_t cur_el = arm_current_el(env);
532     bool secure = arm_is_secure(env);
533     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
534     uint32_t target_el;
535     uint32_t excp_idx;
536 
537     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
538 
539     if (interrupt_request & CPU_INTERRUPT_FIQ) {
540         excp_idx = EXCP_FIQ;
541         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
542         if (arm_excp_unmasked(cs, excp_idx, target_el,
543                               cur_el, secure, hcr_el2)) {
544             goto found;
545         }
546     }
547     if (interrupt_request & CPU_INTERRUPT_HARD) {
548         excp_idx = EXCP_IRQ;
549         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
550         if (arm_excp_unmasked(cs, excp_idx, target_el,
551                               cur_el, secure, hcr_el2)) {
552             goto found;
553         }
554     }
555     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
556         excp_idx = EXCP_VIRQ;
557         target_el = 1;
558         if (arm_excp_unmasked(cs, excp_idx, target_el,
559                               cur_el, secure, hcr_el2)) {
560             goto found;
561         }
562     }
563     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
564         excp_idx = EXCP_VFIQ;
565         target_el = 1;
566         if (arm_excp_unmasked(cs, excp_idx, target_el,
567                               cur_el, secure, hcr_el2)) {
568             goto found;
569         }
570     }
571     return false;
572 
573  found:
574     cs->exception_index = excp_idx;
575     env->exception.target_el = target_el;
576     cc->do_interrupt(cs);
577     return true;
578 }
579 
580 void arm_cpu_update_virq(ARMCPU *cpu)
581 {
582     /*
583      * Update the interrupt level for VIRQ, which is the logical OR of
584      * the HCR_EL2.VI bit and the input line level from the GIC.
585      */
586     CPUARMState *env = &cpu->env;
587     CPUState *cs = CPU(cpu);
588 
589     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
590         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
591 
592     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
593         if (new_state) {
594             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
595         } else {
596             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
597         }
598     }
599 }
600 
601 void arm_cpu_update_vfiq(ARMCPU *cpu)
602 {
603     /*
604      * Update the interrupt level for VFIQ, which is the logical OR of
605      * the HCR_EL2.VF bit and the input line level from the GIC.
606      */
607     CPUARMState *env = &cpu->env;
608     CPUState *cs = CPU(cpu);
609 
610     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
611         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
612 
613     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
614         if (new_state) {
615             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
616         } else {
617             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
618         }
619     }
620 }
621 
622 #ifndef CONFIG_USER_ONLY
623 static void arm_cpu_set_irq(void *opaque, int irq, int level)
624 {
625     ARMCPU *cpu = opaque;
626     CPUARMState *env = &cpu->env;
627     CPUState *cs = CPU(cpu);
628     static const int mask[] = {
629         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
630         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
631         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
632         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
633     };
634 
635     if (level) {
636         env->irq_line_state |= mask[irq];
637     } else {
638         env->irq_line_state &= ~mask[irq];
639     }
640 
641     switch (irq) {
642     case ARM_CPU_VIRQ:
643         assert(arm_feature(env, ARM_FEATURE_EL2));
644         arm_cpu_update_virq(cpu);
645         break;
646     case ARM_CPU_VFIQ:
647         assert(arm_feature(env, ARM_FEATURE_EL2));
648         arm_cpu_update_vfiq(cpu);
649         break;
650     case ARM_CPU_IRQ:
651     case ARM_CPU_FIQ:
652         if (level) {
653             cpu_interrupt(cs, mask[irq]);
654         } else {
655             cpu_reset_interrupt(cs, mask[irq]);
656         }
657         break;
658     default:
659         g_assert_not_reached();
660     }
661 }
662 
663 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
664 {
665 #ifdef CONFIG_KVM
666     ARMCPU *cpu = opaque;
667     CPUARMState *env = &cpu->env;
668     CPUState *cs = CPU(cpu);
669     uint32_t linestate_bit;
670     int irq_id;
671 
672     switch (irq) {
673     case ARM_CPU_IRQ:
674         irq_id = KVM_ARM_IRQ_CPU_IRQ;
675         linestate_bit = CPU_INTERRUPT_HARD;
676         break;
677     case ARM_CPU_FIQ:
678         irq_id = KVM_ARM_IRQ_CPU_FIQ;
679         linestate_bit = CPU_INTERRUPT_FIQ;
680         break;
681     default:
682         g_assert_not_reached();
683     }
684 
685     if (level) {
686         env->irq_line_state |= linestate_bit;
687     } else {
688         env->irq_line_state &= ~linestate_bit;
689     }
690     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
691 #endif
692 }
693 
694 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
695 {
696     ARMCPU *cpu = ARM_CPU(cs);
697     CPUARMState *env = &cpu->env;
698 
699     cpu_synchronize_state(cs);
700     return arm_cpu_data_is_big_endian(env);
701 }
702 
703 #endif
704 
705 static int
706 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
707 {
708   return print_insn_arm(pc | 1, info);
709 }
710 
711 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
712 {
713     ARMCPU *ac = ARM_CPU(cpu);
714     CPUARMState *env = &ac->env;
715     bool sctlr_b;
716 
717     if (is_a64(env)) {
718         /* We might not be compiled with the A64 disassembler
719          * because it needs a C++ compiler. Leave print_insn
720          * unset in this case to use the caller default behaviour.
721          */
722 #if defined(CONFIG_ARM_A64_DIS)
723         info->print_insn = print_insn_arm_a64;
724 #endif
725         info->cap_arch = CS_ARCH_ARM64;
726         info->cap_insn_unit = 4;
727         info->cap_insn_split = 4;
728     } else {
729         int cap_mode;
730         if (env->thumb) {
731             info->print_insn = print_insn_thumb1;
732             info->cap_insn_unit = 2;
733             info->cap_insn_split = 4;
734             cap_mode = CS_MODE_THUMB;
735         } else {
736             info->print_insn = print_insn_arm;
737             info->cap_insn_unit = 4;
738             info->cap_insn_split = 4;
739             cap_mode = CS_MODE_ARM;
740         }
741         if (arm_feature(env, ARM_FEATURE_V8)) {
742             cap_mode |= CS_MODE_V8;
743         }
744         if (arm_feature(env, ARM_FEATURE_M)) {
745             cap_mode |= CS_MODE_MCLASS;
746         }
747         info->cap_arch = CS_ARCH_ARM;
748         info->cap_mode = cap_mode;
749     }
750 
751     sctlr_b = arm_sctlr_b(env);
752     if (bswap_code(sctlr_b)) {
753 #ifdef TARGET_WORDS_BIGENDIAN
754         info->endian = BFD_ENDIAN_LITTLE;
755 #else
756         info->endian = BFD_ENDIAN_BIG;
757 #endif
758     }
759     info->flags &= ~INSN_ARM_BE32;
760 #ifndef CONFIG_USER_ONLY
761     if (sctlr_b) {
762         info->flags |= INSN_ARM_BE32;
763     }
764 #endif
765 }
766 
767 #ifdef TARGET_AARCH64
768 
769 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
770 {
771     ARMCPU *cpu = ARM_CPU(cs);
772     CPUARMState *env = &cpu->env;
773     uint32_t psr = pstate_read(env);
774     int i;
775     int el = arm_current_el(env);
776     const char *ns_status;
777 
778     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
779     for (i = 0; i < 32; i++) {
780         if (i == 31) {
781             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
782         } else {
783             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
784                          (i + 2) % 3 ? " " : "\n");
785         }
786     }
787 
788     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
789         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
790     } else {
791         ns_status = "";
792     }
793     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
794                  psr,
795                  psr & PSTATE_N ? 'N' : '-',
796                  psr & PSTATE_Z ? 'Z' : '-',
797                  psr & PSTATE_C ? 'C' : '-',
798                  psr & PSTATE_V ? 'V' : '-',
799                  ns_status,
800                  el,
801                  psr & PSTATE_SP ? 'h' : 't');
802 
803     if (cpu_isar_feature(aa64_bti, cpu)) {
804         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
805     }
806     if (!(flags & CPU_DUMP_FPU)) {
807         qemu_fprintf(f, "\n");
808         return;
809     }
810     if (fp_exception_el(env, el) != 0) {
811         qemu_fprintf(f, "    FPU disabled\n");
812         return;
813     }
814     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
815                  vfp_get_fpcr(env), vfp_get_fpsr(env));
816 
817     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
818         int j, zcr_len = sve_zcr_len_for_el(env, el);
819 
820         for (i = 0; i <= FFR_PRED_NUM; i++) {
821             bool eol;
822             if (i == FFR_PRED_NUM) {
823                 qemu_fprintf(f, "FFR=");
824                 /* It's last, so end the line.  */
825                 eol = true;
826             } else {
827                 qemu_fprintf(f, "P%02d=", i);
828                 switch (zcr_len) {
829                 case 0:
830                     eol = i % 8 == 7;
831                     break;
832                 case 1:
833                     eol = i % 6 == 5;
834                     break;
835                 case 2:
836                 case 3:
837                     eol = i % 3 == 2;
838                     break;
839                 default:
840                     /* More than one quadword per predicate.  */
841                     eol = true;
842                     break;
843                 }
844             }
845             for (j = zcr_len / 4; j >= 0; j--) {
846                 int digits;
847                 if (j * 4 + 4 <= zcr_len + 1) {
848                     digits = 16;
849                 } else {
850                     digits = (zcr_len % 4 + 1) * 4;
851                 }
852                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
853                              env->vfp.pregs[i].p[j],
854                              j ? ":" : eol ? "\n" : " ");
855             }
856         }
857 
858         for (i = 0; i < 32; i++) {
859             if (zcr_len == 0) {
860                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
861                              i, env->vfp.zregs[i].d[1],
862                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
863             } else if (zcr_len == 1) {
864                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
865                              ":%016" PRIx64 ":%016" PRIx64 "\n",
866                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
867                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
868             } else {
869                 for (j = zcr_len; j >= 0; j--) {
870                     bool odd = (zcr_len - j) % 2 != 0;
871                     if (j == zcr_len) {
872                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
873                     } else if (!odd) {
874                         if (j > 0) {
875                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
876                         } else {
877                             qemu_fprintf(f, "     [%x]=", j);
878                         }
879                     }
880                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
881                                  env->vfp.zregs[i].d[j * 2 + 1],
882                                  env->vfp.zregs[i].d[j * 2],
883                                  odd || j == 0 ? "\n" : ":");
884                 }
885             }
886         }
887     } else {
888         for (i = 0; i < 32; i++) {
889             uint64_t *q = aa64_vfp_qreg(env, i);
890             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
891                          i, q[1], q[0], (i & 1 ? "\n" : " "));
892         }
893     }
894 }
895 
896 #else
897 
898 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
899 {
900     g_assert_not_reached();
901 }
902 
903 #endif
904 
905 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
906 {
907     ARMCPU *cpu = ARM_CPU(cs);
908     CPUARMState *env = &cpu->env;
909     int i;
910 
911     if (is_a64(env)) {
912         aarch64_cpu_dump_state(cs, f, flags);
913         return;
914     }
915 
916     for (i = 0; i < 16; i++) {
917         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
918         if ((i % 4) == 3) {
919             qemu_fprintf(f, "\n");
920         } else {
921             qemu_fprintf(f, " ");
922         }
923     }
924 
925     if (arm_feature(env, ARM_FEATURE_M)) {
926         uint32_t xpsr = xpsr_read(env);
927         const char *mode;
928         const char *ns_status = "";
929 
930         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
931             ns_status = env->v7m.secure ? "S " : "NS ";
932         }
933 
934         if (xpsr & XPSR_EXCP) {
935             mode = "handler";
936         } else {
937             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
938                 mode = "unpriv-thread";
939             } else {
940                 mode = "priv-thread";
941             }
942         }
943 
944         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
945                      xpsr,
946                      xpsr & XPSR_N ? 'N' : '-',
947                      xpsr & XPSR_Z ? 'Z' : '-',
948                      xpsr & XPSR_C ? 'C' : '-',
949                      xpsr & XPSR_V ? 'V' : '-',
950                      xpsr & XPSR_T ? 'T' : 'A',
951                      ns_status,
952                      mode);
953     } else {
954         uint32_t psr = cpsr_read(env);
955         const char *ns_status = "";
956 
957         if (arm_feature(env, ARM_FEATURE_EL3) &&
958             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
959             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
960         }
961 
962         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
963                      psr,
964                      psr & CPSR_N ? 'N' : '-',
965                      psr & CPSR_Z ? 'Z' : '-',
966                      psr & CPSR_C ? 'C' : '-',
967                      psr & CPSR_V ? 'V' : '-',
968                      psr & CPSR_T ? 'T' : 'A',
969                      ns_status,
970                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
971     }
972 
973     if (flags & CPU_DUMP_FPU) {
974         int numvfpregs = 0;
975         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
976             numvfpregs = 32;
977         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
978             numvfpregs = 16;
979         }
980         for (i = 0; i < numvfpregs; i++) {
981             uint64_t v = *aa32_vfp_dreg(env, i);
982             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
983                          i * 2, (uint32_t)v,
984                          i * 2 + 1, (uint32_t)(v >> 32),
985                          i, v);
986         }
987         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
988     }
989 }
990 
991 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
992 {
993     uint32_t Aff1 = idx / clustersz;
994     uint32_t Aff0 = idx % clustersz;
995     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
996 }
997 
998 static void cpreg_hashtable_data_destroy(gpointer data)
999 {
1000     /*
1001      * Destroy function for cpu->cp_regs hashtable data entries.
1002      * We must free the name string because it was g_strdup()ed in
1003      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1004      * from r->name because we know we definitely allocated it.
1005      */
1006     ARMCPRegInfo *r = data;
1007 
1008     g_free((void *)r->name);
1009     g_free(r);
1010 }
1011 
1012 static void arm_cpu_initfn(Object *obj)
1013 {
1014     ARMCPU *cpu = ARM_CPU(obj);
1015 
1016     cpu_set_cpustate_pointers(cpu);
1017     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1018                                          g_free, cpreg_hashtable_data_destroy);
1019 
1020     QLIST_INIT(&cpu->pre_el_change_hooks);
1021     QLIST_INIT(&cpu->el_change_hooks);
1022 
1023 #ifndef CONFIG_USER_ONLY
1024     /* Our inbound IRQ and FIQ lines */
1025     if (kvm_enabled()) {
1026         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1027          * the same interface as non-KVM CPUs.
1028          */
1029         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1030     } else {
1031         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1032     }
1033 
1034     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1035                        ARRAY_SIZE(cpu->gt_timer_outputs));
1036 
1037     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1038                              "gicv3-maintenance-interrupt", 1);
1039     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1040                              "pmu-interrupt", 1);
1041 #endif
1042 
1043     /* DTB consumers generally don't in fact care what the 'compatible'
1044      * string is, so always provide some string and trust that a hypothetical
1045      * picky DTB consumer will also provide a helpful error message.
1046      */
1047     cpu->dtb_compatible = "qemu,unknown";
1048     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1049     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1050 
1051     if (tcg_enabled()) {
1052         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1053     }
1054 }
1055 
1056 static Property arm_cpu_gt_cntfrq_property =
1057             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1058                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1059 
1060 static Property arm_cpu_reset_cbar_property =
1061             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1062 
1063 static Property arm_cpu_reset_hivecs_property =
1064             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1065 
1066 static Property arm_cpu_rvbar_property =
1067             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1068 
1069 #ifndef CONFIG_USER_ONLY
1070 static Property arm_cpu_has_el2_property =
1071             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1072 
1073 static Property arm_cpu_has_el3_property =
1074             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1075 #endif
1076 
1077 static Property arm_cpu_cfgend_property =
1078             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1079 
1080 static Property arm_cpu_has_vfp_property =
1081             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1082 
1083 static Property arm_cpu_has_neon_property =
1084             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1085 
1086 static Property arm_cpu_has_dsp_property =
1087             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1088 
1089 static Property arm_cpu_has_mpu_property =
1090             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1091 
1092 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1093  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1094  * the right value for that particular CPU type, and we don't want
1095  * to override that with an incorrect constant value.
1096  */
1097 static Property arm_cpu_pmsav7_dregion_property =
1098             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1099                                            pmsav7_dregion,
1100                                            qdev_prop_uint32, uint32_t);
1101 
1102 static bool arm_get_pmu(Object *obj, Error **errp)
1103 {
1104     ARMCPU *cpu = ARM_CPU(obj);
1105 
1106     return cpu->has_pmu;
1107 }
1108 
1109 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1110 {
1111     ARMCPU *cpu = ARM_CPU(obj);
1112 
1113     if (value) {
1114         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1115             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1116             return;
1117         }
1118         set_feature(&cpu->env, ARM_FEATURE_PMU);
1119     } else {
1120         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1121     }
1122     cpu->has_pmu = value;
1123 }
1124 
1125 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1126 {
1127     /*
1128      * The exact approach to calculating guest ticks is:
1129      *
1130      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1131      *              NANOSECONDS_PER_SECOND);
1132      *
1133      * We don't do that. Rather we intentionally use integer division
1134      * truncation below and in the caller for the conversion of host monotonic
1135      * time to guest ticks to provide the exact inverse for the semantics of
1136      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1137      * it loses precision when representing frequencies where
1138      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1139      * provide an exact inverse leads to scheduling timers with negative
1140      * periods, which in turn leads to sticky behaviour in the guest.
1141      *
1142      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1143      * cannot become zero.
1144      */
1145     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1146       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1147 }
1148 
1149 void arm_cpu_post_init(Object *obj)
1150 {
1151     ARMCPU *cpu = ARM_CPU(obj);
1152 
1153     /* M profile implies PMSA. We have to do this here rather than
1154      * in realize with the other feature-implication checks because
1155      * we look at the PMSA bit to see if we should add some properties.
1156      */
1157     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1158         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1159     }
1160 
1161     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1162         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1163         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1164     }
1165 
1166     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1167         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1168     }
1169 
1170     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1171         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1172     }
1173 
1174 #ifndef CONFIG_USER_ONLY
1175     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1176         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1177          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1178          */
1179         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1180 
1181         object_property_add_link(obj, "secure-memory",
1182                                  TYPE_MEMORY_REGION,
1183                                  (Object **)&cpu->secure_memory,
1184                                  qdev_prop_allow_set_link_before_realize,
1185                                  OBJ_PROP_LINK_STRONG);
1186     }
1187 
1188     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1189         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1190     }
1191 #endif
1192 
1193     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1194         cpu->has_pmu = true;
1195         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1196     }
1197 
1198     /*
1199      * Allow user to turn off VFP and Neon support, but only for TCG --
1200      * KVM does not currently allow us to lie to the guest about its
1201      * ID/feature registers, so the guest always sees what the host has.
1202      */
1203     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1204         ? cpu_isar_feature(aa64_fp_simd, cpu)
1205         : cpu_isar_feature(aa32_vfp, cpu)) {
1206         cpu->has_vfp = true;
1207         if (!kvm_enabled()) {
1208             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1209         }
1210     }
1211 
1212     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1213         cpu->has_neon = true;
1214         if (!kvm_enabled()) {
1215             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1216         }
1217     }
1218 
1219     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1220         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1221         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1222     }
1223 
1224     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1225         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1226         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1227             qdev_property_add_static(DEVICE(obj),
1228                                      &arm_cpu_pmsav7_dregion_property);
1229         }
1230     }
1231 
1232     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1233         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1234                                  qdev_prop_allow_set_link_before_realize,
1235                                  OBJ_PROP_LINK_STRONG);
1236         /*
1237          * M profile: initial value of the Secure VTOR. We can't just use
1238          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1239          * the property to be set after realize.
1240          */
1241         object_property_add_uint32_ptr(obj, "init-svtor",
1242                                        &cpu->init_svtor,
1243                                        OBJ_PROP_FLAG_READWRITE);
1244     }
1245 
1246     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1247 
1248     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1249         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1250     }
1251 
1252     if (kvm_enabled()) {
1253         kvm_arm_add_vcpu_properties(obj);
1254     }
1255 
1256 #ifndef CONFIG_USER_ONLY
1257     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1258         cpu_isar_feature(aa64_mte, cpu)) {
1259         object_property_add_link(obj, "tag-memory",
1260                                  TYPE_MEMORY_REGION,
1261                                  (Object **)&cpu->tag_memory,
1262                                  qdev_prop_allow_set_link_before_realize,
1263                                  OBJ_PROP_LINK_STRONG);
1264 
1265         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1266             object_property_add_link(obj, "secure-tag-memory",
1267                                      TYPE_MEMORY_REGION,
1268                                      (Object **)&cpu->secure_tag_memory,
1269                                      qdev_prop_allow_set_link_before_realize,
1270                                      OBJ_PROP_LINK_STRONG);
1271         }
1272     }
1273 #endif
1274 }
1275 
1276 static void arm_cpu_finalizefn(Object *obj)
1277 {
1278     ARMCPU *cpu = ARM_CPU(obj);
1279     ARMELChangeHook *hook, *next;
1280 
1281     g_hash_table_destroy(cpu->cp_regs);
1282 
1283     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1284         QLIST_REMOVE(hook, node);
1285         g_free(hook);
1286     }
1287     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1288         QLIST_REMOVE(hook, node);
1289         g_free(hook);
1290     }
1291 #ifndef CONFIG_USER_ONLY
1292     if (cpu->pmu_timer) {
1293         timer_del(cpu->pmu_timer);
1294         timer_deinit(cpu->pmu_timer);
1295         timer_free(cpu->pmu_timer);
1296     }
1297 #endif
1298 }
1299 
1300 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1301 {
1302     Error *local_err = NULL;
1303 
1304     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1305         arm_cpu_sve_finalize(cpu, &local_err);
1306         if (local_err != NULL) {
1307             error_propagate(errp, local_err);
1308             return;
1309         }
1310     }
1311 }
1312 
1313 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1314 {
1315     CPUState *cs = CPU(dev);
1316     ARMCPU *cpu = ARM_CPU(dev);
1317     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1318     CPUARMState *env = &cpu->env;
1319     int pagebits;
1320     Error *local_err = NULL;
1321     bool no_aa32 = false;
1322 
1323     /* If we needed to query the host kernel for the CPU features
1324      * then it's possible that might have failed in the initfn, but
1325      * this is the first point where we can report it.
1326      */
1327     if (cpu->host_cpu_probe_failed) {
1328         if (!kvm_enabled()) {
1329             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1330         } else {
1331             error_setg(errp, "Failed to retrieve host CPU features");
1332         }
1333         return;
1334     }
1335 
1336 #ifndef CONFIG_USER_ONLY
1337     /* The NVIC and M-profile CPU are two halves of a single piece of
1338      * hardware; trying to use one without the other is a command line
1339      * error and will result in segfaults if not caught here.
1340      */
1341     if (arm_feature(env, ARM_FEATURE_M)) {
1342         if (!env->nvic) {
1343             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1344             return;
1345         }
1346     } else {
1347         if (env->nvic) {
1348             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1349             return;
1350         }
1351     }
1352 
1353     {
1354         uint64_t scale;
1355 
1356         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1357             if (!cpu->gt_cntfrq_hz) {
1358                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1359                            cpu->gt_cntfrq_hz);
1360                 return;
1361             }
1362             scale = gt_cntfrq_period_ns(cpu);
1363         } else {
1364             scale = GTIMER_SCALE;
1365         }
1366 
1367         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1368                                                arm_gt_ptimer_cb, cpu);
1369         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1370                                                arm_gt_vtimer_cb, cpu);
1371         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1372                                               arm_gt_htimer_cb, cpu);
1373         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1374                                               arm_gt_stimer_cb, cpu);
1375         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1376                                                   arm_gt_hvtimer_cb, cpu);
1377     }
1378 #endif
1379 
1380     cpu_exec_realizefn(cs, &local_err);
1381     if (local_err != NULL) {
1382         error_propagate(errp, local_err);
1383         return;
1384     }
1385 
1386     arm_cpu_finalize_features(cpu, &local_err);
1387     if (local_err != NULL) {
1388         error_propagate(errp, local_err);
1389         return;
1390     }
1391 
1392     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1393         cpu->has_vfp != cpu->has_neon) {
1394         /*
1395          * This is an architectural requirement for AArch64; AArch32 is
1396          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1397          */
1398         error_setg(errp,
1399                    "AArch64 CPUs must have both VFP and Neon or neither");
1400         return;
1401     }
1402 
1403     if (!cpu->has_vfp) {
1404         uint64_t t;
1405         uint32_t u;
1406 
1407         t = cpu->isar.id_aa64isar1;
1408         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1409         cpu->isar.id_aa64isar1 = t;
1410 
1411         t = cpu->isar.id_aa64pfr0;
1412         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1413         cpu->isar.id_aa64pfr0 = t;
1414 
1415         u = cpu->isar.id_isar6;
1416         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1417         cpu->isar.id_isar6 = u;
1418 
1419         u = cpu->isar.mvfr0;
1420         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1421         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1422         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1423         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1424         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1425         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1426         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1427         cpu->isar.mvfr0 = u;
1428 
1429         u = cpu->isar.mvfr1;
1430         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1431         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1432         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1433         cpu->isar.mvfr1 = u;
1434 
1435         u = cpu->isar.mvfr2;
1436         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1437         cpu->isar.mvfr2 = u;
1438     }
1439 
1440     if (!cpu->has_neon) {
1441         uint64_t t;
1442         uint32_t u;
1443 
1444         unset_feature(env, ARM_FEATURE_NEON);
1445 
1446         t = cpu->isar.id_aa64isar0;
1447         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1448         cpu->isar.id_aa64isar0 = t;
1449 
1450         t = cpu->isar.id_aa64isar1;
1451         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1452         cpu->isar.id_aa64isar1 = t;
1453 
1454         t = cpu->isar.id_aa64pfr0;
1455         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1456         cpu->isar.id_aa64pfr0 = t;
1457 
1458         u = cpu->isar.id_isar5;
1459         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1460         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1461         cpu->isar.id_isar5 = u;
1462 
1463         u = cpu->isar.id_isar6;
1464         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1465         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1466         cpu->isar.id_isar6 = u;
1467 
1468         u = cpu->isar.mvfr1;
1469         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1470         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1471         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1472         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1473         cpu->isar.mvfr1 = u;
1474 
1475         u = cpu->isar.mvfr2;
1476         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1477         cpu->isar.mvfr2 = u;
1478     }
1479 
1480     if (!cpu->has_neon && !cpu->has_vfp) {
1481         uint64_t t;
1482         uint32_t u;
1483 
1484         t = cpu->isar.id_aa64isar0;
1485         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1486         cpu->isar.id_aa64isar0 = t;
1487 
1488         t = cpu->isar.id_aa64isar1;
1489         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1490         cpu->isar.id_aa64isar1 = t;
1491 
1492         u = cpu->isar.mvfr0;
1493         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1494         cpu->isar.mvfr0 = u;
1495 
1496         /* Despite the name, this field covers both VFP and Neon */
1497         u = cpu->isar.mvfr1;
1498         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1499         cpu->isar.mvfr1 = u;
1500     }
1501 
1502     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1503         uint32_t u;
1504 
1505         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1506 
1507         u = cpu->isar.id_isar1;
1508         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1509         cpu->isar.id_isar1 = u;
1510 
1511         u = cpu->isar.id_isar2;
1512         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1513         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1514         cpu->isar.id_isar2 = u;
1515 
1516         u = cpu->isar.id_isar3;
1517         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1518         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1519         cpu->isar.id_isar3 = u;
1520     }
1521 
1522     /* Some features automatically imply others: */
1523     if (arm_feature(env, ARM_FEATURE_V8)) {
1524         if (arm_feature(env, ARM_FEATURE_M)) {
1525             set_feature(env, ARM_FEATURE_V7);
1526         } else {
1527             set_feature(env, ARM_FEATURE_V7VE);
1528         }
1529     }
1530 
1531     /*
1532      * There exist AArch64 cpus without AArch32 support.  When KVM
1533      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1534      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1535      * As a general principle, we also do not make ID register
1536      * consistency checks anywhere unless using TCG, because only
1537      * for TCG would a consistency-check failure be a QEMU bug.
1538      */
1539     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1540         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1541     }
1542 
1543     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1544         /* v7 Virtualization Extensions. In real hardware this implies
1545          * EL2 and also the presence of the Security Extensions.
1546          * For QEMU, for backwards-compatibility we implement some
1547          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1548          * include the various other features that V7VE implies.
1549          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1550          * Security Extensions is ARM_FEATURE_EL3.
1551          */
1552         assert(!tcg_enabled() || no_aa32 ||
1553                cpu_isar_feature(aa32_arm_div, cpu));
1554         set_feature(env, ARM_FEATURE_LPAE);
1555         set_feature(env, ARM_FEATURE_V7);
1556     }
1557     if (arm_feature(env, ARM_FEATURE_V7)) {
1558         set_feature(env, ARM_FEATURE_VAPA);
1559         set_feature(env, ARM_FEATURE_THUMB2);
1560         set_feature(env, ARM_FEATURE_MPIDR);
1561         if (!arm_feature(env, ARM_FEATURE_M)) {
1562             set_feature(env, ARM_FEATURE_V6K);
1563         } else {
1564             set_feature(env, ARM_FEATURE_V6);
1565         }
1566 
1567         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1568          * non-EL3 configs. This is needed by some legacy boards.
1569          */
1570         set_feature(env, ARM_FEATURE_VBAR);
1571     }
1572     if (arm_feature(env, ARM_FEATURE_V6K)) {
1573         set_feature(env, ARM_FEATURE_V6);
1574         set_feature(env, ARM_FEATURE_MVFR);
1575     }
1576     if (arm_feature(env, ARM_FEATURE_V6)) {
1577         set_feature(env, ARM_FEATURE_V5);
1578         if (!arm_feature(env, ARM_FEATURE_M)) {
1579             assert(!tcg_enabled() || no_aa32 ||
1580                    cpu_isar_feature(aa32_jazelle, cpu));
1581             set_feature(env, ARM_FEATURE_AUXCR);
1582         }
1583     }
1584     if (arm_feature(env, ARM_FEATURE_V5)) {
1585         set_feature(env, ARM_FEATURE_V4T);
1586     }
1587     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1588         set_feature(env, ARM_FEATURE_V7MP);
1589         set_feature(env, ARM_FEATURE_PXN);
1590     }
1591     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1592         set_feature(env, ARM_FEATURE_CBAR);
1593     }
1594     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1595         !arm_feature(env, ARM_FEATURE_M)) {
1596         set_feature(env, ARM_FEATURE_THUMB_DSP);
1597     }
1598 
1599     /*
1600      * We rely on no XScale CPU having VFP so we can use the same bits in the
1601      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1602      */
1603     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1604            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1605            !arm_feature(env, ARM_FEATURE_XSCALE));
1606 
1607     if (arm_feature(env, ARM_FEATURE_V7) &&
1608         !arm_feature(env, ARM_FEATURE_M) &&
1609         !arm_feature(env, ARM_FEATURE_PMSA)) {
1610         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1611          * can use 4K pages.
1612          */
1613         pagebits = 12;
1614     } else {
1615         /* For CPUs which might have tiny 1K pages, or which have an
1616          * MPU and might have small region sizes, stick with 1K pages.
1617          */
1618         pagebits = 10;
1619     }
1620     if (!set_preferred_target_page_bits(pagebits)) {
1621         /* This can only ever happen for hotplugging a CPU, or if
1622          * the board code incorrectly creates a CPU which it has
1623          * promised via minimum_page_size that it will not.
1624          */
1625         error_setg(errp, "This CPU requires a smaller page size than the "
1626                    "system is using");
1627         return;
1628     }
1629 
1630     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1631      * We don't support setting cluster ID ([16..23]) (known as Aff2
1632      * in later ARM ARM versions), or any of the higher affinity level fields,
1633      * so these bits always RAZ.
1634      */
1635     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1636         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1637                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1638     }
1639 
1640     if (cpu->reset_hivecs) {
1641             cpu->reset_sctlr |= (1 << 13);
1642     }
1643 
1644     if (cpu->cfgend) {
1645         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1646             cpu->reset_sctlr |= SCTLR_EE;
1647         } else {
1648             cpu->reset_sctlr |= SCTLR_B;
1649         }
1650     }
1651 
1652     if (!cpu->has_el3) {
1653         /* If the has_el3 CPU property is disabled then we need to disable the
1654          * feature.
1655          */
1656         unset_feature(env, ARM_FEATURE_EL3);
1657 
1658         /* Disable the security extension feature bits in the processor feature
1659          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1660          */
1661         cpu->id_pfr1 &= ~0xf0;
1662         cpu->isar.id_aa64pfr0 &= ~0xf000;
1663     }
1664 
1665     if (!cpu->has_el2) {
1666         unset_feature(env, ARM_FEATURE_EL2);
1667     }
1668 
1669     if (!cpu->has_pmu) {
1670         unset_feature(env, ARM_FEATURE_PMU);
1671     }
1672     if (arm_feature(env, ARM_FEATURE_PMU)) {
1673         pmu_init(cpu);
1674 
1675         if (!kvm_enabled()) {
1676             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1677             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1678         }
1679 
1680 #ifndef CONFIG_USER_ONLY
1681         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1682                 cpu);
1683 #endif
1684     } else {
1685         cpu->isar.id_aa64dfr0 =
1686             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1687         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1688         cpu->pmceid0 = 0;
1689         cpu->pmceid1 = 0;
1690     }
1691 
1692     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1693         /* Disable the hypervisor feature bits in the processor feature
1694          * registers if we don't have EL2. These are id_pfr1[15:12] and
1695          * id_aa64pfr0_el1[11:8].
1696          */
1697         cpu->isar.id_aa64pfr0 &= ~0xf00;
1698         cpu->id_pfr1 &= ~0xf000;
1699     }
1700 
1701 #ifndef CONFIG_USER_ONLY
1702     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1703         /*
1704          * Disable the MTE feature bits if we do not have tag-memory
1705          * provided by the machine.
1706          */
1707         cpu->isar.id_aa64pfr1 =
1708             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1709     }
1710 #endif
1711 
1712     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1713      * to false or by setting pmsav7-dregion to 0.
1714      */
1715     if (!cpu->has_mpu) {
1716         cpu->pmsav7_dregion = 0;
1717     }
1718     if (cpu->pmsav7_dregion == 0) {
1719         cpu->has_mpu = false;
1720     }
1721 
1722     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1723         arm_feature(env, ARM_FEATURE_V7)) {
1724         uint32_t nr = cpu->pmsav7_dregion;
1725 
1726         if (nr > 0xff) {
1727             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1728             return;
1729         }
1730 
1731         if (nr) {
1732             if (arm_feature(env, ARM_FEATURE_V8)) {
1733                 /* PMSAv8 */
1734                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1735                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1736                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1737                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1738                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1739                 }
1740             } else {
1741                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1742                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1743                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1744             }
1745         }
1746     }
1747 
1748     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1749         uint32_t nr = cpu->sau_sregion;
1750 
1751         if (nr > 0xff) {
1752             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1753             return;
1754         }
1755 
1756         if (nr) {
1757             env->sau.rbar = g_new0(uint32_t, nr);
1758             env->sau.rlar = g_new0(uint32_t, nr);
1759         }
1760     }
1761 
1762     if (arm_feature(env, ARM_FEATURE_EL3)) {
1763         set_feature(env, ARM_FEATURE_VBAR);
1764     }
1765 
1766     register_cp_regs_for_features(cpu);
1767     arm_cpu_register_gdb_regs_for_features(cpu);
1768 
1769     init_cpreg_list(cpu);
1770 
1771 #ifndef CONFIG_USER_ONLY
1772     MachineState *ms = MACHINE(qdev_get_machine());
1773     unsigned int smp_cpus = ms->smp.cpus;
1774     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1775 
1776     /*
1777      * We must set cs->num_ases to the final value before
1778      * the first call to cpu_address_space_init.
1779      */
1780     if (cpu->tag_memory != NULL) {
1781         cs->num_ases = 3 + has_secure;
1782     } else {
1783         cs->num_ases = 1 + has_secure;
1784     }
1785 
1786     if (has_secure) {
1787         if (!cpu->secure_memory) {
1788             cpu->secure_memory = cs->memory;
1789         }
1790         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1791                                cpu->secure_memory);
1792     }
1793 
1794     if (cpu->tag_memory != NULL) {
1795         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1796                                cpu->tag_memory);
1797         if (has_secure) {
1798             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1799                                    cpu->secure_tag_memory);
1800         }
1801     }
1802 
1803     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1804 
1805     /* No core_count specified, default to smp_cpus. */
1806     if (cpu->core_count == -1) {
1807         cpu->core_count = smp_cpus;
1808     }
1809 #endif
1810 
1811     if (tcg_enabled()) {
1812         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1813 
1814         /*
1815          * We only support DCZ blocklen that fits on one page.
1816          *
1817          * Architectually this is always true.  However TARGET_PAGE_SIZE
1818          * is variable and, for compatibility with -machine virt-2.7,
1819          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1820          * But even then, while the largest architectural DCZ blocklen
1821          * is 2KiB, no cpu actually uses such a large blocklen.
1822          */
1823         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1824 
1825         /*
1826          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1827          * both nibbles of each byte storing tag data may be written at once.
1828          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1829          */
1830         if (cpu_isar_feature(aa64_mte, cpu)) {
1831             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1832         }
1833     }
1834 
1835     qemu_init_vcpu(cs);
1836     cpu_reset(cs);
1837 
1838     acc->parent_realize(dev, errp);
1839 }
1840 
1841 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1842 {
1843     ObjectClass *oc;
1844     char *typename;
1845     char **cpuname;
1846     const char *cpunamestr;
1847 
1848     cpuname = g_strsplit(cpu_model, ",", 1);
1849     cpunamestr = cpuname[0];
1850 #ifdef CONFIG_USER_ONLY
1851     /* For backwards compatibility usermode emulation allows "-cpu any",
1852      * which has the same semantics as "-cpu max".
1853      */
1854     if (!strcmp(cpunamestr, "any")) {
1855         cpunamestr = "max";
1856     }
1857 #endif
1858     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1859     oc = object_class_by_name(typename);
1860     g_strfreev(cpuname);
1861     g_free(typename);
1862     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1863         object_class_is_abstract(oc)) {
1864         return NULL;
1865     }
1866     return oc;
1867 }
1868 
1869 /* CPU models. These are not needed for the AArch64 linux-user build. */
1870 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1871 
1872 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1873     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1874       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1875     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1876       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1877     REGINFO_SENTINEL
1878 };
1879 
1880 static void cortex_a8_initfn(Object *obj)
1881 {
1882     ARMCPU *cpu = ARM_CPU(obj);
1883 
1884     cpu->dtb_compatible = "arm,cortex-a8";
1885     set_feature(&cpu->env, ARM_FEATURE_V7);
1886     set_feature(&cpu->env, ARM_FEATURE_NEON);
1887     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1888     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1889     set_feature(&cpu->env, ARM_FEATURE_EL3);
1890     cpu->midr = 0x410fc080;
1891     cpu->reset_fpsid = 0x410330c0;
1892     cpu->isar.mvfr0 = 0x11110222;
1893     cpu->isar.mvfr1 = 0x00011111;
1894     cpu->ctr = 0x82048004;
1895     cpu->reset_sctlr = 0x00c50078;
1896     cpu->id_pfr0 = 0x1031;
1897     cpu->id_pfr1 = 0x11;
1898     cpu->isar.id_dfr0 = 0x400;
1899     cpu->id_afr0 = 0;
1900     cpu->isar.id_mmfr0 = 0x31100003;
1901     cpu->isar.id_mmfr1 = 0x20000000;
1902     cpu->isar.id_mmfr2 = 0x01202000;
1903     cpu->isar.id_mmfr3 = 0x11;
1904     cpu->isar.id_isar0 = 0x00101111;
1905     cpu->isar.id_isar1 = 0x12112111;
1906     cpu->isar.id_isar2 = 0x21232031;
1907     cpu->isar.id_isar3 = 0x11112131;
1908     cpu->isar.id_isar4 = 0x00111142;
1909     cpu->isar.dbgdidr = 0x15141000;
1910     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1911     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1912     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1913     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1914     cpu->reset_auxcr = 2;
1915     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1916 }
1917 
1918 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1919     /* power_control should be set to maximum latency. Again,
1920      * default to 0 and set by private hook
1921      */
1922     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1923       .access = PL1_RW, .resetvalue = 0,
1924       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1925     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1926       .access = PL1_RW, .resetvalue = 0,
1927       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1928     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1929       .access = PL1_RW, .resetvalue = 0,
1930       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1931     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1932       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1933     /* TLB lockdown control */
1934     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1935       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1936     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1937       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1938     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1939       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1940     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1941       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1942     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1943       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1944     REGINFO_SENTINEL
1945 };
1946 
1947 static void cortex_a9_initfn(Object *obj)
1948 {
1949     ARMCPU *cpu = ARM_CPU(obj);
1950 
1951     cpu->dtb_compatible = "arm,cortex-a9";
1952     set_feature(&cpu->env, ARM_FEATURE_V7);
1953     set_feature(&cpu->env, ARM_FEATURE_NEON);
1954     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1955     set_feature(&cpu->env, ARM_FEATURE_EL3);
1956     /* Note that A9 supports the MP extensions even for
1957      * A9UP and single-core A9MP (which are both different
1958      * and valid configurations; we don't model A9UP).
1959      */
1960     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1961     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1962     cpu->midr = 0x410fc090;
1963     cpu->reset_fpsid = 0x41033090;
1964     cpu->isar.mvfr0 = 0x11110222;
1965     cpu->isar.mvfr1 = 0x01111111;
1966     cpu->ctr = 0x80038003;
1967     cpu->reset_sctlr = 0x00c50078;
1968     cpu->id_pfr0 = 0x1031;
1969     cpu->id_pfr1 = 0x11;
1970     cpu->isar.id_dfr0 = 0x000;
1971     cpu->id_afr0 = 0;
1972     cpu->isar.id_mmfr0 = 0x00100103;
1973     cpu->isar.id_mmfr1 = 0x20000000;
1974     cpu->isar.id_mmfr2 = 0x01230000;
1975     cpu->isar.id_mmfr3 = 0x00002111;
1976     cpu->isar.id_isar0 = 0x00101111;
1977     cpu->isar.id_isar1 = 0x13112111;
1978     cpu->isar.id_isar2 = 0x21232041;
1979     cpu->isar.id_isar3 = 0x11112131;
1980     cpu->isar.id_isar4 = 0x00111142;
1981     cpu->isar.dbgdidr = 0x35141000;
1982     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1983     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1984     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1985     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1986 }
1987 
1988 #ifndef CONFIG_USER_ONLY
1989 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1990 {
1991     MachineState *ms = MACHINE(qdev_get_machine());
1992 
1993     /* Linux wants the number of processors from here.
1994      * Might as well set the interrupt-controller bit too.
1995      */
1996     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
1997 }
1998 #endif
1999 
2000 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2001 #ifndef CONFIG_USER_ONLY
2002     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2003       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2004       .writefn = arm_cp_write_ignore, },
2005 #endif
2006     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2007       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2008     REGINFO_SENTINEL
2009 };
2010 
2011 static void cortex_a7_initfn(Object *obj)
2012 {
2013     ARMCPU *cpu = ARM_CPU(obj);
2014 
2015     cpu->dtb_compatible = "arm,cortex-a7";
2016     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2017     set_feature(&cpu->env, ARM_FEATURE_NEON);
2018     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2019     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2020     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2021     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2022     set_feature(&cpu->env, ARM_FEATURE_EL2);
2023     set_feature(&cpu->env, ARM_FEATURE_EL3);
2024     set_feature(&cpu->env, ARM_FEATURE_PMU);
2025     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2026     cpu->midr = 0x410fc075;
2027     cpu->reset_fpsid = 0x41023075;
2028     cpu->isar.mvfr0 = 0x10110222;
2029     cpu->isar.mvfr1 = 0x11111111;
2030     cpu->ctr = 0x84448003;
2031     cpu->reset_sctlr = 0x00c50078;
2032     cpu->id_pfr0 = 0x00001131;
2033     cpu->id_pfr1 = 0x00011011;
2034     cpu->isar.id_dfr0 = 0x02010555;
2035     cpu->id_afr0 = 0x00000000;
2036     cpu->isar.id_mmfr0 = 0x10101105;
2037     cpu->isar.id_mmfr1 = 0x40000000;
2038     cpu->isar.id_mmfr2 = 0x01240000;
2039     cpu->isar.id_mmfr3 = 0x02102211;
2040     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2041      * table 4-41 gives 0x02101110, which includes the arm div insns.
2042      */
2043     cpu->isar.id_isar0 = 0x02101110;
2044     cpu->isar.id_isar1 = 0x13112111;
2045     cpu->isar.id_isar2 = 0x21232041;
2046     cpu->isar.id_isar3 = 0x11112131;
2047     cpu->isar.id_isar4 = 0x10011142;
2048     cpu->isar.dbgdidr = 0x3515f005;
2049     cpu->clidr = 0x0a200023;
2050     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2051     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2052     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2053     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2054 }
2055 
2056 static void cortex_a15_initfn(Object *obj)
2057 {
2058     ARMCPU *cpu = ARM_CPU(obj);
2059 
2060     cpu->dtb_compatible = "arm,cortex-a15";
2061     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2062     set_feature(&cpu->env, ARM_FEATURE_NEON);
2063     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2064     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2065     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2066     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2067     set_feature(&cpu->env, ARM_FEATURE_EL2);
2068     set_feature(&cpu->env, ARM_FEATURE_EL3);
2069     set_feature(&cpu->env, ARM_FEATURE_PMU);
2070     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2071     cpu->midr = 0x412fc0f1;
2072     cpu->reset_fpsid = 0x410430f0;
2073     cpu->isar.mvfr0 = 0x10110222;
2074     cpu->isar.mvfr1 = 0x11111111;
2075     cpu->ctr = 0x8444c004;
2076     cpu->reset_sctlr = 0x00c50078;
2077     cpu->id_pfr0 = 0x00001131;
2078     cpu->id_pfr1 = 0x00011011;
2079     cpu->isar.id_dfr0 = 0x02010555;
2080     cpu->id_afr0 = 0x00000000;
2081     cpu->isar.id_mmfr0 = 0x10201105;
2082     cpu->isar.id_mmfr1 = 0x20000000;
2083     cpu->isar.id_mmfr2 = 0x01240000;
2084     cpu->isar.id_mmfr3 = 0x02102211;
2085     cpu->isar.id_isar0 = 0x02101110;
2086     cpu->isar.id_isar1 = 0x13112111;
2087     cpu->isar.id_isar2 = 0x21232041;
2088     cpu->isar.id_isar3 = 0x11112131;
2089     cpu->isar.id_isar4 = 0x10011142;
2090     cpu->isar.dbgdidr = 0x3515f021;
2091     cpu->clidr = 0x0a200023;
2092     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2093     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2094     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2095     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2096 }
2097 
2098 #ifndef TARGET_AARCH64
2099 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2100  * otherwise, a CPU with as many features enabled as our emulation supports.
2101  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2102  * this only needs to handle 32 bits.
2103  */
2104 static void arm_max_initfn(Object *obj)
2105 {
2106     ARMCPU *cpu = ARM_CPU(obj);
2107 
2108     if (kvm_enabled()) {
2109         kvm_arm_set_cpu_features_from_host(cpu);
2110     } else {
2111         cortex_a15_initfn(obj);
2112 
2113         /* old-style VFP short-vector support */
2114         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2115 
2116 #ifdef CONFIG_USER_ONLY
2117         /* We don't set these in system emulation mode for the moment,
2118          * since we don't correctly set (all of) the ID registers to
2119          * advertise them.
2120          */
2121         set_feature(&cpu->env, ARM_FEATURE_V8);
2122         {
2123             uint32_t t;
2124 
2125             t = cpu->isar.id_isar5;
2126             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2127             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2128             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2129             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2130             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2131             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2132             cpu->isar.id_isar5 = t;
2133 
2134             t = cpu->isar.id_isar6;
2135             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2136             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2137             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2138             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2139             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2140             cpu->isar.id_isar6 = t;
2141 
2142             t = cpu->isar.mvfr1;
2143             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2144             cpu->isar.mvfr1 = t;
2145 
2146             t = cpu->isar.mvfr2;
2147             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2148             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2149             cpu->isar.mvfr2 = t;
2150 
2151             t = cpu->isar.id_mmfr3;
2152             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2153             cpu->isar.id_mmfr3 = t;
2154 
2155             t = cpu->isar.id_mmfr4;
2156             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2157             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2158             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2159             t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2160             cpu->isar.id_mmfr4 = t;
2161         }
2162 #endif
2163     }
2164 }
2165 #endif
2166 
2167 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2168 
2169 static const ARMCPUInfo arm_cpus[] = {
2170 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2171     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2172     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2173     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2174     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2175 #ifndef TARGET_AARCH64
2176     { .name = "max",         .initfn = arm_max_initfn },
2177 #endif
2178 #ifdef CONFIG_USER_ONLY
2179     { .name = "any",         .initfn = arm_max_initfn },
2180 #endif
2181 #endif
2182 };
2183 
2184 static Property arm_cpu_properties[] = {
2185     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2186     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2187     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2188     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2189                         mp_affinity, ARM64_AFFINITY_INVALID),
2190     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2191     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2192     DEFINE_PROP_END_OF_LIST()
2193 };
2194 
2195 static gchar *arm_gdb_arch_name(CPUState *cs)
2196 {
2197     ARMCPU *cpu = ARM_CPU(cs);
2198     CPUARMState *env = &cpu->env;
2199 
2200     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2201         return g_strdup("iwmmxt");
2202     }
2203     return g_strdup("arm");
2204 }
2205 
2206 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2207 {
2208     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2209     CPUClass *cc = CPU_CLASS(acc);
2210     DeviceClass *dc = DEVICE_CLASS(oc);
2211 
2212     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2213                                     &acc->parent_realize);
2214 
2215     device_class_set_props(dc, arm_cpu_properties);
2216     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2217 
2218     cc->class_by_name = arm_cpu_class_by_name;
2219     cc->has_work = arm_cpu_has_work;
2220     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2221     cc->dump_state = arm_cpu_dump_state;
2222     cc->set_pc = arm_cpu_set_pc;
2223     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2224     cc->gdb_read_register = arm_cpu_gdb_read_register;
2225     cc->gdb_write_register = arm_cpu_gdb_write_register;
2226 #ifndef CONFIG_USER_ONLY
2227     cc->do_interrupt = arm_cpu_do_interrupt;
2228     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2229     cc->asidx_from_attrs = arm_asidx_from_attrs;
2230     cc->vmsd = &vmstate_arm_cpu;
2231     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2232     cc->write_elf64_note = arm_cpu_write_elf64_note;
2233     cc->write_elf32_note = arm_cpu_write_elf32_note;
2234 #endif
2235     cc->gdb_num_core_regs = 26;
2236     cc->gdb_core_xml_file = "arm-core.xml";
2237     cc->gdb_arch_name = arm_gdb_arch_name;
2238     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2239     cc->gdb_stop_before_watchpoint = true;
2240     cc->disas_set_info = arm_disas_set_info;
2241 #ifdef CONFIG_TCG
2242     cc->tcg_initialize = arm_translate_init;
2243     cc->tlb_fill = arm_cpu_tlb_fill;
2244     cc->debug_excp_handler = arm_debug_excp_handler;
2245     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2246     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2247 #if !defined(CONFIG_USER_ONLY)
2248     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2249     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2250 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2251 #endif
2252 }
2253 
2254 #ifdef CONFIG_KVM
2255 static void arm_host_initfn(Object *obj)
2256 {
2257     ARMCPU *cpu = ARM_CPU(obj);
2258 
2259     kvm_arm_set_cpu_features_from_host(cpu);
2260     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2261         aarch64_add_sve_properties(obj);
2262     }
2263     arm_cpu_post_init(obj);
2264 }
2265 
2266 static const TypeInfo host_arm_cpu_type_info = {
2267     .name = TYPE_ARM_HOST_CPU,
2268 #ifdef TARGET_AARCH64
2269     .parent = TYPE_AARCH64_CPU,
2270 #else
2271     .parent = TYPE_ARM_CPU,
2272 #endif
2273     .instance_init = arm_host_initfn,
2274 };
2275 
2276 #endif
2277 
2278 static void arm_cpu_instance_init(Object *obj)
2279 {
2280     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2281 
2282     acc->info->initfn(obj);
2283     arm_cpu_post_init(obj);
2284 }
2285 
2286 static void cpu_register_class_init(ObjectClass *oc, void *data)
2287 {
2288     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2289 
2290     acc->info = data;
2291 }
2292 
2293 void arm_cpu_register(const ARMCPUInfo *info)
2294 {
2295     TypeInfo type_info = {
2296         .parent = TYPE_ARM_CPU,
2297         .instance_size = sizeof(ARMCPU),
2298         .instance_init = arm_cpu_instance_init,
2299         .class_size = sizeof(ARMCPUClass),
2300         .class_init = info->class_init ?: cpu_register_class_init,
2301         .class_data = (void *)info,
2302     };
2303 
2304     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2305     type_register(&type_info);
2306     g_free((void *)type_info.name);
2307 }
2308 
2309 static const TypeInfo arm_cpu_type_info = {
2310     .name = TYPE_ARM_CPU,
2311     .parent = TYPE_CPU,
2312     .instance_size = sizeof(ARMCPU),
2313     .instance_init = arm_cpu_initfn,
2314     .instance_finalize = arm_cpu_finalizefn,
2315     .abstract = true,
2316     .class_size = sizeof(ARMCPUClass),
2317     .class_init = arm_cpu_class_init,
2318 };
2319 
2320 static const TypeInfo idau_interface_type_info = {
2321     .name = TYPE_IDAU_INTERFACE,
2322     .parent = TYPE_INTERFACE,
2323     .class_size = sizeof(IDAUInterfaceClass),
2324 };
2325 
2326 static void arm_cpu_register_types(void)
2327 {
2328     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2329 
2330     type_register_static(&arm_cpu_type_info);
2331 
2332 #ifdef CONFIG_KVM
2333     type_register_static(&host_arm_cpu_type_info);
2334 #endif
2335 
2336     if (cpu_count) {
2337         size_t i;
2338 
2339         type_register_static(&idau_interface_type_info);
2340         for (i = 0; i < cpu_count; ++i) {
2341             arm_cpu_register(&arm_cpus[i]);
2342         }
2343     }
2344 }
2345 
2346 type_init(arm_cpu_register_types)
2347