xref: /openbmc/qemu/target/arm/cpu.c (revision e6e03dcf)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
206         /*
207          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
208          * turning on both here will produce smaller code and otherwise
209          * make no difference to the user-level emulation.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213         /* Reset into the highest available EL */
214         if (arm_feature(env, ARM_FEATURE_EL3)) {
215             env->pstate = PSTATE_MODE_EL3h;
216         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217             env->pstate = PSTATE_MODE_EL2h;
218         } else {
219             env->pstate = PSTATE_MODE_EL1h;
220         }
221         env->pc = cpu->rvbar;
222 #endif
223     } else {
224 #if defined(CONFIG_USER_ONLY)
225         /* Userspace expects access to cp10 and cp11 for FP/Neon */
226         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
228     }
229 
230 #if defined(CONFIG_USER_ONLY)
231     env->uncached_cpsr = ARM_CPU_MODE_USR;
232     /* For user mode we must enable access to coprocessors */
233     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235         env->cp15.c15_cpar = 3;
236     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237         env->cp15.c15_cpar = 1;
238     }
239 #else
240 
241     /*
242      * If the highest available EL is EL2, AArch32 will start in Hyp
243      * mode; otherwise it starts in SVC. Note that if we start in
244      * AArch64 then these values in the uncached_cpsr will be ignored.
245      */
246     if (arm_feature(env, ARM_FEATURE_EL2) &&
247         !arm_feature(env, ARM_FEATURE_EL3)) {
248         env->uncached_cpsr = ARM_CPU_MODE_HYP;
249     } else {
250         env->uncached_cpsr = ARM_CPU_MODE_SVC;
251     }
252     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 
254     if (arm_feature(env, ARM_FEATURE_M)) {
255         uint32_t initial_msp; /* Loaded from 0x0 */
256         uint32_t initial_pc; /* Loaded from 0x4 */
257         uint8_t *rom;
258         uint32_t vecbase;
259 
260         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261             env->v7m.secure = true;
262         } else {
263             /* This bit resets to 0 if security is supported, but 1 if
264              * it is not. The bit is not present in v7M, but we set it
265              * here so we can avoid having to make checks on it conditional
266              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267              */
268             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269             /*
270              * Set NSACR to indicate "NS access permitted to everything";
271              * this avoids having to have all the tests of it being
272              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
273              * v8.1M the guest-visible value of NSACR in a CPU without the
274              * Security Extension is 0xcff.
275              */
276             env->v7m.nsacr = 0xcff;
277         }
278 
279         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
280          * that it resets to 1, so QEMU always does that rather than making
281          * it dependent on CPU model. In v8M it is RES1.
282          */
283         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
284         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
285         if (arm_feature(env, ARM_FEATURE_V8)) {
286             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289         }
290         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
291             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293         }
294 
295         if (arm_feature(env, ARM_FEATURE_VFP)) {
296             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
297             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
298                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
299         }
300         /* Unlike A/R profile, M profile defines the reset LR value */
301         env->regs[14] = 0xffffffff;
302 
303         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
304 
305         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
306         vecbase = env->v7m.vecbase[env->v7m.secure];
307         rom = rom_ptr(vecbase, 8);
308         if (rom) {
309             /* Address zero is covered by ROM which hasn't yet been
310              * copied into physical memory.
311              */
312             initial_msp = ldl_p(rom);
313             initial_pc = ldl_p(rom + 4);
314         } else {
315             /* Address zero not covered by a ROM blob, or the ROM blob
316              * is in non-modifiable memory and this is a second reset after
317              * it got copied into memory. In the latter case, rom_ptr
318              * will return a NULL pointer and we should use ldl_phys instead.
319              */
320             initial_msp = ldl_phys(s->as, vecbase);
321             initial_pc = ldl_phys(s->as, vecbase + 4);
322         }
323 
324         env->regs[13] = initial_msp & 0xFFFFFFFC;
325         env->regs[15] = initial_pc & ~1;
326         env->thumb = initial_pc & 1;
327     }
328 
329     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
330      * executing as AArch32 then check if highvecs are enabled and
331      * adjust the PC accordingly.
332      */
333     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
334         env->regs[15] = 0xFFFF0000;
335     }
336 
337     /* M profile requires that reset clears the exclusive monitor;
338      * A profile does not, but clearing it makes more sense than having it
339      * set with an exclusive access on address zero.
340      */
341     arm_clear_exclusive(env);
342 
343     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
344 #endif
345 
346     if (arm_feature(env, ARM_FEATURE_PMSA)) {
347         if (cpu->pmsav7_dregion > 0) {
348             if (arm_feature(env, ARM_FEATURE_V8)) {
349                 memset(env->pmsav8.rbar[M_REG_NS], 0,
350                        sizeof(*env->pmsav8.rbar[M_REG_NS])
351                        * cpu->pmsav7_dregion);
352                 memset(env->pmsav8.rlar[M_REG_NS], 0,
353                        sizeof(*env->pmsav8.rlar[M_REG_NS])
354                        * cpu->pmsav7_dregion);
355                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
356                     memset(env->pmsav8.rbar[M_REG_S], 0,
357                            sizeof(*env->pmsav8.rbar[M_REG_S])
358                            * cpu->pmsav7_dregion);
359                     memset(env->pmsav8.rlar[M_REG_S], 0,
360                            sizeof(*env->pmsav8.rlar[M_REG_S])
361                            * cpu->pmsav7_dregion);
362                 }
363             } else if (arm_feature(env, ARM_FEATURE_V7)) {
364                 memset(env->pmsav7.drbar, 0,
365                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
366                 memset(env->pmsav7.drsr, 0,
367                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
368                 memset(env->pmsav7.dracr, 0,
369                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
370             }
371         }
372         env->pmsav7.rnr[M_REG_NS] = 0;
373         env->pmsav7.rnr[M_REG_S] = 0;
374         env->pmsav8.mair0[M_REG_NS] = 0;
375         env->pmsav8.mair0[M_REG_S] = 0;
376         env->pmsav8.mair1[M_REG_NS] = 0;
377         env->pmsav8.mair1[M_REG_S] = 0;
378     }
379 
380     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
381         if (cpu->sau_sregion > 0) {
382             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
383             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
384         }
385         env->sau.rnr = 0;
386         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
387          * the Cortex-M33 does.
388          */
389         env->sau.ctrl = 0;
390     }
391 
392     set_flush_to_zero(1, &env->vfp.standard_fp_status);
393     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
394     set_default_nan_mode(1, &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status);
397     set_float_detect_tininess(float_tininess_before_rounding,
398                               &env->vfp.standard_fp_status);
399     set_float_detect_tininess(float_tininess_before_rounding,
400                               &env->vfp.fp_status_f16);
401 #ifndef CONFIG_USER_ONLY
402     if (kvm_enabled()) {
403         kvm_arm_reset_vcpu(cpu);
404     }
405 #endif
406 
407     hw_breakpoint_update_all(cpu);
408     hw_watchpoint_update_all(cpu);
409     arm_rebuild_hflags(env);
410 }
411 
412 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
413 {
414     CPUClass *cc = CPU_GET_CLASS(cs);
415     CPUARMState *env = cs->env_ptr;
416     uint32_t cur_el = arm_current_el(env);
417     bool secure = arm_is_secure(env);
418     uint32_t target_el;
419     uint32_t excp_idx;
420     bool ret = false;
421 
422     if (interrupt_request & CPU_INTERRUPT_FIQ) {
423         excp_idx = EXCP_FIQ;
424         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
425         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
426             cs->exception_index = excp_idx;
427             env->exception.target_el = target_el;
428             cc->do_interrupt(cs);
429             ret = true;
430         }
431     }
432     if (interrupt_request & CPU_INTERRUPT_HARD) {
433         excp_idx = EXCP_IRQ;
434         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
435         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
436             cs->exception_index = excp_idx;
437             env->exception.target_el = target_el;
438             cc->do_interrupt(cs);
439             ret = true;
440         }
441     }
442     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
443         excp_idx = EXCP_VIRQ;
444         target_el = 1;
445         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
446             cs->exception_index = excp_idx;
447             env->exception.target_el = target_el;
448             cc->do_interrupt(cs);
449             ret = true;
450         }
451     }
452     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
453         excp_idx = EXCP_VFIQ;
454         target_el = 1;
455         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
456             cs->exception_index = excp_idx;
457             env->exception.target_el = target_el;
458             cc->do_interrupt(cs);
459             ret = true;
460         }
461     }
462 
463     return ret;
464 }
465 
466 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
467 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
468 {
469     CPUClass *cc = CPU_GET_CLASS(cs);
470     ARMCPU *cpu = ARM_CPU(cs);
471     CPUARMState *env = &cpu->env;
472     bool ret = false;
473 
474     /* ARMv7-M interrupt masking works differently than -A or -R.
475      * There is no FIQ/IRQ distinction. Instead of I and F bits
476      * masking FIQ and IRQ interrupts, an exception is taken only
477      * if it is higher priority than the current execution priority
478      * (which depends on state like BASEPRI, FAULTMASK and the
479      * currently active exception).
480      */
481     if (interrupt_request & CPU_INTERRUPT_HARD
482         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
483         cs->exception_index = EXCP_IRQ;
484         cc->do_interrupt(cs);
485         ret = true;
486     }
487     return ret;
488 }
489 #endif
490 
491 void arm_cpu_update_virq(ARMCPU *cpu)
492 {
493     /*
494      * Update the interrupt level for VIRQ, which is the logical OR of
495      * the HCR_EL2.VI bit and the input line level from the GIC.
496      */
497     CPUARMState *env = &cpu->env;
498     CPUState *cs = CPU(cpu);
499 
500     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
501         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
502 
503     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
504         if (new_state) {
505             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
506         } else {
507             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
508         }
509     }
510 }
511 
512 void arm_cpu_update_vfiq(ARMCPU *cpu)
513 {
514     /*
515      * Update the interrupt level for VFIQ, which is the logical OR of
516      * the HCR_EL2.VF bit and the input line level from the GIC.
517      */
518     CPUARMState *env = &cpu->env;
519     CPUState *cs = CPU(cpu);
520 
521     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
522         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
523 
524     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
525         if (new_state) {
526             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
527         } else {
528             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
529         }
530     }
531 }
532 
533 #ifndef CONFIG_USER_ONLY
534 static void arm_cpu_set_irq(void *opaque, int irq, int level)
535 {
536     ARMCPU *cpu = opaque;
537     CPUARMState *env = &cpu->env;
538     CPUState *cs = CPU(cpu);
539     static const int mask[] = {
540         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
541         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
542         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
543         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
544     };
545 
546     if (level) {
547         env->irq_line_state |= mask[irq];
548     } else {
549         env->irq_line_state &= ~mask[irq];
550     }
551 
552     switch (irq) {
553     case ARM_CPU_VIRQ:
554         assert(arm_feature(env, ARM_FEATURE_EL2));
555         arm_cpu_update_virq(cpu);
556         break;
557     case ARM_CPU_VFIQ:
558         assert(arm_feature(env, ARM_FEATURE_EL2));
559         arm_cpu_update_vfiq(cpu);
560         break;
561     case ARM_CPU_IRQ:
562     case ARM_CPU_FIQ:
563         if (level) {
564             cpu_interrupt(cs, mask[irq]);
565         } else {
566             cpu_reset_interrupt(cs, mask[irq]);
567         }
568         break;
569     default:
570         g_assert_not_reached();
571     }
572 }
573 
574 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
575 {
576 #ifdef CONFIG_KVM
577     ARMCPU *cpu = opaque;
578     CPUARMState *env = &cpu->env;
579     CPUState *cs = CPU(cpu);
580     uint32_t linestate_bit;
581     int irq_id;
582 
583     switch (irq) {
584     case ARM_CPU_IRQ:
585         irq_id = KVM_ARM_IRQ_CPU_IRQ;
586         linestate_bit = CPU_INTERRUPT_HARD;
587         break;
588     case ARM_CPU_FIQ:
589         irq_id = KVM_ARM_IRQ_CPU_FIQ;
590         linestate_bit = CPU_INTERRUPT_FIQ;
591         break;
592     default:
593         g_assert_not_reached();
594     }
595 
596     if (level) {
597         env->irq_line_state |= linestate_bit;
598     } else {
599         env->irq_line_state &= ~linestate_bit;
600     }
601     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
602 #endif
603 }
604 
605 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
606 {
607     ARMCPU *cpu = ARM_CPU(cs);
608     CPUARMState *env = &cpu->env;
609 
610     cpu_synchronize_state(cs);
611     return arm_cpu_data_is_big_endian(env);
612 }
613 
614 #endif
615 
616 static inline void set_feature(CPUARMState *env, int feature)
617 {
618     env->features |= 1ULL << feature;
619 }
620 
621 static inline void unset_feature(CPUARMState *env, int feature)
622 {
623     env->features &= ~(1ULL << feature);
624 }
625 
626 static int
627 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
628 {
629   return print_insn_arm(pc | 1, info);
630 }
631 
632 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
633 {
634     ARMCPU *ac = ARM_CPU(cpu);
635     CPUARMState *env = &ac->env;
636     bool sctlr_b;
637 
638     if (is_a64(env)) {
639         /* We might not be compiled with the A64 disassembler
640          * because it needs a C++ compiler. Leave print_insn
641          * unset in this case to use the caller default behaviour.
642          */
643 #if defined(CONFIG_ARM_A64_DIS)
644         info->print_insn = print_insn_arm_a64;
645 #endif
646         info->cap_arch = CS_ARCH_ARM64;
647         info->cap_insn_unit = 4;
648         info->cap_insn_split = 4;
649     } else {
650         int cap_mode;
651         if (env->thumb) {
652             info->print_insn = print_insn_thumb1;
653             info->cap_insn_unit = 2;
654             info->cap_insn_split = 4;
655             cap_mode = CS_MODE_THUMB;
656         } else {
657             info->print_insn = print_insn_arm;
658             info->cap_insn_unit = 4;
659             info->cap_insn_split = 4;
660             cap_mode = CS_MODE_ARM;
661         }
662         if (arm_feature(env, ARM_FEATURE_V8)) {
663             cap_mode |= CS_MODE_V8;
664         }
665         if (arm_feature(env, ARM_FEATURE_M)) {
666             cap_mode |= CS_MODE_MCLASS;
667         }
668         info->cap_arch = CS_ARCH_ARM;
669         info->cap_mode = cap_mode;
670     }
671 
672     sctlr_b = arm_sctlr_b(env);
673     if (bswap_code(sctlr_b)) {
674 #ifdef TARGET_WORDS_BIGENDIAN
675         info->endian = BFD_ENDIAN_LITTLE;
676 #else
677         info->endian = BFD_ENDIAN_BIG;
678 #endif
679     }
680     info->flags &= ~INSN_ARM_BE32;
681 #ifndef CONFIG_USER_ONLY
682     if (sctlr_b) {
683         info->flags |= INSN_ARM_BE32;
684     }
685 #endif
686 }
687 
688 #ifdef TARGET_AARCH64
689 
690 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
691 {
692     ARMCPU *cpu = ARM_CPU(cs);
693     CPUARMState *env = &cpu->env;
694     uint32_t psr = pstate_read(env);
695     int i;
696     int el = arm_current_el(env);
697     const char *ns_status;
698 
699     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
700     for (i = 0; i < 32; i++) {
701         if (i == 31) {
702             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
703         } else {
704             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
705                          (i + 2) % 3 ? " " : "\n");
706         }
707     }
708 
709     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
710         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
711     } else {
712         ns_status = "";
713     }
714     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
715                  psr,
716                  psr & PSTATE_N ? 'N' : '-',
717                  psr & PSTATE_Z ? 'Z' : '-',
718                  psr & PSTATE_C ? 'C' : '-',
719                  psr & PSTATE_V ? 'V' : '-',
720                  ns_status,
721                  el,
722                  psr & PSTATE_SP ? 'h' : 't');
723 
724     if (cpu_isar_feature(aa64_bti, cpu)) {
725         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
726     }
727     if (!(flags & CPU_DUMP_FPU)) {
728         qemu_fprintf(f, "\n");
729         return;
730     }
731     if (fp_exception_el(env, el) != 0) {
732         qemu_fprintf(f, "    FPU disabled\n");
733         return;
734     }
735     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
736                  vfp_get_fpcr(env), vfp_get_fpsr(env));
737 
738     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
739         int j, zcr_len = sve_zcr_len_for_el(env, el);
740 
741         for (i = 0; i <= FFR_PRED_NUM; i++) {
742             bool eol;
743             if (i == FFR_PRED_NUM) {
744                 qemu_fprintf(f, "FFR=");
745                 /* It's last, so end the line.  */
746                 eol = true;
747             } else {
748                 qemu_fprintf(f, "P%02d=", i);
749                 switch (zcr_len) {
750                 case 0:
751                     eol = i % 8 == 7;
752                     break;
753                 case 1:
754                     eol = i % 6 == 5;
755                     break;
756                 case 2:
757                 case 3:
758                     eol = i % 3 == 2;
759                     break;
760                 default:
761                     /* More than one quadword per predicate.  */
762                     eol = true;
763                     break;
764                 }
765             }
766             for (j = zcr_len / 4; j >= 0; j--) {
767                 int digits;
768                 if (j * 4 + 4 <= zcr_len + 1) {
769                     digits = 16;
770                 } else {
771                     digits = (zcr_len % 4 + 1) * 4;
772                 }
773                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
774                              env->vfp.pregs[i].p[j],
775                              j ? ":" : eol ? "\n" : " ");
776             }
777         }
778 
779         for (i = 0; i < 32; i++) {
780             if (zcr_len == 0) {
781                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
782                              i, env->vfp.zregs[i].d[1],
783                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
784             } else if (zcr_len == 1) {
785                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
786                              ":%016" PRIx64 ":%016" PRIx64 "\n",
787                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
788                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
789             } else {
790                 for (j = zcr_len; j >= 0; j--) {
791                     bool odd = (zcr_len - j) % 2 != 0;
792                     if (j == zcr_len) {
793                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
794                     } else if (!odd) {
795                         if (j > 0) {
796                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
797                         } else {
798                             qemu_fprintf(f, "     [%x]=", j);
799                         }
800                     }
801                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
802                                  env->vfp.zregs[i].d[j * 2 + 1],
803                                  env->vfp.zregs[i].d[j * 2],
804                                  odd || j == 0 ? "\n" : ":");
805                 }
806             }
807         }
808     } else {
809         for (i = 0; i < 32; i++) {
810             uint64_t *q = aa64_vfp_qreg(env, i);
811             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
812                          i, q[1], q[0], (i & 1 ? "\n" : " "));
813         }
814     }
815 }
816 
817 #else
818 
819 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
820 {
821     g_assert_not_reached();
822 }
823 
824 #endif
825 
826 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
827 {
828     ARMCPU *cpu = ARM_CPU(cs);
829     CPUARMState *env = &cpu->env;
830     int i;
831 
832     if (is_a64(env)) {
833         aarch64_cpu_dump_state(cs, f, flags);
834         return;
835     }
836 
837     for (i = 0; i < 16; i++) {
838         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
839         if ((i % 4) == 3) {
840             qemu_fprintf(f, "\n");
841         } else {
842             qemu_fprintf(f, " ");
843         }
844     }
845 
846     if (arm_feature(env, ARM_FEATURE_M)) {
847         uint32_t xpsr = xpsr_read(env);
848         const char *mode;
849         const char *ns_status = "";
850 
851         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
852             ns_status = env->v7m.secure ? "S " : "NS ";
853         }
854 
855         if (xpsr & XPSR_EXCP) {
856             mode = "handler";
857         } else {
858             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
859                 mode = "unpriv-thread";
860             } else {
861                 mode = "priv-thread";
862             }
863         }
864 
865         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
866                      xpsr,
867                      xpsr & XPSR_N ? 'N' : '-',
868                      xpsr & XPSR_Z ? 'Z' : '-',
869                      xpsr & XPSR_C ? 'C' : '-',
870                      xpsr & XPSR_V ? 'V' : '-',
871                      xpsr & XPSR_T ? 'T' : 'A',
872                      ns_status,
873                      mode);
874     } else {
875         uint32_t psr = cpsr_read(env);
876         const char *ns_status = "";
877 
878         if (arm_feature(env, ARM_FEATURE_EL3) &&
879             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
880             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
881         }
882 
883         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
884                      psr,
885                      psr & CPSR_N ? 'N' : '-',
886                      psr & CPSR_Z ? 'Z' : '-',
887                      psr & CPSR_C ? 'C' : '-',
888                      psr & CPSR_V ? 'V' : '-',
889                      psr & CPSR_T ? 'T' : 'A',
890                      ns_status,
891                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
892     }
893 
894     if (flags & CPU_DUMP_FPU) {
895         int numvfpregs = 0;
896         if (arm_feature(env, ARM_FEATURE_VFP)) {
897             numvfpregs += 16;
898         }
899         if (arm_feature(env, ARM_FEATURE_VFP3)) {
900             numvfpregs += 16;
901         }
902         for (i = 0; i < numvfpregs; i++) {
903             uint64_t v = *aa32_vfp_dreg(env, i);
904             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
905                          i * 2, (uint32_t)v,
906                          i * 2 + 1, (uint32_t)(v >> 32),
907                          i, v);
908         }
909         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
910     }
911 }
912 
913 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
914 {
915     uint32_t Aff1 = idx / clustersz;
916     uint32_t Aff0 = idx % clustersz;
917     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
918 }
919 
920 static void cpreg_hashtable_data_destroy(gpointer data)
921 {
922     /*
923      * Destroy function for cpu->cp_regs hashtable data entries.
924      * We must free the name string because it was g_strdup()ed in
925      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
926      * from r->name because we know we definitely allocated it.
927      */
928     ARMCPRegInfo *r = data;
929 
930     g_free((void *)r->name);
931     g_free(r);
932 }
933 
934 static void arm_cpu_initfn(Object *obj)
935 {
936     ARMCPU *cpu = ARM_CPU(obj);
937 
938     cpu_set_cpustate_pointers(cpu);
939     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
940                                          g_free, cpreg_hashtable_data_destroy);
941 
942     QLIST_INIT(&cpu->pre_el_change_hooks);
943     QLIST_INIT(&cpu->el_change_hooks);
944 
945 #ifndef CONFIG_USER_ONLY
946     /* Our inbound IRQ and FIQ lines */
947     if (kvm_enabled()) {
948         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
949          * the same interface as non-KVM CPUs.
950          */
951         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
952     } else {
953         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
954     }
955 
956     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
957                        ARRAY_SIZE(cpu->gt_timer_outputs));
958 
959     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
960                              "gicv3-maintenance-interrupt", 1);
961     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
962                              "pmu-interrupt", 1);
963 #endif
964 
965     /* DTB consumers generally don't in fact care what the 'compatible'
966      * string is, so always provide some string and trust that a hypothetical
967      * picky DTB consumer will also provide a helpful error message.
968      */
969     cpu->dtb_compatible = "qemu,unknown";
970     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
971     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
972 
973     if (tcg_enabled()) {
974         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
975     }
976 }
977 
978 static Property arm_cpu_reset_cbar_property =
979             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
980 
981 static Property arm_cpu_reset_hivecs_property =
982             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
983 
984 static Property arm_cpu_rvbar_property =
985             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
986 
987 static Property arm_cpu_has_el2_property =
988             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
989 
990 static Property arm_cpu_has_el3_property =
991             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
992 
993 static Property arm_cpu_cfgend_property =
994             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
995 
996 static Property arm_cpu_has_vfp_property =
997             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
998 
999 static Property arm_cpu_has_neon_property =
1000             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1001 
1002 static Property arm_cpu_has_dsp_property =
1003             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1004 
1005 static Property arm_cpu_has_mpu_property =
1006             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1007 
1008 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1009  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1010  * the right value for that particular CPU type, and we don't want
1011  * to override that with an incorrect constant value.
1012  */
1013 static Property arm_cpu_pmsav7_dregion_property =
1014             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1015                                            pmsav7_dregion,
1016                                            qdev_prop_uint32, uint32_t);
1017 
1018 static bool arm_get_pmu(Object *obj, Error **errp)
1019 {
1020     ARMCPU *cpu = ARM_CPU(obj);
1021 
1022     return cpu->has_pmu;
1023 }
1024 
1025 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1026 {
1027     ARMCPU *cpu = ARM_CPU(obj);
1028 
1029     if (value) {
1030         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1031             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1032             return;
1033         }
1034         set_feature(&cpu->env, ARM_FEATURE_PMU);
1035     } else {
1036         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1037     }
1038     cpu->has_pmu = value;
1039 }
1040 
1041 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1042                                void *opaque, Error **errp)
1043 {
1044     ARMCPU *cpu = ARM_CPU(obj);
1045 
1046     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1047 }
1048 
1049 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1050                                void *opaque, Error **errp)
1051 {
1052     ARMCPU *cpu = ARM_CPU(obj);
1053 
1054     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1055 }
1056 
1057 void arm_cpu_post_init(Object *obj)
1058 {
1059     ARMCPU *cpu = ARM_CPU(obj);
1060 
1061     /* M profile implies PMSA. We have to do this here rather than
1062      * in realize with the other feature-implication checks because
1063      * we look at the PMSA bit to see if we should add some properties.
1064      */
1065     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1066         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1067     }
1068     /* Similarly for the VFP feature bits */
1069     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1070         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1071     }
1072     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1073         set_feature(&cpu->env, ARM_FEATURE_VFP);
1074     }
1075 
1076     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1077         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1078         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1079                                  &error_abort);
1080     }
1081 
1082     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1083         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1084                                  &error_abort);
1085     }
1086 
1087     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1088         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1089                                  &error_abort);
1090     }
1091 
1092     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1093         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1094          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1095          */
1096         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1097                                  &error_abort);
1098 
1099 #ifndef CONFIG_USER_ONLY
1100         object_property_add_link(obj, "secure-memory",
1101                                  TYPE_MEMORY_REGION,
1102                                  (Object **)&cpu->secure_memory,
1103                                  qdev_prop_allow_set_link_before_realize,
1104                                  OBJ_PROP_LINK_STRONG,
1105                                  &error_abort);
1106 #endif
1107     }
1108 
1109     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1110         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1111                                  &error_abort);
1112     }
1113 
1114     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1115         cpu->has_pmu = true;
1116         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1117                                  &error_abort);
1118     }
1119 
1120     /*
1121      * Allow user to turn off VFP and Neon support, but only for TCG --
1122      * KVM does not currently allow us to lie to the guest about its
1123      * ID/feature registers, so the guest always sees what the host has.
1124      */
1125     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1126         cpu->has_vfp = true;
1127         if (!kvm_enabled()) {
1128             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1129                                      &error_abort);
1130         }
1131     }
1132 
1133     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1134         cpu->has_neon = true;
1135         if (!kvm_enabled()) {
1136             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1137                                      &error_abort);
1138         }
1139     }
1140 
1141     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1142         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1143         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1144                                  &error_abort);
1145     }
1146 
1147     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1148         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1149                                  &error_abort);
1150         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1151             qdev_property_add_static(DEVICE(obj),
1152                                      &arm_cpu_pmsav7_dregion_property,
1153                                      &error_abort);
1154         }
1155     }
1156 
1157     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1158         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1159                                  qdev_prop_allow_set_link_before_realize,
1160                                  OBJ_PROP_LINK_STRONG,
1161                                  &error_abort);
1162         /*
1163          * M profile: initial value of the Secure VTOR. We can't just use
1164          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1165          * the property to be set after realize.
1166          */
1167         object_property_add(obj, "init-svtor", "uint32",
1168                             arm_get_init_svtor, arm_set_init_svtor,
1169                             NULL, NULL, &error_abort);
1170     }
1171 
1172     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1173                              &error_abort);
1174 }
1175 
1176 static void arm_cpu_finalizefn(Object *obj)
1177 {
1178     ARMCPU *cpu = ARM_CPU(obj);
1179     ARMELChangeHook *hook, *next;
1180 
1181     g_hash_table_destroy(cpu->cp_regs);
1182 
1183     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1184         QLIST_REMOVE(hook, node);
1185         g_free(hook);
1186     }
1187     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1188         QLIST_REMOVE(hook, node);
1189         g_free(hook);
1190     }
1191 #ifndef CONFIG_USER_ONLY
1192     if (cpu->pmu_timer) {
1193         timer_del(cpu->pmu_timer);
1194         timer_deinit(cpu->pmu_timer);
1195         timer_free(cpu->pmu_timer);
1196     }
1197 #endif
1198 }
1199 
1200 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1201 {
1202     CPUState *cs = CPU(dev);
1203     ARMCPU *cpu = ARM_CPU(dev);
1204     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1205     CPUARMState *env = &cpu->env;
1206     int pagebits;
1207     Error *local_err = NULL;
1208     bool no_aa32 = false;
1209 
1210     /* If we needed to query the host kernel for the CPU features
1211      * then it's possible that might have failed in the initfn, but
1212      * this is the first point where we can report it.
1213      */
1214     if (cpu->host_cpu_probe_failed) {
1215         if (!kvm_enabled()) {
1216             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1217         } else {
1218             error_setg(errp, "Failed to retrieve host CPU features");
1219         }
1220         return;
1221     }
1222 
1223 #ifndef CONFIG_USER_ONLY
1224     /* The NVIC and M-profile CPU are two halves of a single piece of
1225      * hardware; trying to use one without the other is a command line
1226      * error and will result in segfaults if not caught here.
1227      */
1228     if (arm_feature(env, ARM_FEATURE_M)) {
1229         if (!env->nvic) {
1230             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1231             return;
1232         }
1233     } else {
1234         if (env->nvic) {
1235             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1236             return;
1237         }
1238     }
1239 
1240     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1241                                            arm_gt_ptimer_cb, cpu);
1242     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1243                                            arm_gt_vtimer_cb, cpu);
1244     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1245                                           arm_gt_htimer_cb, cpu);
1246     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1247                                           arm_gt_stimer_cb, cpu);
1248 #endif
1249 
1250     cpu_exec_realizefn(cs, &local_err);
1251     if (local_err != NULL) {
1252         error_propagate(errp, local_err);
1253         return;
1254     }
1255 
1256     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1257         cpu->has_vfp != cpu->has_neon) {
1258         /*
1259          * This is an architectural requirement for AArch64; AArch32 is
1260          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1261          */
1262         error_setg(errp,
1263                    "AArch64 CPUs must have both VFP and Neon or neither");
1264         return;
1265     }
1266 
1267     if (!cpu->has_vfp) {
1268         uint64_t t;
1269         uint32_t u;
1270 
1271         unset_feature(env, ARM_FEATURE_VFP);
1272         unset_feature(env, ARM_FEATURE_VFP3);
1273         unset_feature(env, ARM_FEATURE_VFP4);
1274 
1275         t = cpu->isar.id_aa64isar1;
1276         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1277         cpu->isar.id_aa64isar1 = t;
1278 
1279         t = cpu->isar.id_aa64pfr0;
1280         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1281         cpu->isar.id_aa64pfr0 = t;
1282 
1283         u = cpu->isar.id_isar6;
1284         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1285         cpu->isar.id_isar6 = u;
1286 
1287         u = cpu->isar.mvfr0;
1288         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1289         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1290         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1291         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1292         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1293         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1294         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1295         cpu->isar.mvfr0 = u;
1296 
1297         u = cpu->isar.mvfr1;
1298         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1299         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1300         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1301         cpu->isar.mvfr1 = u;
1302 
1303         u = cpu->isar.mvfr2;
1304         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1305         cpu->isar.mvfr2 = u;
1306     }
1307 
1308     if (!cpu->has_neon) {
1309         uint64_t t;
1310         uint32_t u;
1311 
1312         unset_feature(env, ARM_FEATURE_NEON);
1313 
1314         t = cpu->isar.id_aa64isar0;
1315         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1316         cpu->isar.id_aa64isar0 = t;
1317 
1318         t = cpu->isar.id_aa64isar1;
1319         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1320         cpu->isar.id_aa64isar1 = t;
1321 
1322         t = cpu->isar.id_aa64pfr0;
1323         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1324         cpu->isar.id_aa64pfr0 = t;
1325 
1326         u = cpu->isar.id_isar5;
1327         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1328         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1329         cpu->isar.id_isar5 = u;
1330 
1331         u = cpu->isar.id_isar6;
1332         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1333         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1334         cpu->isar.id_isar6 = u;
1335 
1336         u = cpu->isar.mvfr1;
1337         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1338         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1339         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1340         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1341         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1342         cpu->isar.mvfr1 = u;
1343 
1344         u = cpu->isar.mvfr2;
1345         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1346         cpu->isar.mvfr2 = u;
1347     }
1348 
1349     if (!cpu->has_neon && !cpu->has_vfp) {
1350         uint64_t t;
1351         uint32_t u;
1352 
1353         t = cpu->isar.id_aa64isar0;
1354         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1355         cpu->isar.id_aa64isar0 = t;
1356 
1357         t = cpu->isar.id_aa64isar1;
1358         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1359         cpu->isar.id_aa64isar1 = t;
1360 
1361         u = cpu->isar.mvfr0;
1362         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1363         cpu->isar.mvfr0 = u;
1364     }
1365 
1366     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1367         uint32_t u;
1368 
1369         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1370 
1371         u = cpu->isar.id_isar1;
1372         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1373         cpu->isar.id_isar1 = u;
1374 
1375         u = cpu->isar.id_isar2;
1376         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1377         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1378         cpu->isar.id_isar2 = u;
1379 
1380         u = cpu->isar.id_isar3;
1381         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1382         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1383         cpu->isar.id_isar3 = u;
1384     }
1385 
1386     /* Some features automatically imply others: */
1387     if (arm_feature(env, ARM_FEATURE_V8)) {
1388         if (arm_feature(env, ARM_FEATURE_M)) {
1389             set_feature(env, ARM_FEATURE_V7);
1390         } else {
1391             set_feature(env, ARM_FEATURE_V7VE);
1392         }
1393     }
1394 
1395     /*
1396      * There exist AArch64 cpus without AArch32 support.  When KVM
1397      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1398      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1399      * As a general principle, we also do not make ID register
1400      * consistency checks anywhere unless using TCG, because only
1401      * for TCG would a consistency-check failure be a QEMU bug.
1402      */
1403     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1404         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1405     }
1406 
1407     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1408         /* v7 Virtualization Extensions. In real hardware this implies
1409          * EL2 and also the presence of the Security Extensions.
1410          * For QEMU, for backwards-compatibility we implement some
1411          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1412          * include the various other features that V7VE implies.
1413          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1414          * Security Extensions is ARM_FEATURE_EL3.
1415          */
1416         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1417         set_feature(env, ARM_FEATURE_LPAE);
1418         set_feature(env, ARM_FEATURE_V7);
1419     }
1420     if (arm_feature(env, ARM_FEATURE_V7)) {
1421         set_feature(env, ARM_FEATURE_VAPA);
1422         set_feature(env, ARM_FEATURE_THUMB2);
1423         set_feature(env, ARM_FEATURE_MPIDR);
1424         if (!arm_feature(env, ARM_FEATURE_M)) {
1425             set_feature(env, ARM_FEATURE_V6K);
1426         } else {
1427             set_feature(env, ARM_FEATURE_V6);
1428         }
1429 
1430         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1431          * non-EL3 configs. This is needed by some legacy boards.
1432          */
1433         set_feature(env, ARM_FEATURE_VBAR);
1434     }
1435     if (arm_feature(env, ARM_FEATURE_V6K)) {
1436         set_feature(env, ARM_FEATURE_V6);
1437         set_feature(env, ARM_FEATURE_MVFR);
1438     }
1439     if (arm_feature(env, ARM_FEATURE_V6)) {
1440         set_feature(env, ARM_FEATURE_V5);
1441         if (!arm_feature(env, ARM_FEATURE_M)) {
1442             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1443             set_feature(env, ARM_FEATURE_AUXCR);
1444         }
1445     }
1446     if (arm_feature(env, ARM_FEATURE_V5)) {
1447         set_feature(env, ARM_FEATURE_V4T);
1448     }
1449     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1450         set_feature(env, ARM_FEATURE_V7MP);
1451         set_feature(env, ARM_FEATURE_PXN);
1452     }
1453     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1454         set_feature(env, ARM_FEATURE_CBAR);
1455     }
1456     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1457         !arm_feature(env, ARM_FEATURE_M)) {
1458         set_feature(env, ARM_FEATURE_THUMB_DSP);
1459     }
1460 
1461     /*
1462      * We rely on no XScale CPU having VFP so we can use the same bits in the
1463      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1464      */
1465     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1466              arm_feature(env, ARM_FEATURE_XSCALE)));
1467 
1468     if (arm_feature(env, ARM_FEATURE_V7) &&
1469         !arm_feature(env, ARM_FEATURE_M) &&
1470         !arm_feature(env, ARM_FEATURE_PMSA)) {
1471         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1472          * can use 4K pages.
1473          */
1474         pagebits = 12;
1475     } else {
1476         /* For CPUs which might have tiny 1K pages, or which have an
1477          * MPU and might have small region sizes, stick with 1K pages.
1478          */
1479         pagebits = 10;
1480     }
1481     if (!set_preferred_target_page_bits(pagebits)) {
1482         /* This can only ever happen for hotplugging a CPU, or if
1483          * the board code incorrectly creates a CPU which it has
1484          * promised via minimum_page_size that it will not.
1485          */
1486         error_setg(errp, "This CPU requires a smaller page size than the "
1487                    "system is using");
1488         return;
1489     }
1490 
1491     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1492      * We don't support setting cluster ID ([16..23]) (known as Aff2
1493      * in later ARM ARM versions), or any of the higher affinity level fields,
1494      * so these bits always RAZ.
1495      */
1496     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1497         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1498                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1499     }
1500 
1501     if (cpu->reset_hivecs) {
1502             cpu->reset_sctlr |= (1 << 13);
1503     }
1504 
1505     if (cpu->cfgend) {
1506         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1507             cpu->reset_sctlr |= SCTLR_EE;
1508         } else {
1509             cpu->reset_sctlr |= SCTLR_B;
1510         }
1511     }
1512 
1513     if (!cpu->has_el3) {
1514         /* If the has_el3 CPU property is disabled then we need to disable the
1515          * feature.
1516          */
1517         unset_feature(env, ARM_FEATURE_EL3);
1518 
1519         /* Disable the security extension feature bits in the processor feature
1520          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1521          */
1522         cpu->id_pfr1 &= ~0xf0;
1523         cpu->isar.id_aa64pfr0 &= ~0xf000;
1524     }
1525 
1526     if (!cpu->has_el2) {
1527         unset_feature(env, ARM_FEATURE_EL2);
1528     }
1529 
1530     if (!cpu->has_pmu) {
1531         unset_feature(env, ARM_FEATURE_PMU);
1532     }
1533     if (arm_feature(env, ARM_FEATURE_PMU)) {
1534         pmu_init(cpu);
1535 
1536         if (!kvm_enabled()) {
1537             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1538             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1539         }
1540 
1541 #ifndef CONFIG_USER_ONLY
1542         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1543                 cpu);
1544 #endif
1545     } else {
1546         cpu->id_aa64dfr0 &= ~0xf00;
1547         cpu->id_dfr0 &= ~(0xf << 24);
1548         cpu->pmceid0 = 0;
1549         cpu->pmceid1 = 0;
1550     }
1551 
1552     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1553         /* Disable the hypervisor feature bits in the processor feature
1554          * registers if we don't have EL2. These are id_pfr1[15:12] and
1555          * id_aa64pfr0_el1[11:8].
1556          */
1557         cpu->isar.id_aa64pfr0 &= ~0xf00;
1558         cpu->id_pfr1 &= ~0xf000;
1559     }
1560 
1561     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1562      * to false or by setting pmsav7-dregion to 0.
1563      */
1564     if (!cpu->has_mpu) {
1565         cpu->pmsav7_dregion = 0;
1566     }
1567     if (cpu->pmsav7_dregion == 0) {
1568         cpu->has_mpu = false;
1569     }
1570 
1571     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1572         arm_feature(env, ARM_FEATURE_V7)) {
1573         uint32_t nr = cpu->pmsav7_dregion;
1574 
1575         if (nr > 0xff) {
1576             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1577             return;
1578         }
1579 
1580         if (nr) {
1581             if (arm_feature(env, ARM_FEATURE_V8)) {
1582                 /* PMSAv8 */
1583                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1584                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1585                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1586                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1587                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1588                 }
1589             } else {
1590                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1591                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1592                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1593             }
1594         }
1595     }
1596 
1597     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1598         uint32_t nr = cpu->sau_sregion;
1599 
1600         if (nr > 0xff) {
1601             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1602             return;
1603         }
1604 
1605         if (nr) {
1606             env->sau.rbar = g_new0(uint32_t, nr);
1607             env->sau.rlar = g_new0(uint32_t, nr);
1608         }
1609     }
1610 
1611     if (arm_feature(env, ARM_FEATURE_EL3)) {
1612         set_feature(env, ARM_FEATURE_VBAR);
1613     }
1614 
1615     register_cp_regs_for_features(cpu);
1616     arm_cpu_register_gdb_regs_for_features(cpu);
1617 
1618     init_cpreg_list(cpu);
1619 
1620 #ifndef CONFIG_USER_ONLY
1621     MachineState *ms = MACHINE(qdev_get_machine());
1622     unsigned int smp_cpus = ms->smp.cpus;
1623 
1624     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1625         cs->num_ases = 2;
1626 
1627         if (!cpu->secure_memory) {
1628             cpu->secure_memory = cs->memory;
1629         }
1630         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1631                                cpu->secure_memory);
1632     } else {
1633         cs->num_ases = 1;
1634     }
1635     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1636 
1637     /* No core_count specified, default to smp_cpus. */
1638     if (cpu->core_count == -1) {
1639         cpu->core_count = smp_cpus;
1640     }
1641 #endif
1642 
1643     qemu_init_vcpu(cs);
1644     cpu_reset(cs);
1645 
1646     acc->parent_realize(dev, errp);
1647 }
1648 
1649 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1650 {
1651     ObjectClass *oc;
1652     char *typename;
1653     char **cpuname;
1654     const char *cpunamestr;
1655 
1656     cpuname = g_strsplit(cpu_model, ",", 1);
1657     cpunamestr = cpuname[0];
1658 #ifdef CONFIG_USER_ONLY
1659     /* For backwards compatibility usermode emulation allows "-cpu any",
1660      * which has the same semantics as "-cpu max".
1661      */
1662     if (!strcmp(cpunamestr, "any")) {
1663         cpunamestr = "max";
1664     }
1665 #endif
1666     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1667     oc = object_class_by_name(typename);
1668     g_strfreev(cpuname);
1669     g_free(typename);
1670     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1671         object_class_is_abstract(oc)) {
1672         return NULL;
1673     }
1674     return oc;
1675 }
1676 
1677 /* CPU models. These are not needed for the AArch64 linux-user build. */
1678 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1679 
1680 static void arm926_initfn(Object *obj)
1681 {
1682     ARMCPU *cpu = ARM_CPU(obj);
1683 
1684     cpu->dtb_compatible = "arm,arm926";
1685     set_feature(&cpu->env, ARM_FEATURE_V5);
1686     set_feature(&cpu->env, ARM_FEATURE_VFP);
1687     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1688     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1689     cpu->midr = 0x41069265;
1690     cpu->reset_fpsid = 0x41011090;
1691     cpu->ctr = 0x1dd20d2;
1692     cpu->reset_sctlr = 0x00090078;
1693 
1694     /*
1695      * ARMv5 does not have the ID_ISAR registers, but we can still
1696      * set the field to indicate Jazelle support within QEMU.
1697      */
1698     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1699     /*
1700      * Similarly, we need to set MVFR0 fields to enable double precision
1701      * and short vector support even though ARMv5 doesn't have this register.
1702      */
1703     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1704     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1705 }
1706 
1707 static void arm946_initfn(Object *obj)
1708 {
1709     ARMCPU *cpu = ARM_CPU(obj);
1710 
1711     cpu->dtb_compatible = "arm,arm946";
1712     set_feature(&cpu->env, ARM_FEATURE_V5);
1713     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1714     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1715     cpu->midr = 0x41059461;
1716     cpu->ctr = 0x0f004006;
1717     cpu->reset_sctlr = 0x00000078;
1718 }
1719 
1720 static void arm1026_initfn(Object *obj)
1721 {
1722     ARMCPU *cpu = ARM_CPU(obj);
1723 
1724     cpu->dtb_compatible = "arm,arm1026";
1725     set_feature(&cpu->env, ARM_FEATURE_V5);
1726     set_feature(&cpu->env, ARM_FEATURE_VFP);
1727     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1728     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1729     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1730     cpu->midr = 0x4106a262;
1731     cpu->reset_fpsid = 0x410110a0;
1732     cpu->ctr = 0x1dd20d2;
1733     cpu->reset_sctlr = 0x00090078;
1734     cpu->reset_auxcr = 1;
1735 
1736     /*
1737      * ARMv5 does not have the ID_ISAR registers, but we can still
1738      * set the field to indicate Jazelle support within QEMU.
1739      */
1740     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1741     /*
1742      * Similarly, we need to set MVFR0 fields to enable double precision
1743      * and short vector support even though ARMv5 doesn't have this register.
1744      */
1745     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1746     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1747 
1748     {
1749         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1750         ARMCPRegInfo ifar = {
1751             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1752             .access = PL1_RW,
1753             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1754             .resetvalue = 0
1755         };
1756         define_one_arm_cp_reg(cpu, &ifar);
1757     }
1758 }
1759 
1760 static void arm1136_r2_initfn(Object *obj)
1761 {
1762     ARMCPU *cpu = ARM_CPU(obj);
1763     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1764      * older core than plain "arm1136". In particular this does not
1765      * have the v6K features.
1766      * These ID register values are correct for 1136 but may be wrong
1767      * for 1136_r2 (in particular r0p2 does not actually implement most
1768      * of the ID registers).
1769      */
1770 
1771     cpu->dtb_compatible = "arm,arm1136";
1772     set_feature(&cpu->env, ARM_FEATURE_V6);
1773     set_feature(&cpu->env, ARM_FEATURE_VFP);
1774     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1775     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1776     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1777     cpu->midr = 0x4107b362;
1778     cpu->reset_fpsid = 0x410120b4;
1779     cpu->isar.mvfr0 = 0x11111111;
1780     cpu->isar.mvfr1 = 0x00000000;
1781     cpu->ctr = 0x1dd20d2;
1782     cpu->reset_sctlr = 0x00050078;
1783     cpu->id_pfr0 = 0x111;
1784     cpu->id_pfr1 = 0x1;
1785     cpu->id_dfr0 = 0x2;
1786     cpu->id_afr0 = 0x3;
1787     cpu->id_mmfr0 = 0x01130003;
1788     cpu->id_mmfr1 = 0x10030302;
1789     cpu->id_mmfr2 = 0x01222110;
1790     cpu->isar.id_isar0 = 0x00140011;
1791     cpu->isar.id_isar1 = 0x12002111;
1792     cpu->isar.id_isar2 = 0x11231111;
1793     cpu->isar.id_isar3 = 0x01102131;
1794     cpu->isar.id_isar4 = 0x141;
1795     cpu->reset_auxcr = 7;
1796 }
1797 
1798 static void arm1136_initfn(Object *obj)
1799 {
1800     ARMCPU *cpu = ARM_CPU(obj);
1801 
1802     cpu->dtb_compatible = "arm,arm1136";
1803     set_feature(&cpu->env, ARM_FEATURE_V6K);
1804     set_feature(&cpu->env, ARM_FEATURE_V6);
1805     set_feature(&cpu->env, ARM_FEATURE_VFP);
1806     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1807     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1808     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1809     cpu->midr = 0x4117b363;
1810     cpu->reset_fpsid = 0x410120b4;
1811     cpu->isar.mvfr0 = 0x11111111;
1812     cpu->isar.mvfr1 = 0x00000000;
1813     cpu->ctr = 0x1dd20d2;
1814     cpu->reset_sctlr = 0x00050078;
1815     cpu->id_pfr0 = 0x111;
1816     cpu->id_pfr1 = 0x1;
1817     cpu->id_dfr0 = 0x2;
1818     cpu->id_afr0 = 0x3;
1819     cpu->id_mmfr0 = 0x01130003;
1820     cpu->id_mmfr1 = 0x10030302;
1821     cpu->id_mmfr2 = 0x01222110;
1822     cpu->isar.id_isar0 = 0x00140011;
1823     cpu->isar.id_isar1 = 0x12002111;
1824     cpu->isar.id_isar2 = 0x11231111;
1825     cpu->isar.id_isar3 = 0x01102131;
1826     cpu->isar.id_isar4 = 0x141;
1827     cpu->reset_auxcr = 7;
1828 }
1829 
1830 static void arm1176_initfn(Object *obj)
1831 {
1832     ARMCPU *cpu = ARM_CPU(obj);
1833 
1834     cpu->dtb_compatible = "arm,arm1176";
1835     set_feature(&cpu->env, ARM_FEATURE_V6K);
1836     set_feature(&cpu->env, ARM_FEATURE_VFP);
1837     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1838     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1839     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1840     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1841     set_feature(&cpu->env, ARM_FEATURE_EL3);
1842     cpu->midr = 0x410fb767;
1843     cpu->reset_fpsid = 0x410120b5;
1844     cpu->isar.mvfr0 = 0x11111111;
1845     cpu->isar.mvfr1 = 0x00000000;
1846     cpu->ctr = 0x1dd20d2;
1847     cpu->reset_sctlr = 0x00050078;
1848     cpu->id_pfr0 = 0x111;
1849     cpu->id_pfr1 = 0x11;
1850     cpu->id_dfr0 = 0x33;
1851     cpu->id_afr0 = 0;
1852     cpu->id_mmfr0 = 0x01130003;
1853     cpu->id_mmfr1 = 0x10030302;
1854     cpu->id_mmfr2 = 0x01222100;
1855     cpu->isar.id_isar0 = 0x0140011;
1856     cpu->isar.id_isar1 = 0x12002111;
1857     cpu->isar.id_isar2 = 0x11231121;
1858     cpu->isar.id_isar3 = 0x01102131;
1859     cpu->isar.id_isar4 = 0x01141;
1860     cpu->reset_auxcr = 7;
1861 }
1862 
1863 static void arm11mpcore_initfn(Object *obj)
1864 {
1865     ARMCPU *cpu = ARM_CPU(obj);
1866 
1867     cpu->dtb_compatible = "arm,arm11mpcore";
1868     set_feature(&cpu->env, ARM_FEATURE_V6K);
1869     set_feature(&cpu->env, ARM_FEATURE_VFP);
1870     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1871     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1872     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1873     cpu->midr = 0x410fb022;
1874     cpu->reset_fpsid = 0x410120b4;
1875     cpu->isar.mvfr0 = 0x11111111;
1876     cpu->isar.mvfr1 = 0x00000000;
1877     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1878     cpu->id_pfr0 = 0x111;
1879     cpu->id_pfr1 = 0x1;
1880     cpu->id_dfr0 = 0;
1881     cpu->id_afr0 = 0x2;
1882     cpu->id_mmfr0 = 0x01100103;
1883     cpu->id_mmfr1 = 0x10020302;
1884     cpu->id_mmfr2 = 0x01222000;
1885     cpu->isar.id_isar0 = 0x00100011;
1886     cpu->isar.id_isar1 = 0x12002111;
1887     cpu->isar.id_isar2 = 0x11221011;
1888     cpu->isar.id_isar3 = 0x01102131;
1889     cpu->isar.id_isar4 = 0x141;
1890     cpu->reset_auxcr = 1;
1891 }
1892 
1893 static void cortex_m0_initfn(Object *obj)
1894 {
1895     ARMCPU *cpu = ARM_CPU(obj);
1896     set_feature(&cpu->env, ARM_FEATURE_V6);
1897     set_feature(&cpu->env, ARM_FEATURE_M);
1898 
1899     cpu->midr = 0x410cc200;
1900 }
1901 
1902 static void cortex_m3_initfn(Object *obj)
1903 {
1904     ARMCPU *cpu = ARM_CPU(obj);
1905     set_feature(&cpu->env, ARM_FEATURE_V7);
1906     set_feature(&cpu->env, ARM_FEATURE_M);
1907     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1908     cpu->midr = 0x410fc231;
1909     cpu->pmsav7_dregion = 8;
1910     cpu->id_pfr0 = 0x00000030;
1911     cpu->id_pfr1 = 0x00000200;
1912     cpu->id_dfr0 = 0x00100000;
1913     cpu->id_afr0 = 0x00000000;
1914     cpu->id_mmfr0 = 0x00000030;
1915     cpu->id_mmfr1 = 0x00000000;
1916     cpu->id_mmfr2 = 0x00000000;
1917     cpu->id_mmfr3 = 0x00000000;
1918     cpu->isar.id_isar0 = 0x01141110;
1919     cpu->isar.id_isar1 = 0x02111000;
1920     cpu->isar.id_isar2 = 0x21112231;
1921     cpu->isar.id_isar3 = 0x01111110;
1922     cpu->isar.id_isar4 = 0x01310102;
1923     cpu->isar.id_isar5 = 0x00000000;
1924     cpu->isar.id_isar6 = 0x00000000;
1925 }
1926 
1927 static void cortex_m4_initfn(Object *obj)
1928 {
1929     ARMCPU *cpu = ARM_CPU(obj);
1930 
1931     set_feature(&cpu->env, ARM_FEATURE_V7);
1932     set_feature(&cpu->env, ARM_FEATURE_M);
1933     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1934     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1935     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1936     cpu->midr = 0x410fc240; /* r0p0 */
1937     cpu->pmsav7_dregion = 8;
1938     cpu->isar.mvfr0 = 0x10110021;
1939     cpu->isar.mvfr1 = 0x11000011;
1940     cpu->isar.mvfr2 = 0x00000000;
1941     cpu->id_pfr0 = 0x00000030;
1942     cpu->id_pfr1 = 0x00000200;
1943     cpu->id_dfr0 = 0x00100000;
1944     cpu->id_afr0 = 0x00000000;
1945     cpu->id_mmfr0 = 0x00000030;
1946     cpu->id_mmfr1 = 0x00000000;
1947     cpu->id_mmfr2 = 0x00000000;
1948     cpu->id_mmfr3 = 0x00000000;
1949     cpu->isar.id_isar0 = 0x01141110;
1950     cpu->isar.id_isar1 = 0x02111000;
1951     cpu->isar.id_isar2 = 0x21112231;
1952     cpu->isar.id_isar3 = 0x01111110;
1953     cpu->isar.id_isar4 = 0x01310102;
1954     cpu->isar.id_isar5 = 0x00000000;
1955     cpu->isar.id_isar6 = 0x00000000;
1956 }
1957 
1958 static void cortex_m33_initfn(Object *obj)
1959 {
1960     ARMCPU *cpu = ARM_CPU(obj);
1961 
1962     set_feature(&cpu->env, ARM_FEATURE_V8);
1963     set_feature(&cpu->env, ARM_FEATURE_M);
1964     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1965     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1966     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1967     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1968     cpu->midr = 0x410fd213; /* r0p3 */
1969     cpu->pmsav7_dregion = 16;
1970     cpu->sau_sregion = 8;
1971     cpu->isar.mvfr0 = 0x10110021;
1972     cpu->isar.mvfr1 = 0x11000011;
1973     cpu->isar.mvfr2 = 0x00000040;
1974     cpu->id_pfr0 = 0x00000030;
1975     cpu->id_pfr1 = 0x00000210;
1976     cpu->id_dfr0 = 0x00200000;
1977     cpu->id_afr0 = 0x00000000;
1978     cpu->id_mmfr0 = 0x00101F40;
1979     cpu->id_mmfr1 = 0x00000000;
1980     cpu->id_mmfr2 = 0x01000000;
1981     cpu->id_mmfr3 = 0x00000000;
1982     cpu->isar.id_isar0 = 0x01101110;
1983     cpu->isar.id_isar1 = 0x02212000;
1984     cpu->isar.id_isar2 = 0x20232232;
1985     cpu->isar.id_isar3 = 0x01111131;
1986     cpu->isar.id_isar4 = 0x01310132;
1987     cpu->isar.id_isar5 = 0x00000000;
1988     cpu->isar.id_isar6 = 0x00000000;
1989     cpu->clidr = 0x00000000;
1990     cpu->ctr = 0x8000c000;
1991 }
1992 
1993 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1994 {
1995     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1996     CPUClass *cc = CPU_CLASS(oc);
1997 
1998     acc->info = data;
1999 #ifndef CONFIG_USER_ONLY
2000     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2001 #endif
2002 
2003     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2004 }
2005 
2006 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2007     /* Dummy the TCM region regs for the moment */
2008     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2009       .access = PL1_RW, .type = ARM_CP_CONST },
2010     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2011       .access = PL1_RW, .type = ARM_CP_CONST },
2012     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2013       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2014     REGINFO_SENTINEL
2015 };
2016 
2017 static void cortex_r5_initfn(Object *obj)
2018 {
2019     ARMCPU *cpu = ARM_CPU(obj);
2020 
2021     set_feature(&cpu->env, ARM_FEATURE_V7);
2022     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2023     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2024     cpu->midr = 0x411fc153; /* r1p3 */
2025     cpu->id_pfr0 = 0x0131;
2026     cpu->id_pfr1 = 0x001;
2027     cpu->id_dfr0 = 0x010400;
2028     cpu->id_afr0 = 0x0;
2029     cpu->id_mmfr0 = 0x0210030;
2030     cpu->id_mmfr1 = 0x00000000;
2031     cpu->id_mmfr2 = 0x01200000;
2032     cpu->id_mmfr3 = 0x0211;
2033     cpu->isar.id_isar0 = 0x02101111;
2034     cpu->isar.id_isar1 = 0x13112111;
2035     cpu->isar.id_isar2 = 0x21232141;
2036     cpu->isar.id_isar3 = 0x01112131;
2037     cpu->isar.id_isar4 = 0x0010142;
2038     cpu->isar.id_isar5 = 0x0;
2039     cpu->isar.id_isar6 = 0x0;
2040     cpu->mp_is_up = true;
2041     cpu->pmsav7_dregion = 16;
2042     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2043 }
2044 
2045 static void cortex_r5f_initfn(Object *obj)
2046 {
2047     ARMCPU *cpu = ARM_CPU(obj);
2048 
2049     cortex_r5_initfn(obj);
2050     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2051     cpu->isar.mvfr0 = 0x10110221;
2052     cpu->isar.mvfr1 = 0x00000011;
2053 }
2054 
2055 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2056     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2057       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2058     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2059       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2060     REGINFO_SENTINEL
2061 };
2062 
2063 static void cortex_a8_initfn(Object *obj)
2064 {
2065     ARMCPU *cpu = ARM_CPU(obj);
2066 
2067     cpu->dtb_compatible = "arm,cortex-a8";
2068     set_feature(&cpu->env, ARM_FEATURE_V7);
2069     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2070     set_feature(&cpu->env, ARM_FEATURE_NEON);
2071     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2072     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2073     set_feature(&cpu->env, ARM_FEATURE_EL3);
2074     cpu->midr = 0x410fc080;
2075     cpu->reset_fpsid = 0x410330c0;
2076     cpu->isar.mvfr0 = 0x11110222;
2077     cpu->isar.mvfr1 = 0x00011111;
2078     cpu->ctr = 0x82048004;
2079     cpu->reset_sctlr = 0x00c50078;
2080     cpu->id_pfr0 = 0x1031;
2081     cpu->id_pfr1 = 0x11;
2082     cpu->id_dfr0 = 0x400;
2083     cpu->id_afr0 = 0;
2084     cpu->id_mmfr0 = 0x31100003;
2085     cpu->id_mmfr1 = 0x20000000;
2086     cpu->id_mmfr2 = 0x01202000;
2087     cpu->id_mmfr3 = 0x11;
2088     cpu->isar.id_isar0 = 0x00101111;
2089     cpu->isar.id_isar1 = 0x12112111;
2090     cpu->isar.id_isar2 = 0x21232031;
2091     cpu->isar.id_isar3 = 0x11112131;
2092     cpu->isar.id_isar4 = 0x00111142;
2093     cpu->dbgdidr = 0x15141000;
2094     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2095     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2096     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2097     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2098     cpu->reset_auxcr = 2;
2099     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2100 }
2101 
2102 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2103     /* power_control should be set to maximum latency. Again,
2104      * default to 0 and set by private hook
2105      */
2106     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2107       .access = PL1_RW, .resetvalue = 0,
2108       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2109     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2110       .access = PL1_RW, .resetvalue = 0,
2111       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2112     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2113       .access = PL1_RW, .resetvalue = 0,
2114       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2115     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2116       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2117     /* TLB lockdown control */
2118     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2119       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2120     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2121       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2122     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2123       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2124     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2125       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2126     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2127       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2128     REGINFO_SENTINEL
2129 };
2130 
2131 static void cortex_a9_initfn(Object *obj)
2132 {
2133     ARMCPU *cpu = ARM_CPU(obj);
2134 
2135     cpu->dtb_compatible = "arm,cortex-a9";
2136     set_feature(&cpu->env, ARM_FEATURE_V7);
2137     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2138     set_feature(&cpu->env, ARM_FEATURE_NEON);
2139     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2140     set_feature(&cpu->env, ARM_FEATURE_EL3);
2141     /* Note that A9 supports the MP extensions even for
2142      * A9UP and single-core A9MP (which are both different
2143      * and valid configurations; we don't model A9UP).
2144      */
2145     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2146     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2147     cpu->midr = 0x410fc090;
2148     cpu->reset_fpsid = 0x41033090;
2149     cpu->isar.mvfr0 = 0x11110222;
2150     cpu->isar.mvfr1 = 0x01111111;
2151     cpu->ctr = 0x80038003;
2152     cpu->reset_sctlr = 0x00c50078;
2153     cpu->id_pfr0 = 0x1031;
2154     cpu->id_pfr1 = 0x11;
2155     cpu->id_dfr0 = 0x000;
2156     cpu->id_afr0 = 0;
2157     cpu->id_mmfr0 = 0x00100103;
2158     cpu->id_mmfr1 = 0x20000000;
2159     cpu->id_mmfr2 = 0x01230000;
2160     cpu->id_mmfr3 = 0x00002111;
2161     cpu->isar.id_isar0 = 0x00101111;
2162     cpu->isar.id_isar1 = 0x13112111;
2163     cpu->isar.id_isar2 = 0x21232041;
2164     cpu->isar.id_isar3 = 0x11112131;
2165     cpu->isar.id_isar4 = 0x00111142;
2166     cpu->dbgdidr = 0x35141000;
2167     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2168     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2169     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2170     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2171 }
2172 
2173 #ifndef CONFIG_USER_ONLY
2174 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2175 {
2176     MachineState *ms = MACHINE(qdev_get_machine());
2177 
2178     /* Linux wants the number of processors from here.
2179      * Might as well set the interrupt-controller bit too.
2180      */
2181     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2182 }
2183 #endif
2184 
2185 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2186 #ifndef CONFIG_USER_ONLY
2187     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2188       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2189       .writefn = arm_cp_write_ignore, },
2190 #endif
2191     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2192       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2193     REGINFO_SENTINEL
2194 };
2195 
2196 static void cortex_a7_initfn(Object *obj)
2197 {
2198     ARMCPU *cpu = ARM_CPU(obj);
2199 
2200     cpu->dtb_compatible = "arm,cortex-a7";
2201     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2202     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2203     set_feature(&cpu->env, ARM_FEATURE_NEON);
2204     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2205     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2206     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2207     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2208     set_feature(&cpu->env, ARM_FEATURE_EL2);
2209     set_feature(&cpu->env, ARM_FEATURE_EL3);
2210     set_feature(&cpu->env, ARM_FEATURE_PMU);
2211     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2212     cpu->midr = 0x410fc075;
2213     cpu->reset_fpsid = 0x41023075;
2214     cpu->isar.mvfr0 = 0x10110222;
2215     cpu->isar.mvfr1 = 0x11111111;
2216     cpu->ctr = 0x84448003;
2217     cpu->reset_sctlr = 0x00c50078;
2218     cpu->id_pfr0 = 0x00001131;
2219     cpu->id_pfr1 = 0x00011011;
2220     cpu->id_dfr0 = 0x02010555;
2221     cpu->id_afr0 = 0x00000000;
2222     cpu->id_mmfr0 = 0x10101105;
2223     cpu->id_mmfr1 = 0x40000000;
2224     cpu->id_mmfr2 = 0x01240000;
2225     cpu->id_mmfr3 = 0x02102211;
2226     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2227      * table 4-41 gives 0x02101110, which includes the arm div insns.
2228      */
2229     cpu->isar.id_isar0 = 0x02101110;
2230     cpu->isar.id_isar1 = 0x13112111;
2231     cpu->isar.id_isar2 = 0x21232041;
2232     cpu->isar.id_isar3 = 0x11112131;
2233     cpu->isar.id_isar4 = 0x10011142;
2234     cpu->dbgdidr = 0x3515f005;
2235     cpu->clidr = 0x0a200023;
2236     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2237     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2238     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2239     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2240 }
2241 
2242 static void cortex_a15_initfn(Object *obj)
2243 {
2244     ARMCPU *cpu = ARM_CPU(obj);
2245 
2246     cpu->dtb_compatible = "arm,cortex-a15";
2247     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2248     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2249     set_feature(&cpu->env, ARM_FEATURE_NEON);
2250     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2251     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2252     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2253     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2254     set_feature(&cpu->env, ARM_FEATURE_EL2);
2255     set_feature(&cpu->env, ARM_FEATURE_EL3);
2256     set_feature(&cpu->env, ARM_FEATURE_PMU);
2257     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2258     cpu->midr = 0x412fc0f1;
2259     cpu->reset_fpsid = 0x410430f0;
2260     cpu->isar.mvfr0 = 0x10110222;
2261     cpu->isar.mvfr1 = 0x11111111;
2262     cpu->ctr = 0x8444c004;
2263     cpu->reset_sctlr = 0x00c50078;
2264     cpu->id_pfr0 = 0x00001131;
2265     cpu->id_pfr1 = 0x00011011;
2266     cpu->id_dfr0 = 0x02010555;
2267     cpu->id_afr0 = 0x00000000;
2268     cpu->id_mmfr0 = 0x10201105;
2269     cpu->id_mmfr1 = 0x20000000;
2270     cpu->id_mmfr2 = 0x01240000;
2271     cpu->id_mmfr3 = 0x02102211;
2272     cpu->isar.id_isar0 = 0x02101110;
2273     cpu->isar.id_isar1 = 0x13112111;
2274     cpu->isar.id_isar2 = 0x21232041;
2275     cpu->isar.id_isar3 = 0x11112131;
2276     cpu->isar.id_isar4 = 0x10011142;
2277     cpu->dbgdidr = 0x3515f021;
2278     cpu->clidr = 0x0a200023;
2279     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2280     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2281     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2282     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2283 }
2284 
2285 static void ti925t_initfn(Object *obj)
2286 {
2287     ARMCPU *cpu = ARM_CPU(obj);
2288     set_feature(&cpu->env, ARM_FEATURE_V4T);
2289     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2290     cpu->midr = ARM_CPUID_TI925T;
2291     cpu->ctr = 0x5109149;
2292     cpu->reset_sctlr = 0x00000070;
2293 }
2294 
2295 static void sa1100_initfn(Object *obj)
2296 {
2297     ARMCPU *cpu = ARM_CPU(obj);
2298 
2299     cpu->dtb_compatible = "intel,sa1100";
2300     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2301     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2302     cpu->midr = 0x4401A11B;
2303     cpu->reset_sctlr = 0x00000070;
2304 }
2305 
2306 static void sa1110_initfn(Object *obj)
2307 {
2308     ARMCPU *cpu = ARM_CPU(obj);
2309     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2310     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2311     cpu->midr = 0x6901B119;
2312     cpu->reset_sctlr = 0x00000070;
2313 }
2314 
2315 static void pxa250_initfn(Object *obj)
2316 {
2317     ARMCPU *cpu = ARM_CPU(obj);
2318 
2319     cpu->dtb_compatible = "marvell,xscale";
2320     set_feature(&cpu->env, ARM_FEATURE_V5);
2321     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2322     cpu->midr = 0x69052100;
2323     cpu->ctr = 0xd172172;
2324     cpu->reset_sctlr = 0x00000078;
2325 }
2326 
2327 static void pxa255_initfn(Object *obj)
2328 {
2329     ARMCPU *cpu = ARM_CPU(obj);
2330 
2331     cpu->dtb_compatible = "marvell,xscale";
2332     set_feature(&cpu->env, ARM_FEATURE_V5);
2333     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2334     cpu->midr = 0x69052d00;
2335     cpu->ctr = 0xd172172;
2336     cpu->reset_sctlr = 0x00000078;
2337 }
2338 
2339 static void pxa260_initfn(Object *obj)
2340 {
2341     ARMCPU *cpu = ARM_CPU(obj);
2342 
2343     cpu->dtb_compatible = "marvell,xscale";
2344     set_feature(&cpu->env, ARM_FEATURE_V5);
2345     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2346     cpu->midr = 0x69052903;
2347     cpu->ctr = 0xd172172;
2348     cpu->reset_sctlr = 0x00000078;
2349 }
2350 
2351 static void pxa261_initfn(Object *obj)
2352 {
2353     ARMCPU *cpu = ARM_CPU(obj);
2354 
2355     cpu->dtb_compatible = "marvell,xscale";
2356     set_feature(&cpu->env, ARM_FEATURE_V5);
2357     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2358     cpu->midr = 0x69052d05;
2359     cpu->ctr = 0xd172172;
2360     cpu->reset_sctlr = 0x00000078;
2361 }
2362 
2363 static void pxa262_initfn(Object *obj)
2364 {
2365     ARMCPU *cpu = ARM_CPU(obj);
2366 
2367     cpu->dtb_compatible = "marvell,xscale";
2368     set_feature(&cpu->env, ARM_FEATURE_V5);
2369     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2370     cpu->midr = 0x69052d06;
2371     cpu->ctr = 0xd172172;
2372     cpu->reset_sctlr = 0x00000078;
2373 }
2374 
2375 static void pxa270a0_initfn(Object *obj)
2376 {
2377     ARMCPU *cpu = ARM_CPU(obj);
2378 
2379     cpu->dtb_compatible = "marvell,xscale";
2380     set_feature(&cpu->env, ARM_FEATURE_V5);
2381     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2382     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2383     cpu->midr = 0x69054110;
2384     cpu->ctr = 0xd172172;
2385     cpu->reset_sctlr = 0x00000078;
2386 }
2387 
2388 static void pxa270a1_initfn(Object *obj)
2389 {
2390     ARMCPU *cpu = ARM_CPU(obj);
2391 
2392     cpu->dtb_compatible = "marvell,xscale";
2393     set_feature(&cpu->env, ARM_FEATURE_V5);
2394     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2395     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2396     cpu->midr = 0x69054111;
2397     cpu->ctr = 0xd172172;
2398     cpu->reset_sctlr = 0x00000078;
2399 }
2400 
2401 static void pxa270b0_initfn(Object *obj)
2402 {
2403     ARMCPU *cpu = ARM_CPU(obj);
2404 
2405     cpu->dtb_compatible = "marvell,xscale";
2406     set_feature(&cpu->env, ARM_FEATURE_V5);
2407     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2408     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2409     cpu->midr = 0x69054112;
2410     cpu->ctr = 0xd172172;
2411     cpu->reset_sctlr = 0x00000078;
2412 }
2413 
2414 static void pxa270b1_initfn(Object *obj)
2415 {
2416     ARMCPU *cpu = ARM_CPU(obj);
2417 
2418     cpu->dtb_compatible = "marvell,xscale";
2419     set_feature(&cpu->env, ARM_FEATURE_V5);
2420     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2421     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2422     cpu->midr = 0x69054113;
2423     cpu->ctr = 0xd172172;
2424     cpu->reset_sctlr = 0x00000078;
2425 }
2426 
2427 static void pxa270c0_initfn(Object *obj)
2428 {
2429     ARMCPU *cpu = ARM_CPU(obj);
2430 
2431     cpu->dtb_compatible = "marvell,xscale";
2432     set_feature(&cpu->env, ARM_FEATURE_V5);
2433     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2434     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2435     cpu->midr = 0x69054114;
2436     cpu->ctr = 0xd172172;
2437     cpu->reset_sctlr = 0x00000078;
2438 }
2439 
2440 static void pxa270c5_initfn(Object *obj)
2441 {
2442     ARMCPU *cpu = ARM_CPU(obj);
2443 
2444     cpu->dtb_compatible = "marvell,xscale";
2445     set_feature(&cpu->env, ARM_FEATURE_V5);
2446     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2447     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2448     cpu->midr = 0x69054117;
2449     cpu->ctr = 0xd172172;
2450     cpu->reset_sctlr = 0x00000078;
2451 }
2452 
2453 #ifndef TARGET_AARCH64
2454 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2455  * otherwise, a CPU with as many features enabled as our emulation supports.
2456  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2457  * this only needs to handle 32 bits.
2458  */
2459 static void arm_max_initfn(Object *obj)
2460 {
2461     ARMCPU *cpu = ARM_CPU(obj);
2462 
2463     if (kvm_enabled()) {
2464         kvm_arm_set_cpu_features_from_host(cpu);
2465     } else {
2466         cortex_a15_initfn(obj);
2467 
2468         /* old-style VFP short-vector support */
2469         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2470 
2471 #ifdef CONFIG_USER_ONLY
2472         /* We don't set these in system emulation mode for the moment,
2473          * since we don't correctly set (all of) the ID registers to
2474          * advertise them.
2475          */
2476         set_feature(&cpu->env, ARM_FEATURE_V8);
2477         {
2478             uint32_t t;
2479 
2480             t = cpu->isar.id_isar5;
2481             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2482             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2483             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2484             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2485             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2486             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2487             cpu->isar.id_isar5 = t;
2488 
2489             t = cpu->isar.id_isar6;
2490             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2491             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2492             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2493             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2494             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2495             cpu->isar.id_isar6 = t;
2496 
2497             t = cpu->isar.mvfr1;
2498             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2499             cpu->isar.mvfr1 = t;
2500 
2501             t = cpu->isar.mvfr2;
2502             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2503             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2504             cpu->isar.mvfr2 = t;
2505 
2506             t = cpu->id_mmfr4;
2507             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2508             cpu->id_mmfr4 = t;
2509         }
2510 #endif
2511     }
2512 }
2513 #endif
2514 
2515 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2516 
2517 struct ARMCPUInfo {
2518     const char *name;
2519     void (*initfn)(Object *obj);
2520     void (*class_init)(ObjectClass *oc, void *data);
2521 };
2522 
2523 static const ARMCPUInfo arm_cpus[] = {
2524 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2525     { .name = "arm926",      .initfn = arm926_initfn },
2526     { .name = "arm946",      .initfn = arm946_initfn },
2527     { .name = "arm1026",     .initfn = arm1026_initfn },
2528     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2529      * older core than plain "arm1136". In particular this does not
2530      * have the v6K features.
2531      */
2532     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2533     { .name = "arm1136",     .initfn = arm1136_initfn },
2534     { .name = "arm1176",     .initfn = arm1176_initfn },
2535     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2536     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2537                              .class_init = arm_v7m_class_init },
2538     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2539                              .class_init = arm_v7m_class_init },
2540     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2541                              .class_init = arm_v7m_class_init },
2542     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2543                              .class_init = arm_v7m_class_init },
2544     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2545     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2546     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2547     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2548     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2549     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2550     { .name = "ti925t",      .initfn = ti925t_initfn },
2551     { .name = "sa1100",      .initfn = sa1100_initfn },
2552     { .name = "sa1110",      .initfn = sa1110_initfn },
2553     { .name = "pxa250",      .initfn = pxa250_initfn },
2554     { .name = "pxa255",      .initfn = pxa255_initfn },
2555     { .name = "pxa260",      .initfn = pxa260_initfn },
2556     { .name = "pxa261",      .initfn = pxa261_initfn },
2557     { .name = "pxa262",      .initfn = pxa262_initfn },
2558     /* "pxa270" is an alias for "pxa270-a0" */
2559     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2560     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2561     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2562     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2563     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2564     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2565     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2566 #ifndef TARGET_AARCH64
2567     { .name = "max",         .initfn = arm_max_initfn },
2568 #endif
2569 #ifdef CONFIG_USER_ONLY
2570     { .name = "any",         .initfn = arm_max_initfn },
2571 #endif
2572 #endif
2573     { .name = NULL }
2574 };
2575 
2576 static Property arm_cpu_properties[] = {
2577     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2578     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2579     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2580     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2581                         mp_affinity, ARM64_AFFINITY_INVALID),
2582     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2583     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2584     DEFINE_PROP_END_OF_LIST()
2585 };
2586 
2587 static gchar *arm_gdb_arch_name(CPUState *cs)
2588 {
2589     ARMCPU *cpu = ARM_CPU(cs);
2590     CPUARMState *env = &cpu->env;
2591 
2592     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2593         return g_strdup("iwmmxt");
2594     }
2595     return g_strdup("arm");
2596 }
2597 
2598 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2599 {
2600     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2601     CPUClass *cc = CPU_CLASS(acc);
2602     DeviceClass *dc = DEVICE_CLASS(oc);
2603 
2604     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2605                                     &acc->parent_realize);
2606     dc->props = arm_cpu_properties;
2607 
2608     acc->parent_reset = cc->reset;
2609     cc->reset = arm_cpu_reset;
2610 
2611     cc->class_by_name = arm_cpu_class_by_name;
2612     cc->has_work = arm_cpu_has_work;
2613     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2614     cc->dump_state = arm_cpu_dump_state;
2615     cc->set_pc = arm_cpu_set_pc;
2616     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2617     cc->gdb_read_register = arm_cpu_gdb_read_register;
2618     cc->gdb_write_register = arm_cpu_gdb_write_register;
2619 #ifndef CONFIG_USER_ONLY
2620     cc->do_interrupt = arm_cpu_do_interrupt;
2621     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2622     cc->asidx_from_attrs = arm_asidx_from_attrs;
2623     cc->vmsd = &vmstate_arm_cpu;
2624     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2625     cc->write_elf64_note = arm_cpu_write_elf64_note;
2626     cc->write_elf32_note = arm_cpu_write_elf32_note;
2627 #endif
2628     cc->gdb_num_core_regs = 26;
2629     cc->gdb_core_xml_file = "arm-core.xml";
2630     cc->gdb_arch_name = arm_gdb_arch_name;
2631     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2632     cc->gdb_stop_before_watchpoint = true;
2633     cc->disas_set_info = arm_disas_set_info;
2634 #ifdef CONFIG_TCG
2635     cc->tcg_initialize = arm_translate_init;
2636     cc->tlb_fill = arm_cpu_tlb_fill;
2637     cc->debug_excp_handler = arm_debug_excp_handler;
2638     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2639 #if !defined(CONFIG_USER_ONLY)
2640     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2641     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2642     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2643 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2644 #endif
2645 }
2646 
2647 #ifdef CONFIG_KVM
2648 static void arm_host_initfn(Object *obj)
2649 {
2650     ARMCPU *cpu = ARM_CPU(obj);
2651 
2652     kvm_arm_set_cpu_features_from_host(cpu);
2653     arm_cpu_post_init(obj);
2654 }
2655 
2656 static const TypeInfo host_arm_cpu_type_info = {
2657     .name = TYPE_ARM_HOST_CPU,
2658 #ifdef TARGET_AARCH64
2659     .parent = TYPE_AARCH64_CPU,
2660 #else
2661     .parent = TYPE_ARM_CPU,
2662 #endif
2663     .instance_init = arm_host_initfn,
2664 };
2665 
2666 #endif
2667 
2668 static void arm_cpu_instance_init(Object *obj)
2669 {
2670     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2671 
2672     acc->info->initfn(obj);
2673     arm_cpu_post_init(obj);
2674 }
2675 
2676 static void cpu_register_class_init(ObjectClass *oc, void *data)
2677 {
2678     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2679 
2680     acc->info = data;
2681 }
2682 
2683 static void cpu_register(const ARMCPUInfo *info)
2684 {
2685     TypeInfo type_info = {
2686         .parent = TYPE_ARM_CPU,
2687         .instance_size = sizeof(ARMCPU),
2688         .instance_init = arm_cpu_instance_init,
2689         .class_size = sizeof(ARMCPUClass),
2690         .class_init = info->class_init ?: cpu_register_class_init,
2691         .class_data = (void *)info,
2692     };
2693 
2694     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2695     type_register(&type_info);
2696     g_free((void *)type_info.name);
2697 }
2698 
2699 static const TypeInfo arm_cpu_type_info = {
2700     .name = TYPE_ARM_CPU,
2701     .parent = TYPE_CPU,
2702     .instance_size = sizeof(ARMCPU),
2703     .instance_init = arm_cpu_initfn,
2704     .instance_finalize = arm_cpu_finalizefn,
2705     .abstract = true,
2706     .class_size = sizeof(ARMCPUClass),
2707     .class_init = arm_cpu_class_init,
2708 };
2709 
2710 static const TypeInfo idau_interface_type_info = {
2711     .name = TYPE_IDAU_INTERFACE,
2712     .parent = TYPE_INTERFACE,
2713     .class_size = sizeof(IDAUInterfaceClass),
2714 };
2715 
2716 static void arm_cpu_register_types(void)
2717 {
2718     const ARMCPUInfo *info = arm_cpus;
2719 
2720     type_register_static(&arm_cpu_type_info);
2721     type_register_static(&idau_interface_type_info);
2722 
2723     while (info->name) {
2724         cpu_register(info);
2725         info++;
2726     }
2727 
2728 #ifdef CONFIG_KVM
2729     type_register_static(&host_arm_cpu_type_info);
2730 #endif
2731 }
2732 
2733 type_init(arm_cpu_register_types)
2734