xref: /openbmc/qemu/target/arm/cpu.c (revision e346bcbf)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "target/arm/idau.h"
24 #include "qemu/module.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "cpu.h"
28 #include "internals.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "sysemu/sysemu.h"
35 #include "sysemu/tcg.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
40 
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     CPUARMState *env = &cpu->env;
45 
46     if (is_a64(env)) {
47         env->pc = value;
48         env->thumb = 0;
49     } else {
50         env->regs[15] = value & ~1;
51         env->thumb = value & 1;
52     }
53 }
54 
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     /*
61      * It's OK to look at env for the current mode here, because it's
62      * never possible for an AArch64 TB to chain to an AArch32 TB.
63      */
64     if (is_a64(env)) {
65         env->pc = tb->pc;
66     } else {
67         env->regs[15] = tb->pc;
68     }
69 }
70 
71 static bool arm_cpu_has_work(CPUState *cs)
72 {
73     ARMCPU *cpu = ARM_CPU(cs);
74 
75     return (cpu->power_state != PSCI_OFF)
76         && cs->interrupt_request &
77         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79          | CPU_INTERRUPT_EXITTB);
80 }
81 
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83                                  void *opaque)
84 {
85     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
86 
87     entry->hook = hook;
88     entry->opaque = opaque;
89 
90     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
91 }
92 
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
102 }
103 
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
105 {
106     /* Reset a single ARMCPRegInfo register */
107     ARMCPRegInfo *ri = value;
108     ARMCPU *cpu = opaque;
109 
110     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111         return;
112     }
113 
114     if (ri->resetfn) {
115         ri->resetfn(&cpu->env, ri);
116         return;
117     }
118 
119     /* A zero offset is never possible as it would be regs[0]
120      * so we use it to indicate that reset is being handled elsewhere.
121      * This is basically only used for fields in non-core coprocessors
122      * (like the pxa2xx ones).
123      */
124     if (!ri->fieldoffset) {
125         return;
126     }
127 
128     if (cpreg_field_is_64bit(ri)) {
129         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130     } else {
131         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
132     }
133 }
134 
135 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
136 {
137     /* Purely an assertion check: we've already done reset once,
138      * so now check that running the reset for the cpreg doesn't
139      * change its value. This traps bugs where two different cpregs
140      * both try to reset the same state field but to different values.
141      */
142     ARMCPRegInfo *ri = value;
143     ARMCPU *cpu = opaque;
144     uint64_t oldvalue, newvalue;
145 
146     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147         return;
148     }
149 
150     oldvalue = read_raw_cp_reg(&cpu->env, ri);
151     cp_reg_reset(key, value, opaque);
152     newvalue = read_raw_cp_reg(&cpu->env, ri);
153     assert(oldvalue == newvalue);
154 }
155 
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
158 {
159     ARMCPU *cpu = ARM_CPU(s);
160     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161     CPUARMState *env = &cpu->env;
162 
163     acc->parent_reset(s);
164 
165     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
166 
167     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
169 
170     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
174 
175     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176     s->halted = cpu->start_powered_off;
177 
178     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
180     }
181 
182     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183         /* 64 bit CPUs always start in 64 bit mode */
184         env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186         env->pstate = PSTATE_MODE_EL0t;
187         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189         /* Enable all PAC keys.  */
190         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191                                   SCTLR_EnDA | SCTLR_EnDB);
192         /* Enable all PAC instructions */
193         env->cp15.hcr_el2 |= HCR_API;
194         env->cp15.scr_el3 |= SCR_API;
195         /* and to the FP/Neon instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197         /* and to the SVE instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199         env->cp15.cptr_el[3] |= CPTR_EZ;
200         /* with maximum vector length */
201         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
204         /*
205          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
206          * turning on both here will produce smaller code and otherwise
207          * make no difference to the user-level emulation.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259             env->v7m.secure = true;
260         } else {
261             /* This bit resets to 0 if security is supported, but 1 if
262              * it is not. The bit is not present in v7M, but we set it
263              * here so we can avoid having to make checks on it conditional
264              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265              */
266             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267         }
268 
269         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270          * that it resets to 1, so QEMU always does that rather than making
271          * it dependent on CPU model. In v8M it is RES1.
272          */
273         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275         if (arm_feature(env, ARM_FEATURE_V8)) {
276             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
279         }
280         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
283         }
284 
285         if (arm_feature(env, ARM_FEATURE_VFP)) {
286             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
287             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
288                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
289         }
290         /* Unlike A/R profile, M profile defines the reset LR value */
291         env->regs[14] = 0xffffffff;
292 
293         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
294 
295         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
296         vecbase = env->v7m.vecbase[env->v7m.secure];
297         rom = rom_ptr(vecbase, 8);
298         if (rom) {
299             /* Address zero is covered by ROM which hasn't yet been
300              * copied into physical memory.
301              */
302             initial_msp = ldl_p(rom);
303             initial_pc = ldl_p(rom + 4);
304         } else {
305             /* Address zero not covered by a ROM blob, or the ROM blob
306              * is in non-modifiable memory and this is a second reset after
307              * it got copied into memory. In the latter case, rom_ptr
308              * will return a NULL pointer and we should use ldl_phys instead.
309              */
310             initial_msp = ldl_phys(s->as, vecbase);
311             initial_pc = ldl_phys(s->as, vecbase + 4);
312         }
313 
314         env->regs[13] = initial_msp & 0xFFFFFFFC;
315         env->regs[15] = initial_pc & ~1;
316         env->thumb = initial_pc & 1;
317     }
318 
319     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
320      * executing as AArch32 then check if highvecs are enabled and
321      * adjust the PC accordingly.
322      */
323     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
324         env->regs[15] = 0xFFFF0000;
325     }
326 
327     /* M profile requires that reset clears the exclusive monitor;
328      * A profile does not, but clearing it makes more sense than having it
329      * set with an exclusive access on address zero.
330      */
331     arm_clear_exclusive(env);
332 
333     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
334 #endif
335 
336     if (arm_feature(env, ARM_FEATURE_PMSA)) {
337         if (cpu->pmsav7_dregion > 0) {
338             if (arm_feature(env, ARM_FEATURE_V8)) {
339                 memset(env->pmsav8.rbar[M_REG_NS], 0,
340                        sizeof(*env->pmsav8.rbar[M_REG_NS])
341                        * cpu->pmsav7_dregion);
342                 memset(env->pmsav8.rlar[M_REG_NS], 0,
343                        sizeof(*env->pmsav8.rlar[M_REG_NS])
344                        * cpu->pmsav7_dregion);
345                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
346                     memset(env->pmsav8.rbar[M_REG_S], 0,
347                            sizeof(*env->pmsav8.rbar[M_REG_S])
348                            * cpu->pmsav7_dregion);
349                     memset(env->pmsav8.rlar[M_REG_S], 0,
350                            sizeof(*env->pmsav8.rlar[M_REG_S])
351                            * cpu->pmsav7_dregion);
352                 }
353             } else if (arm_feature(env, ARM_FEATURE_V7)) {
354                 memset(env->pmsav7.drbar, 0,
355                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
356                 memset(env->pmsav7.drsr, 0,
357                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
358                 memset(env->pmsav7.dracr, 0,
359                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
360             }
361         }
362         env->pmsav7.rnr[M_REG_NS] = 0;
363         env->pmsav7.rnr[M_REG_S] = 0;
364         env->pmsav8.mair0[M_REG_NS] = 0;
365         env->pmsav8.mair0[M_REG_S] = 0;
366         env->pmsav8.mair1[M_REG_NS] = 0;
367         env->pmsav8.mair1[M_REG_S] = 0;
368     }
369 
370     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
371         if (cpu->sau_sregion > 0) {
372             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
373             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
374         }
375         env->sau.rnr = 0;
376         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
377          * the Cortex-M33 does.
378          */
379         env->sau.ctrl = 0;
380     }
381 
382     set_flush_to_zero(1, &env->vfp.standard_fp_status);
383     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
384     set_default_nan_mode(1, &env->vfp.standard_fp_status);
385     set_float_detect_tininess(float_tininess_before_rounding,
386                               &env->vfp.fp_status);
387     set_float_detect_tininess(float_tininess_before_rounding,
388                               &env->vfp.standard_fp_status);
389     set_float_detect_tininess(float_tininess_before_rounding,
390                               &env->vfp.fp_status_f16);
391 #ifndef CONFIG_USER_ONLY
392     if (kvm_enabled()) {
393         kvm_arm_reset_vcpu(cpu);
394     }
395 #endif
396 
397     hw_breakpoint_update_all(cpu);
398     hw_watchpoint_update_all(cpu);
399 }
400 
401 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
402 {
403     CPUClass *cc = CPU_GET_CLASS(cs);
404     CPUARMState *env = cs->env_ptr;
405     uint32_t cur_el = arm_current_el(env);
406     bool secure = arm_is_secure(env);
407     uint32_t target_el;
408     uint32_t excp_idx;
409     bool ret = false;
410 
411     if (interrupt_request & CPU_INTERRUPT_FIQ) {
412         excp_idx = EXCP_FIQ;
413         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
414         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
415             cs->exception_index = excp_idx;
416             env->exception.target_el = target_el;
417             cc->do_interrupt(cs);
418             ret = true;
419         }
420     }
421     if (interrupt_request & CPU_INTERRUPT_HARD) {
422         excp_idx = EXCP_IRQ;
423         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425             cs->exception_index = excp_idx;
426             env->exception.target_el = target_el;
427             cc->do_interrupt(cs);
428             ret = true;
429         }
430     }
431     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
432         excp_idx = EXCP_VIRQ;
433         target_el = 1;
434         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435             cs->exception_index = excp_idx;
436             env->exception.target_el = target_el;
437             cc->do_interrupt(cs);
438             ret = true;
439         }
440     }
441     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
442         excp_idx = EXCP_VFIQ;
443         target_el = 1;
444         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445             cs->exception_index = excp_idx;
446             env->exception.target_el = target_el;
447             cc->do_interrupt(cs);
448             ret = true;
449         }
450     }
451 
452     return ret;
453 }
454 
455 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
456 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
457 {
458     CPUClass *cc = CPU_GET_CLASS(cs);
459     ARMCPU *cpu = ARM_CPU(cs);
460     CPUARMState *env = &cpu->env;
461     bool ret = false;
462 
463     /* ARMv7-M interrupt masking works differently than -A or -R.
464      * There is no FIQ/IRQ distinction. Instead of I and F bits
465      * masking FIQ and IRQ interrupts, an exception is taken only
466      * if it is higher priority than the current execution priority
467      * (which depends on state like BASEPRI, FAULTMASK and the
468      * currently active exception).
469      */
470     if (interrupt_request & CPU_INTERRUPT_HARD
471         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
472         cs->exception_index = EXCP_IRQ;
473         cc->do_interrupt(cs);
474         ret = true;
475     }
476     return ret;
477 }
478 #endif
479 
480 void arm_cpu_update_virq(ARMCPU *cpu)
481 {
482     /*
483      * Update the interrupt level for VIRQ, which is the logical OR of
484      * the HCR_EL2.VI bit and the input line level from the GIC.
485      */
486     CPUARMState *env = &cpu->env;
487     CPUState *cs = CPU(cpu);
488 
489     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
490         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
491 
492     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
493         if (new_state) {
494             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
495         } else {
496             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
497         }
498     }
499 }
500 
501 void arm_cpu_update_vfiq(ARMCPU *cpu)
502 {
503     /*
504      * Update the interrupt level for VFIQ, which is the logical OR of
505      * the HCR_EL2.VF bit and the input line level from the GIC.
506      */
507     CPUARMState *env = &cpu->env;
508     CPUState *cs = CPU(cpu);
509 
510     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
511         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
512 
513     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
514         if (new_state) {
515             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
516         } else {
517             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
518         }
519     }
520 }
521 
522 #ifndef CONFIG_USER_ONLY
523 static void arm_cpu_set_irq(void *opaque, int irq, int level)
524 {
525     ARMCPU *cpu = opaque;
526     CPUARMState *env = &cpu->env;
527     CPUState *cs = CPU(cpu);
528     static const int mask[] = {
529         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
530         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
531         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
532         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
533     };
534 
535     if (level) {
536         env->irq_line_state |= mask[irq];
537     } else {
538         env->irq_line_state &= ~mask[irq];
539     }
540 
541     switch (irq) {
542     case ARM_CPU_VIRQ:
543         assert(arm_feature(env, ARM_FEATURE_EL2));
544         arm_cpu_update_virq(cpu);
545         break;
546     case ARM_CPU_VFIQ:
547         assert(arm_feature(env, ARM_FEATURE_EL2));
548         arm_cpu_update_vfiq(cpu);
549         break;
550     case ARM_CPU_IRQ:
551     case ARM_CPU_FIQ:
552         if (level) {
553             cpu_interrupt(cs, mask[irq]);
554         } else {
555             cpu_reset_interrupt(cs, mask[irq]);
556         }
557         break;
558     default:
559         g_assert_not_reached();
560     }
561 }
562 
563 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
564 {
565 #ifdef CONFIG_KVM
566     ARMCPU *cpu = opaque;
567     CPUARMState *env = &cpu->env;
568     CPUState *cs = CPU(cpu);
569     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
570     uint32_t linestate_bit;
571 
572     switch (irq) {
573     case ARM_CPU_IRQ:
574         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
575         linestate_bit = CPU_INTERRUPT_HARD;
576         break;
577     case ARM_CPU_FIQ:
578         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
579         linestate_bit = CPU_INTERRUPT_FIQ;
580         break;
581     default:
582         g_assert_not_reached();
583     }
584 
585     if (level) {
586         env->irq_line_state |= linestate_bit;
587     } else {
588         env->irq_line_state &= ~linestate_bit;
589     }
590 
591     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
592     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
593 #endif
594 }
595 
596 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
597 {
598     ARMCPU *cpu = ARM_CPU(cs);
599     CPUARMState *env = &cpu->env;
600 
601     cpu_synchronize_state(cs);
602     return arm_cpu_data_is_big_endian(env);
603 }
604 
605 #endif
606 
607 static inline void set_feature(CPUARMState *env, int feature)
608 {
609     env->features |= 1ULL << feature;
610 }
611 
612 static inline void unset_feature(CPUARMState *env, int feature)
613 {
614     env->features &= ~(1ULL << feature);
615 }
616 
617 static int
618 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
619 {
620   return print_insn_arm(pc | 1, info);
621 }
622 
623 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
624 {
625     ARMCPU *ac = ARM_CPU(cpu);
626     CPUARMState *env = &ac->env;
627     bool sctlr_b;
628 
629     if (is_a64(env)) {
630         /* We might not be compiled with the A64 disassembler
631          * because it needs a C++ compiler. Leave print_insn
632          * unset in this case to use the caller default behaviour.
633          */
634 #if defined(CONFIG_ARM_A64_DIS)
635         info->print_insn = print_insn_arm_a64;
636 #endif
637         info->cap_arch = CS_ARCH_ARM64;
638         info->cap_insn_unit = 4;
639         info->cap_insn_split = 4;
640     } else {
641         int cap_mode;
642         if (env->thumb) {
643             info->print_insn = print_insn_thumb1;
644             info->cap_insn_unit = 2;
645             info->cap_insn_split = 4;
646             cap_mode = CS_MODE_THUMB;
647         } else {
648             info->print_insn = print_insn_arm;
649             info->cap_insn_unit = 4;
650             info->cap_insn_split = 4;
651             cap_mode = CS_MODE_ARM;
652         }
653         if (arm_feature(env, ARM_FEATURE_V8)) {
654             cap_mode |= CS_MODE_V8;
655         }
656         if (arm_feature(env, ARM_FEATURE_M)) {
657             cap_mode |= CS_MODE_MCLASS;
658         }
659         info->cap_arch = CS_ARCH_ARM;
660         info->cap_mode = cap_mode;
661     }
662 
663     sctlr_b = arm_sctlr_b(env);
664     if (bswap_code(sctlr_b)) {
665 #ifdef TARGET_WORDS_BIGENDIAN
666         info->endian = BFD_ENDIAN_LITTLE;
667 #else
668         info->endian = BFD_ENDIAN_BIG;
669 #endif
670     }
671     info->flags &= ~INSN_ARM_BE32;
672 #ifndef CONFIG_USER_ONLY
673     if (sctlr_b) {
674         info->flags |= INSN_ARM_BE32;
675     }
676 #endif
677 }
678 
679 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
680 {
681     uint32_t Aff1 = idx / clustersz;
682     uint32_t Aff0 = idx % clustersz;
683     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
684 }
685 
686 static void cpreg_hashtable_data_destroy(gpointer data)
687 {
688     /*
689      * Destroy function for cpu->cp_regs hashtable data entries.
690      * We must free the name string because it was g_strdup()ed in
691      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
692      * from r->name because we know we definitely allocated it.
693      */
694     ARMCPRegInfo *r = data;
695 
696     g_free((void *)r->name);
697     g_free(r);
698 }
699 
700 static void arm_cpu_initfn(Object *obj)
701 {
702     ARMCPU *cpu = ARM_CPU(obj);
703 
704     cpu_set_cpustate_pointers(cpu);
705     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
706                                          g_free, cpreg_hashtable_data_destroy);
707 
708     QLIST_INIT(&cpu->pre_el_change_hooks);
709     QLIST_INIT(&cpu->el_change_hooks);
710 
711 #ifndef CONFIG_USER_ONLY
712     /* Our inbound IRQ and FIQ lines */
713     if (kvm_enabled()) {
714         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
715          * the same interface as non-KVM CPUs.
716          */
717         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
718     } else {
719         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
720     }
721 
722     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
723                        ARRAY_SIZE(cpu->gt_timer_outputs));
724 
725     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
726                              "gicv3-maintenance-interrupt", 1);
727     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
728                              "pmu-interrupt", 1);
729 #endif
730 
731     /* DTB consumers generally don't in fact care what the 'compatible'
732      * string is, so always provide some string and trust that a hypothetical
733      * picky DTB consumer will also provide a helpful error message.
734      */
735     cpu->dtb_compatible = "qemu,unknown";
736     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
737     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
738 
739     if (tcg_enabled()) {
740         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
741     }
742 }
743 
744 static Property arm_cpu_reset_cbar_property =
745             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
746 
747 static Property arm_cpu_reset_hivecs_property =
748             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
749 
750 static Property arm_cpu_rvbar_property =
751             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
752 
753 static Property arm_cpu_has_el2_property =
754             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
755 
756 static Property arm_cpu_has_el3_property =
757             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
758 
759 static Property arm_cpu_cfgend_property =
760             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
761 
762 /* use property name "pmu" to match other archs and virt tools */
763 static Property arm_cpu_has_pmu_property =
764             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
765 
766 static Property arm_cpu_has_vfp_property =
767             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
768 
769 static Property arm_cpu_has_neon_property =
770             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
771 
772 static Property arm_cpu_has_dsp_property =
773             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
774 
775 static Property arm_cpu_has_mpu_property =
776             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
777 
778 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
779  * because the CPU initfn will have already set cpu->pmsav7_dregion to
780  * the right value for that particular CPU type, and we don't want
781  * to override that with an incorrect constant value.
782  */
783 static Property arm_cpu_pmsav7_dregion_property =
784             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
785                                            pmsav7_dregion,
786                                            qdev_prop_uint32, uint32_t);
787 
788 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
789                                void *opaque, Error **errp)
790 {
791     ARMCPU *cpu = ARM_CPU(obj);
792 
793     visit_type_uint32(v, name, &cpu->init_svtor, errp);
794 }
795 
796 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
797                                void *opaque, Error **errp)
798 {
799     ARMCPU *cpu = ARM_CPU(obj);
800 
801     visit_type_uint32(v, name, &cpu->init_svtor, errp);
802 }
803 
804 void arm_cpu_post_init(Object *obj)
805 {
806     ARMCPU *cpu = ARM_CPU(obj);
807 
808     /* M profile implies PMSA. We have to do this here rather than
809      * in realize with the other feature-implication checks because
810      * we look at the PMSA bit to see if we should add some properties.
811      */
812     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
813         set_feature(&cpu->env, ARM_FEATURE_PMSA);
814     }
815     /* Similarly for the VFP feature bits */
816     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
817         set_feature(&cpu->env, ARM_FEATURE_VFP3);
818     }
819     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
820         set_feature(&cpu->env, ARM_FEATURE_VFP);
821     }
822 
823     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
824         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
825         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
826                                  &error_abort);
827     }
828 
829     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
830         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
831                                  &error_abort);
832     }
833 
834     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
835         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
836                                  &error_abort);
837     }
838 
839     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
840         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
841          * prevent "has_el3" from existing on CPUs which cannot support EL3.
842          */
843         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
844                                  &error_abort);
845 
846 #ifndef CONFIG_USER_ONLY
847         object_property_add_link(obj, "secure-memory",
848                                  TYPE_MEMORY_REGION,
849                                  (Object **)&cpu->secure_memory,
850                                  qdev_prop_allow_set_link_before_realize,
851                                  OBJ_PROP_LINK_STRONG,
852                                  &error_abort);
853 #endif
854     }
855 
856     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
857         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
858                                  &error_abort);
859     }
860 
861     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
862         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
863                                  &error_abort);
864     }
865 
866     /*
867      * Allow user to turn off VFP and Neon support, but only for TCG --
868      * KVM does not currently allow us to lie to the guest about its
869      * ID/feature registers, so the guest always sees what the host has.
870      */
871     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
872         cpu->has_vfp = true;
873         if (!kvm_enabled()) {
874             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
875                                      &error_abort);
876         }
877     }
878 
879     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
880         cpu->has_neon = true;
881         if (!kvm_enabled()) {
882             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
883                                      &error_abort);
884         }
885     }
886 
887     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
888         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
889         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
890                                  &error_abort);
891     }
892 
893     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
894         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
895                                  &error_abort);
896         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
897             qdev_property_add_static(DEVICE(obj),
898                                      &arm_cpu_pmsav7_dregion_property,
899                                      &error_abort);
900         }
901     }
902 
903     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
904         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
905                                  qdev_prop_allow_set_link_before_realize,
906                                  OBJ_PROP_LINK_STRONG,
907                                  &error_abort);
908         /*
909          * M profile: initial value of the Secure VTOR. We can't just use
910          * a simple DEFINE_PROP_UINT32 for this because we want to permit
911          * the property to be set after realize.
912          */
913         object_property_add(obj, "init-svtor", "uint32",
914                             arm_get_init_svtor, arm_set_init_svtor,
915                             NULL, NULL, &error_abort);
916     }
917 
918     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
919                              &error_abort);
920 }
921 
922 static void arm_cpu_finalizefn(Object *obj)
923 {
924     ARMCPU *cpu = ARM_CPU(obj);
925     ARMELChangeHook *hook, *next;
926 
927     g_hash_table_destroy(cpu->cp_regs);
928 
929     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
930         QLIST_REMOVE(hook, node);
931         g_free(hook);
932     }
933     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
934         QLIST_REMOVE(hook, node);
935         g_free(hook);
936     }
937 #ifndef CONFIG_USER_ONLY
938     if (cpu->pmu_timer) {
939         timer_del(cpu->pmu_timer);
940         timer_deinit(cpu->pmu_timer);
941         timer_free(cpu->pmu_timer);
942     }
943 #endif
944 }
945 
946 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
947 {
948     CPUState *cs = CPU(dev);
949     ARMCPU *cpu = ARM_CPU(dev);
950     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
951     CPUARMState *env = &cpu->env;
952     int pagebits;
953     Error *local_err = NULL;
954     bool no_aa32 = false;
955 
956     /* If we needed to query the host kernel for the CPU features
957      * then it's possible that might have failed in the initfn, but
958      * this is the first point where we can report it.
959      */
960     if (cpu->host_cpu_probe_failed) {
961         if (!kvm_enabled()) {
962             error_setg(errp, "The 'host' CPU type can only be used with KVM");
963         } else {
964             error_setg(errp, "Failed to retrieve host CPU features");
965         }
966         return;
967     }
968 
969 #ifndef CONFIG_USER_ONLY
970     /* The NVIC and M-profile CPU are two halves of a single piece of
971      * hardware; trying to use one without the other is a command line
972      * error and will result in segfaults if not caught here.
973      */
974     if (arm_feature(env, ARM_FEATURE_M)) {
975         if (!env->nvic) {
976             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
977             return;
978         }
979     } else {
980         if (env->nvic) {
981             error_setg(errp, "This board can only be used with Cortex-M CPUs");
982             return;
983         }
984     }
985 
986     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
987                                            arm_gt_ptimer_cb, cpu);
988     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
989                                            arm_gt_vtimer_cb, cpu);
990     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
991                                           arm_gt_htimer_cb, cpu);
992     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
993                                           arm_gt_stimer_cb, cpu);
994 #endif
995 
996     cpu_exec_realizefn(cs, &local_err);
997     if (local_err != NULL) {
998         error_propagate(errp, local_err);
999         return;
1000     }
1001 
1002     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1003         cpu->has_vfp != cpu->has_neon) {
1004         /*
1005          * This is an architectural requirement for AArch64; AArch32 is
1006          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1007          */
1008         error_setg(errp,
1009                    "AArch64 CPUs must have both VFP and Neon or neither");
1010         return;
1011     }
1012 
1013     if (!cpu->has_vfp) {
1014         uint64_t t;
1015         uint32_t u;
1016 
1017         unset_feature(env, ARM_FEATURE_VFP);
1018         unset_feature(env, ARM_FEATURE_VFP3);
1019         unset_feature(env, ARM_FEATURE_VFP4);
1020 
1021         t = cpu->isar.id_aa64isar1;
1022         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1023         cpu->isar.id_aa64isar1 = t;
1024 
1025         t = cpu->isar.id_aa64pfr0;
1026         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1027         cpu->isar.id_aa64pfr0 = t;
1028 
1029         u = cpu->isar.id_isar6;
1030         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1031         cpu->isar.id_isar6 = u;
1032 
1033         u = cpu->isar.mvfr0;
1034         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1035         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1036         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1037         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1038         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1039         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1040         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1041         cpu->isar.mvfr0 = u;
1042 
1043         u = cpu->isar.mvfr1;
1044         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1045         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1046         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1047         cpu->isar.mvfr1 = u;
1048 
1049         u = cpu->isar.mvfr2;
1050         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1051         cpu->isar.mvfr2 = u;
1052     }
1053 
1054     if (!cpu->has_neon) {
1055         uint64_t t;
1056         uint32_t u;
1057 
1058         unset_feature(env, ARM_FEATURE_NEON);
1059 
1060         t = cpu->isar.id_aa64isar0;
1061         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1062         cpu->isar.id_aa64isar0 = t;
1063 
1064         t = cpu->isar.id_aa64isar1;
1065         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1066         cpu->isar.id_aa64isar1 = t;
1067 
1068         t = cpu->isar.id_aa64pfr0;
1069         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1070         cpu->isar.id_aa64pfr0 = t;
1071 
1072         u = cpu->isar.id_isar5;
1073         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1074         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1075         cpu->isar.id_isar5 = u;
1076 
1077         u = cpu->isar.id_isar6;
1078         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1079         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1080         cpu->isar.id_isar6 = u;
1081 
1082         u = cpu->isar.mvfr1;
1083         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1084         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1085         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1086         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1087         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1088         cpu->isar.mvfr1 = u;
1089 
1090         u = cpu->isar.mvfr2;
1091         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1092         cpu->isar.mvfr2 = u;
1093     }
1094 
1095     if (!cpu->has_neon && !cpu->has_vfp) {
1096         uint64_t t;
1097         uint32_t u;
1098 
1099         t = cpu->isar.id_aa64isar0;
1100         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1101         cpu->isar.id_aa64isar0 = t;
1102 
1103         t = cpu->isar.id_aa64isar1;
1104         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1105         cpu->isar.id_aa64isar1 = t;
1106 
1107         u = cpu->isar.mvfr0;
1108         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1109         cpu->isar.mvfr0 = u;
1110     }
1111 
1112     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1113         uint32_t u;
1114 
1115         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1116 
1117         u = cpu->isar.id_isar1;
1118         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1119         cpu->isar.id_isar1 = u;
1120 
1121         u = cpu->isar.id_isar2;
1122         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1123         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1124         cpu->isar.id_isar2 = u;
1125 
1126         u = cpu->isar.id_isar3;
1127         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1128         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1129         cpu->isar.id_isar3 = u;
1130     }
1131 
1132     /* Some features automatically imply others: */
1133     if (arm_feature(env, ARM_FEATURE_V8)) {
1134         if (arm_feature(env, ARM_FEATURE_M)) {
1135             set_feature(env, ARM_FEATURE_V7);
1136         } else {
1137             set_feature(env, ARM_FEATURE_V7VE);
1138         }
1139     }
1140 
1141     /*
1142      * There exist AArch64 cpus without AArch32 support.  When KVM
1143      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1144      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1145      */
1146     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1147         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1148     }
1149 
1150     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1151         /* v7 Virtualization Extensions. In real hardware this implies
1152          * EL2 and also the presence of the Security Extensions.
1153          * For QEMU, for backwards-compatibility we implement some
1154          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1155          * include the various other features that V7VE implies.
1156          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1157          * Security Extensions is ARM_FEATURE_EL3.
1158          */
1159         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1160         set_feature(env, ARM_FEATURE_LPAE);
1161         set_feature(env, ARM_FEATURE_V7);
1162     }
1163     if (arm_feature(env, ARM_FEATURE_V7)) {
1164         set_feature(env, ARM_FEATURE_VAPA);
1165         set_feature(env, ARM_FEATURE_THUMB2);
1166         set_feature(env, ARM_FEATURE_MPIDR);
1167         if (!arm_feature(env, ARM_FEATURE_M)) {
1168             set_feature(env, ARM_FEATURE_V6K);
1169         } else {
1170             set_feature(env, ARM_FEATURE_V6);
1171         }
1172 
1173         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1174          * non-EL3 configs. This is needed by some legacy boards.
1175          */
1176         set_feature(env, ARM_FEATURE_VBAR);
1177     }
1178     if (arm_feature(env, ARM_FEATURE_V6K)) {
1179         set_feature(env, ARM_FEATURE_V6);
1180         set_feature(env, ARM_FEATURE_MVFR);
1181     }
1182     if (arm_feature(env, ARM_FEATURE_V6)) {
1183         set_feature(env, ARM_FEATURE_V5);
1184         if (!arm_feature(env, ARM_FEATURE_M)) {
1185             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1186             set_feature(env, ARM_FEATURE_AUXCR);
1187         }
1188     }
1189     if (arm_feature(env, ARM_FEATURE_V5)) {
1190         set_feature(env, ARM_FEATURE_V4T);
1191     }
1192     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1193         set_feature(env, ARM_FEATURE_V7MP);
1194         set_feature(env, ARM_FEATURE_PXN);
1195     }
1196     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1197         set_feature(env, ARM_FEATURE_CBAR);
1198     }
1199     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1200         !arm_feature(env, ARM_FEATURE_M)) {
1201         set_feature(env, ARM_FEATURE_THUMB_DSP);
1202     }
1203 
1204     /*
1205      * We rely on no XScale CPU having VFP so we can use the same bits in the
1206      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1207      */
1208     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1209              arm_feature(env, ARM_FEATURE_XSCALE)));
1210 
1211     if (arm_feature(env, ARM_FEATURE_V7) &&
1212         !arm_feature(env, ARM_FEATURE_M) &&
1213         !arm_feature(env, ARM_FEATURE_PMSA)) {
1214         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1215          * can use 4K pages.
1216          */
1217         pagebits = 12;
1218     } else {
1219         /* For CPUs which might have tiny 1K pages, or which have an
1220          * MPU and might have small region sizes, stick with 1K pages.
1221          */
1222         pagebits = 10;
1223     }
1224     if (!set_preferred_target_page_bits(pagebits)) {
1225         /* This can only ever happen for hotplugging a CPU, or if
1226          * the board code incorrectly creates a CPU which it has
1227          * promised via minimum_page_size that it will not.
1228          */
1229         error_setg(errp, "This CPU requires a smaller page size than the "
1230                    "system is using");
1231         return;
1232     }
1233 
1234     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1235      * We don't support setting cluster ID ([16..23]) (known as Aff2
1236      * in later ARM ARM versions), or any of the higher affinity level fields,
1237      * so these bits always RAZ.
1238      */
1239     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1240         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1241                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1242     }
1243 
1244     if (cpu->reset_hivecs) {
1245             cpu->reset_sctlr |= (1 << 13);
1246     }
1247 
1248     if (cpu->cfgend) {
1249         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1250             cpu->reset_sctlr |= SCTLR_EE;
1251         } else {
1252             cpu->reset_sctlr |= SCTLR_B;
1253         }
1254     }
1255 
1256     if (!cpu->has_el3) {
1257         /* If the has_el3 CPU property is disabled then we need to disable the
1258          * feature.
1259          */
1260         unset_feature(env, ARM_FEATURE_EL3);
1261 
1262         /* Disable the security extension feature bits in the processor feature
1263          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1264          */
1265         cpu->id_pfr1 &= ~0xf0;
1266         cpu->isar.id_aa64pfr0 &= ~0xf000;
1267     }
1268 
1269     if (!cpu->has_el2) {
1270         unset_feature(env, ARM_FEATURE_EL2);
1271     }
1272 
1273     if (!cpu->has_pmu) {
1274         unset_feature(env, ARM_FEATURE_PMU);
1275     }
1276     if (arm_feature(env, ARM_FEATURE_PMU)) {
1277         pmu_init(cpu);
1278 
1279         if (!kvm_enabled()) {
1280             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1281             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1282         }
1283 
1284 #ifndef CONFIG_USER_ONLY
1285         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1286                 cpu);
1287 #endif
1288     } else {
1289         cpu->id_aa64dfr0 &= ~0xf00;
1290         cpu->id_dfr0 &= ~(0xf << 24);
1291         cpu->pmceid0 = 0;
1292         cpu->pmceid1 = 0;
1293     }
1294 
1295     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1296         /* Disable the hypervisor feature bits in the processor feature
1297          * registers if we don't have EL2. These are id_pfr1[15:12] and
1298          * id_aa64pfr0_el1[11:8].
1299          */
1300         cpu->isar.id_aa64pfr0 &= ~0xf00;
1301         cpu->id_pfr1 &= ~0xf000;
1302     }
1303 
1304     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1305      * to false or by setting pmsav7-dregion to 0.
1306      */
1307     if (!cpu->has_mpu) {
1308         cpu->pmsav7_dregion = 0;
1309     }
1310     if (cpu->pmsav7_dregion == 0) {
1311         cpu->has_mpu = false;
1312     }
1313 
1314     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1315         arm_feature(env, ARM_FEATURE_V7)) {
1316         uint32_t nr = cpu->pmsav7_dregion;
1317 
1318         if (nr > 0xff) {
1319             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1320             return;
1321         }
1322 
1323         if (nr) {
1324             if (arm_feature(env, ARM_FEATURE_V8)) {
1325                 /* PMSAv8 */
1326                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1327                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1328                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1329                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1330                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1331                 }
1332             } else {
1333                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1334                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1335                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1336             }
1337         }
1338     }
1339 
1340     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1341         uint32_t nr = cpu->sau_sregion;
1342 
1343         if (nr > 0xff) {
1344             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1345             return;
1346         }
1347 
1348         if (nr) {
1349             env->sau.rbar = g_new0(uint32_t, nr);
1350             env->sau.rlar = g_new0(uint32_t, nr);
1351         }
1352     }
1353 
1354     if (arm_feature(env, ARM_FEATURE_EL3)) {
1355         set_feature(env, ARM_FEATURE_VBAR);
1356     }
1357 
1358     register_cp_regs_for_features(cpu);
1359     arm_cpu_register_gdb_regs_for_features(cpu);
1360 
1361     init_cpreg_list(cpu);
1362 
1363 #ifndef CONFIG_USER_ONLY
1364     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1365         cs->num_ases = 2;
1366 
1367         if (!cpu->secure_memory) {
1368             cpu->secure_memory = cs->memory;
1369         }
1370         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1371                                cpu->secure_memory);
1372     } else {
1373         cs->num_ases = 1;
1374     }
1375     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1376 
1377     /* No core_count specified, default to smp_cpus. */
1378     if (cpu->core_count == -1) {
1379         cpu->core_count = smp_cpus;
1380     }
1381 #endif
1382 
1383     qemu_init_vcpu(cs);
1384     cpu_reset(cs);
1385 
1386     acc->parent_realize(dev, errp);
1387 }
1388 
1389 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1390 {
1391     ObjectClass *oc;
1392     char *typename;
1393     char **cpuname;
1394     const char *cpunamestr;
1395 
1396     cpuname = g_strsplit(cpu_model, ",", 1);
1397     cpunamestr = cpuname[0];
1398 #ifdef CONFIG_USER_ONLY
1399     /* For backwards compatibility usermode emulation allows "-cpu any",
1400      * which has the same semantics as "-cpu max".
1401      */
1402     if (!strcmp(cpunamestr, "any")) {
1403         cpunamestr = "max";
1404     }
1405 #endif
1406     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1407     oc = object_class_by_name(typename);
1408     g_strfreev(cpuname);
1409     g_free(typename);
1410     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1411         object_class_is_abstract(oc)) {
1412         return NULL;
1413     }
1414     return oc;
1415 }
1416 
1417 /* CPU models. These are not needed for the AArch64 linux-user build. */
1418 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1419 
1420 static void arm926_initfn(Object *obj)
1421 {
1422     ARMCPU *cpu = ARM_CPU(obj);
1423 
1424     cpu->dtb_compatible = "arm,arm926";
1425     set_feature(&cpu->env, ARM_FEATURE_V5);
1426     set_feature(&cpu->env, ARM_FEATURE_VFP);
1427     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1428     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1429     cpu->midr = 0x41069265;
1430     cpu->reset_fpsid = 0x41011090;
1431     cpu->ctr = 0x1dd20d2;
1432     cpu->reset_sctlr = 0x00090078;
1433 
1434     /*
1435      * ARMv5 does not have the ID_ISAR registers, but we can still
1436      * set the field to indicate Jazelle support within QEMU.
1437      */
1438     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1439 }
1440 
1441 static void arm946_initfn(Object *obj)
1442 {
1443     ARMCPU *cpu = ARM_CPU(obj);
1444 
1445     cpu->dtb_compatible = "arm,arm946";
1446     set_feature(&cpu->env, ARM_FEATURE_V5);
1447     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1448     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1449     cpu->midr = 0x41059461;
1450     cpu->ctr = 0x0f004006;
1451     cpu->reset_sctlr = 0x00000078;
1452 }
1453 
1454 static void arm1026_initfn(Object *obj)
1455 {
1456     ARMCPU *cpu = ARM_CPU(obj);
1457 
1458     cpu->dtb_compatible = "arm,arm1026";
1459     set_feature(&cpu->env, ARM_FEATURE_V5);
1460     set_feature(&cpu->env, ARM_FEATURE_VFP);
1461     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1462     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1463     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1464     cpu->midr = 0x4106a262;
1465     cpu->reset_fpsid = 0x410110a0;
1466     cpu->ctr = 0x1dd20d2;
1467     cpu->reset_sctlr = 0x00090078;
1468     cpu->reset_auxcr = 1;
1469 
1470     /*
1471      * ARMv5 does not have the ID_ISAR registers, but we can still
1472      * set the field to indicate Jazelle support within QEMU.
1473      */
1474     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1475 
1476     {
1477         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1478         ARMCPRegInfo ifar = {
1479             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1480             .access = PL1_RW,
1481             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1482             .resetvalue = 0
1483         };
1484         define_one_arm_cp_reg(cpu, &ifar);
1485     }
1486 }
1487 
1488 static void arm1136_r2_initfn(Object *obj)
1489 {
1490     ARMCPU *cpu = ARM_CPU(obj);
1491     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1492      * older core than plain "arm1136". In particular this does not
1493      * have the v6K features.
1494      * These ID register values are correct for 1136 but may be wrong
1495      * for 1136_r2 (in particular r0p2 does not actually implement most
1496      * of the ID registers).
1497      */
1498 
1499     cpu->dtb_compatible = "arm,arm1136";
1500     set_feature(&cpu->env, ARM_FEATURE_V6);
1501     set_feature(&cpu->env, ARM_FEATURE_VFP);
1502     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1503     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1504     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1505     cpu->midr = 0x4107b362;
1506     cpu->reset_fpsid = 0x410120b4;
1507     cpu->isar.mvfr0 = 0x11111111;
1508     cpu->isar.mvfr1 = 0x00000000;
1509     cpu->ctr = 0x1dd20d2;
1510     cpu->reset_sctlr = 0x00050078;
1511     cpu->id_pfr0 = 0x111;
1512     cpu->id_pfr1 = 0x1;
1513     cpu->id_dfr0 = 0x2;
1514     cpu->id_afr0 = 0x3;
1515     cpu->id_mmfr0 = 0x01130003;
1516     cpu->id_mmfr1 = 0x10030302;
1517     cpu->id_mmfr2 = 0x01222110;
1518     cpu->isar.id_isar0 = 0x00140011;
1519     cpu->isar.id_isar1 = 0x12002111;
1520     cpu->isar.id_isar2 = 0x11231111;
1521     cpu->isar.id_isar3 = 0x01102131;
1522     cpu->isar.id_isar4 = 0x141;
1523     cpu->reset_auxcr = 7;
1524 }
1525 
1526 static void arm1136_initfn(Object *obj)
1527 {
1528     ARMCPU *cpu = ARM_CPU(obj);
1529 
1530     cpu->dtb_compatible = "arm,arm1136";
1531     set_feature(&cpu->env, ARM_FEATURE_V6K);
1532     set_feature(&cpu->env, ARM_FEATURE_V6);
1533     set_feature(&cpu->env, ARM_FEATURE_VFP);
1534     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1535     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1536     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1537     cpu->midr = 0x4117b363;
1538     cpu->reset_fpsid = 0x410120b4;
1539     cpu->isar.mvfr0 = 0x11111111;
1540     cpu->isar.mvfr1 = 0x00000000;
1541     cpu->ctr = 0x1dd20d2;
1542     cpu->reset_sctlr = 0x00050078;
1543     cpu->id_pfr0 = 0x111;
1544     cpu->id_pfr1 = 0x1;
1545     cpu->id_dfr0 = 0x2;
1546     cpu->id_afr0 = 0x3;
1547     cpu->id_mmfr0 = 0x01130003;
1548     cpu->id_mmfr1 = 0x10030302;
1549     cpu->id_mmfr2 = 0x01222110;
1550     cpu->isar.id_isar0 = 0x00140011;
1551     cpu->isar.id_isar1 = 0x12002111;
1552     cpu->isar.id_isar2 = 0x11231111;
1553     cpu->isar.id_isar3 = 0x01102131;
1554     cpu->isar.id_isar4 = 0x141;
1555     cpu->reset_auxcr = 7;
1556 }
1557 
1558 static void arm1176_initfn(Object *obj)
1559 {
1560     ARMCPU *cpu = ARM_CPU(obj);
1561 
1562     cpu->dtb_compatible = "arm,arm1176";
1563     set_feature(&cpu->env, ARM_FEATURE_V6K);
1564     set_feature(&cpu->env, ARM_FEATURE_VFP);
1565     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1566     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1567     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1568     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1569     set_feature(&cpu->env, ARM_FEATURE_EL3);
1570     cpu->midr = 0x410fb767;
1571     cpu->reset_fpsid = 0x410120b5;
1572     cpu->isar.mvfr0 = 0x11111111;
1573     cpu->isar.mvfr1 = 0x00000000;
1574     cpu->ctr = 0x1dd20d2;
1575     cpu->reset_sctlr = 0x00050078;
1576     cpu->id_pfr0 = 0x111;
1577     cpu->id_pfr1 = 0x11;
1578     cpu->id_dfr0 = 0x33;
1579     cpu->id_afr0 = 0;
1580     cpu->id_mmfr0 = 0x01130003;
1581     cpu->id_mmfr1 = 0x10030302;
1582     cpu->id_mmfr2 = 0x01222100;
1583     cpu->isar.id_isar0 = 0x0140011;
1584     cpu->isar.id_isar1 = 0x12002111;
1585     cpu->isar.id_isar2 = 0x11231121;
1586     cpu->isar.id_isar3 = 0x01102131;
1587     cpu->isar.id_isar4 = 0x01141;
1588     cpu->reset_auxcr = 7;
1589 }
1590 
1591 static void arm11mpcore_initfn(Object *obj)
1592 {
1593     ARMCPU *cpu = ARM_CPU(obj);
1594 
1595     cpu->dtb_compatible = "arm,arm11mpcore";
1596     set_feature(&cpu->env, ARM_FEATURE_V6K);
1597     set_feature(&cpu->env, ARM_FEATURE_VFP);
1598     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1599     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1600     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1601     cpu->midr = 0x410fb022;
1602     cpu->reset_fpsid = 0x410120b4;
1603     cpu->isar.mvfr0 = 0x11111111;
1604     cpu->isar.mvfr1 = 0x00000000;
1605     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1606     cpu->id_pfr0 = 0x111;
1607     cpu->id_pfr1 = 0x1;
1608     cpu->id_dfr0 = 0;
1609     cpu->id_afr0 = 0x2;
1610     cpu->id_mmfr0 = 0x01100103;
1611     cpu->id_mmfr1 = 0x10020302;
1612     cpu->id_mmfr2 = 0x01222000;
1613     cpu->isar.id_isar0 = 0x00100011;
1614     cpu->isar.id_isar1 = 0x12002111;
1615     cpu->isar.id_isar2 = 0x11221011;
1616     cpu->isar.id_isar3 = 0x01102131;
1617     cpu->isar.id_isar4 = 0x141;
1618     cpu->reset_auxcr = 1;
1619 }
1620 
1621 static void cortex_m0_initfn(Object *obj)
1622 {
1623     ARMCPU *cpu = ARM_CPU(obj);
1624     set_feature(&cpu->env, ARM_FEATURE_V6);
1625     set_feature(&cpu->env, ARM_FEATURE_M);
1626 
1627     cpu->midr = 0x410cc200;
1628 }
1629 
1630 static void cortex_m3_initfn(Object *obj)
1631 {
1632     ARMCPU *cpu = ARM_CPU(obj);
1633     set_feature(&cpu->env, ARM_FEATURE_V7);
1634     set_feature(&cpu->env, ARM_FEATURE_M);
1635     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1636     cpu->midr = 0x410fc231;
1637     cpu->pmsav7_dregion = 8;
1638     cpu->id_pfr0 = 0x00000030;
1639     cpu->id_pfr1 = 0x00000200;
1640     cpu->id_dfr0 = 0x00100000;
1641     cpu->id_afr0 = 0x00000000;
1642     cpu->id_mmfr0 = 0x00000030;
1643     cpu->id_mmfr1 = 0x00000000;
1644     cpu->id_mmfr2 = 0x00000000;
1645     cpu->id_mmfr3 = 0x00000000;
1646     cpu->isar.id_isar0 = 0x01141110;
1647     cpu->isar.id_isar1 = 0x02111000;
1648     cpu->isar.id_isar2 = 0x21112231;
1649     cpu->isar.id_isar3 = 0x01111110;
1650     cpu->isar.id_isar4 = 0x01310102;
1651     cpu->isar.id_isar5 = 0x00000000;
1652     cpu->isar.id_isar6 = 0x00000000;
1653 }
1654 
1655 static void cortex_m4_initfn(Object *obj)
1656 {
1657     ARMCPU *cpu = ARM_CPU(obj);
1658 
1659     set_feature(&cpu->env, ARM_FEATURE_V7);
1660     set_feature(&cpu->env, ARM_FEATURE_M);
1661     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1662     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1663     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1664     cpu->midr = 0x410fc240; /* r0p0 */
1665     cpu->pmsav7_dregion = 8;
1666     cpu->isar.mvfr0 = 0x10110021;
1667     cpu->isar.mvfr1 = 0x11000011;
1668     cpu->isar.mvfr2 = 0x00000000;
1669     cpu->id_pfr0 = 0x00000030;
1670     cpu->id_pfr1 = 0x00000200;
1671     cpu->id_dfr0 = 0x00100000;
1672     cpu->id_afr0 = 0x00000000;
1673     cpu->id_mmfr0 = 0x00000030;
1674     cpu->id_mmfr1 = 0x00000000;
1675     cpu->id_mmfr2 = 0x00000000;
1676     cpu->id_mmfr3 = 0x00000000;
1677     cpu->isar.id_isar0 = 0x01141110;
1678     cpu->isar.id_isar1 = 0x02111000;
1679     cpu->isar.id_isar2 = 0x21112231;
1680     cpu->isar.id_isar3 = 0x01111110;
1681     cpu->isar.id_isar4 = 0x01310102;
1682     cpu->isar.id_isar5 = 0x00000000;
1683     cpu->isar.id_isar6 = 0x00000000;
1684 }
1685 
1686 static void cortex_m33_initfn(Object *obj)
1687 {
1688     ARMCPU *cpu = ARM_CPU(obj);
1689 
1690     set_feature(&cpu->env, ARM_FEATURE_V8);
1691     set_feature(&cpu->env, ARM_FEATURE_M);
1692     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1693     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1694     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1695     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1696     cpu->midr = 0x410fd213; /* r0p3 */
1697     cpu->pmsav7_dregion = 16;
1698     cpu->sau_sregion = 8;
1699     cpu->isar.mvfr0 = 0x10110021;
1700     cpu->isar.mvfr1 = 0x11000011;
1701     cpu->isar.mvfr2 = 0x00000040;
1702     cpu->id_pfr0 = 0x00000030;
1703     cpu->id_pfr1 = 0x00000210;
1704     cpu->id_dfr0 = 0x00200000;
1705     cpu->id_afr0 = 0x00000000;
1706     cpu->id_mmfr0 = 0x00101F40;
1707     cpu->id_mmfr1 = 0x00000000;
1708     cpu->id_mmfr2 = 0x01000000;
1709     cpu->id_mmfr3 = 0x00000000;
1710     cpu->isar.id_isar0 = 0x01101110;
1711     cpu->isar.id_isar1 = 0x02212000;
1712     cpu->isar.id_isar2 = 0x20232232;
1713     cpu->isar.id_isar3 = 0x01111131;
1714     cpu->isar.id_isar4 = 0x01310132;
1715     cpu->isar.id_isar5 = 0x00000000;
1716     cpu->isar.id_isar6 = 0x00000000;
1717     cpu->clidr = 0x00000000;
1718     cpu->ctr = 0x8000c000;
1719 }
1720 
1721 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1722 {
1723     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1724     CPUClass *cc = CPU_CLASS(oc);
1725 
1726     acc->info = data;
1727 #ifndef CONFIG_USER_ONLY
1728     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1729 #endif
1730 
1731     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1732 }
1733 
1734 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1735     /* Dummy the TCM region regs for the moment */
1736     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1737       .access = PL1_RW, .type = ARM_CP_CONST },
1738     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1739       .access = PL1_RW, .type = ARM_CP_CONST },
1740     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1741       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1742     REGINFO_SENTINEL
1743 };
1744 
1745 static void cortex_r5_initfn(Object *obj)
1746 {
1747     ARMCPU *cpu = ARM_CPU(obj);
1748 
1749     set_feature(&cpu->env, ARM_FEATURE_V7);
1750     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1751     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1752     cpu->midr = 0x411fc153; /* r1p3 */
1753     cpu->id_pfr0 = 0x0131;
1754     cpu->id_pfr1 = 0x001;
1755     cpu->id_dfr0 = 0x010400;
1756     cpu->id_afr0 = 0x0;
1757     cpu->id_mmfr0 = 0x0210030;
1758     cpu->id_mmfr1 = 0x00000000;
1759     cpu->id_mmfr2 = 0x01200000;
1760     cpu->id_mmfr3 = 0x0211;
1761     cpu->isar.id_isar0 = 0x02101111;
1762     cpu->isar.id_isar1 = 0x13112111;
1763     cpu->isar.id_isar2 = 0x21232141;
1764     cpu->isar.id_isar3 = 0x01112131;
1765     cpu->isar.id_isar4 = 0x0010142;
1766     cpu->isar.id_isar5 = 0x0;
1767     cpu->isar.id_isar6 = 0x0;
1768     cpu->mp_is_up = true;
1769     cpu->pmsav7_dregion = 16;
1770     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1771 }
1772 
1773 static void cortex_r5f_initfn(Object *obj)
1774 {
1775     ARMCPU *cpu = ARM_CPU(obj);
1776 
1777     cortex_r5_initfn(obj);
1778     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1779     cpu->isar.mvfr0 = 0x10110221;
1780     cpu->isar.mvfr1 = 0x00000011;
1781 }
1782 
1783 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1784     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1785       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1786     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1787       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1788     REGINFO_SENTINEL
1789 };
1790 
1791 static void cortex_a8_initfn(Object *obj)
1792 {
1793     ARMCPU *cpu = ARM_CPU(obj);
1794 
1795     cpu->dtb_compatible = "arm,cortex-a8";
1796     set_feature(&cpu->env, ARM_FEATURE_V7);
1797     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1798     set_feature(&cpu->env, ARM_FEATURE_NEON);
1799     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1800     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1801     set_feature(&cpu->env, ARM_FEATURE_EL3);
1802     cpu->midr = 0x410fc080;
1803     cpu->reset_fpsid = 0x410330c0;
1804     cpu->isar.mvfr0 = 0x11110222;
1805     cpu->isar.mvfr1 = 0x00011111;
1806     cpu->ctr = 0x82048004;
1807     cpu->reset_sctlr = 0x00c50078;
1808     cpu->id_pfr0 = 0x1031;
1809     cpu->id_pfr1 = 0x11;
1810     cpu->id_dfr0 = 0x400;
1811     cpu->id_afr0 = 0;
1812     cpu->id_mmfr0 = 0x31100003;
1813     cpu->id_mmfr1 = 0x20000000;
1814     cpu->id_mmfr2 = 0x01202000;
1815     cpu->id_mmfr3 = 0x11;
1816     cpu->isar.id_isar0 = 0x00101111;
1817     cpu->isar.id_isar1 = 0x12112111;
1818     cpu->isar.id_isar2 = 0x21232031;
1819     cpu->isar.id_isar3 = 0x11112131;
1820     cpu->isar.id_isar4 = 0x00111142;
1821     cpu->dbgdidr = 0x15141000;
1822     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1823     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1824     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1825     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1826     cpu->reset_auxcr = 2;
1827     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1828 }
1829 
1830 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1831     /* power_control should be set to maximum latency. Again,
1832      * default to 0 and set by private hook
1833      */
1834     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1835       .access = PL1_RW, .resetvalue = 0,
1836       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1837     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1838       .access = PL1_RW, .resetvalue = 0,
1839       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1840     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1841       .access = PL1_RW, .resetvalue = 0,
1842       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1843     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1844       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1845     /* TLB lockdown control */
1846     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1847       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1848     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1849       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1850     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1851       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1852     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1853       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1854     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1855       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1856     REGINFO_SENTINEL
1857 };
1858 
1859 static void cortex_a9_initfn(Object *obj)
1860 {
1861     ARMCPU *cpu = ARM_CPU(obj);
1862 
1863     cpu->dtb_compatible = "arm,cortex-a9";
1864     set_feature(&cpu->env, ARM_FEATURE_V7);
1865     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1866     set_feature(&cpu->env, ARM_FEATURE_NEON);
1867     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1868     set_feature(&cpu->env, ARM_FEATURE_EL3);
1869     /* Note that A9 supports the MP extensions even for
1870      * A9UP and single-core A9MP (which are both different
1871      * and valid configurations; we don't model A9UP).
1872      */
1873     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1874     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1875     cpu->midr = 0x410fc090;
1876     cpu->reset_fpsid = 0x41033090;
1877     cpu->isar.mvfr0 = 0x11110222;
1878     cpu->isar.mvfr1 = 0x01111111;
1879     cpu->ctr = 0x80038003;
1880     cpu->reset_sctlr = 0x00c50078;
1881     cpu->id_pfr0 = 0x1031;
1882     cpu->id_pfr1 = 0x11;
1883     cpu->id_dfr0 = 0x000;
1884     cpu->id_afr0 = 0;
1885     cpu->id_mmfr0 = 0x00100103;
1886     cpu->id_mmfr1 = 0x20000000;
1887     cpu->id_mmfr2 = 0x01230000;
1888     cpu->id_mmfr3 = 0x00002111;
1889     cpu->isar.id_isar0 = 0x00101111;
1890     cpu->isar.id_isar1 = 0x13112111;
1891     cpu->isar.id_isar2 = 0x21232041;
1892     cpu->isar.id_isar3 = 0x11112131;
1893     cpu->isar.id_isar4 = 0x00111142;
1894     cpu->dbgdidr = 0x35141000;
1895     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1896     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1897     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1898     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1899 }
1900 
1901 #ifndef CONFIG_USER_ONLY
1902 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1903 {
1904     /* Linux wants the number of processors from here.
1905      * Might as well set the interrupt-controller bit too.
1906      */
1907     return ((smp_cpus - 1) << 24) | (1 << 23);
1908 }
1909 #endif
1910 
1911 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1912 #ifndef CONFIG_USER_ONLY
1913     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1914       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1915       .writefn = arm_cp_write_ignore, },
1916 #endif
1917     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1918       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1919     REGINFO_SENTINEL
1920 };
1921 
1922 static void cortex_a7_initfn(Object *obj)
1923 {
1924     ARMCPU *cpu = ARM_CPU(obj);
1925 
1926     cpu->dtb_compatible = "arm,cortex-a7";
1927     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1928     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1929     set_feature(&cpu->env, ARM_FEATURE_NEON);
1930     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1931     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1932     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1933     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1934     set_feature(&cpu->env, ARM_FEATURE_EL2);
1935     set_feature(&cpu->env, ARM_FEATURE_EL3);
1936     set_feature(&cpu->env, ARM_FEATURE_PMU);
1937     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1938     cpu->midr = 0x410fc075;
1939     cpu->reset_fpsid = 0x41023075;
1940     cpu->isar.mvfr0 = 0x10110222;
1941     cpu->isar.mvfr1 = 0x11111111;
1942     cpu->ctr = 0x84448003;
1943     cpu->reset_sctlr = 0x00c50078;
1944     cpu->id_pfr0 = 0x00001131;
1945     cpu->id_pfr1 = 0x00011011;
1946     cpu->id_dfr0 = 0x02010555;
1947     cpu->id_afr0 = 0x00000000;
1948     cpu->id_mmfr0 = 0x10101105;
1949     cpu->id_mmfr1 = 0x40000000;
1950     cpu->id_mmfr2 = 0x01240000;
1951     cpu->id_mmfr3 = 0x02102211;
1952     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1953      * table 4-41 gives 0x02101110, which includes the arm div insns.
1954      */
1955     cpu->isar.id_isar0 = 0x02101110;
1956     cpu->isar.id_isar1 = 0x13112111;
1957     cpu->isar.id_isar2 = 0x21232041;
1958     cpu->isar.id_isar3 = 0x11112131;
1959     cpu->isar.id_isar4 = 0x10011142;
1960     cpu->dbgdidr = 0x3515f005;
1961     cpu->clidr = 0x0a200023;
1962     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1963     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1964     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1965     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1966 }
1967 
1968 static void cortex_a15_initfn(Object *obj)
1969 {
1970     ARMCPU *cpu = ARM_CPU(obj);
1971 
1972     cpu->dtb_compatible = "arm,cortex-a15";
1973     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1974     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1975     set_feature(&cpu->env, ARM_FEATURE_NEON);
1976     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1977     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1978     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1979     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1980     set_feature(&cpu->env, ARM_FEATURE_EL2);
1981     set_feature(&cpu->env, ARM_FEATURE_EL3);
1982     set_feature(&cpu->env, ARM_FEATURE_PMU);
1983     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1984     cpu->midr = 0x412fc0f1;
1985     cpu->reset_fpsid = 0x410430f0;
1986     cpu->isar.mvfr0 = 0x10110222;
1987     cpu->isar.mvfr1 = 0x11111111;
1988     cpu->ctr = 0x8444c004;
1989     cpu->reset_sctlr = 0x00c50078;
1990     cpu->id_pfr0 = 0x00001131;
1991     cpu->id_pfr1 = 0x00011011;
1992     cpu->id_dfr0 = 0x02010555;
1993     cpu->id_afr0 = 0x00000000;
1994     cpu->id_mmfr0 = 0x10201105;
1995     cpu->id_mmfr1 = 0x20000000;
1996     cpu->id_mmfr2 = 0x01240000;
1997     cpu->id_mmfr3 = 0x02102211;
1998     cpu->isar.id_isar0 = 0x02101110;
1999     cpu->isar.id_isar1 = 0x13112111;
2000     cpu->isar.id_isar2 = 0x21232041;
2001     cpu->isar.id_isar3 = 0x11112131;
2002     cpu->isar.id_isar4 = 0x10011142;
2003     cpu->dbgdidr = 0x3515f021;
2004     cpu->clidr = 0x0a200023;
2005     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2006     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2007     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2008     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2009 }
2010 
2011 static void ti925t_initfn(Object *obj)
2012 {
2013     ARMCPU *cpu = ARM_CPU(obj);
2014     set_feature(&cpu->env, ARM_FEATURE_V4T);
2015     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2016     cpu->midr = ARM_CPUID_TI925T;
2017     cpu->ctr = 0x5109149;
2018     cpu->reset_sctlr = 0x00000070;
2019 }
2020 
2021 static void sa1100_initfn(Object *obj)
2022 {
2023     ARMCPU *cpu = ARM_CPU(obj);
2024 
2025     cpu->dtb_compatible = "intel,sa1100";
2026     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2027     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2028     cpu->midr = 0x4401A11B;
2029     cpu->reset_sctlr = 0x00000070;
2030 }
2031 
2032 static void sa1110_initfn(Object *obj)
2033 {
2034     ARMCPU *cpu = ARM_CPU(obj);
2035     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2036     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2037     cpu->midr = 0x6901B119;
2038     cpu->reset_sctlr = 0x00000070;
2039 }
2040 
2041 static void pxa250_initfn(Object *obj)
2042 {
2043     ARMCPU *cpu = ARM_CPU(obj);
2044 
2045     cpu->dtb_compatible = "marvell,xscale";
2046     set_feature(&cpu->env, ARM_FEATURE_V5);
2047     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2048     cpu->midr = 0x69052100;
2049     cpu->ctr = 0xd172172;
2050     cpu->reset_sctlr = 0x00000078;
2051 }
2052 
2053 static void pxa255_initfn(Object *obj)
2054 {
2055     ARMCPU *cpu = ARM_CPU(obj);
2056 
2057     cpu->dtb_compatible = "marvell,xscale";
2058     set_feature(&cpu->env, ARM_FEATURE_V5);
2059     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2060     cpu->midr = 0x69052d00;
2061     cpu->ctr = 0xd172172;
2062     cpu->reset_sctlr = 0x00000078;
2063 }
2064 
2065 static void pxa260_initfn(Object *obj)
2066 {
2067     ARMCPU *cpu = ARM_CPU(obj);
2068 
2069     cpu->dtb_compatible = "marvell,xscale";
2070     set_feature(&cpu->env, ARM_FEATURE_V5);
2071     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2072     cpu->midr = 0x69052903;
2073     cpu->ctr = 0xd172172;
2074     cpu->reset_sctlr = 0x00000078;
2075 }
2076 
2077 static void pxa261_initfn(Object *obj)
2078 {
2079     ARMCPU *cpu = ARM_CPU(obj);
2080 
2081     cpu->dtb_compatible = "marvell,xscale";
2082     set_feature(&cpu->env, ARM_FEATURE_V5);
2083     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2084     cpu->midr = 0x69052d05;
2085     cpu->ctr = 0xd172172;
2086     cpu->reset_sctlr = 0x00000078;
2087 }
2088 
2089 static void pxa262_initfn(Object *obj)
2090 {
2091     ARMCPU *cpu = ARM_CPU(obj);
2092 
2093     cpu->dtb_compatible = "marvell,xscale";
2094     set_feature(&cpu->env, ARM_FEATURE_V5);
2095     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2096     cpu->midr = 0x69052d06;
2097     cpu->ctr = 0xd172172;
2098     cpu->reset_sctlr = 0x00000078;
2099 }
2100 
2101 static void pxa270a0_initfn(Object *obj)
2102 {
2103     ARMCPU *cpu = ARM_CPU(obj);
2104 
2105     cpu->dtb_compatible = "marvell,xscale";
2106     set_feature(&cpu->env, ARM_FEATURE_V5);
2107     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2108     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2109     cpu->midr = 0x69054110;
2110     cpu->ctr = 0xd172172;
2111     cpu->reset_sctlr = 0x00000078;
2112 }
2113 
2114 static void pxa270a1_initfn(Object *obj)
2115 {
2116     ARMCPU *cpu = ARM_CPU(obj);
2117 
2118     cpu->dtb_compatible = "marvell,xscale";
2119     set_feature(&cpu->env, ARM_FEATURE_V5);
2120     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2121     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2122     cpu->midr = 0x69054111;
2123     cpu->ctr = 0xd172172;
2124     cpu->reset_sctlr = 0x00000078;
2125 }
2126 
2127 static void pxa270b0_initfn(Object *obj)
2128 {
2129     ARMCPU *cpu = ARM_CPU(obj);
2130 
2131     cpu->dtb_compatible = "marvell,xscale";
2132     set_feature(&cpu->env, ARM_FEATURE_V5);
2133     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2134     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2135     cpu->midr = 0x69054112;
2136     cpu->ctr = 0xd172172;
2137     cpu->reset_sctlr = 0x00000078;
2138 }
2139 
2140 static void pxa270b1_initfn(Object *obj)
2141 {
2142     ARMCPU *cpu = ARM_CPU(obj);
2143 
2144     cpu->dtb_compatible = "marvell,xscale";
2145     set_feature(&cpu->env, ARM_FEATURE_V5);
2146     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2147     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2148     cpu->midr = 0x69054113;
2149     cpu->ctr = 0xd172172;
2150     cpu->reset_sctlr = 0x00000078;
2151 }
2152 
2153 static void pxa270c0_initfn(Object *obj)
2154 {
2155     ARMCPU *cpu = ARM_CPU(obj);
2156 
2157     cpu->dtb_compatible = "marvell,xscale";
2158     set_feature(&cpu->env, ARM_FEATURE_V5);
2159     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2160     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2161     cpu->midr = 0x69054114;
2162     cpu->ctr = 0xd172172;
2163     cpu->reset_sctlr = 0x00000078;
2164 }
2165 
2166 static void pxa270c5_initfn(Object *obj)
2167 {
2168     ARMCPU *cpu = ARM_CPU(obj);
2169 
2170     cpu->dtb_compatible = "marvell,xscale";
2171     set_feature(&cpu->env, ARM_FEATURE_V5);
2172     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2173     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2174     cpu->midr = 0x69054117;
2175     cpu->ctr = 0xd172172;
2176     cpu->reset_sctlr = 0x00000078;
2177 }
2178 
2179 #ifndef TARGET_AARCH64
2180 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2181  * otherwise, a CPU with as many features enabled as our emulation supports.
2182  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2183  * this only needs to handle 32 bits.
2184  */
2185 static void arm_max_initfn(Object *obj)
2186 {
2187     ARMCPU *cpu = ARM_CPU(obj);
2188 
2189     if (kvm_enabled()) {
2190         kvm_arm_set_cpu_features_from_host(cpu);
2191     } else {
2192         cortex_a15_initfn(obj);
2193 
2194         /* old-style VFP short-vector support */
2195         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2196 
2197 #ifdef CONFIG_USER_ONLY
2198         /* We don't set these in system emulation mode for the moment,
2199          * since we don't correctly set (all of) the ID registers to
2200          * advertise them.
2201          */
2202         set_feature(&cpu->env, ARM_FEATURE_V8);
2203         {
2204             uint32_t t;
2205 
2206             t = cpu->isar.id_isar5;
2207             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2208             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2209             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2210             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2211             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2212             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2213             cpu->isar.id_isar5 = t;
2214 
2215             t = cpu->isar.id_isar6;
2216             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2217             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2218             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2219             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2220             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2221             cpu->isar.id_isar6 = t;
2222 
2223             t = cpu->isar.mvfr2;
2224             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2225             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2226             cpu->isar.mvfr2 = t;
2227 
2228             t = cpu->id_mmfr4;
2229             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2230             cpu->id_mmfr4 = t;
2231         }
2232 #endif
2233     }
2234 }
2235 #endif
2236 
2237 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2238 
2239 struct ARMCPUInfo {
2240     const char *name;
2241     void (*initfn)(Object *obj);
2242     void (*class_init)(ObjectClass *oc, void *data);
2243 };
2244 
2245 static const ARMCPUInfo arm_cpus[] = {
2246 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2247     { .name = "arm926",      .initfn = arm926_initfn },
2248     { .name = "arm946",      .initfn = arm946_initfn },
2249     { .name = "arm1026",     .initfn = arm1026_initfn },
2250     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2251      * older core than plain "arm1136". In particular this does not
2252      * have the v6K features.
2253      */
2254     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2255     { .name = "arm1136",     .initfn = arm1136_initfn },
2256     { .name = "arm1176",     .initfn = arm1176_initfn },
2257     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2258     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2259                              .class_init = arm_v7m_class_init },
2260     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2261                              .class_init = arm_v7m_class_init },
2262     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2263                              .class_init = arm_v7m_class_init },
2264     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2265                              .class_init = arm_v7m_class_init },
2266     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2267     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2268     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2269     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2270     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2271     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2272     { .name = "ti925t",      .initfn = ti925t_initfn },
2273     { .name = "sa1100",      .initfn = sa1100_initfn },
2274     { .name = "sa1110",      .initfn = sa1110_initfn },
2275     { .name = "pxa250",      .initfn = pxa250_initfn },
2276     { .name = "pxa255",      .initfn = pxa255_initfn },
2277     { .name = "pxa260",      .initfn = pxa260_initfn },
2278     { .name = "pxa261",      .initfn = pxa261_initfn },
2279     { .name = "pxa262",      .initfn = pxa262_initfn },
2280     /* "pxa270" is an alias for "pxa270-a0" */
2281     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2282     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2283     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2284     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2285     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2286     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2287     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2288 #ifndef TARGET_AARCH64
2289     { .name = "max",         .initfn = arm_max_initfn },
2290 #endif
2291 #ifdef CONFIG_USER_ONLY
2292     { .name = "any",         .initfn = arm_max_initfn },
2293 #endif
2294 #endif
2295     { .name = NULL }
2296 };
2297 
2298 static Property arm_cpu_properties[] = {
2299     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2300     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2301     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2302     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2303                         mp_affinity, ARM64_AFFINITY_INVALID),
2304     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2305     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2306     DEFINE_PROP_END_OF_LIST()
2307 };
2308 
2309 static gchar *arm_gdb_arch_name(CPUState *cs)
2310 {
2311     ARMCPU *cpu = ARM_CPU(cs);
2312     CPUARMState *env = &cpu->env;
2313 
2314     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2315         return g_strdup("iwmmxt");
2316     }
2317     return g_strdup("arm");
2318 }
2319 
2320 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2321 {
2322     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2323     CPUClass *cc = CPU_CLASS(acc);
2324     DeviceClass *dc = DEVICE_CLASS(oc);
2325 
2326     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2327                                     &acc->parent_realize);
2328     dc->props = arm_cpu_properties;
2329 
2330     acc->parent_reset = cc->reset;
2331     cc->reset = arm_cpu_reset;
2332 
2333     cc->class_by_name = arm_cpu_class_by_name;
2334     cc->has_work = arm_cpu_has_work;
2335     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2336     cc->dump_state = arm_cpu_dump_state;
2337     cc->set_pc = arm_cpu_set_pc;
2338     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2339     cc->gdb_read_register = arm_cpu_gdb_read_register;
2340     cc->gdb_write_register = arm_cpu_gdb_write_register;
2341 #ifndef CONFIG_USER_ONLY
2342     cc->do_interrupt = arm_cpu_do_interrupt;
2343     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2344     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2345     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2346     cc->asidx_from_attrs = arm_asidx_from_attrs;
2347     cc->vmsd = &vmstate_arm_cpu;
2348     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2349     cc->write_elf64_note = arm_cpu_write_elf64_note;
2350     cc->write_elf32_note = arm_cpu_write_elf32_note;
2351 #endif
2352     cc->gdb_num_core_regs = 26;
2353     cc->gdb_core_xml_file = "arm-core.xml";
2354     cc->gdb_arch_name = arm_gdb_arch_name;
2355     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2356     cc->gdb_stop_before_watchpoint = true;
2357     cc->debug_excp_handler = arm_debug_excp_handler;
2358     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2359 #if !defined(CONFIG_USER_ONLY)
2360     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2361 #endif
2362 
2363     cc->disas_set_info = arm_disas_set_info;
2364 #ifdef CONFIG_TCG
2365     cc->tcg_initialize = arm_translate_init;
2366     cc->tlb_fill = arm_cpu_tlb_fill;
2367 #endif
2368 }
2369 
2370 #ifdef CONFIG_KVM
2371 static void arm_host_initfn(Object *obj)
2372 {
2373     ARMCPU *cpu = ARM_CPU(obj);
2374 
2375     kvm_arm_set_cpu_features_from_host(cpu);
2376     arm_cpu_post_init(obj);
2377 }
2378 
2379 static const TypeInfo host_arm_cpu_type_info = {
2380     .name = TYPE_ARM_HOST_CPU,
2381 #ifdef TARGET_AARCH64
2382     .parent = TYPE_AARCH64_CPU,
2383 #else
2384     .parent = TYPE_ARM_CPU,
2385 #endif
2386     .instance_init = arm_host_initfn,
2387 };
2388 
2389 #endif
2390 
2391 static void arm_cpu_instance_init(Object *obj)
2392 {
2393     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2394 
2395     acc->info->initfn(obj);
2396     arm_cpu_post_init(obj);
2397 }
2398 
2399 static void cpu_register_class_init(ObjectClass *oc, void *data)
2400 {
2401     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2402 
2403     acc->info = data;
2404 }
2405 
2406 static void cpu_register(const ARMCPUInfo *info)
2407 {
2408     TypeInfo type_info = {
2409         .parent = TYPE_ARM_CPU,
2410         .instance_size = sizeof(ARMCPU),
2411         .instance_init = arm_cpu_instance_init,
2412         .class_size = sizeof(ARMCPUClass),
2413         .class_init = info->class_init ?: cpu_register_class_init,
2414         .class_data = (void *)info,
2415     };
2416 
2417     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2418     type_register(&type_info);
2419     g_free((void *)type_info.name);
2420 }
2421 
2422 static const TypeInfo arm_cpu_type_info = {
2423     .name = TYPE_ARM_CPU,
2424     .parent = TYPE_CPU,
2425     .instance_size = sizeof(ARMCPU),
2426     .instance_init = arm_cpu_initfn,
2427     .instance_finalize = arm_cpu_finalizefn,
2428     .abstract = true,
2429     .class_size = sizeof(ARMCPUClass),
2430     .class_init = arm_cpu_class_init,
2431 };
2432 
2433 static const TypeInfo idau_interface_type_info = {
2434     .name = TYPE_IDAU_INTERFACE,
2435     .parent = TYPE_INTERFACE,
2436     .class_size = sizeof(IDAUInterfaceClass),
2437 };
2438 
2439 static void arm_cpu_register_types(void)
2440 {
2441     const ARMCPUInfo *info = arm_cpus;
2442 
2443     type_register_static(&arm_cpu_type_info);
2444     type_register_static(&idau_interface_type_info);
2445 
2446     while (info->name) {
2447         cpu_register(info);
2448         info++;
2449     }
2450 
2451 #ifdef CONFIG_KVM
2452     type_register_static(&host_arm_cpu_type_info);
2453 #endif
2454 }
2455 
2456 type_init(arm_cpu_register_types)
2457