xref: /openbmc/qemu/target/arm/cpu.c (revision e95c74c5e5522f6270092b788c3a96dfd8a93671)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47 
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50     ARMCPU *cpu = ARM_CPU(cs);
51     CPUARMState *env = &cpu->env;
52 
53     if (is_a64(env)) {
54         env->pc = value;
55         env->thumb = false;
56     } else {
57         env->regs[15] = value & ~1;
58         env->thumb = value & 1;
59     }
60 }
61 
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64                                  const TranslationBlock *tb)
65 {
66     ARMCPU *cpu = ARM_CPU(cs);
67     CPUARMState *env = &cpu->env;
68 
69     /*
70      * It's OK to look at env for the current mode here, because it's
71      * never possible for an AArch64 TB to chain to an AArch32 TB.
72      */
73     if (is_a64(env)) {
74         env->pc = tb->pc;
75     } else {
76         env->regs[15] = tb->pc;
77     }
78 }
79 #endif /* CONFIG_TCG */
80 
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83     ARMCPU *cpu = ARM_CPU(cs);
84 
85     return (cpu->power_state != PSCI_OFF)
86         && cs->interrupt_request &
87         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89          | CPU_INTERRUPT_EXITTB);
90 }
91 
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102 
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104                                  void *opaque)
105 {
106     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 
108     entry->hook = hook;
109     entry->opaque = opaque;
110 
111     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113 
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116     /* Reset a single ARMCPRegInfo register */
117     ARMCPRegInfo *ri = value;
118     ARMCPU *cpu = opaque;
119 
120     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121         return;
122     }
123 
124     if (ri->resetfn) {
125         ri->resetfn(&cpu->env, ri);
126         return;
127     }
128 
129     /* A zero offset is never possible as it would be regs[0]
130      * so we use it to indicate that reset is being handled elsewhere.
131      * This is basically only used for fields in non-core coprocessors
132      * (like the pxa2xx ones).
133      */
134     if (!ri->fieldoffset) {
135         return;
136     }
137 
138     if (cpreg_field_is_64bit(ri)) {
139         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140     } else {
141         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142     }
143 }
144 
145 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
146 {
147     /* Purely an assertion check: we've already done reset once,
148      * so now check that running the reset for the cpreg doesn't
149      * change its value. This traps bugs where two different cpregs
150      * both try to reset the same state field but to different values.
151      */
152     ARMCPRegInfo *ri = value;
153     ARMCPU *cpu = opaque;
154     uint64_t oldvalue, newvalue;
155 
156     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157         return;
158     }
159 
160     oldvalue = read_raw_cp_reg(&cpu->env, ri);
161     cp_reg_reset(key, value, opaque);
162     newvalue = read_raw_cp_reg(&cpu->env, ri);
163     assert(oldvalue == newvalue);
164 }
165 
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168     CPUState *s = CPU(dev);
169     ARMCPU *cpu = ARM_CPU(s);
170     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171     CPUARMState *env = &cpu->env;
172 
173     acc->parent_reset(dev);
174 
175     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 
180     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 
185     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 
187     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189     }
190 
191     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192         /* 64 bit CPUs always start in 64 bit mode */
193         env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195         env->pstate = PSTATE_MODE_EL0t;
196         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198         /* Enable all PAC keys.  */
199         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200                                   SCTLR_EnDA | SCTLR_EnDB);
201         /* Trap on btype=3 for PACIxSP. */
202         env->cp15.sctlr_el[1] |= SCTLR_BT0;
203         /* and to the FP/Neon instructions */
204         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
205         /* and to the SVE instructions */
206         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
207         /* with reasonable vector length */
208         if (cpu_isar_feature(aa64_sve, cpu)) {
209             env->vfp.zcr_el[1] =
210                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
211         }
212         /*
213          * Enable 48-bit address space (TODO: take reserved_va into account).
214          * Enable TBI0 but not TBI1.
215          * Note that this must match useronly_clean_ptr.
216          */
217         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
218 
219         /* Enable MTE */
220         if (cpu_isar_feature(aa64_mte, cpu)) {
221             /* Enable tag access, but leave TCF0 as No Effect (0). */
222             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
223             /*
224              * Exclude all tags, so that tag 0 is always used.
225              * This corresponds to Linux current->thread.gcr_incl = 0.
226              *
227              * Set RRND, so that helper_irg() will generate a seed later.
228              * Here in cpu_reset(), the crypto subsystem has not yet been
229              * initialized.
230              */
231             env->cp15.gcr_el1 = 0x1ffff;
232         }
233 #else
234         /* Reset into the highest available EL */
235         if (arm_feature(env, ARM_FEATURE_EL3)) {
236             env->pstate = PSTATE_MODE_EL3h;
237         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
238             env->pstate = PSTATE_MODE_EL2h;
239         } else {
240             env->pstate = PSTATE_MODE_EL1h;
241         }
242 
243         /* Sample rvbar at reset.  */
244         env->cp15.rvbar = cpu->rvbar_prop;
245         env->pc = env->cp15.rvbar;
246 #endif
247     } else {
248 #if defined(CONFIG_USER_ONLY)
249         /* Userspace expects access to cp10 and cp11 for FP/Neon */
250         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
251 #endif
252     }
253 
254 #if defined(CONFIG_USER_ONLY)
255     env->uncached_cpsr = ARM_CPU_MODE_USR;
256     /* For user mode we must enable access to coprocessors */
257     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
258     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
259         env->cp15.c15_cpar = 3;
260     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
261         env->cp15.c15_cpar = 1;
262     }
263 #else
264 
265     /*
266      * If the highest available EL is EL2, AArch32 will start in Hyp
267      * mode; otherwise it starts in SVC. Note that if we start in
268      * AArch64 then these values in the uncached_cpsr will be ignored.
269      */
270     if (arm_feature(env, ARM_FEATURE_EL2) &&
271         !arm_feature(env, ARM_FEATURE_EL3)) {
272         env->uncached_cpsr = ARM_CPU_MODE_HYP;
273     } else {
274         env->uncached_cpsr = ARM_CPU_MODE_SVC;
275     }
276     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
287 #endif
288 
289     if (arm_feature(env, ARM_FEATURE_M)) {
290 #ifndef CONFIG_USER_ONLY
291         uint32_t initial_msp; /* Loaded from 0x0 */
292         uint32_t initial_pc; /* Loaded from 0x4 */
293         uint8_t *rom;
294         uint32_t vecbase;
295 #endif
296 
297         if (cpu_isar_feature(aa32_lob, cpu)) {
298             /*
299              * LTPSIZE is constant 4 if MVE not implemented, and resets
300              * to an UNKNOWN value if MVE is implemented. We choose to
301              * always reset to 4.
302              */
303             env->v7m.ltpsize = 4;
304             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
305             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
306             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
307         }
308 
309         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
310             env->v7m.secure = true;
311         } else {
312             /* This bit resets to 0 if security is supported, but 1 if
313              * it is not. The bit is not present in v7M, but we set it
314              * here so we can avoid having to make checks on it conditional
315              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
316              */
317             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
318             /*
319              * Set NSACR to indicate "NS access permitted to everything";
320              * this avoids having to have all the tests of it being
321              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
322              * v8.1M the guest-visible value of NSACR in a CPU without the
323              * Security Extension is 0xcff.
324              */
325             env->v7m.nsacr = 0xcff;
326         }
327 
328         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
329          * that it resets to 1, so QEMU always does that rather than making
330          * it dependent on CPU model. In v8M it is RES1.
331          */
332         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
333         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
334         if (arm_feature(env, ARM_FEATURE_V8)) {
335             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
336             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
337             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
338         }
339         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
340             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
341             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
342         }
343 
344         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
345             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
346             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
347                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
348         }
349 
350 #ifndef CONFIG_USER_ONLY
351         /* Unlike A/R profile, M profile defines the reset LR value */
352         env->regs[14] = 0xffffffff;
353 
354         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
355         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
356 
357         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
358         vecbase = env->v7m.vecbase[env->v7m.secure];
359         rom = rom_ptr_for_as(s->as, vecbase, 8);
360         if (rom) {
361             /* Address zero is covered by ROM which hasn't yet been
362              * copied into physical memory.
363              */
364             initial_msp = ldl_p(rom);
365             initial_pc = ldl_p(rom + 4);
366         } else {
367             /* Address zero not covered by a ROM blob, or the ROM blob
368              * is in non-modifiable memory and this is a second reset after
369              * it got copied into memory. In the latter case, rom_ptr
370              * will return a NULL pointer and we should use ldl_phys instead.
371              */
372             initial_msp = ldl_phys(s->as, vecbase);
373             initial_pc = ldl_phys(s->as, vecbase + 4);
374         }
375 
376         qemu_log_mask(CPU_LOG_INT,
377                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
378                       initial_msp, initial_pc);
379 
380         env->regs[13] = initial_msp & 0xFFFFFFFC;
381         env->regs[15] = initial_pc & ~1;
382         env->thumb = initial_pc & 1;
383 #else
384         /*
385          * For user mode we run non-secure and with access to the FPU.
386          * The FPU context is active (ie does not need further setup)
387          * and is owned by non-secure.
388          */
389         env->v7m.secure = false;
390         env->v7m.nsacr = 0xcff;
391         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
392         env->v7m.fpccr[M_REG_S] &=
393             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
394         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
395 #endif
396     }
397 
398     /* M profile requires that reset clears the exclusive monitor;
399      * A profile does not, but clearing it makes more sense than having it
400      * set with an exclusive access on address zero.
401      */
402     arm_clear_exclusive(env);
403 
404     if (arm_feature(env, ARM_FEATURE_PMSA)) {
405         if (cpu->pmsav7_dregion > 0) {
406             if (arm_feature(env, ARM_FEATURE_V8)) {
407                 memset(env->pmsav8.rbar[M_REG_NS], 0,
408                        sizeof(*env->pmsav8.rbar[M_REG_NS])
409                        * cpu->pmsav7_dregion);
410                 memset(env->pmsav8.rlar[M_REG_NS], 0,
411                        sizeof(*env->pmsav8.rlar[M_REG_NS])
412                        * cpu->pmsav7_dregion);
413                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
414                     memset(env->pmsav8.rbar[M_REG_S], 0,
415                            sizeof(*env->pmsav8.rbar[M_REG_S])
416                            * cpu->pmsav7_dregion);
417                     memset(env->pmsav8.rlar[M_REG_S], 0,
418                            sizeof(*env->pmsav8.rlar[M_REG_S])
419                            * cpu->pmsav7_dregion);
420                 }
421             } else if (arm_feature(env, ARM_FEATURE_V7)) {
422                 memset(env->pmsav7.drbar, 0,
423                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
424                 memset(env->pmsav7.drsr, 0,
425                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
426                 memset(env->pmsav7.dracr, 0,
427                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
428             }
429         }
430         env->pmsav7.rnr[M_REG_NS] = 0;
431         env->pmsav7.rnr[M_REG_S] = 0;
432         env->pmsav8.mair0[M_REG_NS] = 0;
433         env->pmsav8.mair0[M_REG_S] = 0;
434         env->pmsav8.mair1[M_REG_NS] = 0;
435         env->pmsav8.mair1[M_REG_S] = 0;
436     }
437 
438     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
439         if (cpu->sau_sregion > 0) {
440             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
441             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
442         }
443         env->sau.rnr = 0;
444         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
445          * the Cortex-M33 does.
446          */
447         env->sau.ctrl = 0;
448     }
449 
450     set_flush_to_zero(1, &env->vfp.standard_fp_status);
451     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
452     set_default_nan_mode(1, &env->vfp.standard_fp_status);
453     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
454     set_float_detect_tininess(float_tininess_before_rounding,
455                               &env->vfp.fp_status);
456     set_float_detect_tininess(float_tininess_before_rounding,
457                               &env->vfp.standard_fp_status);
458     set_float_detect_tininess(float_tininess_before_rounding,
459                               &env->vfp.fp_status_f16);
460     set_float_detect_tininess(float_tininess_before_rounding,
461                               &env->vfp.standard_fp_status_f16);
462 #ifndef CONFIG_USER_ONLY
463     if (kvm_enabled()) {
464         kvm_arm_reset_vcpu(cpu);
465     }
466 #endif
467 
468     hw_breakpoint_update_all(cpu);
469     hw_watchpoint_update_all(cpu);
470     arm_rebuild_hflags(env);
471 }
472 
473 #ifndef CONFIG_USER_ONLY
474 
475 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
476                                      unsigned int target_el,
477                                      unsigned int cur_el, bool secure,
478                                      uint64_t hcr_el2)
479 {
480     CPUARMState *env = cs->env_ptr;
481     bool pstate_unmasked;
482     bool unmasked = false;
483 
484     /*
485      * Don't take exceptions if they target a lower EL.
486      * This check should catch any exceptions that would not be taken
487      * but left pending.
488      */
489     if (cur_el > target_el) {
490         return false;
491     }
492 
493     switch (excp_idx) {
494     case EXCP_FIQ:
495         pstate_unmasked = !(env->daif & PSTATE_F);
496         break;
497 
498     case EXCP_IRQ:
499         pstate_unmasked = !(env->daif & PSTATE_I);
500         break;
501 
502     case EXCP_VFIQ:
503         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
504             /* VFIQs are only taken when hypervized.  */
505             return false;
506         }
507         return !(env->daif & PSTATE_F);
508     case EXCP_VIRQ:
509         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
510             /* VIRQs are only taken when hypervized.  */
511             return false;
512         }
513         return !(env->daif & PSTATE_I);
514     case EXCP_VSERR:
515         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
516             /* VIRQs are only taken when hypervized.  */
517             return false;
518         }
519         return !(env->daif & PSTATE_A);
520     default:
521         g_assert_not_reached();
522     }
523 
524     /*
525      * Use the target EL, current execution state and SCR/HCR settings to
526      * determine whether the corresponding CPSR bit is used to mask the
527      * interrupt.
528      */
529     if ((target_el > cur_el) && (target_el != 1)) {
530         /* Exceptions targeting a higher EL may not be maskable */
531         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
532             /*
533              * 64-bit masking rules are simple: exceptions to EL3
534              * can't be masked, and exceptions to EL2 can only be
535              * masked from Secure state. The HCR and SCR settings
536              * don't affect the masking logic, only the interrupt routing.
537              */
538             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
539                 unmasked = true;
540             }
541         } else {
542             /*
543              * The old 32-bit-only environment has a more complicated
544              * masking setup. HCR and SCR bits not only affect interrupt
545              * routing but also change the behaviour of masking.
546              */
547             bool hcr, scr;
548 
549             switch (excp_idx) {
550             case EXCP_FIQ:
551                 /*
552                  * If FIQs are routed to EL3 or EL2 then there are cases where
553                  * we override the CPSR.F in determining if the exception is
554                  * masked or not. If neither of these are set then we fall back
555                  * to the CPSR.F setting otherwise we further assess the state
556                  * below.
557                  */
558                 hcr = hcr_el2 & HCR_FMO;
559                 scr = (env->cp15.scr_el3 & SCR_FIQ);
560 
561                 /*
562                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
563                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
564                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
565                  * when non-secure but only when FIQs are only routed to EL3.
566                  */
567                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
568                 break;
569             case EXCP_IRQ:
570                 /*
571                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
572                  * we may override the CPSR.I masking when in non-secure state.
573                  * The SCR.IRQ setting has already been taken into consideration
574                  * when setting the target EL, so it does not have a further
575                  * affect here.
576                  */
577                 hcr = hcr_el2 & HCR_IMO;
578                 scr = false;
579                 break;
580             default:
581                 g_assert_not_reached();
582             }
583 
584             if ((scr || hcr) && !secure) {
585                 unmasked = true;
586             }
587         }
588     }
589 
590     /*
591      * The PSTATE bits only mask the interrupt if we have not overriden the
592      * ability above.
593      */
594     return unmasked || pstate_unmasked;
595 }
596 
597 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
598 {
599     CPUClass *cc = CPU_GET_CLASS(cs);
600     CPUARMState *env = cs->env_ptr;
601     uint32_t cur_el = arm_current_el(env);
602     bool secure = arm_is_secure(env);
603     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
604     uint32_t target_el;
605     uint32_t excp_idx;
606 
607     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
608 
609     if (interrupt_request & CPU_INTERRUPT_FIQ) {
610         excp_idx = EXCP_FIQ;
611         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
612         if (arm_excp_unmasked(cs, excp_idx, target_el,
613                               cur_el, secure, hcr_el2)) {
614             goto found;
615         }
616     }
617     if (interrupt_request & CPU_INTERRUPT_HARD) {
618         excp_idx = EXCP_IRQ;
619         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
620         if (arm_excp_unmasked(cs, excp_idx, target_el,
621                               cur_el, secure, hcr_el2)) {
622             goto found;
623         }
624     }
625     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
626         excp_idx = EXCP_VIRQ;
627         target_el = 1;
628         if (arm_excp_unmasked(cs, excp_idx, target_el,
629                               cur_el, secure, hcr_el2)) {
630             goto found;
631         }
632     }
633     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
634         excp_idx = EXCP_VFIQ;
635         target_el = 1;
636         if (arm_excp_unmasked(cs, excp_idx, target_el,
637                               cur_el, secure, hcr_el2)) {
638             goto found;
639         }
640     }
641     if (interrupt_request & CPU_INTERRUPT_VSERR) {
642         excp_idx = EXCP_VSERR;
643         target_el = 1;
644         if (arm_excp_unmasked(cs, excp_idx, target_el,
645                               cur_el, secure, hcr_el2)) {
646             /* Taking a virtual abort clears HCR_EL2.VSE */
647             env->cp15.hcr_el2 &= ~HCR_VSE;
648             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
649             goto found;
650         }
651     }
652     return false;
653 
654  found:
655     cs->exception_index = excp_idx;
656     env->exception.target_el = target_el;
657     cc->tcg_ops->do_interrupt(cs);
658     return true;
659 }
660 #endif /* !CONFIG_USER_ONLY */
661 
662 void arm_cpu_update_virq(ARMCPU *cpu)
663 {
664     /*
665      * Update the interrupt level for VIRQ, which is the logical OR of
666      * the HCR_EL2.VI bit and the input line level from the GIC.
667      */
668     CPUARMState *env = &cpu->env;
669     CPUState *cs = CPU(cpu);
670 
671     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
672         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
673 
674     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
675         if (new_state) {
676             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
677         } else {
678             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
679         }
680     }
681 }
682 
683 void arm_cpu_update_vfiq(ARMCPU *cpu)
684 {
685     /*
686      * Update the interrupt level for VFIQ, which is the logical OR of
687      * the HCR_EL2.VF bit and the input line level from the GIC.
688      */
689     CPUARMState *env = &cpu->env;
690     CPUState *cs = CPU(cpu);
691 
692     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
693         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
694 
695     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
696         if (new_state) {
697             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
698         } else {
699             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
700         }
701     }
702 }
703 
704 void arm_cpu_update_vserr(ARMCPU *cpu)
705 {
706     /*
707      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
708      */
709     CPUARMState *env = &cpu->env;
710     CPUState *cs = CPU(cpu);
711 
712     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
713 
714     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
715         if (new_state) {
716             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
717         } else {
718             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
719         }
720     }
721 }
722 
723 #ifndef CONFIG_USER_ONLY
724 static void arm_cpu_set_irq(void *opaque, int irq, int level)
725 {
726     ARMCPU *cpu = opaque;
727     CPUARMState *env = &cpu->env;
728     CPUState *cs = CPU(cpu);
729     static const int mask[] = {
730         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
731         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
732         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
733         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
734     };
735 
736     if (!arm_feature(env, ARM_FEATURE_EL2) &&
737         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
738         /*
739          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
740          * have EL2 support we don't care. (Unless the guest is doing something
741          * silly this will only be calls saying "level is still 0".)
742          */
743         return;
744     }
745 
746     if (level) {
747         env->irq_line_state |= mask[irq];
748     } else {
749         env->irq_line_state &= ~mask[irq];
750     }
751 
752     switch (irq) {
753     case ARM_CPU_VIRQ:
754         arm_cpu_update_virq(cpu);
755         break;
756     case ARM_CPU_VFIQ:
757         arm_cpu_update_vfiq(cpu);
758         break;
759     case ARM_CPU_IRQ:
760     case ARM_CPU_FIQ:
761         if (level) {
762             cpu_interrupt(cs, mask[irq]);
763         } else {
764             cpu_reset_interrupt(cs, mask[irq]);
765         }
766         break;
767     default:
768         g_assert_not_reached();
769     }
770 }
771 
772 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
773 {
774 #ifdef CONFIG_KVM
775     ARMCPU *cpu = opaque;
776     CPUARMState *env = &cpu->env;
777     CPUState *cs = CPU(cpu);
778     uint32_t linestate_bit;
779     int irq_id;
780 
781     switch (irq) {
782     case ARM_CPU_IRQ:
783         irq_id = KVM_ARM_IRQ_CPU_IRQ;
784         linestate_bit = CPU_INTERRUPT_HARD;
785         break;
786     case ARM_CPU_FIQ:
787         irq_id = KVM_ARM_IRQ_CPU_FIQ;
788         linestate_bit = CPU_INTERRUPT_FIQ;
789         break;
790     default:
791         g_assert_not_reached();
792     }
793 
794     if (level) {
795         env->irq_line_state |= linestate_bit;
796     } else {
797         env->irq_line_state &= ~linestate_bit;
798     }
799     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
800 #endif
801 }
802 
803 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
804 {
805     ARMCPU *cpu = ARM_CPU(cs);
806     CPUARMState *env = &cpu->env;
807 
808     cpu_synchronize_state(cs);
809     return arm_cpu_data_is_big_endian(env);
810 }
811 
812 #endif
813 
814 static int
815 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
816 {
817   return print_insn_arm(pc | 1, info);
818 }
819 
820 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
821 {
822     ARMCPU *ac = ARM_CPU(cpu);
823     CPUARMState *env = &ac->env;
824     bool sctlr_b;
825 
826     if (is_a64(env)) {
827         /* We might not be compiled with the A64 disassembler
828          * because it needs a C++ compiler. Leave print_insn
829          * unset in this case to use the caller default behaviour.
830          */
831 #if defined(CONFIG_ARM_A64_DIS)
832         info->print_insn = print_insn_arm_a64;
833 #endif
834         info->cap_arch = CS_ARCH_ARM64;
835         info->cap_insn_unit = 4;
836         info->cap_insn_split = 4;
837     } else {
838         int cap_mode;
839         if (env->thumb) {
840             info->print_insn = print_insn_thumb1;
841             info->cap_insn_unit = 2;
842             info->cap_insn_split = 4;
843             cap_mode = CS_MODE_THUMB;
844         } else {
845             info->print_insn = print_insn_arm;
846             info->cap_insn_unit = 4;
847             info->cap_insn_split = 4;
848             cap_mode = CS_MODE_ARM;
849         }
850         if (arm_feature(env, ARM_FEATURE_V8)) {
851             cap_mode |= CS_MODE_V8;
852         }
853         if (arm_feature(env, ARM_FEATURE_M)) {
854             cap_mode |= CS_MODE_MCLASS;
855         }
856         info->cap_arch = CS_ARCH_ARM;
857         info->cap_mode = cap_mode;
858     }
859 
860     sctlr_b = arm_sctlr_b(env);
861     if (bswap_code(sctlr_b)) {
862 #if TARGET_BIG_ENDIAN
863         info->endian = BFD_ENDIAN_LITTLE;
864 #else
865         info->endian = BFD_ENDIAN_BIG;
866 #endif
867     }
868     info->flags &= ~INSN_ARM_BE32;
869 #ifndef CONFIG_USER_ONLY
870     if (sctlr_b) {
871         info->flags |= INSN_ARM_BE32;
872     }
873 #endif
874 }
875 
876 #ifdef TARGET_AARCH64
877 
878 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
879 {
880     ARMCPU *cpu = ARM_CPU(cs);
881     CPUARMState *env = &cpu->env;
882     uint32_t psr = pstate_read(env);
883     int i;
884     int el = arm_current_el(env);
885     const char *ns_status;
886 
887     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
888     for (i = 0; i < 32; i++) {
889         if (i == 31) {
890             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
891         } else {
892             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
893                          (i + 2) % 3 ? " " : "\n");
894         }
895     }
896 
897     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
898         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
899     } else {
900         ns_status = "";
901     }
902     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
903                  psr,
904                  psr & PSTATE_N ? 'N' : '-',
905                  psr & PSTATE_Z ? 'Z' : '-',
906                  psr & PSTATE_C ? 'C' : '-',
907                  psr & PSTATE_V ? 'V' : '-',
908                  ns_status,
909                  el,
910                  psr & PSTATE_SP ? 'h' : 't');
911 
912     if (cpu_isar_feature(aa64_bti, cpu)) {
913         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
914     }
915     if (!(flags & CPU_DUMP_FPU)) {
916         qemu_fprintf(f, "\n");
917         return;
918     }
919     if (fp_exception_el(env, el) != 0) {
920         qemu_fprintf(f, "    FPU disabled\n");
921         return;
922     }
923     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
924                  vfp_get_fpcr(env), vfp_get_fpsr(env));
925 
926     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
927         int j, zcr_len = sve_zcr_len_for_el(env, el);
928 
929         for (i = 0; i <= FFR_PRED_NUM; i++) {
930             bool eol;
931             if (i == FFR_PRED_NUM) {
932                 qemu_fprintf(f, "FFR=");
933                 /* It's last, so end the line.  */
934                 eol = true;
935             } else {
936                 qemu_fprintf(f, "P%02d=", i);
937                 switch (zcr_len) {
938                 case 0:
939                     eol = i % 8 == 7;
940                     break;
941                 case 1:
942                     eol = i % 6 == 5;
943                     break;
944                 case 2:
945                 case 3:
946                     eol = i % 3 == 2;
947                     break;
948                 default:
949                     /* More than one quadword per predicate.  */
950                     eol = true;
951                     break;
952                 }
953             }
954             for (j = zcr_len / 4; j >= 0; j--) {
955                 int digits;
956                 if (j * 4 + 4 <= zcr_len + 1) {
957                     digits = 16;
958                 } else {
959                     digits = (zcr_len % 4 + 1) * 4;
960                 }
961                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
962                              env->vfp.pregs[i].p[j],
963                              j ? ":" : eol ? "\n" : " ");
964             }
965         }
966 
967         for (i = 0; i < 32; i++) {
968             if (zcr_len == 0) {
969                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
970                              i, env->vfp.zregs[i].d[1],
971                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
972             } else if (zcr_len == 1) {
973                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
974                              ":%016" PRIx64 ":%016" PRIx64 "\n",
975                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
976                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
977             } else {
978                 for (j = zcr_len; j >= 0; j--) {
979                     bool odd = (zcr_len - j) % 2 != 0;
980                     if (j == zcr_len) {
981                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
982                     } else if (!odd) {
983                         if (j > 0) {
984                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
985                         } else {
986                             qemu_fprintf(f, "     [%x]=", j);
987                         }
988                     }
989                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
990                                  env->vfp.zregs[i].d[j * 2 + 1],
991                                  env->vfp.zregs[i].d[j * 2],
992                                  odd || j == 0 ? "\n" : ":");
993                 }
994             }
995         }
996     } else {
997         for (i = 0; i < 32; i++) {
998             uint64_t *q = aa64_vfp_qreg(env, i);
999             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1000                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1001         }
1002     }
1003 }
1004 
1005 #else
1006 
1007 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1008 {
1009     g_assert_not_reached();
1010 }
1011 
1012 #endif
1013 
1014 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1015 {
1016     ARMCPU *cpu = ARM_CPU(cs);
1017     CPUARMState *env = &cpu->env;
1018     int i;
1019 
1020     if (is_a64(env)) {
1021         aarch64_cpu_dump_state(cs, f, flags);
1022         return;
1023     }
1024 
1025     for (i = 0; i < 16; i++) {
1026         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1027         if ((i % 4) == 3) {
1028             qemu_fprintf(f, "\n");
1029         } else {
1030             qemu_fprintf(f, " ");
1031         }
1032     }
1033 
1034     if (arm_feature(env, ARM_FEATURE_M)) {
1035         uint32_t xpsr = xpsr_read(env);
1036         const char *mode;
1037         const char *ns_status = "";
1038 
1039         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1040             ns_status = env->v7m.secure ? "S " : "NS ";
1041         }
1042 
1043         if (xpsr & XPSR_EXCP) {
1044             mode = "handler";
1045         } else {
1046             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1047                 mode = "unpriv-thread";
1048             } else {
1049                 mode = "priv-thread";
1050             }
1051         }
1052 
1053         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1054                      xpsr,
1055                      xpsr & XPSR_N ? 'N' : '-',
1056                      xpsr & XPSR_Z ? 'Z' : '-',
1057                      xpsr & XPSR_C ? 'C' : '-',
1058                      xpsr & XPSR_V ? 'V' : '-',
1059                      xpsr & XPSR_T ? 'T' : 'A',
1060                      ns_status,
1061                      mode);
1062     } else {
1063         uint32_t psr = cpsr_read(env);
1064         const char *ns_status = "";
1065 
1066         if (arm_feature(env, ARM_FEATURE_EL3) &&
1067             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1068             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1069         }
1070 
1071         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1072                      psr,
1073                      psr & CPSR_N ? 'N' : '-',
1074                      psr & CPSR_Z ? 'Z' : '-',
1075                      psr & CPSR_C ? 'C' : '-',
1076                      psr & CPSR_V ? 'V' : '-',
1077                      psr & CPSR_T ? 'T' : 'A',
1078                      ns_status,
1079                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1080     }
1081 
1082     if (flags & CPU_DUMP_FPU) {
1083         int numvfpregs = 0;
1084         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1085             numvfpregs = 32;
1086         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1087             numvfpregs = 16;
1088         }
1089         for (i = 0; i < numvfpregs; i++) {
1090             uint64_t v = *aa32_vfp_dreg(env, i);
1091             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1092                          i * 2, (uint32_t)v,
1093                          i * 2 + 1, (uint32_t)(v >> 32),
1094                          i, v);
1095         }
1096         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1097         if (cpu_isar_feature(aa32_mve, cpu)) {
1098             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1099         }
1100     }
1101 }
1102 
1103 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1104 {
1105     uint32_t Aff1 = idx / clustersz;
1106     uint32_t Aff0 = idx % clustersz;
1107     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1108 }
1109 
1110 static void arm_cpu_initfn(Object *obj)
1111 {
1112     ARMCPU *cpu = ARM_CPU(obj);
1113 
1114     cpu_set_cpustate_pointers(cpu);
1115     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1116                                          NULL, g_free);
1117 
1118     QLIST_INIT(&cpu->pre_el_change_hooks);
1119     QLIST_INIT(&cpu->el_change_hooks);
1120 
1121 #ifdef CONFIG_USER_ONLY
1122 # ifdef TARGET_AARCH64
1123     /*
1124      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1125      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1126      * our corresponding sve-default-vector-length cpu property.
1127      */
1128     cpu->sve_default_vq = 4;
1129 # endif
1130 #else
1131     /* Our inbound IRQ and FIQ lines */
1132     if (kvm_enabled()) {
1133         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1134          * the same interface as non-KVM CPUs.
1135          */
1136         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1137     } else {
1138         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1139     }
1140 
1141     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1142                        ARRAY_SIZE(cpu->gt_timer_outputs));
1143 
1144     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1145                              "gicv3-maintenance-interrupt", 1);
1146     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1147                              "pmu-interrupt", 1);
1148 #endif
1149 
1150     /* DTB consumers generally don't in fact care what the 'compatible'
1151      * string is, so always provide some string and trust that a hypothetical
1152      * picky DTB consumer will also provide a helpful error message.
1153      */
1154     cpu->dtb_compatible = "qemu,unknown";
1155     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1156     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1157 
1158     if (tcg_enabled() || hvf_enabled()) {
1159         /* TCG and HVF implement PSCI 1.1 */
1160         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1161     }
1162 }
1163 
1164 static Property arm_cpu_gt_cntfrq_property =
1165             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1166                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1167 
1168 static Property arm_cpu_reset_cbar_property =
1169             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1170 
1171 static Property arm_cpu_reset_hivecs_property =
1172             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1173 
1174 #ifndef CONFIG_USER_ONLY
1175 static Property arm_cpu_has_el2_property =
1176             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1177 
1178 static Property arm_cpu_has_el3_property =
1179             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1180 #endif
1181 
1182 static Property arm_cpu_cfgend_property =
1183             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1184 
1185 static Property arm_cpu_has_vfp_property =
1186             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1187 
1188 static Property arm_cpu_has_neon_property =
1189             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1190 
1191 static Property arm_cpu_has_dsp_property =
1192             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1193 
1194 static Property arm_cpu_has_mpu_property =
1195             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1196 
1197 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1198  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1199  * the right value for that particular CPU type, and we don't want
1200  * to override that with an incorrect constant value.
1201  */
1202 static Property arm_cpu_pmsav7_dregion_property =
1203             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1204                                            pmsav7_dregion,
1205                                            qdev_prop_uint32, uint32_t);
1206 
1207 static bool arm_get_pmu(Object *obj, Error **errp)
1208 {
1209     ARMCPU *cpu = ARM_CPU(obj);
1210 
1211     return cpu->has_pmu;
1212 }
1213 
1214 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1215 {
1216     ARMCPU *cpu = ARM_CPU(obj);
1217 
1218     if (value) {
1219         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1220             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1221             return;
1222         }
1223         set_feature(&cpu->env, ARM_FEATURE_PMU);
1224     } else {
1225         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1226     }
1227     cpu->has_pmu = value;
1228 }
1229 
1230 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1231 {
1232     /*
1233      * The exact approach to calculating guest ticks is:
1234      *
1235      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1236      *              NANOSECONDS_PER_SECOND);
1237      *
1238      * We don't do that. Rather we intentionally use integer division
1239      * truncation below and in the caller for the conversion of host monotonic
1240      * time to guest ticks to provide the exact inverse for the semantics of
1241      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1242      * it loses precision when representing frequencies where
1243      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1244      * provide an exact inverse leads to scheduling timers with negative
1245      * periods, which in turn leads to sticky behaviour in the guest.
1246      *
1247      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1248      * cannot become zero.
1249      */
1250     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1251       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1252 }
1253 
1254 void arm_cpu_post_init(Object *obj)
1255 {
1256     ARMCPU *cpu = ARM_CPU(obj);
1257 
1258     /* M profile implies PMSA. We have to do this here rather than
1259      * in realize with the other feature-implication checks because
1260      * we look at the PMSA bit to see if we should add some properties.
1261      */
1262     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1263         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1264     }
1265 
1266     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1267         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1268         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1269     }
1270 
1271     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1272         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1273     }
1274 
1275     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1276         object_property_add_uint64_ptr(obj, "rvbar",
1277                                        &cpu->rvbar_prop,
1278                                        OBJ_PROP_FLAG_READWRITE);
1279     }
1280 
1281 #ifndef CONFIG_USER_ONLY
1282     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1283         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1284          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1285          */
1286         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1287 
1288         object_property_add_link(obj, "secure-memory",
1289                                  TYPE_MEMORY_REGION,
1290                                  (Object **)&cpu->secure_memory,
1291                                  qdev_prop_allow_set_link_before_realize,
1292                                  OBJ_PROP_LINK_STRONG);
1293     }
1294 
1295     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1296         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1297     }
1298 #endif
1299 
1300     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1301         cpu->has_pmu = true;
1302         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1303     }
1304 
1305     /*
1306      * Allow user to turn off VFP and Neon support, but only for TCG --
1307      * KVM does not currently allow us to lie to the guest about its
1308      * ID/feature registers, so the guest always sees what the host has.
1309      */
1310     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1311         ? cpu_isar_feature(aa64_fp_simd, cpu)
1312         : cpu_isar_feature(aa32_vfp, cpu)) {
1313         cpu->has_vfp = true;
1314         if (!kvm_enabled()) {
1315             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1316         }
1317     }
1318 
1319     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1320         cpu->has_neon = true;
1321         if (!kvm_enabled()) {
1322             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1323         }
1324     }
1325 
1326     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1327         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1328         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1329     }
1330 
1331     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1332         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1333         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1334             qdev_property_add_static(DEVICE(obj),
1335                                      &arm_cpu_pmsav7_dregion_property);
1336         }
1337     }
1338 
1339     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1340         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1341                                  qdev_prop_allow_set_link_before_realize,
1342                                  OBJ_PROP_LINK_STRONG);
1343         /*
1344          * M profile: initial value of the Secure VTOR. We can't just use
1345          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1346          * the property to be set after realize.
1347          */
1348         object_property_add_uint32_ptr(obj, "init-svtor",
1349                                        &cpu->init_svtor,
1350                                        OBJ_PROP_FLAG_READWRITE);
1351     }
1352     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1353         /*
1354          * Initial value of the NS VTOR (for cores without the Security
1355          * extension, this is the only VTOR)
1356          */
1357         object_property_add_uint32_ptr(obj, "init-nsvtor",
1358                                        &cpu->init_nsvtor,
1359                                        OBJ_PROP_FLAG_READWRITE);
1360     }
1361 
1362     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1363     object_property_add_uint32_ptr(obj, "psci-conduit",
1364                                    &cpu->psci_conduit,
1365                                    OBJ_PROP_FLAG_READWRITE);
1366 
1367     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1368 
1369     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1370         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1371     }
1372 
1373     if (kvm_enabled()) {
1374         kvm_arm_add_vcpu_properties(obj);
1375     }
1376 
1377 #ifndef CONFIG_USER_ONLY
1378     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1379         cpu_isar_feature(aa64_mte, cpu)) {
1380         object_property_add_link(obj, "tag-memory",
1381                                  TYPE_MEMORY_REGION,
1382                                  (Object **)&cpu->tag_memory,
1383                                  qdev_prop_allow_set_link_before_realize,
1384                                  OBJ_PROP_LINK_STRONG);
1385 
1386         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1387             object_property_add_link(obj, "secure-tag-memory",
1388                                      TYPE_MEMORY_REGION,
1389                                      (Object **)&cpu->secure_tag_memory,
1390                                      qdev_prop_allow_set_link_before_realize,
1391                                      OBJ_PROP_LINK_STRONG);
1392         }
1393     }
1394 #endif
1395 }
1396 
1397 static void arm_cpu_finalizefn(Object *obj)
1398 {
1399     ARMCPU *cpu = ARM_CPU(obj);
1400     ARMELChangeHook *hook, *next;
1401 
1402     g_hash_table_destroy(cpu->cp_regs);
1403 
1404     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1405         QLIST_REMOVE(hook, node);
1406         g_free(hook);
1407     }
1408     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1409         QLIST_REMOVE(hook, node);
1410         g_free(hook);
1411     }
1412 #ifndef CONFIG_USER_ONLY
1413     if (cpu->pmu_timer) {
1414         timer_free(cpu->pmu_timer);
1415     }
1416 #endif
1417 }
1418 
1419 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1420 {
1421     Error *local_err = NULL;
1422 
1423     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1424         arm_cpu_sve_finalize(cpu, &local_err);
1425         if (local_err != NULL) {
1426             error_propagate(errp, local_err);
1427             return;
1428         }
1429 
1430         arm_cpu_pauth_finalize(cpu, &local_err);
1431         if (local_err != NULL) {
1432             error_propagate(errp, local_err);
1433             return;
1434         }
1435 
1436         arm_cpu_lpa2_finalize(cpu, &local_err);
1437         if (local_err != NULL) {
1438             error_propagate(errp, local_err);
1439             return;
1440         }
1441     }
1442 
1443     if (kvm_enabled()) {
1444         kvm_arm_steal_time_finalize(cpu, &local_err);
1445         if (local_err != NULL) {
1446             error_propagate(errp, local_err);
1447             return;
1448         }
1449     }
1450 }
1451 
1452 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1453 {
1454     CPUState *cs = CPU(dev);
1455     ARMCPU *cpu = ARM_CPU(dev);
1456     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1457     CPUARMState *env = &cpu->env;
1458     int pagebits;
1459     Error *local_err = NULL;
1460     bool no_aa32 = false;
1461 
1462     /* If we needed to query the host kernel for the CPU features
1463      * then it's possible that might have failed in the initfn, but
1464      * this is the first point where we can report it.
1465      */
1466     if (cpu->host_cpu_probe_failed) {
1467         if (!kvm_enabled() && !hvf_enabled()) {
1468             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1469         } else {
1470             error_setg(errp, "Failed to retrieve host CPU features");
1471         }
1472         return;
1473     }
1474 
1475 #ifndef CONFIG_USER_ONLY
1476     /* The NVIC and M-profile CPU are two halves of a single piece of
1477      * hardware; trying to use one without the other is a command line
1478      * error and will result in segfaults if not caught here.
1479      */
1480     if (arm_feature(env, ARM_FEATURE_M)) {
1481         if (!env->nvic) {
1482             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1483             return;
1484         }
1485     } else {
1486         if (env->nvic) {
1487             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1488             return;
1489         }
1490     }
1491 
1492     if (kvm_enabled()) {
1493         /*
1494          * Catch all the cases which might cause us to create more than one
1495          * address space for the CPU (otherwise we will assert() later in
1496          * cpu_address_space_init()).
1497          */
1498         if (arm_feature(env, ARM_FEATURE_M)) {
1499             error_setg(errp,
1500                        "Cannot enable KVM when using an M-profile guest CPU");
1501             return;
1502         }
1503         if (cpu->has_el3) {
1504             error_setg(errp,
1505                        "Cannot enable KVM when guest CPU has EL3 enabled");
1506             return;
1507         }
1508         if (cpu->tag_memory) {
1509             error_setg(errp,
1510                        "Cannot enable KVM when guest CPUs has MTE enabled");
1511             return;
1512         }
1513     }
1514 
1515     {
1516         uint64_t scale;
1517 
1518         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1519             if (!cpu->gt_cntfrq_hz) {
1520                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1521                            cpu->gt_cntfrq_hz);
1522                 return;
1523             }
1524             scale = gt_cntfrq_period_ns(cpu);
1525         } else {
1526             scale = GTIMER_SCALE;
1527         }
1528 
1529         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1530                                                arm_gt_ptimer_cb, cpu);
1531         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1532                                                arm_gt_vtimer_cb, cpu);
1533         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1534                                               arm_gt_htimer_cb, cpu);
1535         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1536                                               arm_gt_stimer_cb, cpu);
1537         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1538                                                   arm_gt_hvtimer_cb, cpu);
1539     }
1540 #endif
1541 
1542     cpu_exec_realizefn(cs, &local_err);
1543     if (local_err != NULL) {
1544         error_propagate(errp, local_err);
1545         return;
1546     }
1547 
1548     arm_cpu_finalize_features(cpu, &local_err);
1549     if (local_err != NULL) {
1550         error_propagate(errp, local_err);
1551         return;
1552     }
1553 
1554     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1555         cpu->has_vfp != cpu->has_neon) {
1556         /*
1557          * This is an architectural requirement for AArch64; AArch32 is
1558          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1559          */
1560         error_setg(errp,
1561                    "AArch64 CPUs must have both VFP and Neon or neither");
1562         return;
1563     }
1564 
1565     if (!cpu->has_vfp) {
1566         uint64_t t;
1567         uint32_t u;
1568 
1569         t = cpu->isar.id_aa64isar1;
1570         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1571         cpu->isar.id_aa64isar1 = t;
1572 
1573         t = cpu->isar.id_aa64pfr0;
1574         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1575         cpu->isar.id_aa64pfr0 = t;
1576 
1577         u = cpu->isar.id_isar6;
1578         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1579         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1580         cpu->isar.id_isar6 = u;
1581 
1582         u = cpu->isar.mvfr0;
1583         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1584         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1585         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1586         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1587         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1588         if (!arm_feature(env, ARM_FEATURE_M)) {
1589             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1590             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1591         }
1592         cpu->isar.mvfr0 = u;
1593 
1594         u = cpu->isar.mvfr1;
1595         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1596         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1597         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1598         if (arm_feature(env, ARM_FEATURE_M)) {
1599             u = FIELD_DP32(u, MVFR1, FP16, 0);
1600         }
1601         cpu->isar.mvfr1 = u;
1602 
1603         u = cpu->isar.mvfr2;
1604         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1605         cpu->isar.mvfr2 = u;
1606     }
1607 
1608     if (!cpu->has_neon) {
1609         uint64_t t;
1610         uint32_t u;
1611 
1612         unset_feature(env, ARM_FEATURE_NEON);
1613 
1614         t = cpu->isar.id_aa64isar0;
1615         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1616         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1617         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1618         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1619         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1620         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1621         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1622         cpu->isar.id_aa64isar0 = t;
1623 
1624         t = cpu->isar.id_aa64isar1;
1625         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1626         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1627         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1628         cpu->isar.id_aa64isar1 = t;
1629 
1630         t = cpu->isar.id_aa64pfr0;
1631         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1632         cpu->isar.id_aa64pfr0 = t;
1633 
1634         u = cpu->isar.id_isar5;
1635         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1636         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1637         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1638         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1639         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1640         cpu->isar.id_isar5 = u;
1641 
1642         u = cpu->isar.id_isar6;
1643         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1644         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1645         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1646         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1647         cpu->isar.id_isar6 = u;
1648 
1649         if (!arm_feature(env, ARM_FEATURE_M)) {
1650             u = cpu->isar.mvfr1;
1651             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1652             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1653             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1654             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1655             cpu->isar.mvfr1 = u;
1656 
1657             u = cpu->isar.mvfr2;
1658             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1659             cpu->isar.mvfr2 = u;
1660         }
1661     }
1662 
1663     if (!cpu->has_neon && !cpu->has_vfp) {
1664         uint64_t t;
1665         uint32_t u;
1666 
1667         t = cpu->isar.id_aa64isar0;
1668         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1669         cpu->isar.id_aa64isar0 = t;
1670 
1671         t = cpu->isar.id_aa64isar1;
1672         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1673         cpu->isar.id_aa64isar1 = t;
1674 
1675         u = cpu->isar.mvfr0;
1676         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1677         cpu->isar.mvfr0 = u;
1678 
1679         /* Despite the name, this field covers both VFP and Neon */
1680         u = cpu->isar.mvfr1;
1681         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1682         cpu->isar.mvfr1 = u;
1683     }
1684 
1685     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1686         uint32_t u;
1687 
1688         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1689 
1690         u = cpu->isar.id_isar1;
1691         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1692         cpu->isar.id_isar1 = u;
1693 
1694         u = cpu->isar.id_isar2;
1695         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1696         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1697         cpu->isar.id_isar2 = u;
1698 
1699         u = cpu->isar.id_isar3;
1700         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1701         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1702         cpu->isar.id_isar3 = u;
1703     }
1704 
1705     /* Some features automatically imply others: */
1706     if (arm_feature(env, ARM_FEATURE_V8)) {
1707         if (arm_feature(env, ARM_FEATURE_M)) {
1708             set_feature(env, ARM_FEATURE_V7);
1709         } else {
1710             set_feature(env, ARM_FEATURE_V7VE);
1711         }
1712     }
1713 
1714     /*
1715      * There exist AArch64 cpus without AArch32 support.  When KVM
1716      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1717      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1718      * As a general principle, we also do not make ID register
1719      * consistency checks anywhere unless using TCG, because only
1720      * for TCG would a consistency-check failure be a QEMU bug.
1721      */
1722     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1723         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1724     }
1725 
1726     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1727         /* v7 Virtualization Extensions. In real hardware this implies
1728          * EL2 and also the presence of the Security Extensions.
1729          * For QEMU, for backwards-compatibility we implement some
1730          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1731          * include the various other features that V7VE implies.
1732          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1733          * Security Extensions is ARM_FEATURE_EL3.
1734          */
1735         assert(!tcg_enabled() || no_aa32 ||
1736                cpu_isar_feature(aa32_arm_div, cpu));
1737         set_feature(env, ARM_FEATURE_LPAE);
1738         set_feature(env, ARM_FEATURE_V7);
1739     }
1740     if (arm_feature(env, ARM_FEATURE_V7)) {
1741         set_feature(env, ARM_FEATURE_VAPA);
1742         set_feature(env, ARM_FEATURE_THUMB2);
1743         set_feature(env, ARM_FEATURE_MPIDR);
1744         if (!arm_feature(env, ARM_FEATURE_M)) {
1745             set_feature(env, ARM_FEATURE_V6K);
1746         } else {
1747             set_feature(env, ARM_FEATURE_V6);
1748         }
1749 
1750         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1751          * non-EL3 configs. This is needed by some legacy boards.
1752          */
1753         set_feature(env, ARM_FEATURE_VBAR);
1754     }
1755     if (arm_feature(env, ARM_FEATURE_V6K)) {
1756         set_feature(env, ARM_FEATURE_V6);
1757         set_feature(env, ARM_FEATURE_MVFR);
1758     }
1759     if (arm_feature(env, ARM_FEATURE_V6)) {
1760         set_feature(env, ARM_FEATURE_V5);
1761         if (!arm_feature(env, ARM_FEATURE_M)) {
1762             assert(!tcg_enabled() || no_aa32 ||
1763                    cpu_isar_feature(aa32_jazelle, cpu));
1764             set_feature(env, ARM_FEATURE_AUXCR);
1765         }
1766     }
1767     if (arm_feature(env, ARM_FEATURE_V5)) {
1768         set_feature(env, ARM_FEATURE_V4T);
1769     }
1770     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1771         set_feature(env, ARM_FEATURE_V7MP);
1772     }
1773     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1774         set_feature(env, ARM_FEATURE_CBAR);
1775     }
1776     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1777         !arm_feature(env, ARM_FEATURE_M)) {
1778         set_feature(env, ARM_FEATURE_THUMB_DSP);
1779     }
1780 
1781     /*
1782      * We rely on no XScale CPU having VFP so we can use the same bits in the
1783      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1784      */
1785     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1786            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1787            !arm_feature(env, ARM_FEATURE_XSCALE));
1788 
1789     if (arm_feature(env, ARM_FEATURE_V7) &&
1790         !arm_feature(env, ARM_FEATURE_M) &&
1791         !arm_feature(env, ARM_FEATURE_PMSA)) {
1792         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1793          * can use 4K pages.
1794          */
1795         pagebits = 12;
1796     } else {
1797         /* For CPUs which might have tiny 1K pages, or which have an
1798          * MPU and might have small region sizes, stick with 1K pages.
1799          */
1800         pagebits = 10;
1801     }
1802     if (!set_preferred_target_page_bits(pagebits)) {
1803         /* This can only ever happen for hotplugging a CPU, or if
1804          * the board code incorrectly creates a CPU which it has
1805          * promised via minimum_page_size that it will not.
1806          */
1807         error_setg(errp, "This CPU requires a smaller page size than the "
1808                    "system is using");
1809         return;
1810     }
1811 
1812     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1813      * We don't support setting cluster ID ([16..23]) (known as Aff2
1814      * in later ARM ARM versions), or any of the higher affinity level fields,
1815      * so these bits always RAZ.
1816      */
1817     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1818         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1819                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1820     }
1821 
1822     if (cpu->reset_hivecs) {
1823             cpu->reset_sctlr |= (1 << 13);
1824     }
1825 
1826     if (cpu->cfgend) {
1827         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1828             cpu->reset_sctlr |= SCTLR_EE;
1829         } else {
1830             cpu->reset_sctlr |= SCTLR_B;
1831         }
1832     }
1833 
1834     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1835         /* If the has_el3 CPU property is disabled then we need to disable the
1836          * feature.
1837          */
1838         unset_feature(env, ARM_FEATURE_EL3);
1839 
1840         /*
1841          * Disable the security extension feature bits in the processor
1842          * feature registers as well.
1843          */
1844         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1845         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1846         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1847                                            ID_AA64PFR0, EL3, 0);
1848     }
1849 
1850     if (!cpu->has_el2) {
1851         unset_feature(env, ARM_FEATURE_EL2);
1852     }
1853 
1854     if (!cpu->has_pmu) {
1855         unset_feature(env, ARM_FEATURE_PMU);
1856     }
1857     if (arm_feature(env, ARM_FEATURE_PMU)) {
1858         pmu_init(cpu);
1859 
1860         if (!kvm_enabled()) {
1861             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1862             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1863         }
1864 
1865 #ifndef CONFIG_USER_ONLY
1866         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1867                 cpu);
1868 #endif
1869     } else {
1870         cpu->isar.id_aa64dfr0 =
1871             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1872         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1873         cpu->pmceid0 = 0;
1874         cpu->pmceid1 = 0;
1875     }
1876 
1877     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1878         /*
1879          * Disable the hypervisor feature bits in the processor feature
1880          * registers if we don't have EL2.
1881          */
1882         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1883                                            ID_AA64PFR0, EL2, 0);
1884         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1885                                        ID_PFR1, VIRTUALIZATION, 0);
1886     }
1887 
1888 #ifndef CONFIG_USER_ONLY
1889     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1890         /*
1891          * Disable the MTE feature bits if we do not have tag-memory
1892          * provided by the machine.
1893          */
1894         cpu->isar.id_aa64pfr1 =
1895             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1896     }
1897 #endif
1898 
1899     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1900      * to false or by setting pmsav7-dregion to 0.
1901      */
1902     if (!cpu->has_mpu) {
1903         cpu->pmsav7_dregion = 0;
1904     }
1905     if (cpu->pmsav7_dregion == 0) {
1906         cpu->has_mpu = false;
1907     }
1908 
1909     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1910         arm_feature(env, ARM_FEATURE_V7)) {
1911         uint32_t nr = cpu->pmsav7_dregion;
1912 
1913         if (nr > 0xff) {
1914             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1915             return;
1916         }
1917 
1918         if (nr) {
1919             if (arm_feature(env, ARM_FEATURE_V8)) {
1920                 /* PMSAv8 */
1921                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1922                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1923                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1924                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1925                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1926                 }
1927             } else {
1928                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1929                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1930                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1931             }
1932         }
1933     }
1934 
1935     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1936         uint32_t nr = cpu->sau_sregion;
1937 
1938         if (nr > 0xff) {
1939             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1940             return;
1941         }
1942 
1943         if (nr) {
1944             env->sau.rbar = g_new0(uint32_t, nr);
1945             env->sau.rlar = g_new0(uint32_t, nr);
1946         }
1947     }
1948 
1949     if (arm_feature(env, ARM_FEATURE_EL3)) {
1950         set_feature(env, ARM_FEATURE_VBAR);
1951     }
1952 
1953     register_cp_regs_for_features(cpu);
1954     arm_cpu_register_gdb_regs_for_features(cpu);
1955 
1956     init_cpreg_list(cpu);
1957 
1958 #ifndef CONFIG_USER_ONLY
1959     MachineState *ms = MACHINE(qdev_get_machine());
1960     unsigned int smp_cpus = ms->smp.cpus;
1961     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1962 
1963     /*
1964      * We must set cs->num_ases to the final value before
1965      * the first call to cpu_address_space_init.
1966      */
1967     if (cpu->tag_memory != NULL) {
1968         cs->num_ases = 3 + has_secure;
1969     } else {
1970         cs->num_ases = 1 + has_secure;
1971     }
1972 
1973     if (has_secure) {
1974         if (!cpu->secure_memory) {
1975             cpu->secure_memory = cs->memory;
1976         }
1977         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1978                                cpu->secure_memory);
1979     }
1980 
1981     if (cpu->tag_memory != NULL) {
1982         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1983                                cpu->tag_memory);
1984         if (has_secure) {
1985             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1986                                    cpu->secure_tag_memory);
1987         }
1988     }
1989 
1990     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1991 
1992     /* No core_count specified, default to smp_cpus. */
1993     if (cpu->core_count == -1) {
1994         cpu->core_count = smp_cpus;
1995     }
1996 #endif
1997 
1998     if (tcg_enabled()) {
1999         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2000 
2001         /*
2002          * We only support DCZ blocklen that fits on one page.
2003          *
2004          * Architectually this is always true.  However TARGET_PAGE_SIZE
2005          * is variable and, for compatibility with -machine virt-2.7,
2006          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2007          * But even then, while the largest architectural DCZ blocklen
2008          * is 2KiB, no cpu actually uses such a large blocklen.
2009          */
2010         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2011 
2012         /*
2013          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2014          * both nibbles of each byte storing tag data may be written at once.
2015          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2016          */
2017         if (cpu_isar_feature(aa64_mte, cpu)) {
2018             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2019         }
2020     }
2021 
2022     qemu_init_vcpu(cs);
2023     cpu_reset(cs);
2024 
2025     acc->parent_realize(dev, errp);
2026 }
2027 
2028 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2029 {
2030     ObjectClass *oc;
2031     char *typename;
2032     char **cpuname;
2033     const char *cpunamestr;
2034 
2035     cpuname = g_strsplit(cpu_model, ",", 1);
2036     cpunamestr = cpuname[0];
2037 #ifdef CONFIG_USER_ONLY
2038     /* For backwards compatibility usermode emulation allows "-cpu any",
2039      * which has the same semantics as "-cpu max".
2040      */
2041     if (!strcmp(cpunamestr, "any")) {
2042         cpunamestr = "max";
2043     }
2044 #endif
2045     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2046     oc = object_class_by_name(typename);
2047     g_strfreev(cpuname);
2048     g_free(typename);
2049     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2050         object_class_is_abstract(oc)) {
2051         return NULL;
2052     }
2053     return oc;
2054 }
2055 
2056 static Property arm_cpu_properties[] = {
2057     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2058     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2059                         mp_affinity, ARM64_AFFINITY_INVALID),
2060     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2061     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2062     DEFINE_PROP_END_OF_LIST()
2063 };
2064 
2065 static gchar *arm_gdb_arch_name(CPUState *cs)
2066 {
2067     ARMCPU *cpu = ARM_CPU(cs);
2068     CPUARMState *env = &cpu->env;
2069 
2070     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2071         return g_strdup("iwmmxt");
2072     }
2073     return g_strdup("arm");
2074 }
2075 
2076 #ifndef CONFIG_USER_ONLY
2077 #include "hw/core/sysemu-cpu-ops.h"
2078 
2079 static const struct SysemuCPUOps arm_sysemu_ops = {
2080     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2081     .asidx_from_attrs = arm_asidx_from_attrs,
2082     .write_elf32_note = arm_cpu_write_elf32_note,
2083     .write_elf64_note = arm_cpu_write_elf64_note,
2084     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2085     .legacy_vmsd = &vmstate_arm_cpu,
2086 };
2087 #endif
2088 
2089 #ifdef CONFIG_TCG
2090 static const struct TCGCPUOps arm_tcg_ops = {
2091     .initialize = arm_translate_init,
2092     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2093     .debug_excp_handler = arm_debug_excp_handler,
2094 
2095 #ifdef CONFIG_USER_ONLY
2096     .record_sigsegv = arm_cpu_record_sigsegv,
2097     .record_sigbus = arm_cpu_record_sigbus,
2098 #else
2099     .tlb_fill = arm_cpu_tlb_fill,
2100     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2101     .do_interrupt = arm_cpu_do_interrupt,
2102     .do_transaction_failed = arm_cpu_do_transaction_failed,
2103     .do_unaligned_access = arm_cpu_do_unaligned_access,
2104     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2105     .debug_check_watchpoint = arm_debug_check_watchpoint,
2106     .debug_check_breakpoint = arm_debug_check_breakpoint,
2107 #endif /* !CONFIG_USER_ONLY */
2108 };
2109 #endif /* CONFIG_TCG */
2110 
2111 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2112 {
2113     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2114     CPUClass *cc = CPU_CLASS(acc);
2115     DeviceClass *dc = DEVICE_CLASS(oc);
2116 
2117     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2118                                     &acc->parent_realize);
2119 
2120     device_class_set_props(dc, arm_cpu_properties);
2121     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2122 
2123     cc->class_by_name = arm_cpu_class_by_name;
2124     cc->has_work = arm_cpu_has_work;
2125     cc->dump_state = arm_cpu_dump_state;
2126     cc->set_pc = arm_cpu_set_pc;
2127     cc->gdb_read_register = arm_cpu_gdb_read_register;
2128     cc->gdb_write_register = arm_cpu_gdb_write_register;
2129 #ifndef CONFIG_USER_ONLY
2130     cc->sysemu_ops = &arm_sysemu_ops;
2131 #endif
2132     cc->gdb_num_core_regs = 26;
2133     cc->gdb_core_xml_file = "arm-core.xml";
2134     cc->gdb_arch_name = arm_gdb_arch_name;
2135     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2136     cc->gdb_stop_before_watchpoint = true;
2137     cc->disas_set_info = arm_disas_set_info;
2138 
2139 #ifdef CONFIG_TCG
2140     cc->tcg_ops = &arm_tcg_ops;
2141 #endif /* CONFIG_TCG */
2142 }
2143 
2144 static void arm_cpu_instance_init(Object *obj)
2145 {
2146     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2147 
2148     acc->info->initfn(obj);
2149     arm_cpu_post_init(obj);
2150 }
2151 
2152 static void cpu_register_class_init(ObjectClass *oc, void *data)
2153 {
2154     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2155 
2156     acc->info = data;
2157 }
2158 
2159 void arm_cpu_register(const ARMCPUInfo *info)
2160 {
2161     TypeInfo type_info = {
2162         .parent = TYPE_ARM_CPU,
2163         .instance_size = sizeof(ARMCPU),
2164         .instance_align = __alignof__(ARMCPU),
2165         .instance_init = arm_cpu_instance_init,
2166         .class_size = sizeof(ARMCPUClass),
2167         .class_init = info->class_init ?: cpu_register_class_init,
2168         .class_data = (void *)info,
2169     };
2170 
2171     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2172     type_register(&type_info);
2173     g_free((void *)type_info.name);
2174 }
2175 
2176 static const TypeInfo arm_cpu_type_info = {
2177     .name = TYPE_ARM_CPU,
2178     .parent = TYPE_CPU,
2179     .instance_size = sizeof(ARMCPU),
2180     .instance_align = __alignof__(ARMCPU),
2181     .instance_init = arm_cpu_initfn,
2182     .instance_finalize = arm_cpu_finalizefn,
2183     .abstract = true,
2184     .class_size = sizeof(ARMCPUClass),
2185     .class_init = arm_cpu_class_init,
2186 };
2187 
2188 static void arm_cpu_register_types(void)
2189 {
2190     type_register_static(&arm_cpu_type_info);
2191 }
2192 
2193 type_init(arm_cpu_register_types)
2194