xref: /openbmc/qemu/target/arm/cpu.c (revision e3a99063)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          */
207         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209         /* Reset into the highest available EL */
210         if (arm_feature(env, ARM_FEATURE_EL3)) {
211             env->pstate = PSTATE_MODE_EL3h;
212         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213             env->pstate = PSTATE_MODE_EL2h;
214         } else {
215             env->pstate = PSTATE_MODE_EL1h;
216         }
217         env->pc = cpu->rvbar;
218 #endif
219     } else {
220 #if defined(CONFIG_USER_ONLY)
221         /* Userspace expects access to cp10 and cp11 for FP/Neon */
222         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224     }
225 
226 #if defined(CONFIG_USER_ONLY)
227     env->uncached_cpsr = ARM_CPU_MODE_USR;
228     /* For user mode we must enable access to coprocessors */
229     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->cp15.c15_cpar = 3;
232     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233         env->cp15.c15_cpar = 1;
234     }
235 #else
236 
237     /*
238      * If the highest available EL is EL2, AArch32 will start in Hyp
239      * mode; otherwise it starts in SVC. Note that if we start in
240      * AArch64 then these values in the uncached_cpsr will be ignored.
241      */
242     if (arm_feature(env, ARM_FEATURE_EL2) &&
243         !arm_feature(env, ARM_FEATURE_EL3)) {
244         env->uncached_cpsr = ARM_CPU_MODE_HYP;
245     } else {
246         env->uncached_cpsr = ARM_CPU_MODE_SVC;
247     }
248     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249 
250     if (arm_feature(env, ARM_FEATURE_M)) {
251         uint32_t initial_msp; /* Loaded from 0x0 */
252         uint32_t initial_pc; /* Loaded from 0x4 */
253         uint8_t *rom;
254         uint32_t vecbase;
255 
256         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257             env->v7m.secure = true;
258         } else {
259             /* This bit resets to 0 if security is supported, but 1 if
260              * it is not. The bit is not present in v7M, but we set it
261              * here so we can avoid having to make checks on it conditional
262              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263              */
264             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265             /*
266              * Set NSACR to indicate "NS access permitted to everything";
267              * this avoids having to have all the tests of it being
268              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
269              * v8.1M the guest-visible value of NSACR in a CPU without the
270              * Security Extension is 0xcff.
271              */
272             env->v7m.nsacr = 0xcff;
273         }
274 
275         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
276          * that it resets to 1, so QEMU always does that rather than making
277          * it dependent on CPU model. In v8M it is RES1.
278          */
279         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
280         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
281         if (arm_feature(env, ARM_FEATURE_V8)) {
282             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
283             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
285         }
286         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
289         }
290 
291         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
292             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
293             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
294                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
295         }
296         /* Unlike A/R profile, M profile defines the reset LR value */
297         env->regs[14] = 0xffffffff;
298 
299         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
300 
301         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
302         vecbase = env->v7m.vecbase[env->v7m.secure];
303         rom = rom_ptr(vecbase, 8);
304         if (rom) {
305             /* Address zero is covered by ROM which hasn't yet been
306              * copied into physical memory.
307              */
308             initial_msp = ldl_p(rom);
309             initial_pc = ldl_p(rom + 4);
310         } else {
311             /* Address zero not covered by a ROM blob, or the ROM blob
312              * is in non-modifiable memory and this is a second reset after
313              * it got copied into memory. In the latter case, rom_ptr
314              * will return a NULL pointer and we should use ldl_phys instead.
315              */
316             initial_msp = ldl_phys(s->as, vecbase);
317             initial_pc = ldl_phys(s->as, vecbase + 4);
318         }
319 
320         env->regs[13] = initial_msp & 0xFFFFFFFC;
321         env->regs[15] = initial_pc & ~1;
322         env->thumb = initial_pc & 1;
323     }
324 
325     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
326      * executing as AArch32 then check if highvecs are enabled and
327      * adjust the PC accordingly.
328      */
329     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
330         env->regs[15] = 0xFFFF0000;
331     }
332 
333     /* M profile requires that reset clears the exclusive monitor;
334      * A profile does not, but clearing it makes more sense than having it
335      * set with an exclusive access on address zero.
336      */
337     arm_clear_exclusive(env);
338 
339     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
340 #endif
341 
342     if (arm_feature(env, ARM_FEATURE_PMSA)) {
343         if (cpu->pmsav7_dregion > 0) {
344             if (arm_feature(env, ARM_FEATURE_V8)) {
345                 memset(env->pmsav8.rbar[M_REG_NS], 0,
346                        sizeof(*env->pmsav8.rbar[M_REG_NS])
347                        * cpu->pmsav7_dregion);
348                 memset(env->pmsav8.rlar[M_REG_NS], 0,
349                        sizeof(*env->pmsav8.rlar[M_REG_NS])
350                        * cpu->pmsav7_dregion);
351                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
352                     memset(env->pmsav8.rbar[M_REG_S], 0,
353                            sizeof(*env->pmsav8.rbar[M_REG_S])
354                            * cpu->pmsav7_dregion);
355                     memset(env->pmsav8.rlar[M_REG_S], 0,
356                            sizeof(*env->pmsav8.rlar[M_REG_S])
357                            * cpu->pmsav7_dregion);
358                 }
359             } else if (arm_feature(env, ARM_FEATURE_V7)) {
360                 memset(env->pmsav7.drbar, 0,
361                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
362                 memset(env->pmsav7.drsr, 0,
363                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
364                 memset(env->pmsav7.dracr, 0,
365                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
366             }
367         }
368         env->pmsav7.rnr[M_REG_NS] = 0;
369         env->pmsav7.rnr[M_REG_S] = 0;
370         env->pmsav8.mair0[M_REG_NS] = 0;
371         env->pmsav8.mair0[M_REG_S] = 0;
372         env->pmsav8.mair1[M_REG_NS] = 0;
373         env->pmsav8.mair1[M_REG_S] = 0;
374     }
375 
376     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
377         if (cpu->sau_sregion > 0) {
378             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
379             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
380         }
381         env->sau.rnr = 0;
382         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
383          * the Cortex-M33 does.
384          */
385         env->sau.ctrl = 0;
386     }
387 
388     set_flush_to_zero(1, &env->vfp.standard_fp_status);
389     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
390     set_default_nan_mode(1, &env->vfp.standard_fp_status);
391     set_float_detect_tininess(float_tininess_before_rounding,
392                               &env->vfp.fp_status);
393     set_float_detect_tininess(float_tininess_before_rounding,
394                               &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status_f16);
397 #ifndef CONFIG_USER_ONLY
398     if (kvm_enabled()) {
399         kvm_arm_reset_vcpu(cpu);
400     }
401 #endif
402 
403     hw_breakpoint_update_all(cpu);
404     hw_watchpoint_update_all(cpu);
405     arm_rebuild_hflags(env);
406 }
407 
408 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
409                                      unsigned int target_el,
410                                      unsigned int cur_el, bool secure,
411                                      uint64_t hcr_el2)
412 {
413     CPUARMState *env = cs->env_ptr;
414     bool pstate_unmasked;
415     bool unmasked = false;
416 
417     /*
418      * Don't take exceptions if they target a lower EL.
419      * This check should catch any exceptions that would not be taken
420      * but left pending.
421      */
422     if (cur_el > target_el) {
423         return false;
424     }
425 
426     switch (excp_idx) {
427     case EXCP_FIQ:
428         pstate_unmasked = !(env->daif & PSTATE_F);
429         break;
430 
431     case EXCP_IRQ:
432         pstate_unmasked = !(env->daif & PSTATE_I);
433         break;
434 
435     case EXCP_VFIQ:
436         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
437             /* VFIQs are only taken when hypervized and non-secure.  */
438             return false;
439         }
440         return !(env->daif & PSTATE_F);
441     case EXCP_VIRQ:
442         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
443             /* VIRQs are only taken when hypervized and non-secure.  */
444             return false;
445         }
446         return !(env->daif & PSTATE_I);
447     default:
448         g_assert_not_reached();
449     }
450 
451     /*
452      * Use the target EL, current execution state and SCR/HCR settings to
453      * determine whether the corresponding CPSR bit is used to mask the
454      * interrupt.
455      */
456     if ((target_el > cur_el) && (target_el != 1)) {
457         /* Exceptions targeting a higher EL may not be maskable */
458         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
459             /*
460              * 64-bit masking rules are simple: exceptions to EL3
461              * can't be masked, and exceptions to EL2 can only be
462              * masked from Secure state. The HCR and SCR settings
463              * don't affect the masking logic, only the interrupt routing.
464              */
465             if (target_el == 3 || !secure) {
466                 unmasked = true;
467             }
468         } else {
469             /*
470              * The old 32-bit-only environment has a more complicated
471              * masking setup. HCR and SCR bits not only affect interrupt
472              * routing but also change the behaviour of masking.
473              */
474             bool hcr, scr;
475 
476             switch (excp_idx) {
477             case EXCP_FIQ:
478                 /*
479                  * If FIQs are routed to EL3 or EL2 then there are cases where
480                  * we override the CPSR.F in determining if the exception is
481                  * masked or not. If neither of these are set then we fall back
482                  * to the CPSR.F setting otherwise we further assess the state
483                  * below.
484                  */
485                 hcr = hcr_el2 & HCR_FMO;
486                 scr = (env->cp15.scr_el3 & SCR_FIQ);
487 
488                 /*
489                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
490                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
491                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
492                  * when non-secure but only when FIQs are only routed to EL3.
493                  */
494                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
495                 break;
496             case EXCP_IRQ:
497                 /*
498                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
499                  * we may override the CPSR.I masking when in non-secure state.
500                  * The SCR.IRQ setting has already been taken into consideration
501                  * when setting the target EL, so it does not have a further
502                  * affect here.
503                  */
504                 hcr = hcr_el2 & HCR_IMO;
505                 scr = false;
506                 break;
507             default:
508                 g_assert_not_reached();
509             }
510 
511             if ((scr || hcr) && !secure) {
512                 unmasked = true;
513             }
514         }
515     }
516 
517     /*
518      * The PSTATE bits only mask the interrupt if we have not overriden the
519      * ability above.
520      */
521     return unmasked || pstate_unmasked;
522 }
523 
524 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
525 {
526     CPUClass *cc = CPU_GET_CLASS(cs);
527     CPUARMState *env = cs->env_ptr;
528     uint32_t cur_el = arm_current_el(env);
529     bool secure = arm_is_secure(env);
530     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
531     uint32_t target_el;
532     uint32_t excp_idx;
533 
534     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
535 
536     if (interrupt_request & CPU_INTERRUPT_FIQ) {
537         excp_idx = EXCP_FIQ;
538         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
539         if (arm_excp_unmasked(cs, excp_idx, target_el,
540                               cur_el, secure, hcr_el2)) {
541             goto found;
542         }
543     }
544     if (interrupt_request & CPU_INTERRUPT_HARD) {
545         excp_idx = EXCP_IRQ;
546         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
547         if (arm_excp_unmasked(cs, excp_idx, target_el,
548                               cur_el, secure, hcr_el2)) {
549             goto found;
550         }
551     }
552     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
553         excp_idx = EXCP_VIRQ;
554         target_el = 1;
555         if (arm_excp_unmasked(cs, excp_idx, target_el,
556                               cur_el, secure, hcr_el2)) {
557             goto found;
558         }
559     }
560     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
561         excp_idx = EXCP_VFIQ;
562         target_el = 1;
563         if (arm_excp_unmasked(cs, excp_idx, target_el,
564                               cur_el, secure, hcr_el2)) {
565             goto found;
566         }
567     }
568     return false;
569 
570  found:
571     cs->exception_index = excp_idx;
572     env->exception.target_el = target_el;
573     cc->do_interrupt(cs);
574     return true;
575 }
576 
577 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
578 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
579 {
580     CPUClass *cc = CPU_GET_CLASS(cs);
581     ARMCPU *cpu = ARM_CPU(cs);
582     CPUARMState *env = &cpu->env;
583     bool ret = false;
584 
585     /*
586      * ARMv7-M interrupt masking works differently than -A or -R.
587      * There is no FIQ/IRQ distinction. Instead of I and F bits
588      * masking FIQ and IRQ interrupts, an exception is taken only
589      * if it is higher priority than the current execution priority
590      * (which depends on state like BASEPRI, FAULTMASK and the
591      * currently active exception).
592      */
593     if (interrupt_request & CPU_INTERRUPT_HARD
594         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
595         cs->exception_index = EXCP_IRQ;
596         cc->do_interrupt(cs);
597         ret = true;
598     }
599     return ret;
600 }
601 #endif
602 
603 void arm_cpu_update_virq(ARMCPU *cpu)
604 {
605     /*
606      * Update the interrupt level for VIRQ, which is the logical OR of
607      * the HCR_EL2.VI bit and the input line level from the GIC.
608      */
609     CPUARMState *env = &cpu->env;
610     CPUState *cs = CPU(cpu);
611 
612     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
613         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
614 
615     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
616         if (new_state) {
617             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
618         } else {
619             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
620         }
621     }
622 }
623 
624 void arm_cpu_update_vfiq(ARMCPU *cpu)
625 {
626     /*
627      * Update the interrupt level for VFIQ, which is the logical OR of
628      * the HCR_EL2.VF bit and the input line level from the GIC.
629      */
630     CPUARMState *env = &cpu->env;
631     CPUState *cs = CPU(cpu);
632 
633     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
634         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
635 
636     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
637         if (new_state) {
638             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
639         } else {
640             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
641         }
642     }
643 }
644 
645 #ifndef CONFIG_USER_ONLY
646 static void arm_cpu_set_irq(void *opaque, int irq, int level)
647 {
648     ARMCPU *cpu = opaque;
649     CPUARMState *env = &cpu->env;
650     CPUState *cs = CPU(cpu);
651     static const int mask[] = {
652         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
653         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
654         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
655         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
656     };
657 
658     if (level) {
659         env->irq_line_state |= mask[irq];
660     } else {
661         env->irq_line_state &= ~mask[irq];
662     }
663 
664     switch (irq) {
665     case ARM_CPU_VIRQ:
666         assert(arm_feature(env, ARM_FEATURE_EL2));
667         arm_cpu_update_virq(cpu);
668         break;
669     case ARM_CPU_VFIQ:
670         assert(arm_feature(env, ARM_FEATURE_EL2));
671         arm_cpu_update_vfiq(cpu);
672         break;
673     case ARM_CPU_IRQ:
674     case ARM_CPU_FIQ:
675         if (level) {
676             cpu_interrupt(cs, mask[irq]);
677         } else {
678             cpu_reset_interrupt(cs, mask[irq]);
679         }
680         break;
681     default:
682         g_assert_not_reached();
683     }
684 }
685 
686 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
687 {
688 #ifdef CONFIG_KVM
689     ARMCPU *cpu = opaque;
690     CPUARMState *env = &cpu->env;
691     CPUState *cs = CPU(cpu);
692     uint32_t linestate_bit;
693     int irq_id;
694 
695     switch (irq) {
696     case ARM_CPU_IRQ:
697         irq_id = KVM_ARM_IRQ_CPU_IRQ;
698         linestate_bit = CPU_INTERRUPT_HARD;
699         break;
700     case ARM_CPU_FIQ:
701         irq_id = KVM_ARM_IRQ_CPU_FIQ;
702         linestate_bit = CPU_INTERRUPT_FIQ;
703         break;
704     default:
705         g_assert_not_reached();
706     }
707 
708     if (level) {
709         env->irq_line_state |= linestate_bit;
710     } else {
711         env->irq_line_state &= ~linestate_bit;
712     }
713     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
714 #endif
715 }
716 
717 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
718 {
719     ARMCPU *cpu = ARM_CPU(cs);
720     CPUARMState *env = &cpu->env;
721 
722     cpu_synchronize_state(cs);
723     return arm_cpu_data_is_big_endian(env);
724 }
725 
726 #endif
727 
728 static inline void set_feature(CPUARMState *env, int feature)
729 {
730     env->features |= 1ULL << feature;
731 }
732 
733 static inline void unset_feature(CPUARMState *env, int feature)
734 {
735     env->features &= ~(1ULL << feature);
736 }
737 
738 static int
739 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
740 {
741   return print_insn_arm(pc | 1, info);
742 }
743 
744 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
745 {
746     ARMCPU *ac = ARM_CPU(cpu);
747     CPUARMState *env = &ac->env;
748     bool sctlr_b;
749 
750     if (is_a64(env)) {
751         /* We might not be compiled with the A64 disassembler
752          * because it needs a C++ compiler. Leave print_insn
753          * unset in this case to use the caller default behaviour.
754          */
755 #if defined(CONFIG_ARM_A64_DIS)
756         info->print_insn = print_insn_arm_a64;
757 #endif
758         info->cap_arch = CS_ARCH_ARM64;
759         info->cap_insn_unit = 4;
760         info->cap_insn_split = 4;
761     } else {
762         int cap_mode;
763         if (env->thumb) {
764             info->print_insn = print_insn_thumb1;
765             info->cap_insn_unit = 2;
766             info->cap_insn_split = 4;
767             cap_mode = CS_MODE_THUMB;
768         } else {
769             info->print_insn = print_insn_arm;
770             info->cap_insn_unit = 4;
771             info->cap_insn_split = 4;
772             cap_mode = CS_MODE_ARM;
773         }
774         if (arm_feature(env, ARM_FEATURE_V8)) {
775             cap_mode |= CS_MODE_V8;
776         }
777         if (arm_feature(env, ARM_FEATURE_M)) {
778             cap_mode |= CS_MODE_MCLASS;
779         }
780         info->cap_arch = CS_ARCH_ARM;
781         info->cap_mode = cap_mode;
782     }
783 
784     sctlr_b = arm_sctlr_b(env);
785     if (bswap_code(sctlr_b)) {
786 #ifdef TARGET_WORDS_BIGENDIAN
787         info->endian = BFD_ENDIAN_LITTLE;
788 #else
789         info->endian = BFD_ENDIAN_BIG;
790 #endif
791     }
792     info->flags &= ~INSN_ARM_BE32;
793 #ifndef CONFIG_USER_ONLY
794     if (sctlr_b) {
795         info->flags |= INSN_ARM_BE32;
796     }
797 #endif
798 }
799 
800 #ifdef TARGET_AARCH64
801 
802 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
803 {
804     ARMCPU *cpu = ARM_CPU(cs);
805     CPUARMState *env = &cpu->env;
806     uint32_t psr = pstate_read(env);
807     int i;
808     int el = arm_current_el(env);
809     const char *ns_status;
810 
811     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
812     for (i = 0; i < 32; i++) {
813         if (i == 31) {
814             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
815         } else {
816             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
817                          (i + 2) % 3 ? " " : "\n");
818         }
819     }
820 
821     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
822         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
823     } else {
824         ns_status = "";
825     }
826     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
827                  psr,
828                  psr & PSTATE_N ? 'N' : '-',
829                  psr & PSTATE_Z ? 'Z' : '-',
830                  psr & PSTATE_C ? 'C' : '-',
831                  psr & PSTATE_V ? 'V' : '-',
832                  ns_status,
833                  el,
834                  psr & PSTATE_SP ? 'h' : 't');
835 
836     if (cpu_isar_feature(aa64_bti, cpu)) {
837         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
838     }
839     if (!(flags & CPU_DUMP_FPU)) {
840         qemu_fprintf(f, "\n");
841         return;
842     }
843     if (fp_exception_el(env, el) != 0) {
844         qemu_fprintf(f, "    FPU disabled\n");
845         return;
846     }
847     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
848                  vfp_get_fpcr(env), vfp_get_fpsr(env));
849 
850     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
851         int j, zcr_len = sve_zcr_len_for_el(env, el);
852 
853         for (i = 0; i <= FFR_PRED_NUM; i++) {
854             bool eol;
855             if (i == FFR_PRED_NUM) {
856                 qemu_fprintf(f, "FFR=");
857                 /* It's last, so end the line.  */
858                 eol = true;
859             } else {
860                 qemu_fprintf(f, "P%02d=", i);
861                 switch (zcr_len) {
862                 case 0:
863                     eol = i % 8 == 7;
864                     break;
865                 case 1:
866                     eol = i % 6 == 5;
867                     break;
868                 case 2:
869                 case 3:
870                     eol = i % 3 == 2;
871                     break;
872                 default:
873                     /* More than one quadword per predicate.  */
874                     eol = true;
875                     break;
876                 }
877             }
878             for (j = zcr_len / 4; j >= 0; j--) {
879                 int digits;
880                 if (j * 4 + 4 <= zcr_len + 1) {
881                     digits = 16;
882                 } else {
883                     digits = (zcr_len % 4 + 1) * 4;
884                 }
885                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
886                              env->vfp.pregs[i].p[j],
887                              j ? ":" : eol ? "\n" : " ");
888             }
889         }
890 
891         for (i = 0; i < 32; i++) {
892             if (zcr_len == 0) {
893                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
894                              i, env->vfp.zregs[i].d[1],
895                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
896             } else if (zcr_len == 1) {
897                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
898                              ":%016" PRIx64 ":%016" PRIx64 "\n",
899                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
900                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
901             } else {
902                 for (j = zcr_len; j >= 0; j--) {
903                     bool odd = (zcr_len - j) % 2 != 0;
904                     if (j == zcr_len) {
905                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
906                     } else if (!odd) {
907                         if (j > 0) {
908                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
909                         } else {
910                             qemu_fprintf(f, "     [%x]=", j);
911                         }
912                     }
913                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
914                                  env->vfp.zregs[i].d[j * 2 + 1],
915                                  env->vfp.zregs[i].d[j * 2],
916                                  odd || j == 0 ? "\n" : ":");
917                 }
918             }
919         }
920     } else {
921         for (i = 0; i < 32; i++) {
922             uint64_t *q = aa64_vfp_qreg(env, i);
923             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
924                          i, q[1], q[0], (i & 1 ? "\n" : " "));
925         }
926     }
927 }
928 
929 #else
930 
931 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
932 {
933     g_assert_not_reached();
934 }
935 
936 #endif
937 
938 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
939 {
940     ARMCPU *cpu = ARM_CPU(cs);
941     CPUARMState *env = &cpu->env;
942     int i;
943 
944     if (is_a64(env)) {
945         aarch64_cpu_dump_state(cs, f, flags);
946         return;
947     }
948 
949     for (i = 0; i < 16; i++) {
950         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
951         if ((i % 4) == 3) {
952             qemu_fprintf(f, "\n");
953         } else {
954             qemu_fprintf(f, " ");
955         }
956     }
957 
958     if (arm_feature(env, ARM_FEATURE_M)) {
959         uint32_t xpsr = xpsr_read(env);
960         const char *mode;
961         const char *ns_status = "";
962 
963         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
964             ns_status = env->v7m.secure ? "S " : "NS ";
965         }
966 
967         if (xpsr & XPSR_EXCP) {
968             mode = "handler";
969         } else {
970             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
971                 mode = "unpriv-thread";
972             } else {
973                 mode = "priv-thread";
974             }
975         }
976 
977         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
978                      xpsr,
979                      xpsr & XPSR_N ? 'N' : '-',
980                      xpsr & XPSR_Z ? 'Z' : '-',
981                      xpsr & XPSR_C ? 'C' : '-',
982                      xpsr & XPSR_V ? 'V' : '-',
983                      xpsr & XPSR_T ? 'T' : 'A',
984                      ns_status,
985                      mode);
986     } else {
987         uint32_t psr = cpsr_read(env);
988         const char *ns_status = "";
989 
990         if (arm_feature(env, ARM_FEATURE_EL3) &&
991             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
992             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
993         }
994 
995         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
996                      psr,
997                      psr & CPSR_N ? 'N' : '-',
998                      psr & CPSR_Z ? 'Z' : '-',
999                      psr & CPSR_C ? 'C' : '-',
1000                      psr & CPSR_V ? 'V' : '-',
1001                      psr & CPSR_T ? 'T' : 'A',
1002                      ns_status,
1003                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1004     }
1005 
1006     if (flags & CPU_DUMP_FPU) {
1007         int numvfpregs = 0;
1008         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1009             numvfpregs = 32;
1010         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1011             numvfpregs = 16;
1012         }
1013         for (i = 0; i < numvfpregs; i++) {
1014             uint64_t v = *aa32_vfp_dreg(env, i);
1015             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1016                          i * 2, (uint32_t)v,
1017                          i * 2 + 1, (uint32_t)(v >> 32),
1018                          i, v);
1019         }
1020         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1021     }
1022 }
1023 
1024 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1025 {
1026     uint32_t Aff1 = idx / clustersz;
1027     uint32_t Aff0 = idx % clustersz;
1028     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1029 }
1030 
1031 static void cpreg_hashtable_data_destroy(gpointer data)
1032 {
1033     /*
1034      * Destroy function for cpu->cp_regs hashtable data entries.
1035      * We must free the name string because it was g_strdup()ed in
1036      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1037      * from r->name because we know we definitely allocated it.
1038      */
1039     ARMCPRegInfo *r = data;
1040 
1041     g_free((void *)r->name);
1042     g_free(r);
1043 }
1044 
1045 static void arm_cpu_initfn(Object *obj)
1046 {
1047     ARMCPU *cpu = ARM_CPU(obj);
1048 
1049     cpu_set_cpustate_pointers(cpu);
1050     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1051                                          g_free, cpreg_hashtable_data_destroy);
1052 
1053     QLIST_INIT(&cpu->pre_el_change_hooks);
1054     QLIST_INIT(&cpu->el_change_hooks);
1055 
1056 #ifndef CONFIG_USER_ONLY
1057     /* Our inbound IRQ and FIQ lines */
1058     if (kvm_enabled()) {
1059         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1060          * the same interface as non-KVM CPUs.
1061          */
1062         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1063     } else {
1064         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1065     }
1066 
1067     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1068                        ARRAY_SIZE(cpu->gt_timer_outputs));
1069 
1070     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1071                              "gicv3-maintenance-interrupt", 1);
1072     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1073                              "pmu-interrupt", 1);
1074 #endif
1075 
1076     /* DTB consumers generally don't in fact care what the 'compatible'
1077      * string is, so always provide some string and trust that a hypothetical
1078      * picky DTB consumer will also provide a helpful error message.
1079      */
1080     cpu->dtb_compatible = "qemu,unknown";
1081     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1082     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1083 
1084     if (tcg_enabled()) {
1085         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1086     }
1087 }
1088 
1089 static Property arm_cpu_gt_cntfrq_property =
1090             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1091                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1092 
1093 static Property arm_cpu_reset_cbar_property =
1094             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1095 
1096 static Property arm_cpu_reset_hivecs_property =
1097             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1098 
1099 static Property arm_cpu_rvbar_property =
1100             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1101 
1102 #ifndef CONFIG_USER_ONLY
1103 static Property arm_cpu_has_el2_property =
1104             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1105 
1106 static Property arm_cpu_has_el3_property =
1107             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1108 #endif
1109 
1110 static Property arm_cpu_cfgend_property =
1111             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1112 
1113 static Property arm_cpu_has_vfp_property =
1114             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1115 
1116 static Property arm_cpu_has_neon_property =
1117             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1118 
1119 static Property arm_cpu_has_dsp_property =
1120             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1121 
1122 static Property arm_cpu_has_mpu_property =
1123             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1124 
1125 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1126  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1127  * the right value for that particular CPU type, and we don't want
1128  * to override that with an incorrect constant value.
1129  */
1130 static Property arm_cpu_pmsav7_dregion_property =
1131             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1132                                            pmsav7_dregion,
1133                                            qdev_prop_uint32, uint32_t);
1134 
1135 static bool arm_get_pmu(Object *obj, Error **errp)
1136 {
1137     ARMCPU *cpu = ARM_CPU(obj);
1138 
1139     return cpu->has_pmu;
1140 }
1141 
1142 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1143 {
1144     ARMCPU *cpu = ARM_CPU(obj);
1145 
1146     if (value) {
1147         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1148             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1149             return;
1150         }
1151         set_feature(&cpu->env, ARM_FEATURE_PMU);
1152     } else {
1153         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1154     }
1155     cpu->has_pmu = value;
1156 }
1157 
1158 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1159 {
1160     /*
1161      * The exact approach to calculating guest ticks is:
1162      *
1163      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1164      *              NANOSECONDS_PER_SECOND);
1165      *
1166      * We don't do that. Rather we intentionally use integer division
1167      * truncation below and in the caller for the conversion of host monotonic
1168      * time to guest ticks to provide the exact inverse for the semantics of
1169      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1170      * it loses precision when representing frequencies where
1171      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1172      * provide an exact inverse leads to scheduling timers with negative
1173      * periods, which in turn leads to sticky behaviour in the guest.
1174      *
1175      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1176      * cannot become zero.
1177      */
1178     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1179       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1180 }
1181 
1182 void arm_cpu_post_init(Object *obj)
1183 {
1184     ARMCPU *cpu = ARM_CPU(obj);
1185 
1186     /* M profile implies PMSA. We have to do this here rather than
1187      * in realize with the other feature-implication checks because
1188      * we look at the PMSA bit to see if we should add some properties.
1189      */
1190     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1191         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1192     }
1193 
1194     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1195         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1196         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1197     }
1198 
1199     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1200         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1201     }
1202 
1203     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1204         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1205     }
1206 
1207 #ifndef CONFIG_USER_ONLY
1208     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1209         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1210          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1211          */
1212         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1213 
1214         object_property_add_link(obj, "secure-memory",
1215                                  TYPE_MEMORY_REGION,
1216                                  (Object **)&cpu->secure_memory,
1217                                  qdev_prop_allow_set_link_before_realize,
1218                                  OBJ_PROP_LINK_STRONG,
1219                                  &error_abort);
1220     }
1221 
1222     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1223         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1224     }
1225 #endif
1226 
1227     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1228         cpu->has_pmu = true;
1229         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1230                                  &error_abort);
1231     }
1232 
1233     /*
1234      * Allow user to turn off VFP and Neon support, but only for TCG --
1235      * KVM does not currently allow us to lie to the guest about its
1236      * ID/feature registers, so the guest always sees what the host has.
1237      */
1238     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1239         ? cpu_isar_feature(aa64_fp_simd, cpu)
1240         : cpu_isar_feature(aa32_vfp, cpu)) {
1241         cpu->has_vfp = true;
1242         if (!kvm_enabled()) {
1243             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1244         }
1245     }
1246 
1247     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1248         cpu->has_neon = true;
1249         if (!kvm_enabled()) {
1250             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1251         }
1252     }
1253 
1254     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1255         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1256         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1257     }
1258 
1259     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1260         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1261         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1262             qdev_property_add_static(DEVICE(obj),
1263                                      &arm_cpu_pmsav7_dregion_property);
1264         }
1265     }
1266 
1267     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1268         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1269                                  qdev_prop_allow_set_link_before_realize,
1270                                  OBJ_PROP_LINK_STRONG,
1271                                  &error_abort);
1272         /*
1273          * M profile: initial value of the Secure VTOR. We can't just use
1274          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1275          * the property to be set after realize.
1276          */
1277         object_property_add_uint32_ptr(obj, "init-svtor",
1278                                        &cpu->init_svtor,
1279                                        OBJ_PROP_FLAG_READWRITE, &error_abort);
1280     }
1281 
1282     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1283 
1284     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1285         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1286     }
1287 }
1288 
1289 static void arm_cpu_finalizefn(Object *obj)
1290 {
1291     ARMCPU *cpu = ARM_CPU(obj);
1292     ARMELChangeHook *hook, *next;
1293 
1294     g_hash_table_destroy(cpu->cp_regs);
1295 
1296     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1297         QLIST_REMOVE(hook, node);
1298         g_free(hook);
1299     }
1300     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1301         QLIST_REMOVE(hook, node);
1302         g_free(hook);
1303     }
1304 #ifndef CONFIG_USER_ONLY
1305     if (cpu->pmu_timer) {
1306         timer_del(cpu->pmu_timer);
1307         timer_deinit(cpu->pmu_timer);
1308         timer_free(cpu->pmu_timer);
1309     }
1310 #endif
1311 }
1312 
1313 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1314 {
1315     Error *local_err = NULL;
1316 
1317     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1318         arm_cpu_sve_finalize(cpu, &local_err);
1319         if (local_err != NULL) {
1320             error_propagate(errp, local_err);
1321             return;
1322         }
1323     }
1324 }
1325 
1326 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1327 {
1328     CPUState *cs = CPU(dev);
1329     ARMCPU *cpu = ARM_CPU(dev);
1330     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1331     CPUARMState *env = &cpu->env;
1332     int pagebits;
1333     Error *local_err = NULL;
1334     bool no_aa32 = false;
1335 
1336     /* If we needed to query the host kernel for the CPU features
1337      * then it's possible that might have failed in the initfn, but
1338      * this is the first point where we can report it.
1339      */
1340     if (cpu->host_cpu_probe_failed) {
1341         if (!kvm_enabled()) {
1342             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1343         } else {
1344             error_setg(errp, "Failed to retrieve host CPU features");
1345         }
1346         return;
1347     }
1348 
1349 #ifndef CONFIG_USER_ONLY
1350     /* The NVIC and M-profile CPU are two halves of a single piece of
1351      * hardware; trying to use one without the other is a command line
1352      * error and will result in segfaults if not caught here.
1353      */
1354     if (arm_feature(env, ARM_FEATURE_M)) {
1355         if (!env->nvic) {
1356             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1357             return;
1358         }
1359     } else {
1360         if (env->nvic) {
1361             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1362             return;
1363         }
1364     }
1365 
1366     {
1367         uint64_t scale;
1368 
1369         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1370             if (!cpu->gt_cntfrq_hz) {
1371                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1372                            cpu->gt_cntfrq_hz);
1373                 return;
1374             }
1375             scale = gt_cntfrq_period_ns(cpu);
1376         } else {
1377             scale = GTIMER_SCALE;
1378         }
1379 
1380         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1381                                                arm_gt_ptimer_cb, cpu);
1382         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1383                                                arm_gt_vtimer_cb, cpu);
1384         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1385                                               arm_gt_htimer_cb, cpu);
1386         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1387                                               arm_gt_stimer_cb, cpu);
1388         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1389                                                   arm_gt_hvtimer_cb, cpu);
1390     }
1391 #endif
1392 
1393     cpu_exec_realizefn(cs, &local_err);
1394     if (local_err != NULL) {
1395         error_propagate(errp, local_err);
1396         return;
1397     }
1398 
1399     arm_cpu_finalize_features(cpu, &local_err);
1400     if (local_err != NULL) {
1401         error_propagate(errp, local_err);
1402         return;
1403     }
1404 
1405     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1406         cpu->has_vfp != cpu->has_neon) {
1407         /*
1408          * This is an architectural requirement for AArch64; AArch32 is
1409          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1410          */
1411         error_setg(errp,
1412                    "AArch64 CPUs must have both VFP and Neon or neither");
1413         return;
1414     }
1415 
1416     if (!cpu->has_vfp) {
1417         uint64_t t;
1418         uint32_t u;
1419 
1420         t = cpu->isar.id_aa64isar1;
1421         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1422         cpu->isar.id_aa64isar1 = t;
1423 
1424         t = cpu->isar.id_aa64pfr0;
1425         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1426         cpu->isar.id_aa64pfr0 = t;
1427 
1428         u = cpu->isar.id_isar6;
1429         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1430         cpu->isar.id_isar6 = u;
1431 
1432         u = cpu->isar.mvfr0;
1433         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1434         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1435         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1436         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1437         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1438         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1439         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1440         cpu->isar.mvfr0 = u;
1441 
1442         u = cpu->isar.mvfr1;
1443         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1444         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1445         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1446         cpu->isar.mvfr1 = u;
1447 
1448         u = cpu->isar.mvfr2;
1449         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1450         cpu->isar.mvfr2 = u;
1451     }
1452 
1453     if (!cpu->has_neon) {
1454         uint64_t t;
1455         uint32_t u;
1456 
1457         unset_feature(env, ARM_FEATURE_NEON);
1458 
1459         t = cpu->isar.id_aa64isar0;
1460         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1461         cpu->isar.id_aa64isar0 = t;
1462 
1463         t = cpu->isar.id_aa64isar1;
1464         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1465         cpu->isar.id_aa64isar1 = t;
1466 
1467         t = cpu->isar.id_aa64pfr0;
1468         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1469         cpu->isar.id_aa64pfr0 = t;
1470 
1471         u = cpu->isar.id_isar5;
1472         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1473         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1474         cpu->isar.id_isar5 = u;
1475 
1476         u = cpu->isar.id_isar6;
1477         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1478         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1479         cpu->isar.id_isar6 = u;
1480 
1481         u = cpu->isar.mvfr1;
1482         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1483         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1484         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1485         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1486         cpu->isar.mvfr1 = u;
1487 
1488         u = cpu->isar.mvfr2;
1489         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1490         cpu->isar.mvfr2 = u;
1491     }
1492 
1493     if (!cpu->has_neon && !cpu->has_vfp) {
1494         uint64_t t;
1495         uint32_t u;
1496 
1497         t = cpu->isar.id_aa64isar0;
1498         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1499         cpu->isar.id_aa64isar0 = t;
1500 
1501         t = cpu->isar.id_aa64isar1;
1502         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1503         cpu->isar.id_aa64isar1 = t;
1504 
1505         u = cpu->isar.mvfr0;
1506         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1507         cpu->isar.mvfr0 = u;
1508 
1509         /* Despite the name, this field covers both VFP and Neon */
1510         u = cpu->isar.mvfr1;
1511         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1512         cpu->isar.mvfr1 = u;
1513     }
1514 
1515     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1516         uint32_t u;
1517 
1518         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1519 
1520         u = cpu->isar.id_isar1;
1521         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1522         cpu->isar.id_isar1 = u;
1523 
1524         u = cpu->isar.id_isar2;
1525         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1526         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1527         cpu->isar.id_isar2 = u;
1528 
1529         u = cpu->isar.id_isar3;
1530         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1531         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1532         cpu->isar.id_isar3 = u;
1533     }
1534 
1535     /* Some features automatically imply others: */
1536     if (arm_feature(env, ARM_FEATURE_V8)) {
1537         if (arm_feature(env, ARM_FEATURE_M)) {
1538             set_feature(env, ARM_FEATURE_V7);
1539         } else {
1540             set_feature(env, ARM_FEATURE_V7VE);
1541         }
1542     }
1543 
1544     /*
1545      * There exist AArch64 cpus without AArch32 support.  When KVM
1546      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1547      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1548      * As a general principle, we also do not make ID register
1549      * consistency checks anywhere unless using TCG, because only
1550      * for TCG would a consistency-check failure be a QEMU bug.
1551      */
1552     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1553         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1554     }
1555 
1556     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1557         /* v7 Virtualization Extensions. In real hardware this implies
1558          * EL2 and also the presence of the Security Extensions.
1559          * For QEMU, for backwards-compatibility we implement some
1560          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1561          * include the various other features that V7VE implies.
1562          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1563          * Security Extensions is ARM_FEATURE_EL3.
1564          */
1565         assert(!tcg_enabled() || no_aa32 ||
1566                cpu_isar_feature(aa32_arm_div, cpu));
1567         set_feature(env, ARM_FEATURE_LPAE);
1568         set_feature(env, ARM_FEATURE_V7);
1569     }
1570     if (arm_feature(env, ARM_FEATURE_V7)) {
1571         set_feature(env, ARM_FEATURE_VAPA);
1572         set_feature(env, ARM_FEATURE_THUMB2);
1573         set_feature(env, ARM_FEATURE_MPIDR);
1574         if (!arm_feature(env, ARM_FEATURE_M)) {
1575             set_feature(env, ARM_FEATURE_V6K);
1576         } else {
1577             set_feature(env, ARM_FEATURE_V6);
1578         }
1579 
1580         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1581          * non-EL3 configs. This is needed by some legacy boards.
1582          */
1583         set_feature(env, ARM_FEATURE_VBAR);
1584     }
1585     if (arm_feature(env, ARM_FEATURE_V6K)) {
1586         set_feature(env, ARM_FEATURE_V6);
1587         set_feature(env, ARM_FEATURE_MVFR);
1588     }
1589     if (arm_feature(env, ARM_FEATURE_V6)) {
1590         set_feature(env, ARM_FEATURE_V5);
1591         if (!arm_feature(env, ARM_FEATURE_M)) {
1592             assert(!tcg_enabled() || no_aa32 ||
1593                    cpu_isar_feature(aa32_jazelle, cpu));
1594             set_feature(env, ARM_FEATURE_AUXCR);
1595         }
1596     }
1597     if (arm_feature(env, ARM_FEATURE_V5)) {
1598         set_feature(env, ARM_FEATURE_V4T);
1599     }
1600     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1601         set_feature(env, ARM_FEATURE_V7MP);
1602         set_feature(env, ARM_FEATURE_PXN);
1603     }
1604     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1605         set_feature(env, ARM_FEATURE_CBAR);
1606     }
1607     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1608         !arm_feature(env, ARM_FEATURE_M)) {
1609         set_feature(env, ARM_FEATURE_THUMB_DSP);
1610     }
1611 
1612     /*
1613      * We rely on no XScale CPU having VFP so we can use the same bits in the
1614      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1615      */
1616     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1617            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1618            !arm_feature(env, ARM_FEATURE_XSCALE));
1619 
1620     if (arm_feature(env, ARM_FEATURE_V7) &&
1621         !arm_feature(env, ARM_FEATURE_M) &&
1622         !arm_feature(env, ARM_FEATURE_PMSA)) {
1623         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1624          * can use 4K pages.
1625          */
1626         pagebits = 12;
1627     } else {
1628         /* For CPUs which might have tiny 1K pages, or which have an
1629          * MPU and might have small region sizes, stick with 1K pages.
1630          */
1631         pagebits = 10;
1632     }
1633     if (!set_preferred_target_page_bits(pagebits)) {
1634         /* This can only ever happen for hotplugging a CPU, or if
1635          * the board code incorrectly creates a CPU which it has
1636          * promised via minimum_page_size that it will not.
1637          */
1638         error_setg(errp, "This CPU requires a smaller page size than the "
1639                    "system is using");
1640         return;
1641     }
1642 
1643     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1644      * We don't support setting cluster ID ([16..23]) (known as Aff2
1645      * in later ARM ARM versions), or any of the higher affinity level fields,
1646      * so these bits always RAZ.
1647      */
1648     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1649         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1650                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1651     }
1652 
1653     if (cpu->reset_hivecs) {
1654             cpu->reset_sctlr |= (1 << 13);
1655     }
1656 
1657     if (cpu->cfgend) {
1658         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1659             cpu->reset_sctlr |= SCTLR_EE;
1660         } else {
1661             cpu->reset_sctlr |= SCTLR_B;
1662         }
1663     }
1664 
1665     if (!cpu->has_el3) {
1666         /* If the has_el3 CPU property is disabled then we need to disable the
1667          * feature.
1668          */
1669         unset_feature(env, ARM_FEATURE_EL3);
1670 
1671         /* Disable the security extension feature bits in the processor feature
1672          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1673          */
1674         cpu->id_pfr1 &= ~0xf0;
1675         cpu->isar.id_aa64pfr0 &= ~0xf000;
1676     }
1677 
1678     if (!cpu->has_el2) {
1679         unset_feature(env, ARM_FEATURE_EL2);
1680     }
1681 
1682     if (!cpu->has_pmu) {
1683         unset_feature(env, ARM_FEATURE_PMU);
1684     }
1685     if (arm_feature(env, ARM_FEATURE_PMU)) {
1686         pmu_init(cpu);
1687 
1688         if (!kvm_enabled()) {
1689             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1690             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1691         }
1692 
1693 #ifndef CONFIG_USER_ONLY
1694         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1695                 cpu);
1696 #endif
1697     } else {
1698         cpu->isar.id_aa64dfr0 =
1699             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1700         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1701         cpu->pmceid0 = 0;
1702         cpu->pmceid1 = 0;
1703     }
1704 
1705     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1706         /* Disable the hypervisor feature bits in the processor feature
1707          * registers if we don't have EL2. These are id_pfr1[15:12] and
1708          * id_aa64pfr0_el1[11:8].
1709          */
1710         cpu->isar.id_aa64pfr0 &= ~0xf00;
1711         cpu->id_pfr1 &= ~0xf000;
1712     }
1713 
1714     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1715      * to false or by setting pmsav7-dregion to 0.
1716      */
1717     if (!cpu->has_mpu) {
1718         cpu->pmsav7_dregion = 0;
1719     }
1720     if (cpu->pmsav7_dregion == 0) {
1721         cpu->has_mpu = false;
1722     }
1723 
1724     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1725         arm_feature(env, ARM_FEATURE_V7)) {
1726         uint32_t nr = cpu->pmsav7_dregion;
1727 
1728         if (nr > 0xff) {
1729             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1730             return;
1731         }
1732 
1733         if (nr) {
1734             if (arm_feature(env, ARM_FEATURE_V8)) {
1735                 /* PMSAv8 */
1736                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1737                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1738                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1739                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1740                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1741                 }
1742             } else {
1743                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1744                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1745                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1746             }
1747         }
1748     }
1749 
1750     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1751         uint32_t nr = cpu->sau_sregion;
1752 
1753         if (nr > 0xff) {
1754             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1755             return;
1756         }
1757 
1758         if (nr) {
1759             env->sau.rbar = g_new0(uint32_t, nr);
1760             env->sau.rlar = g_new0(uint32_t, nr);
1761         }
1762     }
1763 
1764     if (arm_feature(env, ARM_FEATURE_EL3)) {
1765         set_feature(env, ARM_FEATURE_VBAR);
1766     }
1767 
1768     register_cp_regs_for_features(cpu);
1769     arm_cpu_register_gdb_regs_for_features(cpu);
1770 
1771     init_cpreg_list(cpu);
1772 
1773 #ifndef CONFIG_USER_ONLY
1774     MachineState *ms = MACHINE(qdev_get_machine());
1775     unsigned int smp_cpus = ms->smp.cpus;
1776 
1777     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1778         cs->num_ases = 2;
1779 
1780         if (!cpu->secure_memory) {
1781             cpu->secure_memory = cs->memory;
1782         }
1783         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1784                                cpu->secure_memory);
1785     } else {
1786         cs->num_ases = 1;
1787     }
1788     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1789 
1790     /* No core_count specified, default to smp_cpus. */
1791     if (cpu->core_count == -1) {
1792         cpu->core_count = smp_cpus;
1793     }
1794 #endif
1795 
1796     qemu_init_vcpu(cs);
1797     cpu_reset(cs);
1798 
1799     acc->parent_realize(dev, errp);
1800 }
1801 
1802 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1803 {
1804     ObjectClass *oc;
1805     char *typename;
1806     char **cpuname;
1807     const char *cpunamestr;
1808 
1809     cpuname = g_strsplit(cpu_model, ",", 1);
1810     cpunamestr = cpuname[0];
1811 #ifdef CONFIG_USER_ONLY
1812     /* For backwards compatibility usermode emulation allows "-cpu any",
1813      * which has the same semantics as "-cpu max".
1814      */
1815     if (!strcmp(cpunamestr, "any")) {
1816         cpunamestr = "max";
1817     }
1818 #endif
1819     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1820     oc = object_class_by_name(typename);
1821     g_strfreev(cpuname);
1822     g_free(typename);
1823     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1824         object_class_is_abstract(oc)) {
1825         return NULL;
1826     }
1827     return oc;
1828 }
1829 
1830 /* CPU models. These are not needed for the AArch64 linux-user build. */
1831 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1832 
1833 static void arm926_initfn(Object *obj)
1834 {
1835     ARMCPU *cpu = ARM_CPU(obj);
1836 
1837     cpu->dtb_compatible = "arm,arm926";
1838     set_feature(&cpu->env, ARM_FEATURE_V5);
1839     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1840     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1841     cpu->midr = 0x41069265;
1842     cpu->reset_fpsid = 0x41011090;
1843     cpu->ctr = 0x1dd20d2;
1844     cpu->reset_sctlr = 0x00090078;
1845 
1846     /*
1847      * ARMv5 does not have the ID_ISAR registers, but we can still
1848      * set the field to indicate Jazelle support within QEMU.
1849      */
1850     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1851     /*
1852      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1853      * support even though ARMv5 doesn't have this register.
1854      */
1855     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1856     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1857     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1858 }
1859 
1860 static void arm946_initfn(Object *obj)
1861 {
1862     ARMCPU *cpu = ARM_CPU(obj);
1863 
1864     cpu->dtb_compatible = "arm,arm946";
1865     set_feature(&cpu->env, ARM_FEATURE_V5);
1866     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1867     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1868     cpu->midr = 0x41059461;
1869     cpu->ctr = 0x0f004006;
1870     cpu->reset_sctlr = 0x00000078;
1871 }
1872 
1873 static void arm1026_initfn(Object *obj)
1874 {
1875     ARMCPU *cpu = ARM_CPU(obj);
1876 
1877     cpu->dtb_compatible = "arm,arm1026";
1878     set_feature(&cpu->env, ARM_FEATURE_V5);
1879     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1880     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1881     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1882     cpu->midr = 0x4106a262;
1883     cpu->reset_fpsid = 0x410110a0;
1884     cpu->ctr = 0x1dd20d2;
1885     cpu->reset_sctlr = 0x00090078;
1886     cpu->reset_auxcr = 1;
1887 
1888     /*
1889      * ARMv5 does not have the ID_ISAR registers, but we can still
1890      * set the field to indicate Jazelle support within QEMU.
1891      */
1892     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1893     /*
1894      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1895      * support even though ARMv5 doesn't have this register.
1896      */
1897     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1898     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1899     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1900 
1901     {
1902         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1903         ARMCPRegInfo ifar = {
1904             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1905             .access = PL1_RW,
1906             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1907             .resetvalue = 0
1908         };
1909         define_one_arm_cp_reg(cpu, &ifar);
1910     }
1911 }
1912 
1913 static void arm1136_r2_initfn(Object *obj)
1914 {
1915     ARMCPU *cpu = ARM_CPU(obj);
1916     /*
1917      * What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1918      * older core than plain "arm1136". In particular this does not
1919      * have the v6K features.
1920      * These ID register values are correct for 1136 but may be wrong
1921      * for 1136_r2 (in particular r0p2 does not actually implement most
1922      * of the ID registers).
1923      */
1924 
1925     cpu->dtb_compatible = "arm,arm1136";
1926     set_feature(&cpu->env, ARM_FEATURE_V6);
1927     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1928     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1929     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1930     cpu->midr = 0x4107b362;
1931     cpu->reset_fpsid = 0x410120b4;
1932     cpu->isar.mvfr0 = 0x11111111;
1933     cpu->isar.mvfr1 = 0x00000000;
1934     cpu->ctr = 0x1dd20d2;
1935     cpu->reset_sctlr = 0x00050078;
1936     cpu->id_pfr0 = 0x111;
1937     cpu->id_pfr1 = 0x1;
1938     cpu->isar.id_dfr0 = 0x2;
1939     cpu->id_afr0 = 0x3;
1940     cpu->isar.id_mmfr0 = 0x01130003;
1941     cpu->isar.id_mmfr1 = 0x10030302;
1942     cpu->isar.id_mmfr2 = 0x01222110;
1943     cpu->isar.id_isar0 = 0x00140011;
1944     cpu->isar.id_isar1 = 0x12002111;
1945     cpu->isar.id_isar2 = 0x11231111;
1946     cpu->isar.id_isar3 = 0x01102131;
1947     cpu->isar.id_isar4 = 0x141;
1948     cpu->reset_auxcr = 7;
1949 }
1950 
1951 static void arm1136_initfn(Object *obj)
1952 {
1953     ARMCPU *cpu = ARM_CPU(obj);
1954 
1955     cpu->dtb_compatible = "arm,arm1136";
1956     set_feature(&cpu->env, ARM_FEATURE_V6K);
1957     set_feature(&cpu->env, ARM_FEATURE_V6);
1958     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1959     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1960     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1961     cpu->midr = 0x4117b363;
1962     cpu->reset_fpsid = 0x410120b4;
1963     cpu->isar.mvfr0 = 0x11111111;
1964     cpu->isar.mvfr1 = 0x00000000;
1965     cpu->ctr = 0x1dd20d2;
1966     cpu->reset_sctlr = 0x00050078;
1967     cpu->id_pfr0 = 0x111;
1968     cpu->id_pfr1 = 0x1;
1969     cpu->isar.id_dfr0 = 0x2;
1970     cpu->id_afr0 = 0x3;
1971     cpu->isar.id_mmfr0 = 0x01130003;
1972     cpu->isar.id_mmfr1 = 0x10030302;
1973     cpu->isar.id_mmfr2 = 0x01222110;
1974     cpu->isar.id_isar0 = 0x00140011;
1975     cpu->isar.id_isar1 = 0x12002111;
1976     cpu->isar.id_isar2 = 0x11231111;
1977     cpu->isar.id_isar3 = 0x01102131;
1978     cpu->isar.id_isar4 = 0x141;
1979     cpu->reset_auxcr = 7;
1980 }
1981 
1982 static void arm1176_initfn(Object *obj)
1983 {
1984     ARMCPU *cpu = ARM_CPU(obj);
1985 
1986     cpu->dtb_compatible = "arm,arm1176";
1987     set_feature(&cpu->env, ARM_FEATURE_V6K);
1988     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1989     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1990     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1991     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1992     set_feature(&cpu->env, ARM_FEATURE_EL3);
1993     cpu->midr = 0x410fb767;
1994     cpu->reset_fpsid = 0x410120b5;
1995     cpu->isar.mvfr0 = 0x11111111;
1996     cpu->isar.mvfr1 = 0x00000000;
1997     cpu->ctr = 0x1dd20d2;
1998     cpu->reset_sctlr = 0x00050078;
1999     cpu->id_pfr0 = 0x111;
2000     cpu->id_pfr1 = 0x11;
2001     cpu->isar.id_dfr0 = 0x33;
2002     cpu->id_afr0 = 0;
2003     cpu->isar.id_mmfr0 = 0x01130003;
2004     cpu->isar.id_mmfr1 = 0x10030302;
2005     cpu->isar.id_mmfr2 = 0x01222100;
2006     cpu->isar.id_isar0 = 0x0140011;
2007     cpu->isar.id_isar1 = 0x12002111;
2008     cpu->isar.id_isar2 = 0x11231121;
2009     cpu->isar.id_isar3 = 0x01102131;
2010     cpu->isar.id_isar4 = 0x01141;
2011     cpu->reset_auxcr = 7;
2012 }
2013 
2014 static void arm11mpcore_initfn(Object *obj)
2015 {
2016     ARMCPU *cpu = ARM_CPU(obj);
2017 
2018     cpu->dtb_compatible = "arm,arm11mpcore";
2019     set_feature(&cpu->env, ARM_FEATURE_V6K);
2020     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2021     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2022     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2023     cpu->midr = 0x410fb022;
2024     cpu->reset_fpsid = 0x410120b4;
2025     cpu->isar.mvfr0 = 0x11111111;
2026     cpu->isar.mvfr1 = 0x00000000;
2027     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2028     cpu->id_pfr0 = 0x111;
2029     cpu->id_pfr1 = 0x1;
2030     cpu->isar.id_dfr0 = 0;
2031     cpu->id_afr0 = 0x2;
2032     cpu->isar.id_mmfr0 = 0x01100103;
2033     cpu->isar.id_mmfr1 = 0x10020302;
2034     cpu->isar.id_mmfr2 = 0x01222000;
2035     cpu->isar.id_isar0 = 0x00100011;
2036     cpu->isar.id_isar1 = 0x12002111;
2037     cpu->isar.id_isar2 = 0x11221011;
2038     cpu->isar.id_isar3 = 0x01102131;
2039     cpu->isar.id_isar4 = 0x141;
2040     cpu->reset_auxcr = 1;
2041 }
2042 
2043 static void cortex_m0_initfn(Object *obj)
2044 {
2045     ARMCPU *cpu = ARM_CPU(obj);
2046     set_feature(&cpu->env, ARM_FEATURE_V6);
2047     set_feature(&cpu->env, ARM_FEATURE_M);
2048 
2049     cpu->midr = 0x410cc200;
2050 }
2051 
2052 static void cortex_m3_initfn(Object *obj)
2053 {
2054     ARMCPU *cpu = ARM_CPU(obj);
2055     set_feature(&cpu->env, ARM_FEATURE_V7);
2056     set_feature(&cpu->env, ARM_FEATURE_M);
2057     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2058     cpu->midr = 0x410fc231;
2059     cpu->pmsav7_dregion = 8;
2060     cpu->id_pfr0 = 0x00000030;
2061     cpu->id_pfr1 = 0x00000200;
2062     cpu->isar.id_dfr0 = 0x00100000;
2063     cpu->id_afr0 = 0x00000000;
2064     cpu->isar.id_mmfr0 = 0x00000030;
2065     cpu->isar.id_mmfr1 = 0x00000000;
2066     cpu->isar.id_mmfr2 = 0x00000000;
2067     cpu->isar.id_mmfr3 = 0x00000000;
2068     cpu->isar.id_isar0 = 0x01141110;
2069     cpu->isar.id_isar1 = 0x02111000;
2070     cpu->isar.id_isar2 = 0x21112231;
2071     cpu->isar.id_isar3 = 0x01111110;
2072     cpu->isar.id_isar4 = 0x01310102;
2073     cpu->isar.id_isar5 = 0x00000000;
2074     cpu->isar.id_isar6 = 0x00000000;
2075 }
2076 
2077 static void cortex_m4_initfn(Object *obj)
2078 {
2079     ARMCPU *cpu = ARM_CPU(obj);
2080 
2081     set_feature(&cpu->env, ARM_FEATURE_V7);
2082     set_feature(&cpu->env, ARM_FEATURE_M);
2083     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2084     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2085     cpu->midr = 0x410fc240; /* r0p0 */
2086     cpu->pmsav7_dregion = 8;
2087     cpu->isar.mvfr0 = 0x10110021;
2088     cpu->isar.mvfr1 = 0x11000011;
2089     cpu->isar.mvfr2 = 0x00000000;
2090     cpu->id_pfr0 = 0x00000030;
2091     cpu->id_pfr1 = 0x00000200;
2092     cpu->isar.id_dfr0 = 0x00100000;
2093     cpu->id_afr0 = 0x00000000;
2094     cpu->isar.id_mmfr0 = 0x00000030;
2095     cpu->isar.id_mmfr1 = 0x00000000;
2096     cpu->isar.id_mmfr2 = 0x00000000;
2097     cpu->isar.id_mmfr3 = 0x00000000;
2098     cpu->isar.id_isar0 = 0x01141110;
2099     cpu->isar.id_isar1 = 0x02111000;
2100     cpu->isar.id_isar2 = 0x21112231;
2101     cpu->isar.id_isar3 = 0x01111110;
2102     cpu->isar.id_isar4 = 0x01310102;
2103     cpu->isar.id_isar5 = 0x00000000;
2104     cpu->isar.id_isar6 = 0x00000000;
2105 }
2106 
2107 static void cortex_m7_initfn(Object *obj)
2108 {
2109     ARMCPU *cpu = ARM_CPU(obj);
2110 
2111     set_feature(&cpu->env, ARM_FEATURE_V7);
2112     set_feature(&cpu->env, ARM_FEATURE_M);
2113     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2114     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2115     cpu->midr = 0x411fc272; /* r1p2 */
2116     cpu->pmsav7_dregion = 8;
2117     cpu->isar.mvfr0 = 0x10110221;
2118     cpu->isar.mvfr1 = 0x12000011;
2119     cpu->isar.mvfr2 = 0x00000040;
2120     cpu->id_pfr0 = 0x00000030;
2121     cpu->id_pfr1 = 0x00000200;
2122     cpu->isar.id_dfr0 = 0x00100000;
2123     cpu->id_afr0 = 0x00000000;
2124     cpu->isar.id_mmfr0 = 0x00100030;
2125     cpu->isar.id_mmfr1 = 0x00000000;
2126     cpu->isar.id_mmfr2 = 0x01000000;
2127     cpu->isar.id_mmfr3 = 0x00000000;
2128     cpu->isar.id_isar0 = 0x01101110;
2129     cpu->isar.id_isar1 = 0x02112000;
2130     cpu->isar.id_isar2 = 0x20232231;
2131     cpu->isar.id_isar3 = 0x01111131;
2132     cpu->isar.id_isar4 = 0x01310132;
2133     cpu->isar.id_isar5 = 0x00000000;
2134     cpu->isar.id_isar6 = 0x00000000;
2135 }
2136 
2137 static void cortex_m33_initfn(Object *obj)
2138 {
2139     ARMCPU *cpu = ARM_CPU(obj);
2140 
2141     set_feature(&cpu->env, ARM_FEATURE_V8);
2142     set_feature(&cpu->env, ARM_FEATURE_M);
2143     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2144     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2145     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2146     cpu->midr = 0x410fd213; /* r0p3 */
2147     cpu->pmsav7_dregion = 16;
2148     cpu->sau_sregion = 8;
2149     cpu->isar.mvfr0 = 0x10110021;
2150     cpu->isar.mvfr1 = 0x11000011;
2151     cpu->isar.mvfr2 = 0x00000040;
2152     cpu->id_pfr0 = 0x00000030;
2153     cpu->id_pfr1 = 0x00000210;
2154     cpu->isar.id_dfr0 = 0x00200000;
2155     cpu->id_afr0 = 0x00000000;
2156     cpu->isar.id_mmfr0 = 0x00101F40;
2157     cpu->isar.id_mmfr1 = 0x00000000;
2158     cpu->isar.id_mmfr2 = 0x01000000;
2159     cpu->isar.id_mmfr3 = 0x00000000;
2160     cpu->isar.id_isar0 = 0x01101110;
2161     cpu->isar.id_isar1 = 0x02212000;
2162     cpu->isar.id_isar2 = 0x20232232;
2163     cpu->isar.id_isar3 = 0x01111131;
2164     cpu->isar.id_isar4 = 0x01310132;
2165     cpu->isar.id_isar5 = 0x00000000;
2166     cpu->isar.id_isar6 = 0x00000000;
2167     cpu->clidr = 0x00000000;
2168     cpu->ctr = 0x8000c000;
2169 }
2170 
2171 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2172 {
2173     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2174     CPUClass *cc = CPU_CLASS(oc);
2175 
2176     acc->info = data;
2177 #ifndef CONFIG_USER_ONLY
2178     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2179 #endif
2180 
2181     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2182 }
2183 
2184 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2185     /* Dummy the TCM region regs for the moment */
2186     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2187       .access = PL1_RW, .type = ARM_CP_CONST },
2188     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2189       .access = PL1_RW, .type = ARM_CP_CONST },
2190     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2191       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2192     REGINFO_SENTINEL
2193 };
2194 
2195 static void cortex_r5_initfn(Object *obj)
2196 {
2197     ARMCPU *cpu = ARM_CPU(obj);
2198 
2199     set_feature(&cpu->env, ARM_FEATURE_V7);
2200     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2201     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2202     set_feature(&cpu->env, ARM_FEATURE_PMU);
2203     cpu->midr = 0x411fc153; /* r1p3 */
2204     cpu->id_pfr0 = 0x0131;
2205     cpu->id_pfr1 = 0x001;
2206     cpu->isar.id_dfr0 = 0x010400;
2207     cpu->id_afr0 = 0x0;
2208     cpu->isar.id_mmfr0 = 0x0210030;
2209     cpu->isar.id_mmfr1 = 0x00000000;
2210     cpu->isar.id_mmfr2 = 0x01200000;
2211     cpu->isar.id_mmfr3 = 0x0211;
2212     cpu->isar.id_isar0 = 0x02101111;
2213     cpu->isar.id_isar1 = 0x13112111;
2214     cpu->isar.id_isar2 = 0x21232141;
2215     cpu->isar.id_isar3 = 0x01112131;
2216     cpu->isar.id_isar4 = 0x0010142;
2217     cpu->isar.id_isar5 = 0x0;
2218     cpu->isar.id_isar6 = 0x0;
2219     cpu->mp_is_up = true;
2220     cpu->pmsav7_dregion = 16;
2221     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2222 }
2223 
2224 static void cortex_r5f_initfn(Object *obj)
2225 {
2226     ARMCPU *cpu = ARM_CPU(obj);
2227 
2228     cortex_r5_initfn(obj);
2229     cpu->isar.mvfr0 = 0x10110221;
2230     cpu->isar.mvfr1 = 0x00000011;
2231 }
2232 
2233 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2234     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2235       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2236     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2237       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2238     REGINFO_SENTINEL
2239 };
2240 
2241 static void cortex_a8_initfn(Object *obj)
2242 {
2243     ARMCPU *cpu = ARM_CPU(obj);
2244 
2245     cpu->dtb_compatible = "arm,cortex-a8";
2246     set_feature(&cpu->env, ARM_FEATURE_V7);
2247     set_feature(&cpu->env, ARM_FEATURE_NEON);
2248     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2249     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2250     set_feature(&cpu->env, ARM_FEATURE_EL3);
2251     cpu->midr = 0x410fc080;
2252     cpu->reset_fpsid = 0x410330c0;
2253     cpu->isar.mvfr0 = 0x11110222;
2254     cpu->isar.mvfr1 = 0x00011111;
2255     cpu->ctr = 0x82048004;
2256     cpu->reset_sctlr = 0x00c50078;
2257     cpu->id_pfr0 = 0x1031;
2258     cpu->id_pfr1 = 0x11;
2259     cpu->isar.id_dfr0 = 0x400;
2260     cpu->id_afr0 = 0;
2261     cpu->isar.id_mmfr0 = 0x31100003;
2262     cpu->isar.id_mmfr1 = 0x20000000;
2263     cpu->isar.id_mmfr2 = 0x01202000;
2264     cpu->isar.id_mmfr3 = 0x11;
2265     cpu->isar.id_isar0 = 0x00101111;
2266     cpu->isar.id_isar1 = 0x12112111;
2267     cpu->isar.id_isar2 = 0x21232031;
2268     cpu->isar.id_isar3 = 0x11112131;
2269     cpu->isar.id_isar4 = 0x00111142;
2270     cpu->isar.dbgdidr = 0x15141000;
2271     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2272     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2273     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2274     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2275     cpu->reset_auxcr = 2;
2276     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2277 }
2278 
2279 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2280     /* power_control should be set to maximum latency. Again,
2281      * default to 0 and set by private hook
2282      */
2283     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2284       .access = PL1_RW, .resetvalue = 0,
2285       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2286     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2287       .access = PL1_RW, .resetvalue = 0,
2288       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2289     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2290       .access = PL1_RW, .resetvalue = 0,
2291       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2292     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2293       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2294     /* TLB lockdown control */
2295     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2296       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2297     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2298       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2299     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2300       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2301     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2302       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2303     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2304       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2305     REGINFO_SENTINEL
2306 };
2307 
2308 static void cortex_a9_initfn(Object *obj)
2309 {
2310     ARMCPU *cpu = ARM_CPU(obj);
2311 
2312     cpu->dtb_compatible = "arm,cortex-a9";
2313     set_feature(&cpu->env, ARM_FEATURE_V7);
2314     set_feature(&cpu->env, ARM_FEATURE_NEON);
2315     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2316     set_feature(&cpu->env, ARM_FEATURE_EL3);
2317     /* Note that A9 supports the MP extensions even for
2318      * A9UP and single-core A9MP (which are both different
2319      * and valid configurations; we don't model A9UP).
2320      */
2321     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2322     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2323     cpu->midr = 0x410fc090;
2324     cpu->reset_fpsid = 0x41033090;
2325     cpu->isar.mvfr0 = 0x11110222;
2326     cpu->isar.mvfr1 = 0x01111111;
2327     cpu->ctr = 0x80038003;
2328     cpu->reset_sctlr = 0x00c50078;
2329     cpu->id_pfr0 = 0x1031;
2330     cpu->id_pfr1 = 0x11;
2331     cpu->isar.id_dfr0 = 0x000;
2332     cpu->id_afr0 = 0;
2333     cpu->isar.id_mmfr0 = 0x00100103;
2334     cpu->isar.id_mmfr1 = 0x20000000;
2335     cpu->isar.id_mmfr2 = 0x01230000;
2336     cpu->isar.id_mmfr3 = 0x00002111;
2337     cpu->isar.id_isar0 = 0x00101111;
2338     cpu->isar.id_isar1 = 0x13112111;
2339     cpu->isar.id_isar2 = 0x21232041;
2340     cpu->isar.id_isar3 = 0x11112131;
2341     cpu->isar.id_isar4 = 0x00111142;
2342     cpu->isar.dbgdidr = 0x35141000;
2343     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2344     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2345     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2346     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2347 }
2348 
2349 #ifndef CONFIG_USER_ONLY
2350 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2351 {
2352     MachineState *ms = MACHINE(qdev_get_machine());
2353 
2354     /* Linux wants the number of processors from here.
2355      * Might as well set the interrupt-controller bit too.
2356      */
2357     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2358 }
2359 #endif
2360 
2361 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2362 #ifndef CONFIG_USER_ONLY
2363     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2364       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2365       .writefn = arm_cp_write_ignore, },
2366 #endif
2367     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2368       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2369     REGINFO_SENTINEL
2370 };
2371 
2372 static void cortex_a7_initfn(Object *obj)
2373 {
2374     ARMCPU *cpu = ARM_CPU(obj);
2375 
2376     cpu->dtb_compatible = "arm,cortex-a7";
2377     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2378     set_feature(&cpu->env, ARM_FEATURE_NEON);
2379     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2380     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2381     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2382     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2383     set_feature(&cpu->env, ARM_FEATURE_EL2);
2384     set_feature(&cpu->env, ARM_FEATURE_EL3);
2385     set_feature(&cpu->env, ARM_FEATURE_PMU);
2386     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2387     cpu->midr = 0x410fc075;
2388     cpu->reset_fpsid = 0x41023075;
2389     cpu->isar.mvfr0 = 0x10110222;
2390     cpu->isar.mvfr1 = 0x11111111;
2391     cpu->ctr = 0x84448003;
2392     cpu->reset_sctlr = 0x00c50078;
2393     cpu->id_pfr0 = 0x00001131;
2394     cpu->id_pfr1 = 0x00011011;
2395     cpu->isar.id_dfr0 = 0x02010555;
2396     cpu->id_afr0 = 0x00000000;
2397     cpu->isar.id_mmfr0 = 0x10101105;
2398     cpu->isar.id_mmfr1 = 0x40000000;
2399     cpu->isar.id_mmfr2 = 0x01240000;
2400     cpu->isar.id_mmfr3 = 0x02102211;
2401     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2402      * table 4-41 gives 0x02101110, which includes the arm div insns.
2403      */
2404     cpu->isar.id_isar0 = 0x02101110;
2405     cpu->isar.id_isar1 = 0x13112111;
2406     cpu->isar.id_isar2 = 0x21232041;
2407     cpu->isar.id_isar3 = 0x11112131;
2408     cpu->isar.id_isar4 = 0x10011142;
2409     cpu->isar.dbgdidr = 0x3515f005;
2410     cpu->clidr = 0x0a200023;
2411     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2412     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2413     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2414     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2415 }
2416 
2417 static void cortex_a15_initfn(Object *obj)
2418 {
2419     ARMCPU *cpu = ARM_CPU(obj);
2420 
2421     cpu->dtb_compatible = "arm,cortex-a15";
2422     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2423     set_feature(&cpu->env, ARM_FEATURE_NEON);
2424     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2425     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2426     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2427     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2428     set_feature(&cpu->env, ARM_FEATURE_EL2);
2429     set_feature(&cpu->env, ARM_FEATURE_EL3);
2430     set_feature(&cpu->env, ARM_FEATURE_PMU);
2431     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2432     cpu->midr = 0x412fc0f1;
2433     cpu->reset_fpsid = 0x410430f0;
2434     cpu->isar.mvfr0 = 0x10110222;
2435     cpu->isar.mvfr1 = 0x11111111;
2436     cpu->ctr = 0x8444c004;
2437     cpu->reset_sctlr = 0x00c50078;
2438     cpu->id_pfr0 = 0x00001131;
2439     cpu->id_pfr1 = 0x00011011;
2440     cpu->isar.id_dfr0 = 0x02010555;
2441     cpu->id_afr0 = 0x00000000;
2442     cpu->isar.id_mmfr0 = 0x10201105;
2443     cpu->isar.id_mmfr1 = 0x20000000;
2444     cpu->isar.id_mmfr2 = 0x01240000;
2445     cpu->isar.id_mmfr3 = 0x02102211;
2446     cpu->isar.id_isar0 = 0x02101110;
2447     cpu->isar.id_isar1 = 0x13112111;
2448     cpu->isar.id_isar2 = 0x21232041;
2449     cpu->isar.id_isar3 = 0x11112131;
2450     cpu->isar.id_isar4 = 0x10011142;
2451     cpu->isar.dbgdidr = 0x3515f021;
2452     cpu->clidr = 0x0a200023;
2453     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2454     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2455     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2456     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2457 }
2458 
2459 static void ti925t_initfn(Object *obj)
2460 {
2461     ARMCPU *cpu = ARM_CPU(obj);
2462     set_feature(&cpu->env, ARM_FEATURE_V4T);
2463     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2464     cpu->midr = ARM_CPUID_TI925T;
2465     cpu->ctr = 0x5109149;
2466     cpu->reset_sctlr = 0x00000070;
2467 }
2468 
2469 static void sa1100_initfn(Object *obj)
2470 {
2471     ARMCPU *cpu = ARM_CPU(obj);
2472 
2473     cpu->dtb_compatible = "intel,sa1100";
2474     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2475     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2476     cpu->midr = 0x4401A11B;
2477     cpu->reset_sctlr = 0x00000070;
2478 }
2479 
2480 static void sa1110_initfn(Object *obj)
2481 {
2482     ARMCPU *cpu = ARM_CPU(obj);
2483     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2484     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2485     cpu->midr = 0x6901B119;
2486     cpu->reset_sctlr = 0x00000070;
2487 }
2488 
2489 static void pxa250_initfn(Object *obj)
2490 {
2491     ARMCPU *cpu = ARM_CPU(obj);
2492 
2493     cpu->dtb_compatible = "marvell,xscale";
2494     set_feature(&cpu->env, ARM_FEATURE_V5);
2495     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2496     cpu->midr = 0x69052100;
2497     cpu->ctr = 0xd172172;
2498     cpu->reset_sctlr = 0x00000078;
2499 }
2500 
2501 static void pxa255_initfn(Object *obj)
2502 {
2503     ARMCPU *cpu = ARM_CPU(obj);
2504 
2505     cpu->dtb_compatible = "marvell,xscale";
2506     set_feature(&cpu->env, ARM_FEATURE_V5);
2507     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2508     cpu->midr = 0x69052d00;
2509     cpu->ctr = 0xd172172;
2510     cpu->reset_sctlr = 0x00000078;
2511 }
2512 
2513 static void pxa260_initfn(Object *obj)
2514 {
2515     ARMCPU *cpu = ARM_CPU(obj);
2516 
2517     cpu->dtb_compatible = "marvell,xscale";
2518     set_feature(&cpu->env, ARM_FEATURE_V5);
2519     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2520     cpu->midr = 0x69052903;
2521     cpu->ctr = 0xd172172;
2522     cpu->reset_sctlr = 0x00000078;
2523 }
2524 
2525 static void pxa261_initfn(Object *obj)
2526 {
2527     ARMCPU *cpu = ARM_CPU(obj);
2528 
2529     cpu->dtb_compatible = "marvell,xscale";
2530     set_feature(&cpu->env, ARM_FEATURE_V5);
2531     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2532     cpu->midr = 0x69052d05;
2533     cpu->ctr = 0xd172172;
2534     cpu->reset_sctlr = 0x00000078;
2535 }
2536 
2537 static void pxa262_initfn(Object *obj)
2538 {
2539     ARMCPU *cpu = ARM_CPU(obj);
2540 
2541     cpu->dtb_compatible = "marvell,xscale";
2542     set_feature(&cpu->env, ARM_FEATURE_V5);
2543     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2544     cpu->midr = 0x69052d06;
2545     cpu->ctr = 0xd172172;
2546     cpu->reset_sctlr = 0x00000078;
2547 }
2548 
2549 static void pxa270a0_initfn(Object *obj)
2550 {
2551     ARMCPU *cpu = ARM_CPU(obj);
2552 
2553     cpu->dtb_compatible = "marvell,xscale";
2554     set_feature(&cpu->env, ARM_FEATURE_V5);
2555     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2556     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2557     cpu->midr = 0x69054110;
2558     cpu->ctr = 0xd172172;
2559     cpu->reset_sctlr = 0x00000078;
2560 }
2561 
2562 static void pxa270a1_initfn(Object *obj)
2563 {
2564     ARMCPU *cpu = ARM_CPU(obj);
2565 
2566     cpu->dtb_compatible = "marvell,xscale";
2567     set_feature(&cpu->env, ARM_FEATURE_V5);
2568     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2569     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2570     cpu->midr = 0x69054111;
2571     cpu->ctr = 0xd172172;
2572     cpu->reset_sctlr = 0x00000078;
2573 }
2574 
2575 static void pxa270b0_initfn(Object *obj)
2576 {
2577     ARMCPU *cpu = ARM_CPU(obj);
2578 
2579     cpu->dtb_compatible = "marvell,xscale";
2580     set_feature(&cpu->env, ARM_FEATURE_V5);
2581     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2582     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2583     cpu->midr = 0x69054112;
2584     cpu->ctr = 0xd172172;
2585     cpu->reset_sctlr = 0x00000078;
2586 }
2587 
2588 static void pxa270b1_initfn(Object *obj)
2589 {
2590     ARMCPU *cpu = ARM_CPU(obj);
2591 
2592     cpu->dtb_compatible = "marvell,xscale";
2593     set_feature(&cpu->env, ARM_FEATURE_V5);
2594     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2595     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2596     cpu->midr = 0x69054113;
2597     cpu->ctr = 0xd172172;
2598     cpu->reset_sctlr = 0x00000078;
2599 }
2600 
2601 static void pxa270c0_initfn(Object *obj)
2602 {
2603     ARMCPU *cpu = ARM_CPU(obj);
2604 
2605     cpu->dtb_compatible = "marvell,xscale";
2606     set_feature(&cpu->env, ARM_FEATURE_V5);
2607     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2608     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2609     cpu->midr = 0x69054114;
2610     cpu->ctr = 0xd172172;
2611     cpu->reset_sctlr = 0x00000078;
2612 }
2613 
2614 static void pxa270c5_initfn(Object *obj)
2615 {
2616     ARMCPU *cpu = ARM_CPU(obj);
2617 
2618     cpu->dtb_compatible = "marvell,xscale";
2619     set_feature(&cpu->env, ARM_FEATURE_V5);
2620     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2621     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2622     cpu->midr = 0x69054117;
2623     cpu->ctr = 0xd172172;
2624     cpu->reset_sctlr = 0x00000078;
2625 }
2626 
2627 #ifndef TARGET_AARCH64
2628 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2629  * otherwise, a CPU with as many features enabled as our emulation supports.
2630  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2631  * this only needs to handle 32 bits.
2632  */
2633 static void arm_max_initfn(Object *obj)
2634 {
2635     ARMCPU *cpu = ARM_CPU(obj);
2636 
2637     if (kvm_enabled()) {
2638         kvm_arm_set_cpu_features_from_host(cpu);
2639         kvm_arm_add_vcpu_properties(obj);
2640     } else {
2641         cortex_a15_initfn(obj);
2642 
2643         /* old-style VFP short-vector support */
2644         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2645 
2646 #ifdef CONFIG_USER_ONLY
2647         /* We don't set these in system emulation mode for the moment,
2648          * since we don't correctly set (all of) the ID registers to
2649          * advertise them.
2650          */
2651         set_feature(&cpu->env, ARM_FEATURE_V8);
2652         {
2653             uint32_t t;
2654 
2655             t = cpu->isar.id_isar5;
2656             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2657             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2658             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2659             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2660             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2661             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2662             cpu->isar.id_isar5 = t;
2663 
2664             t = cpu->isar.id_isar6;
2665             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2666             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2667             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2668             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2669             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2670             cpu->isar.id_isar6 = t;
2671 
2672             t = cpu->isar.mvfr1;
2673             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2674             cpu->isar.mvfr1 = t;
2675 
2676             t = cpu->isar.mvfr2;
2677             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2678             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2679             cpu->isar.mvfr2 = t;
2680 
2681             t = cpu->isar.id_mmfr3;
2682             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2683             cpu->isar.id_mmfr3 = t;
2684 
2685             t = cpu->isar.id_mmfr4;
2686             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2687             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2688             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2689             t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2690             cpu->isar.id_mmfr4 = t;
2691         }
2692 #endif
2693     }
2694 }
2695 #endif
2696 
2697 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2698 
2699 static const ARMCPUInfo arm_cpus[] = {
2700 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2701     { .name = "arm926",      .initfn = arm926_initfn },
2702     { .name = "arm946",      .initfn = arm946_initfn },
2703     { .name = "arm1026",     .initfn = arm1026_initfn },
2704     /*
2705      * What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2706      * older core than plain "arm1136". In particular this does not
2707      * have the v6K features.
2708      */
2709     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2710     { .name = "arm1136",     .initfn = arm1136_initfn },
2711     { .name = "arm1176",     .initfn = arm1176_initfn },
2712     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2713     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2714                              .class_init = arm_v7m_class_init },
2715     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2716                              .class_init = arm_v7m_class_init },
2717     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2718                              .class_init = arm_v7m_class_init },
2719     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2720                              .class_init = arm_v7m_class_init },
2721     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2722                              .class_init = arm_v7m_class_init },
2723     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2724     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2725     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2726     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2727     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2728     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2729     { .name = "ti925t",      .initfn = ti925t_initfn },
2730     { .name = "sa1100",      .initfn = sa1100_initfn },
2731     { .name = "sa1110",      .initfn = sa1110_initfn },
2732     { .name = "pxa250",      .initfn = pxa250_initfn },
2733     { .name = "pxa255",      .initfn = pxa255_initfn },
2734     { .name = "pxa260",      .initfn = pxa260_initfn },
2735     { .name = "pxa261",      .initfn = pxa261_initfn },
2736     { .name = "pxa262",      .initfn = pxa262_initfn },
2737     /* "pxa270" is an alias for "pxa270-a0" */
2738     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2739     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2740     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2741     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2742     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2743     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2744     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2745 #ifndef TARGET_AARCH64
2746     { .name = "max",         .initfn = arm_max_initfn },
2747 #endif
2748 #ifdef CONFIG_USER_ONLY
2749     { .name = "any",         .initfn = arm_max_initfn },
2750 #endif
2751 #endif
2752     { .name = NULL }
2753 };
2754 
2755 static Property arm_cpu_properties[] = {
2756     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2757     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2758     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2759     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2760                         mp_affinity, ARM64_AFFINITY_INVALID),
2761     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2762     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2763     DEFINE_PROP_END_OF_LIST()
2764 };
2765 
2766 static gchar *arm_gdb_arch_name(CPUState *cs)
2767 {
2768     ARMCPU *cpu = ARM_CPU(cs);
2769     CPUARMState *env = &cpu->env;
2770 
2771     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2772         return g_strdup("iwmmxt");
2773     }
2774     return g_strdup("arm");
2775 }
2776 
2777 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2778 {
2779     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2780     CPUClass *cc = CPU_CLASS(acc);
2781     DeviceClass *dc = DEVICE_CLASS(oc);
2782 
2783     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2784                                     &acc->parent_realize);
2785 
2786     device_class_set_props(dc, arm_cpu_properties);
2787     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2788 
2789     cc->class_by_name = arm_cpu_class_by_name;
2790     cc->has_work = arm_cpu_has_work;
2791     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2792     cc->dump_state = arm_cpu_dump_state;
2793     cc->set_pc = arm_cpu_set_pc;
2794     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2795     cc->gdb_read_register = arm_cpu_gdb_read_register;
2796     cc->gdb_write_register = arm_cpu_gdb_write_register;
2797 #ifndef CONFIG_USER_ONLY
2798     cc->do_interrupt = arm_cpu_do_interrupt;
2799     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2800     cc->asidx_from_attrs = arm_asidx_from_attrs;
2801     cc->vmsd = &vmstate_arm_cpu;
2802     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2803     cc->write_elf64_note = arm_cpu_write_elf64_note;
2804     cc->write_elf32_note = arm_cpu_write_elf32_note;
2805 #endif
2806     cc->gdb_num_core_regs = 26;
2807     cc->gdb_core_xml_file = "arm-core.xml";
2808     cc->gdb_arch_name = arm_gdb_arch_name;
2809     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2810     cc->gdb_stop_before_watchpoint = true;
2811     cc->disas_set_info = arm_disas_set_info;
2812 #ifdef CONFIG_TCG
2813     cc->tcg_initialize = arm_translate_init;
2814     cc->tlb_fill = arm_cpu_tlb_fill;
2815     cc->debug_excp_handler = arm_debug_excp_handler;
2816     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2817 #if !defined(CONFIG_USER_ONLY)
2818     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2819     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2820     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2821 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2822 #endif
2823 }
2824 
2825 #ifdef CONFIG_KVM
2826 static void arm_host_initfn(Object *obj)
2827 {
2828     ARMCPU *cpu = ARM_CPU(obj);
2829 
2830     kvm_arm_set_cpu_features_from_host(cpu);
2831     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2832         aarch64_add_sve_properties(obj);
2833     }
2834     kvm_arm_add_vcpu_properties(obj);
2835     arm_cpu_post_init(obj);
2836 }
2837 
2838 static const TypeInfo host_arm_cpu_type_info = {
2839     .name = TYPE_ARM_HOST_CPU,
2840 #ifdef TARGET_AARCH64
2841     .parent = TYPE_AARCH64_CPU,
2842 #else
2843     .parent = TYPE_ARM_CPU,
2844 #endif
2845     .instance_init = arm_host_initfn,
2846 };
2847 
2848 #endif
2849 
2850 static void arm_cpu_instance_init(Object *obj)
2851 {
2852     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2853 
2854     acc->info->initfn(obj);
2855     arm_cpu_post_init(obj);
2856 }
2857 
2858 static void cpu_register_class_init(ObjectClass *oc, void *data)
2859 {
2860     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2861 
2862     acc->info = data;
2863 }
2864 
2865 void arm_cpu_register(const ARMCPUInfo *info)
2866 {
2867     TypeInfo type_info = {
2868         .parent = TYPE_ARM_CPU,
2869         .instance_size = sizeof(ARMCPU),
2870         .instance_init = arm_cpu_instance_init,
2871         .class_size = sizeof(ARMCPUClass),
2872         .class_init = info->class_init ?: cpu_register_class_init,
2873         .class_data = (void *)info,
2874     };
2875 
2876     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2877     type_register(&type_info);
2878     g_free((void *)type_info.name);
2879 }
2880 
2881 static const TypeInfo arm_cpu_type_info = {
2882     .name = TYPE_ARM_CPU,
2883     .parent = TYPE_CPU,
2884     .instance_size = sizeof(ARMCPU),
2885     .instance_init = arm_cpu_initfn,
2886     .instance_finalize = arm_cpu_finalizefn,
2887     .abstract = true,
2888     .class_size = sizeof(ARMCPUClass),
2889     .class_init = arm_cpu_class_init,
2890 };
2891 
2892 static const TypeInfo idau_interface_type_info = {
2893     .name = TYPE_IDAU_INTERFACE,
2894     .parent = TYPE_INTERFACE,
2895     .class_size = sizeof(IDAUInterfaceClass),
2896 };
2897 
2898 static void arm_cpu_register_types(void)
2899 {
2900     const ARMCPUInfo *info = arm_cpus;
2901 
2902     type_register_static(&arm_cpu_type_info);
2903     type_register_static(&idau_interface_type_info);
2904 
2905     while (info->name) {
2906         arm_cpu_register(info);
2907         info++;
2908     }
2909 
2910 #ifdef CONFIG_KVM
2911     type_register_static(&host_arm_cpu_type_info);
2912 #endif
2913 }
2914 
2915 type_init(arm_cpu_register_types)
2916