xref: /openbmc/qemu/target/arm/cpu.c (revision e2d8cf9b)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 
52 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
53 {
54     ARMCPU *cpu = ARM_CPU(cs);
55     CPUARMState *env = &cpu->env;
56 
57     if (is_a64(env)) {
58         env->pc = value;
59         env->thumb = false;
60     } else {
61         env->regs[15] = value & ~1;
62         env->thumb = value & 1;
63     }
64 }
65 
66 static vaddr arm_cpu_get_pc(CPUState *cs)
67 {
68     ARMCPU *cpu = ARM_CPU(cs);
69     CPUARMState *env = &cpu->env;
70 
71     if (is_a64(env)) {
72         return env->pc;
73     } else {
74         return env->regs[15];
75     }
76 }
77 
78 #ifdef CONFIG_TCG
79 void arm_cpu_synchronize_from_tb(CPUState *cs,
80                                  const TranslationBlock *tb)
81 {
82     /* The program counter is always up to date with CF_PCREL. */
83     if (!(tb_cflags(tb) & CF_PCREL)) {
84         CPUARMState *env = cpu_env(cs);
85         /*
86          * It's OK to look at env for the current mode here, because it's
87          * never possible for an AArch64 TB to chain to an AArch32 TB.
88          */
89         if (is_a64(env)) {
90             env->pc = tb->pc;
91         } else {
92             env->regs[15] = tb->pc;
93         }
94     }
95 }
96 
97 void arm_restore_state_to_opc(CPUState *cs,
98                               const TranslationBlock *tb,
99                               const uint64_t *data)
100 {
101     CPUARMState *env = cpu_env(cs);
102 
103     if (is_a64(env)) {
104         if (tb_cflags(tb) & CF_PCREL) {
105             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
106         } else {
107             env->pc = data[0];
108         }
109         env->condexec_bits = 0;
110         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
111     } else {
112         if (tb_cflags(tb) & CF_PCREL) {
113             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
114         } else {
115             env->regs[15] = data[0];
116         }
117         env->condexec_bits = data[1];
118         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
119     }
120 }
121 #endif /* CONFIG_TCG */
122 
123 static bool arm_cpu_has_work(CPUState *cs)
124 {
125     ARMCPU *cpu = ARM_CPU(cs);
126 
127     return (cpu->power_state != PSCI_OFF)
128         && cs->interrupt_request &
129         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
130          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
131          | CPU_INTERRUPT_EXITTB);
132 }
133 
134 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
135                                  void *opaque)
136 {
137     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
138 
139     entry->hook = hook;
140     entry->opaque = opaque;
141 
142     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
143 }
144 
145 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
146                                  void *opaque)
147 {
148     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
149 
150     entry->hook = hook;
151     entry->opaque = opaque;
152 
153     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
154 }
155 
156 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
157 {
158     /* Reset a single ARMCPRegInfo register */
159     ARMCPRegInfo *ri = value;
160     ARMCPU *cpu = opaque;
161 
162     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
163         return;
164     }
165 
166     if (ri->resetfn) {
167         ri->resetfn(&cpu->env, ri);
168         return;
169     }
170 
171     /* A zero offset is never possible as it would be regs[0]
172      * so we use it to indicate that reset is being handled elsewhere.
173      * This is basically only used for fields in non-core coprocessors
174      * (like the pxa2xx ones).
175      */
176     if (!ri->fieldoffset) {
177         return;
178     }
179 
180     if (cpreg_field_is_64bit(ri)) {
181         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
182     } else {
183         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
184     }
185 }
186 
187 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
188 {
189     /* Purely an assertion check: we've already done reset once,
190      * so now check that running the reset for the cpreg doesn't
191      * change its value. This traps bugs where two different cpregs
192      * both try to reset the same state field but to different values.
193      */
194     ARMCPRegInfo *ri = value;
195     ARMCPU *cpu = opaque;
196     uint64_t oldvalue, newvalue;
197 
198     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
199         return;
200     }
201 
202     oldvalue = read_raw_cp_reg(&cpu->env, ri);
203     cp_reg_reset(key, value, opaque);
204     newvalue = read_raw_cp_reg(&cpu->env, ri);
205     assert(oldvalue == newvalue);
206 }
207 
208 static void arm_cpu_reset_hold(Object *obj)
209 {
210     CPUState *s = CPU(obj);
211     ARMCPU *cpu = ARM_CPU(s);
212     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
213     CPUARMState *env = &cpu->env;
214 
215     if (acc->parent_phases.hold) {
216         acc->parent_phases.hold(obj);
217     }
218 
219     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
220 
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
222     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
223 
224     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
225     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
226     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
227     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
228 
229     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
230 
231     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
233     }
234 
235     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
236         /* 64 bit CPUs always start in 64 bit mode */
237         env->aarch64 = true;
238 #if defined(CONFIG_USER_ONLY)
239         env->pstate = PSTATE_MODE_EL0t;
240         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
241         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
242         /* Enable all PAC keys.  */
243         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
244                                   SCTLR_EnDA | SCTLR_EnDB);
245         /* Trap on btype=3 for PACIxSP. */
246         env->cp15.sctlr_el[1] |= SCTLR_BT0;
247         /* Trap on implementation defined registers. */
248         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
249             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
250         }
251         /* and to the FP/Neon instructions */
252         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
253                                          CPACR_EL1, FPEN, 3);
254         /* and to the SVE instructions, with default vector length */
255         if (cpu_isar_feature(aa64_sve, cpu)) {
256             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257                                              CPACR_EL1, ZEN, 3);
258             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
259         }
260         /* and for SME instructions, with default vector length, and TPIDR2 */
261         if (cpu_isar_feature(aa64_sme, cpu)) {
262             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
263             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264                                              CPACR_EL1, SMEN, 3);
265             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
266             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
267                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
268                                                  SMCR, FA64, 1);
269             }
270         }
271         /*
272          * Enable 48-bit address space (TODO: take reserved_va into account).
273          * Enable TBI0 but not TBI1.
274          * Note that this must match useronly_clean_ptr.
275          */
276         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
277 
278         /* Enable MTE */
279         if (cpu_isar_feature(aa64_mte, cpu)) {
280             /* Enable tag access, but leave TCF0 as No Effect (0). */
281             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
282             /*
283              * Exclude all tags, so that tag 0 is always used.
284              * This corresponds to Linux current->thread.gcr_incl = 0.
285              *
286              * Set RRND, so that helper_irg() will generate a seed later.
287              * Here in cpu_reset(), the crypto subsystem has not yet been
288              * initialized.
289              */
290             env->cp15.gcr_el1 = 0x1ffff;
291         }
292         /*
293          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
294          * This is not yet exposed from the Linux kernel in any way.
295          */
296         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
297         /* Disable access to Debug Communication Channel (DCC). */
298         env->cp15.mdscr_el1 |= 1 << 12;
299         /* Enable FEAT_MOPS */
300         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
301 #else
302         /* Reset into the highest available EL */
303         if (arm_feature(env, ARM_FEATURE_EL3)) {
304             env->pstate = PSTATE_MODE_EL3h;
305         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
306             env->pstate = PSTATE_MODE_EL2h;
307         } else {
308             env->pstate = PSTATE_MODE_EL1h;
309         }
310 
311         /* Sample rvbar at reset.  */
312         env->cp15.rvbar = cpu->rvbar_prop;
313         env->pc = env->cp15.rvbar;
314 #endif
315     } else {
316 #if defined(CONFIG_USER_ONLY)
317         /* Userspace expects access to cp10 and cp11 for FP/Neon */
318         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
319                                          CPACR, CP10, 3);
320         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
321                                          CPACR, CP11, 3);
322 #endif
323         if (arm_feature(env, ARM_FEATURE_V8)) {
324             env->cp15.rvbar = cpu->rvbar_prop;
325             env->regs[15] = cpu->rvbar_prop;
326         }
327     }
328 
329 #if defined(CONFIG_USER_ONLY)
330     env->uncached_cpsr = ARM_CPU_MODE_USR;
331     /* For user mode we must enable access to coprocessors */
332     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
333     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
334         env->cp15.c15_cpar = 3;
335     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
336         env->cp15.c15_cpar = 1;
337     }
338 #else
339 
340     /*
341      * If the highest available EL is EL2, AArch32 will start in Hyp
342      * mode; otherwise it starts in SVC. Note that if we start in
343      * AArch64 then these values in the uncached_cpsr will be ignored.
344      */
345     if (arm_feature(env, ARM_FEATURE_EL2) &&
346         !arm_feature(env, ARM_FEATURE_EL3)) {
347         env->uncached_cpsr = ARM_CPU_MODE_HYP;
348     } else {
349         env->uncached_cpsr = ARM_CPU_MODE_SVC;
350     }
351     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
352 
353     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
354      * executing as AArch32 then check if highvecs are enabled and
355      * adjust the PC accordingly.
356      */
357     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
358         env->regs[15] = 0xFFFF0000;
359     }
360 
361     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
362 #endif
363 
364     if (arm_feature(env, ARM_FEATURE_M)) {
365 #ifndef CONFIG_USER_ONLY
366         uint32_t initial_msp; /* Loaded from 0x0 */
367         uint32_t initial_pc; /* Loaded from 0x4 */
368         uint8_t *rom;
369         uint32_t vecbase;
370 #endif
371 
372         if (cpu_isar_feature(aa32_lob, cpu)) {
373             /*
374              * LTPSIZE is constant 4 if MVE not implemented, and resets
375              * to an UNKNOWN value if MVE is implemented. We choose to
376              * always reset to 4.
377              */
378             env->v7m.ltpsize = 4;
379             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
380             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
381             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
382         }
383 
384         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
385             env->v7m.secure = true;
386         } else {
387             /* This bit resets to 0 if security is supported, but 1 if
388              * it is not. The bit is not present in v7M, but we set it
389              * here so we can avoid having to make checks on it conditional
390              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
391              */
392             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
393             /*
394              * Set NSACR to indicate "NS access permitted to everything";
395              * this avoids having to have all the tests of it being
396              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
397              * v8.1M the guest-visible value of NSACR in a CPU without the
398              * Security Extension is 0xcff.
399              */
400             env->v7m.nsacr = 0xcff;
401         }
402 
403         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
404          * that it resets to 1, so QEMU always does that rather than making
405          * it dependent on CPU model. In v8M it is RES1.
406          */
407         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
408         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
409         if (arm_feature(env, ARM_FEATURE_V8)) {
410             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
411             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
412             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
413         }
414         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
415             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
416             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
417         }
418 
419         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
420             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
421             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
422                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
423         }
424 
425 #ifndef CONFIG_USER_ONLY
426         /* Unlike A/R profile, M profile defines the reset LR value */
427         env->regs[14] = 0xffffffff;
428 
429         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
430         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
431 
432         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
433         vecbase = env->v7m.vecbase[env->v7m.secure];
434         rom = rom_ptr_for_as(s->as, vecbase, 8);
435         if (rom) {
436             /* Address zero is covered by ROM which hasn't yet been
437              * copied into physical memory.
438              */
439             initial_msp = ldl_p(rom);
440             initial_pc = ldl_p(rom + 4);
441         } else {
442             /* Address zero not covered by a ROM blob, or the ROM blob
443              * is in non-modifiable memory and this is a second reset after
444              * it got copied into memory. In the latter case, rom_ptr
445              * will return a NULL pointer and we should use ldl_phys instead.
446              */
447             initial_msp = ldl_phys(s->as, vecbase);
448             initial_pc = ldl_phys(s->as, vecbase + 4);
449         }
450 
451         qemu_log_mask(CPU_LOG_INT,
452                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
453                       initial_msp, initial_pc);
454 
455         env->regs[13] = initial_msp & 0xFFFFFFFC;
456         env->regs[15] = initial_pc & ~1;
457         env->thumb = initial_pc & 1;
458 #else
459         /*
460          * For user mode we run non-secure and with access to the FPU.
461          * The FPU context is active (ie does not need further setup)
462          * and is owned by non-secure.
463          */
464         env->v7m.secure = false;
465         env->v7m.nsacr = 0xcff;
466         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
467         env->v7m.fpccr[M_REG_S] &=
468             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
469         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
470 #endif
471     }
472 
473     /* M profile requires that reset clears the exclusive monitor;
474      * A profile does not, but clearing it makes more sense than having it
475      * set with an exclusive access on address zero.
476      */
477     arm_clear_exclusive(env);
478 
479     if (arm_feature(env, ARM_FEATURE_PMSA)) {
480         if (cpu->pmsav7_dregion > 0) {
481             if (arm_feature(env, ARM_FEATURE_V8)) {
482                 memset(env->pmsav8.rbar[M_REG_NS], 0,
483                        sizeof(*env->pmsav8.rbar[M_REG_NS])
484                        * cpu->pmsav7_dregion);
485                 memset(env->pmsav8.rlar[M_REG_NS], 0,
486                        sizeof(*env->pmsav8.rlar[M_REG_NS])
487                        * cpu->pmsav7_dregion);
488                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
489                     memset(env->pmsav8.rbar[M_REG_S], 0,
490                            sizeof(*env->pmsav8.rbar[M_REG_S])
491                            * cpu->pmsav7_dregion);
492                     memset(env->pmsav8.rlar[M_REG_S], 0,
493                            sizeof(*env->pmsav8.rlar[M_REG_S])
494                            * cpu->pmsav7_dregion);
495                 }
496             } else if (arm_feature(env, ARM_FEATURE_V7)) {
497                 memset(env->pmsav7.drbar, 0,
498                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
499                 memset(env->pmsav7.drsr, 0,
500                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
501                 memset(env->pmsav7.dracr, 0,
502                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
503             }
504         }
505 
506         if (cpu->pmsav8r_hdregion > 0) {
507             memset(env->pmsav8.hprbar, 0,
508                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
509             memset(env->pmsav8.hprlar, 0,
510                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
511         }
512 
513         env->pmsav7.rnr[M_REG_NS] = 0;
514         env->pmsav7.rnr[M_REG_S] = 0;
515         env->pmsav8.mair0[M_REG_NS] = 0;
516         env->pmsav8.mair0[M_REG_S] = 0;
517         env->pmsav8.mair1[M_REG_NS] = 0;
518         env->pmsav8.mair1[M_REG_S] = 0;
519     }
520 
521     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
522         if (cpu->sau_sregion > 0) {
523             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
524             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
525         }
526         env->sau.rnr = 0;
527         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
528          * the Cortex-M33 does.
529          */
530         env->sau.ctrl = 0;
531     }
532 
533     set_flush_to_zero(1, &env->vfp.standard_fp_status);
534     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
535     set_default_nan_mode(1, &env->vfp.standard_fp_status);
536     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
537     set_float_detect_tininess(float_tininess_before_rounding,
538                               &env->vfp.fp_status);
539     set_float_detect_tininess(float_tininess_before_rounding,
540                               &env->vfp.standard_fp_status);
541     set_float_detect_tininess(float_tininess_before_rounding,
542                               &env->vfp.fp_status_f16);
543     set_float_detect_tininess(float_tininess_before_rounding,
544                               &env->vfp.standard_fp_status_f16);
545 #ifndef CONFIG_USER_ONLY
546     if (kvm_enabled()) {
547         kvm_arm_reset_vcpu(cpu);
548     }
549 #endif
550 
551     if (tcg_enabled()) {
552         hw_breakpoint_update_all(cpu);
553         hw_watchpoint_update_all(cpu);
554 
555         arm_rebuild_hflags(env);
556     }
557 }
558 
559 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
560 {
561     ARMCPU *cpu = ARM_CPU(cpustate);
562     CPUARMState *env = &cpu->env;
563     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
564     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
565 
566     /*
567      * Check we have the EL we're aiming for. If that is the
568      * highest implemented EL, then cpu_reset has already done
569      * all the work.
570      */
571     switch (target_el) {
572     case 3:
573         assert(have_el3);
574         return;
575     case 2:
576         assert(have_el2);
577         if (!have_el3) {
578             return;
579         }
580         break;
581     case 1:
582         if (!have_el3 && !have_el2) {
583             return;
584         }
585         break;
586     default:
587         g_assert_not_reached();
588     }
589 
590     if (have_el3) {
591         /*
592          * Set the EL3 state so code can run at EL2. This should match
593          * the requirements set by Linux in its booting spec.
594          */
595         if (env->aarch64) {
596             env->cp15.scr_el3 |= SCR_RW;
597             if (cpu_isar_feature(aa64_pauth, cpu)) {
598                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
599             }
600             if (cpu_isar_feature(aa64_mte, cpu)) {
601                 env->cp15.scr_el3 |= SCR_ATA;
602             }
603             if (cpu_isar_feature(aa64_sve, cpu)) {
604                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
605                 env->vfp.zcr_el[3] = 0xf;
606             }
607             if (cpu_isar_feature(aa64_sme, cpu)) {
608                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
609                 env->cp15.scr_el3 |= SCR_ENTP2;
610                 env->vfp.smcr_el[3] = 0xf;
611             }
612             if (cpu_isar_feature(aa64_hcx, cpu)) {
613                 env->cp15.scr_el3 |= SCR_HXEN;
614             }
615             if (cpu_isar_feature(aa64_fgt, cpu)) {
616                 env->cp15.scr_el3 |= SCR_FGTEN;
617             }
618         }
619 
620         if (target_el == 2) {
621             /* If the guest is at EL2 then Linux expects the HVC insn to work */
622             env->cp15.scr_el3 |= SCR_HCE;
623         }
624 
625         /* Put CPU into non-secure state */
626         env->cp15.scr_el3 |= SCR_NS;
627         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
628         env->cp15.nsacr |= 3 << 10;
629     }
630 
631     if (have_el2 && target_el < 2) {
632         /* Set EL2 state so code can run at EL1. */
633         if (env->aarch64) {
634             env->cp15.hcr_el2 |= HCR_RW;
635         }
636     }
637 
638     /* Set the CPU to the desired state */
639     if (env->aarch64) {
640         env->pstate = aarch64_pstate_mode(target_el, true);
641     } else {
642         static const uint32_t mode_for_el[] = {
643             0,
644             ARM_CPU_MODE_SVC,
645             ARM_CPU_MODE_HYP,
646             ARM_CPU_MODE_SVC,
647         };
648 
649         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
650     }
651 }
652 
653 
654 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
655 
656 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
657                                      unsigned int target_el,
658                                      unsigned int cur_el, bool secure,
659                                      uint64_t hcr_el2)
660 {
661     CPUARMState *env = cpu_env(cs);
662     bool pstate_unmasked;
663     bool unmasked = false;
664 
665     /*
666      * Don't take exceptions if they target a lower EL.
667      * This check should catch any exceptions that would not be taken
668      * but left pending.
669      */
670     if (cur_el > target_el) {
671         return false;
672     }
673 
674     switch (excp_idx) {
675     case EXCP_FIQ:
676         pstate_unmasked = !(env->daif & PSTATE_F);
677         break;
678 
679     case EXCP_IRQ:
680         pstate_unmasked = !(env->daif & PSTATE_I);
681         break;
682 
683     case EXCP_VFIQ:
684         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
685             /* VFIQs are only taken when hypervized.  */
686             return false;
687         }
688         return !(env->daif & PSTATE_F);
689     case EXCP_VIRQ:
690         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
691             /* VIRQs are only taken when hypervized.  */
692             return false;
693         }
694         return !(env->daif & PSTATE_I);
695     case EXCP_VSERR:
696         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
697             /* VIRQs are only taken when hypervized.  */
698             return false;
699         }
700         return !(env->daif & PSTATE_A);
701     default:
702         g_assert_not_reached();
703     }
704 
705     /*
706      * Use the target EL, current execution state and SCR/HCR settings to
707      * determine whether the corresponding CPSR bit is used to mask the
708      * interrupt.
709      */
710     if ((target_el > cur_el) && (target_el != 1)) {
711         /* Exceptions targeting a higher EL may not be maskable */
712         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
713             switch (target_el) {
714             case 2:
715                 /*
716                  * According to ARM DDI 0487H.a, an interrupt can be masked
717                  * when HCR_E2H and HCR_TGE are both set regardless of the
718                  * current Security state. Note that we need to revisit this
719                  * part again once we need to support NMI.
720                  */
721                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
722                         unmasked = true;
723                 }
724                 break;
725             case 3:
726                 /* Interrupt cannot be masked when the target EL is 3 */
727                 unmasked = true;
728                 break;
729             default:
730                 g_assert_not_reached();
731             }
732         } else {
733             /*
734              * The old 32-bit-only environment has a more complicated
735              * masking setup. HCR and SCR bits not only affect interrupt
736              * routing but also change the behaviour of masking.
737              */
738             bool hcr, scr;
739 
740             switch (excp_idx) {
741             case EXCP_FIQ:
742                 /*
743                  * If FIQs are routed to EL3 or EL2 then there are cases where
744                  * we override the CPSR.F in determining if the exception is
745                  * masked or not. If neither of these are set then we fall back
746                  * to the CPSR.F setting otherwise we further assess the state
747                  * below.
748                  */
749                 hcr = hcr_el2 & HCR_FMO;
750                 scr = (env->cp15.scr_el3 & SCR_FIQ);
751 
752                 /*
753                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
754                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
755                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
756                  * when non-secure but only when FIQs are only routed to EL3.
757                  */
758                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
759                 break;
760             case EXCP_IRQ:
761                 /*
762                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
763                  * we may override the CPSR.I masking when in non-secure state.
764                  * The SCR.IRQ setting has already been taken into consideration
765                  * when setting the target EL, so it does not have a further
766                  * affect here.
767                  */
768                 hcr = hcr_el2 & HCR_IMO;
769                 scr = false;
770                 break;
771             default:
772                 g_assert_not_reached();
773             }
774 
775             if ((scr || hcr) && !secure) {
776                 unmasked = true;
777             }
778         }
779     }
780 
781     /*
782      * The PSTATE bits only mask the interrupt if we have not overridden the
783      * ability above.
784      */
785     return unmasked || pstate_unmasked;
786 }
787 
788 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
789 {
790     CPUClass *cc = CPU_GET_CLASS(cs);
791     CPUARMState *env = cpu_env(cs);
792     uint32_t cur_el = arm_current_el(env);
793     bool secure = arm_is_secure(env);
794     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
795     uint32_t target_el;
796     uint32_t excp_idx;
797 
798     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
799 
800     if (interrupt_request & CPU_INTERRUPT_FIQ) {
801         excp_idx = EXCP_FIQ;
802         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
803         if (arm_excp_unmasked(cs, excp_idx, target_el,
804                               cur_el, secure, hcr_el2)) {
805             goto found;
806         }
807     }
808     if (interrupt_request & CPU_INTERRUPT_HARD) {
809         excp_idx = EXCP_IRQ;
810         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
811         if (arm_excp_unmasked(cs, excp_idx, target_el,
812                               cur_el, secure, hcr_el2)) {
813             goto found;
814         }
815     }
816     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
817         excp_idx = EXCP_VIRQ;
818         target_el = 1;
819         if (arm_excp_unmasked(cs, excp_idx, target_el,
820                               cur_el, secure, hcr_el2)) {
821             goto found;
822         }
823     }
824     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
825         excp_idx = EXCP_VFIQ;
826         target_el = 1;
827         if (arm_excp_unmasked(cs, excp_idx, target_el,
828                               cur_el, secure, hcr_el2)) {
829             goto found;
830         }
831     }
832     if (interrupt_request & CPU_INTERRUPT_VSERR) {
833         excp_idx = EXCP_VSERR;
834         target_el = 1;
835         if (arm_excp_unmasked(cs, excp_idx, target_el,
836                               cur_el, secure, hcr_el2)) {
837             /* Taking a virtual abort clears HCR_EL2.VSE */
838             env->cp15.hcr_el2 &= ~HCR_VSE;
839             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
840             goto found;
841         }
842     }
843     return false;
844 
845  found:
846     cs->exception_index = excp_idx;
847     env->exception.target_el = target_el;
848     cc->tcg_ops->do_interrupt(cs);
849     return true;
850 }
851 
852 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
853 
854 void arm_cpu_update_virq(ARMCPU *cpu)
855 {
856     /*
857      * Update the interrupt level for VIRQ, which is the logical OR of
858      * the HCR_EL2.VI bit and the input line level from the GIC.
859      */
860     CPUARMState *env = &cpu->env;
861     CPUState *cs = CPU(cpu);
862 
863     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
864         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
865 
866     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
867         if (new_state) {
868             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
869         } else {
870             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
871         }
872     }
873 }
874 
875 void arm_cpu_update_vfiq(ARMCPU *cpu)
876 {
877     /*
878      * Update the interrupt level for VFIQ, which is the logical OR of
879      * the HCR_EL2.VF bit and the input line level from the GIC.
880      */
881     CPUARMState *env = &cpu->env;
882     CPUState *cs = CPU(cpu);
883 
884     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
885         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
886 
887     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
888         if (new_state) {
889             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
890         } else {
891             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
892         }
893     }
894 }
895 
896 void arm_cpu_update_vserr(ARMCPU *cpu)
897 {
898     /*
899      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
900      */
901     CPUARMState *env = &cpu->env;
902     CPUState *cs = CPU(cpu);
903 
904     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
905 
906     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
907         if (new_state) {
908             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
909         } else {
910             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
911         }
912     }
913 }
914 
915 #ifndef CONFIG_USER_ONLY
916 static void arm_cpu_set_irq(void *opaque, int irq, int level)
917 {
918     ARMCPU *cpu = opaque;
919     CPUARMState *env = &cpu->env;
920     CPUState *cs = CPU(cpu);
921     static const int mask[] = {
922         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
923         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
924         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
925         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
926     };
927 
928     if (!arm_feature(env, ARM_FEATURE_EL2) &&
929         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
930         /*
931          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
932          * have EL2 support we don't care. (Unless the guest is doing something
933          * silly this will only be calls saying "level is still 0".)
934          */
935         return;
936     }
937 
938     if (level) {
939         env->irq_line_state |= mask[irq];
940     } else {
941         env->irq_line_state &= ~mask[irq];
942     }
943 
944     switch (irq) {
945     case ARM_CPU_VIRQ:
946         arm_cpu_update_virq(cpu);
947         break;
948     case ARM_CPU_VFIQ:
949         arm_cpu_update_vfiq(cpu);
950         break;
951     case ARM_CPU_IRQ:
952     case ARM_CPU_FIQ:
953         if (level) {
954             cpu_interrupt(cs, mask[irq]);
955         } else {
956             cpu_reset_interrupt(cs, mask[irq]);
957         }
958         break;
959     default:
960         g_assert_not_reached();
961     }
962 }
963 
964 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
965 {
966 #ifdef CONFIG_KVM
967     ARMCPU *cpu = opaque;
968     CPUARMState *env = &cpu->env;
969     CPUState *cs = CPU(cpu);
970     uint32_t linestate_bit;
971     int irq_id;
972 
973     switch (irq) {
974     case ARM_CPU_IRQ:
975         irq_id = KVM_ARM_IRQ_CPU_IRQ;
976         linestate_bit = CPU_INTERRUPT_HARD;
977         break;
978     case ARM_CPU_FIQ:
979         irq_id = KVM_ARM_IRQ_CPU_FIQ;
980         linestate_bit = CPU_INTERRUPT_FIQ;
981         break;
982     default:
983         g_assert_not_reached();
984     }
985 
986     if (level) {
987         env->irq_line_state |= linestate_bit;
988     } else {
989         env->irq_line_state &= ~linestate_bit;
990     }
991     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
992 #endif
993 }
994 
995 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
996 {
997     ARMCPU *cpu = ARM_CPU(cs);
998     CPUARMState *env = &cpu->env;
999 
1000     cpu_synchronize_state(cs);
1001     return arm_cpu_data_is_big_endian(env);
1002 }
1003 
1004 #endif
1005 
1006 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1007 {
1008     ARMCPU *ac = ARM_CPU(cpu);
1009     CPUARMState *env = &ac->env;
1010     bool sctlr_b;
1011 
1012     if (is_a64(env)) {
1013         info->cap_arch = CS_ARCH_ARM64;
1014         info->cap_insn_unit = 4;
1015         info->cap_insn_split = 4;
1016     } else {
1017         int cap_mode;
1018         if (env->thumb) {
1019             info->cap_insn_unit = 2;
1020             info->cap_insn_split = 4;
1021             cap_mode = CS_MODE_THUMB;
1022         } else {
1023             info->cap_insn_unit = 4;
1024             info->cap_insn_split = 4;
1025             cap_mode = CS_MODE_ARM;
1026         }
1027         if (arm_feature(env, ARM_FEATURE_V8)) {
1028             cap_mode |= CS_MODE_V8;
1029         }
1030         if (arm_feature(env, ARM_FEATURE_M)) {
1031             cap_mode |= CS_MODE_MCLASS;
1032         }
1033         info->cap_arch = CS_ARCH_ARM;
1034         info->cap_mode = cap_mode;
1035     }
1036 
1037     sctlr_b = arm_sctlr_b(env);
1038     if (bswap_code(sctlr_b)) {
1039 #if TARGET_BIG_ENDIAN
1040         info->endian = BFD_ENDIAN_LITTLE;
1041 #else
1042         info->endian = BFD_ENDIAN_BIG;
1043 #endif
1044     }
1045     info->flags &= ~INSN_ARM_BE32;
1046 #ifndef CONFIG_USER_ONLY
1047     if (sctlr_b) {
1048         info->flags |= INSN_ARM_BE32;
1049     }
1050 #endif
1051 }
1052 
1053 #ifdef TARGET_AARCH64
1054 
1055 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1056 {
1057     ARMCPU *cpu = ARM_CPU(cs);
1058     CPUARMState *env = &cpu->env;
1059     uint32_t psr = pstate_read(env);
1060     int i, j;
1061     int el = arm_current_el(env);
1062     uint64_t hcr = arm_hcr_el2_eff(env);
1063     const char *ns_status;
1064     bool sve;
1065 
1066     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1067     for (i = 0; i < 32; i++) {
1068         if (i == 31) {
1069             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1070         } else {
1071             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1072                          (i + 2) % 3 ? " " : "\n");
1073         }
1074     }
1075 
1076     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1077         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1078     } else {
1079         ns_status = "";
1080     }
1081     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1082                  psr,
1083                  psr & PSTATE_N ? 'N' : '-',
1084                  psr & PSTATE_Z ? 'Z' : '-',
1085                  psr & PSTATE_C ? 'C' : '-',
1086                  psr & PSTATE_V ? 'V' : '-',
1087                  ns_status,
1088                  el,
1089                  psr & PSTATE_SP ? 'h' : 't');
1090 
1091     if (cpu_isar_feature(aa64_sme, cpu)) {
1092         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1093                      env->svcr,
1094                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1095                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1096     }
1097     if (cpu_isar_feature(aa64_bti, cpu)) {
1098         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1099     }
1100     qemu_fprintf(f, "%s%s%s",
1101                  (hcr & HCR_NV) ? " NV" : "",
1102                  (hcr & HCR_NV1) ? " NV1" : "",
1103                  (hcr & HCR_NV2) ? " NV2" : "");
1104     if (!(flags & CPU_DUMP_FPU)) {
1105         qemu_fprintf(f, "\n");
1106         return;
1107     }
1108     if (fp_exception_el(env, el) != 0) {
1109         qemu_fprintf(f, "    FPU disabled\n");
1110         return;
1111     }
1112     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1113                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1114 
1115     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1116         sve = sme_exception_el(env, el) == 0;
1117     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1118         sve = sve_exception_el(env, el) == 0;
1119     } else {
1120         sve = false;
1121     }
1122 
1123     if (sve) {
1124         int zcr_len = sve_vqm1_for_el(env, el);
1125 
1126         for (i = 0; i <= FFR_PRED_NUM; i++) {
1127             bool eol;
1128             if (i == FFR_PRED_NUM) {
1129                 qemu_fprintf(f, "FFR=");
1130                 /* It's last, so end the line.  */
1131                 eol = true;
1132             } else {
1133                 qemu_fprintf(f, "P%02d=", i);
1134                 switch (zcr_len) {
1135                 case 0:
1136                     eol = i % 8 == 7;
1137                     break;
1138                 case 1:
1139                     eol = i % 6 == 5;
1140                     break;
1141                 case 2:
1142                 case 3:
1143                     eol = i % 3 == 2;
1144                     break;
1145                 default:
1146                     /* More than one quadword per predicate.  */
1147                     eol = true;
1148                     break;
1149                 }
1150             }
1151             for (j = zcr_len / 4; j >= 0; j--) {
1152                 int digits;
1153                 if (j * 4 + 4 <= zcr_len + 1) {
1154                     digits = 16;
1155                 } else {
1156                     digits = (zcr_len % 4 + 1) * 4;
1157                 }
1158                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1159                              env->vfp.pregs[i].p[j],
1160                              j ? ":" : eol ? "\n" : " ");
1161             }
1162         }
1163 
1164         if (zcr_len == 0) {
1165             /*
1166              * With vl=16, there are only 37 columns per register,
1167              * so output two registers per line.
1168              */
1169             for (i = 0; i < 32; i++) {
1170                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1171                              i, env->vfp.zregs[i].d[1],
1172                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1173             }
1174         } else {
1175             for (i = 0; i < 32; i++) {
1176                 qemu_fprintf(f, "Z%02d=", i);
1177                 for (j = zcr_len; j >= 0; j--) {
1178                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1179                                  env->vfp.zregs[i].d[j * 2 + 1],
1180                                  env->vfp.zregs[i].d[j * 2 + 0],
1181                                  j ? ":" : "\n");
1182                 }
1183             }
1184         }
1185     } else {
1186         for (i = 0; i < 32; i++) {
1187             uint64_t *q = aa64_vfp_qreg(env, i);
1188             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1189                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1190         }
1191     }
1192 
1193     if (cpu_isar_feature(aa64_sme, cpu) &&
1194         FIELD_EX64(env->svcr, SVCR, ZA) &&
1195         sme_exception_el(env, el) == 0) {
1196         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1197         int svl = (zcr_len + 1) * 16;
1198         int svl_lg10 = svl < 100 ? 2 : 3;
1199 
1200         for (i = 0; i < svl; i++) {
1201             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1202             for (j = zcr_len; j >= 0; --j) {
1203                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1204                              env->zarray[i].d[2 * j + 1],
1205                              env->zarray[i].d[2 * j],
1206                              j ? ':' : '\n');
1207             }
1208         }
1209     }
1210 }
1211 
1212 #else
1213 
1214 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1215 {
1216     g_assert_not_reached();
1217 }
1218 
1219 #endif
1220 
1221 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1222 {
1223     ARMCPU *cpu = ARM_CPU(cs);
1224     CPUARMState *env = &cpu->env;
1225     int i;
1226 
1227     if (is_a64(env)) {
1228         aarch64_cpu_dump_state(cs, f, flags);
1229         return;
1230     }
1231 
1232     for (i = 0; i < 16; i++) {
1233         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1234         if ((i % 4) == 3) {
1235             qemu_fprintf(f, "\n");
1236         } else {
1237             qemu_fprintf(f, " ");
1238         }
1239     }
1240 
1241     if (arm_feature(env, ARM_FEATURE_M)) {
1242         uint32_t xpsr = xpsr_read(env);
1243         const char *mode;
1244         const char *ns_status = "";
1245 
1246         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1247             ns_status = env->v7m.secure ? "S " : "NS ";
1248         }
1249 
1250         if (xpsr & XPSR_EXCP) {
1251             mode = "handler";
1252         } else {
1253             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1254                 mode = "unpriv-thread";
1255             } else {
1256                 mode = "priv-thread";
1257             }
1258         }
1259 
1260         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1261                      xpsr,
1262                      xpsr & XPSR_N ? 'N' : '-',
1263                      xpsr & XPSR_Z ? 'Z' : '-',
1264                      xpsr & XPSR_C ? 'C' : '-',
1265                      xpsr & XPSR_V ? 'V' : '-',
1266                      xpsr & XPSR_T ? 'T' : 'A',
1267                      ns_status,
1268                      mode);
1269     } else {
1270         uint32_t psr = cpsr_read(env);
1271         const char *ns_status = "";
1272 
1273         if (arm_feature(env, ARM_FEATURE_EL3) &&
1274             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1275             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1276         }
1277 
1278         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1279                      psr,
1280                      psr & CPSR_N ? 'N' : '-',
1281                      psr & CPSR_Z ? 'Z' : '-',
1282                      psr & CPSR_C ? 'C' : '-',
1283                      psr & CPSR_V ? 'V' : '-',
1284                      psr & CPSR_T ? 'T' : 'A',
1285                      ns_status,
1286                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1287     }
1288 
1289     if (flags & CPU_DUMP_FPU) {
1290         int numvfpregs = 0;
1291         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1292             numvfpregs = 32;
1293         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1294             numvfpregs = 16;
1295         }
1296         for (i = 0; i < numvfpregs; i++) {
1297             uint64_t v = *aa32_vfp_dreg(env, i);
1298             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1299                          i * 2, (uint32_t)v,
1300                          i * 2 + 1, (uint32_t)(v >> 32),
1301                          i, v);
1302         }
1303         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1304         if (cpu_isar_feature(aa32_mve, cpu)) {
1305             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1306         }
1307     }
1308 }
1309 
1310 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1311 {
1312     uint32_t Aff1 = idx / clustersz;
1313     uint32_t Aff0 = idx % clustersz;
1314     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1315 }
1316 
1317 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1318 {
1319     return cpu->mp_affinity;
1320 }
1321 
1322 static void arm_cpu_initfn(Object *obj)
1323 {
1324     ARMCPU *cpu = ARM_CPU(obj);
1325 
1326     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1327                                          NULL, g_free);
1328 
1329     QLIST_INIT(&cpu->pre_el_change_hooks);
1330     QLIST_INIT(&cpu->el_change_hooks);
1331 
1332 #ifdef CONFIG_USER_ONLY
1333 # ifdef TARGET_AARCH64
1334     /*
1335      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1336      * These values were chosen to fit within the default signal frame.
1337      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1338      * and our corresponding cpu property.
1339      */
1340     cpu->sve_default_vq = 4;
1341     cpu->sme_default_vq = 2;
1342 # endif
1343 #else
1344     /* Our inbound IRQ and FIQ lines */
1345     if (kvm_enabled()) {
1346         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1347          * the same interface as non-KVM CPUs.
1348          */
1349         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1350     } else {
1351         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1352     }
1353 
1354     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1355                        ARRAY_SIZE(cpu->gt_timer_outputs));
1356 
1357     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1358                              "gicv3-maintenance-interrupt", 1);
1359     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1360                              "pmu-interrupt", 1);
1361 #endif
1362 
1363     /* DTB consumers generally don't in fact care what the 'compatible'
1364      * string is, so always provide some string and trust that a hypothetical
1365      * picky DTB consumer will also provide a helpful error message.
1366      */
1367     cpu->dtb_compatible = "qemu,unknown";
1368     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1369     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1370 
1371     if (tcg_enabled() || hvf_enabled()) {
1372         /* TCG and HVF implement PSCI 1.1 */
1373         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1374     }
1375 }
1376 
1377 static Property arm_cpu_gt_cntfrq_property =
1378             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1379                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1380 
1381 static Property arm_cpu_reset_cbar_property =
1382             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1383 
1384 static Property arm_cpu_reset_hivecs_property =
1385             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1386 
1387 #ifndef CONFIG_USER_ONLY
1388 static Property arm_cpu_has_el2_property =
1389             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1390 
1391 static Property arm_cpu_has_el3_property =
1392             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1393 #endif
1394 
1395 static Property arm_cpu_cfgend_property =
1396             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1397 
1398 static Property arm_cpu_has_vfp_property =
1399             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1400 
1401 static Property arm_cpu_has_vfp_d32_property =
1402             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1403 
1404 static Property arm_cpu_has_neon_property =
1405             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1406 
1407 static Property arm_cpu_has_dsp_property =
1408             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1409 
1410 static Property arm_cpu_has_mpu_property =
1411             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1412 
1413 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1414  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1415  * the right value for that particular CPU type, and we don't want
1416  * to override that with an incorrect constant value.
1417  */
1418 static Property arm_cpu_pmsav7_dregion_property =
1419             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1420                                            pmsav7_dregion,
1421                                            qdev_prop_uint32, uint32_t);
1422 
1423 static bool arm_get_pmu(Object *obj, Error **errp)
1424 {
1425     ARMCPU *cpu = ARM_CPU(obj);
1426 
1427     return cpu->has_pmu;
1428 }
1429 
1430 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1431 {
1432     ARMCPU *cpu = ARM_CPU(obj);
1433 
1434     if (value) {
1435         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1436             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1437             return;
1438         }
1439         set_feature(&cpu->env, ARM_FEATURE_PMU);
1440     } else {
1441         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1442     }
1443     cpu->has_pmu = value;
1444 }
1445 
1446 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1447 {
1448     /*
1449      * The exact approach to calculating guest ticks is:
1450      *
1451      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1452      *              NANOSECONDS_PER_SECOND);
1453      *
1454      * We don't do that. Rather we intentionally use integer division
1455      * truncation below and in the caller for the conversion of host monotonic
1456      * time to guest ticks to provide the exact inverse for the semantics of
1457      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1458      * it loses precision when representing frequencies where
1459      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1460      * provide an exact inverse leads to scheduling timers with negative
1461      * periods, which in turn leads to sticky behaviour in the guest.
1462      *
1463      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1464      * cannot become zero.
1465      */
1466     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1467       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1468 }
1469 
1470 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1471 {
1472     CPUARMState *env = &cpu->env;
1473     bool no_aa32 = false;
1474 
1475     /*
1476      * Some features automatically imply others: set the feature
1477      * bits explicitly for these cases.
1478      */
1479 
1480     if (arm_feature(env, ARM_FEATURE_M)) {
1481         set_feature(env, ARM_FEATURE_PMSA);
1482     }
1483 
1484     if (arm_feature(env, ARM_FEATURE_V8)) {
1485         if (arm_feature(env, ARM_FEATURE_M)) {
1486             set_feature(env, ARM_FEATURE_V7);
1487         } else {
1488             set_feature(env, ARM_FEATURE_V7VE);
1489         }
1490     }
1491 
1492     /*
1493      * There exist AArch64 cpus without AArch32 support.  When KVM
1494      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1495      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1496      * As a general principle, we also do not make ID register
1497      * consistency checks anywhere unless using TCG, because only
1498      * for TCG would a consistency-check failure be a QEMU bug.
1499      */
1500     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1501         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1502     }
1503 
1504     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1505         /*
1506          * v7 Virtualization Extensions. In real hardware this implies
1507          * EL2 and also the presence of the Security Extensions.
1508          * For QEMU, for backwards-compatibility we implement some
1509          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1510          * include the various other features that V7VE implies.
1511          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1512          * Security Extensions is ARM_FEATURE_EL3.
1513          */
1514         assert(!tcg_enabled() || no_aa32 ||
1515                cpu_isar_feature(aa32_arm_div, cpu));
1516         set_feature(env, ARM_FEATURE_LPAE);
1517         set_feature(env, ARM_FEATURE_V7);
1518     }
1519     if (arm_feature(env, ARM_FEATURE_V7)) {
1520         set_feature(env, ARM_FEATURE_VAPA);
1521         set_feature(env, ARM_FEATURE_THUMB2);
1522         set_feature(env, ARM_FEATURE_MPIDR);
1523         if (!arm_feature(env, ARM_FEATURE_M)) {
1524             set_feature(env, ARM_FEATURE_V6K);
1525         } else {
1526             set_feature(env, ARM_FEATURE_V6);
1527         }
1528 
1529         /*
1530          * Always define VBAR for V7 CPUs even if it doesn't exist in
1531          * non-EL3 configs. This is needed by some legacy boards.
1532          */
1533         set_feature(env, ARM_FEATURE_VBAR);
1534     }
1535     if (arm_feature(env, ARM_FEATURE_V6K)) {
1536         set_feature(env, ARM_FEATURE_V6);
1537         set_feature(env, ARM_FEATURE_MVFR);
1538     }
1539     if (arm_feature(env, ARM_FEATURE_V6)) {
1540         set_feature(env, ARM_FEATURE_V5);
1541         if (!arm_feature(env, ARM_FEATURE_M)) {
1542             assert(!tcg_enabled() || no_aa32 ||
1543                    cpu_isar_feature(aa32_jazelle, cpu));
1544             set_feature(env, ARM_FEATURE_AUXCR);
1545         }
1546     }
1547     if (arm_feature(env, ARM_FEATURE_V5)) {
1548         set_feature(env, ARM_FEATURE_V4T);
1549     }
1550     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1551         set_feature(env, ARM_FEATURE_V7MP);
1552     }
1553     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1554         set_feature(env, ARM_FEATURE_CBAR);
1555     }
1556     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1557         !arm_feature(env, ARM_FEATURE_M)) {
1558         set_feature(env, ARM_FEATURE_THUMB_DSP);
1559     }
1560 }
1561 
1562 void arm_cpu_post_init(Object *obj)
1563 {
1564     ARMCPU *cpu = ARM_CPU(obj);
1565 
1566     /*
1567      * Some features imply others. Figure this out now, because we
1568      * are going to look at the feature bits in deciding which
1569      * properties to add.
1570      */
1571     arm_cpu_propagate_feature_implications(cpu);
1572 
1573     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1574         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1575         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1576     }
1577 
1578     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1579         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1580     }
1581 
1582     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1583         object_property_add_uint64_ptr(obj, "rvbar",
1584                                        &cpu->rvbar_prop,
1585                                        OBJ_PROP_FLAG_READWRITE);
1586     }
1587 
1588 #ifndef CONFIG_USER_ONLY
1589     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1590         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1591          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1592          */
1593         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1594 
1595         object_property_add_link(obj, "secure-memory",
1596                                  TYPE_MEMORY_REGION,
1597                                  (Object **)&cpu->secure_memory,
1598                                  qdev_prop_allow_set_link_before_realize,
1599                                  OBJ_PROP_LINK_STRONG);
1600     }
1601 
1602     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1603         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1604     }
1605 #endif
1606 
1607     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1608         cpu->has_pmu = true;
1609         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1610     }
1611 
1612     /*
1613      * Allow user to turn off VFP and Neon support, but only for TCG --
1614      * KVM does not currently allow us to lie to the guest about its
1615      * ID/feature registers, so the guest always sees what the host has.
1616      */
1617     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1618         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1619             cpu->has_vfp = true;
1620             cpu->has_vfp_d32 = true;
1621             if (tcg_enabled() || qtest_enabled()) {
1622                 qdev_property_add_static(DEVICE(obj),
1623                                          &arm_cpu_has_vfp_property);
1624             }
1625         }
1626     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1627         cpu->has_vfp = true;
1628         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1629             cpu->has_vfp_d32 = true;
1630             /*
1631              * The permitted values of the SIMDReg bits [3:0] on
1632              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1633              * make sure that has_vfp_d32 can not be set to false.
1634              */
1635             if ((tcg_enabled() || qtest_enabled())
1636                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1637                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1638                 qdev_property_add_static(DEVICE(obj),
1639                                          &arm_cpu_has_vfp_d32_property);
1640             }
1641         }
1642     }
1643 
1644     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1645         cpu->has_neon = true;
1646         if (!kvm_enabled()) {
1647             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1648         }
1649     }
1650 
1651     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1652         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1653         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1654     }
1655 
1656     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1657         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1658         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1659             qdev_property_add_static(DEVICE(obj),
1660                                      &arm_cpu_pmsav7_dregion_property);
1661         }
1662     }
1663 
1664     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1665         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1666                                  qdev_prop_allow_set_link_before_realize,
1667                                  OBJ_PROP_LINK_STRONG);
1668         /*
1669          * M profile: initial value of the Secure VTOR. We can't just use
1670          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1671          * the property to be set after realize.
1672          */
1673         object_property_add_uint32_ptr(obj, "init-svtor",
1674                                        &cpu->init_svtor,
1675                                        OBJ_PROP_FLAG_READWRITE);
1676     }
1677     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1678         /*
1679          * Initial value of the NS VTOR (for cores without the Security
1680          * extension, this is the only VTOR)
1681          */
1682         object_property_add_uint32_ptr(obj, "init-nsvtor",
1683                                        &cpu->init_nsvtor,
1684                                        OBJ_PROP_FLAG_READWRITE);
1685     }
1686 
1687     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1688     object_property_add_uint32_ptr(obj, "psci-conduit",
1689                                    &cpu->psci_conduit,
1690                                    OBJ_PROP_FLAG_READWRITE);
1691 
1692     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1693 
1694     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1695         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1696     }
1697 
1698     if (kvm_enabled()) {
1699         kvm_arm_add_vcpu_properties(cpu);
1700     }
1701 
1702 #ifndef CONFIG_USER_ONLY
1703     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1704         cpu_isar_feature(aa64_mte, cpu)) {
1705         object_property_add_link(obj, "tag-memory",
1706                                  TYPE_MEMORY_REGION,
1707                                  (Object **)&cpu->tag_memory,
1708                                  qdev_prop_allow_set_link_before_realize,
1709                                  OBJ_PROP_LINK_STRONG);
1710 
1711         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1712             object_property_add_link(obj, "secure-tag-memory",
1713                                      TYPE_MEMORY_REGION,
1714                                      (Object **)&cpu->secure_tag_memory,
1715                                      qdev_prop_allow_set_link_before_realize,
1716                                      OBJ_PROP_LINK_STRONG);
1717         }
1718     }
1719 #endif
1720 }
1721 
1722 static void arm_cpu_finalizefn(Object *obj)
1723 {
1724     ARMCPU *cpu = ARM_CPU(obj);
1725     ARMELChangeHook *hook, *next;
1726 
1727     g_hash_table_destroy(cpu->cp_regs);
1728 
1729     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1730         QLIST_REMOVE(hook, node);
1731         g_free(hook);
1732     }
1733     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1734         QLIST_REMOVE(hook, node);
1735         g_free(hook);
1736     }
1737 #ifndef CONFIG_USER_ONLY
1738     if (cpu->pmu_timer) {
1739         timer_free(cpu->pmu_timer);
1740     }
1741 #endif
1742 }
1743 
1744 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1745 {
1746     Error *local_err = NULL;
1747 
1748 #ifdef TARGET_AARCH64
1749     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1750         arm_cpu_sve_finalize(cpu, &local_err);
1751         if (local_err != NULL) {
1752             error_propagate(errp, local_err);
1753             return;
1754         }
1755 
1756         /*
1757          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1758          * FEAT_SME_FA64 is present). However our implementation currently
1759          * assumes it, so if the user asked for sve=off then turn off SME also.
1760          * (KVM doesn't currently support SME at all.)
1761          */
1762         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1763             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1764         }
1765 
1766         arm_cpu_sme_finalize(cpu, &local_err);
1767         if (local_err != NULL) {
1768             error_propagate(errp, local_err);
1769             return;
1770         }
1771 
1772         arm_cpu_pauth_finalize(cpu, &local_err);
1773         if (local_err != NULL) {
1774             error_propagate(errp, local_err);
1775             return;
1776         }
1777 
1778         arm_cpu_lpa2_finalize(cpu, &local_err);
1779         if (local_err != NULL) {
1780             error_propagate(errp, local_err);
1781             return;
1782         }
1783     }
1784 #endif
1785 
1786     if (kvm_enabled()) {
1787         kvm_arm_steal_time_finalize(cpu, &local_err);
1788         if (local_err != NULL) {
1789             error_propagate(errp, local_err);
1790             return;
1791         }
1792     }
1793 }
1794 
1795 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1796 {
1797     CPUState *cs = CPU(dev);
1798     ARMCPU *cpu = ARM_CPU(dev);
1799     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1800     CPUARMState *env = &cpu->env;
1801     int pagebits;
1802     Error *local_err = NULL;
1803 
1804 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1805     /* Use pc-relative instructions in system-mode */
1806     cs->tcg_cflags |= CF_PCREL;
1807 #endif
1808 
1809     /* If we needed to query the host kernel for the CPU features
1810      * then it's possible that might have failed in the initfn, but
1811      * this is the first point where we can report it.
1812      */
1813     if (cpu->host_cpu_probe_failed) {
1814         if (!kvm_enabled() && !hvf_enabled()) {
1815             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1816         } else {
1817             error_setg(errp, "Failed to retrieve host CPU features");
1818         }
1819         return;
1820     }
1821 
1822 #ifndef CONFIG_USER_ONLY
1823     /* The NVIC and M-profile CPU are two halves of a single piece of
1824      * hardware; trying to use one without the other is a command line
1825      * error and will result in segfaults if not caught here.
1826      */
1827     if (arm_feature(env, ARM_FEATURE_M)) {
1828         if (!env->nvic) {
1829             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1830             return;
1831         }
1832     } else {
1833         if (env->nvic) {
1834             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1835             return;
1836         }
1837     }
1838 
1839     if (!tcg_enabled() && !qtest_enabled()) {
1840         /*
1841          * We assume that no accelerator except TCG (and the "not really an
1842          * accelerator" qtest) can handle these features, because Arm hardware
1843          * virtualization can't virtualize them.
1844          *
1845          * Catch all the cases which might cause us to create more than one
1846          * address space for the CPU (otherwise we will assert() later in
1847          * cpu_address_space_init()).
1848          */
1849         if (arm_feature(env, ARM_FEATURE_M)) {
1850             error_setg(errp,
1851                        "Cannot enable %s when using an M-profile guest CPU",
1852                        current_accel_name());
1853             return;
1854         }
1855         if (cpu->has_el3) {
1856             error_setg(errp,
1857                        "Cannot enable %s when guest CPU has EL3 enabled",
1858                        current_accel_name());
1859             return;
1860         }
1861         if (cpu->tag_memory) {
1862             error_setg(errp,
1863                        "Cannot enable %s when guest CPUs has MTE enabled",
1864                        current_accel_name());
1865             return;
1866         }
1867     }
1868 
1869     {
1870         uint64_t scale;
1871 
1872         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1873             if (!cpu->gt_cntfrq_hz) {
1874                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1875                            cpu->gt_cntfrq_hz);
1876                 return;
1877             }
1878             scale = gt_cntfrq_period_ns(cpu);
1879         } else {
1880             scale = GTIMER_SCALE;
1881         }
1882 
1883         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1884                                                arm_gt_ptimer_cb, cpu);
1885         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1886                                                arm_gt_vtimer_cb, cpu);
1887         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1888                                               arm_gt_htimer_cb, cpu);
1889         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1890                                               arm_gt_stimer_cb, cpu);
1891         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1892                                                   arm_gt_hvtimer_cb, cpu);
1893     }
1894 #endif
1895 
1896     cpu_exec_realizefn(cs, &local_err);
1897     if (local_err != NULL) {
1898         error_propagate(errp, local_err);
1899         return;
1900     }
1901 
1902     arm_cpu_finalize_features(cpu, &local_err);
1903     if (local_err != NULL) {
1904         error_propagate(errp, local_err);
1905         return;
1906     }
1907 
1908 #ifdef CONFIG_USER_ONLY
1909     /*
1910      * User mode relies on IC IVAU instructions to catch modification of
1911      * dual-mapped code.
1912      *
1913      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1914      * IC IVAU even if the emulated processor does not normally require it.
1915      */
1916     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1917 #endif
1918 
1919     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1920         cpu->has_vfp != cpu->has_neon) {
1921         /*
1922          * This is an architectural requirement for AArch64; AArch32 is
1923          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1924          */
1925         error_setg(errp,
1926                    "AArch64 CPUs must have both VFP and Neon or neither");
1927         return;
1928     }
1929 
1930     if (cpu->has_vfp_d32 != cpu->has_neon) {
1931         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1932         return;
1933     }
1934 
1935    if (!cpu->has_vfp_d32) {
1936         uint32_t u;
1937 
1938         u = cpu->isar.mvfr0;
1939         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1940         cpu->isar.mvfr0 = u;
1941     }
1942 
1943     if (!cpu->has_vfp) {
1944         uint64_t t;
1945         uint32_t u;
1946 
1947         t = cpu->isar.id_aa64isar1;
1948         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1949         cpu->isar.id_aa64isar1 = t;
1950 
1951         t = cpu->isar.id_aa64pfr0;
1952         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1953         cpu->isar.id_aa64pfr0 = t;
1954 
1955         u = cpu->isar.id_isar6;
1956         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1957         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1958         cpu->isar.id_isar6 = u;
1959 
1960         u = cpu->isar.mvfr0;
1961         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1962         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1963         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1964         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1965         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1966         if (!arm_feature(env, ARM_FEATURE_M)) {
1967             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1968             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1969         }
1970         cpu->isar.mvfr0 = u;
1971 
1972         u = cpu->isar.mvfr1;
1973         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1974         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1975         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1976         if (arm_feature(env, ARM_FEATURE_M)) {
1977             u = FIELD_DP32(u, MVFR1, FP16, 0);
1978         }
1979         cpu->isar.mvfr1 = u;
1980 
1981         u = cpu->isar.mvfr2;
1982         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1983         cpu->isar.mvfr2 = u;
1984     }
1985 
1986     if (!cpu->has_neon) {
1987         uint64_t t;
1988         uint32_t u;
1989 
1990         unset_feature(env, ARM_FEATURE_NEON);
1991 
1992         t = cpu->isar.id_aa64isar0;
1993         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1994         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1995         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1996         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1997         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1998         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1999         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2000         cpu->isar.id_aa64isar0 = t;
2001 
2002         t = cpu->isar.id_aa64isar1;
2003         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2004         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2005         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2006         cpu->isar.id_aa64isar1 = t;
2007 
2008         t = cpu->isar.id_aa64pfr0;
2009         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2010         cpu->isar.id_aa64pfr0 = t;
2011 
2012         u = cpu->isar.id_isar5;
2013         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2014         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2015         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2016         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2017         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2018         cpu->isar.id_isar5 = u;
2019 
2020         u = cpu->isar.id_isar6;
2021         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2022         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2023         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2024         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2025         cpu->isar.id_isar6 = u;
2026 
2027         if (!arm_feature(env, ARM_FEATURE_M)) {
2028             u = cpu->isar.mvfr1;
2029             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2030             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2031             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2032             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2033             cpu->isar.mvfr1 = u;
2034 
2035             u = cpu->isar.mvfr2;
2036             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2037             cpu->isar.mvfr2 = u;
2038         }
2039     }
2040 
2041     if (!cpu->has_neon && !cpu->has_vfp) {
2042         uint64_t t;
2043         uint32_t u;
2044 
2045         t = cpu->isar.id_aa64isar0;
2046         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2047         cpu->isar.id_aa64isar0 = t;
2048 
2049         t = cpu->isar.id_aa64isar1;
2050         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2051         cpu->isar.id_aa64isar1 = t;
2052 
2053         u = cpu->isar.mvfr0;
2054         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2055         cpu->isar.mvfr0 = u;
2056 
2057         /* Despite the name, this field covers both VFP and Neon */
2058         u = cpu->isar.mvfr1;
2059         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2060         cpu->isar.mvfr1 = u;
2061     }
2062 
2063     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2064         uint32_t u;
2065 
2066         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2067 
2068         u = cpu->isar.id_isar1;
2069         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2070         cpu->isar.id_isar1 = u;
2071 
2072         u = cpu->isar.id_isar2;
2073         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2074         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2075         cpu->isar.id_isar2 = u;
2076 
2077         u = cpu->isar.id_isar3;
2078         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2079         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2080         cpu->isar.id_isar3 = u;
2081     }
2082 
2083 
2084     /*
2085      * We rely on no XScale CPU having VFP so we can use the same bits in the
2086      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2087      */
2088     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2089            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2090            !arm_feature(env, ARM_FEATURE_XSCALE));
2091 
2092     if (arm_feature(env, ARM_FEATURE_V7) &&
2093         !arm_feature(env, ARM_FEATURE_M) &&
2094         !arm_feature(env, ARM_FEATURE_PMSA)) {
2095         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2096          * can use 4K pages.
2097          */
2098         pagebits = 12;
2099     } else {
2100         /* For CPUs which might have tiny 1K pages, or which have an
2101          * MPU and might have small region sizes, stick with 1K pages.
2102          */
2103         pagebits = 10;
2104     }
2105     if (!set_preferred_target_page_bits(pagebits)) {
2106         /* This can only ever happen for hotplugging a CPU, or if
2107          * the board code incorrectly creates a CPU which it has
2108          * promised via minimum_page_size that it will not.
2109          */
2110         error_setg(errp, "This CPU requires a smaller page size than the "
2111                    "system is using");
2112         return;
2113     }
2114 
2115     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2116      * We don't support setting cluster ID ([16..23]) (known as Aff2
2117      * in later ARM ARM versions), or any of the higher affinity level fields,
2118      * so these bits always RAZ.
2119      */
2120     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2121         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2122                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2123     }
2124 
2125     if (cpu->reset_hivecs) {
2126             cpu->reset_sctlr |= (1 << 13);
2127     }
2128 
2129     if (cpu->cfgend) {
2130         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2131             cpu->reset_sctlr |= SCTLR_EE;
2132         } else {
2133             cpu->reset_sctlr |= SCTLR_B;
2134         }
2135     }
2136 
2137     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2138         /* If the has_el3 CPU property is disabled then we need to disable the
2139          * feature.
2140          */
2141         unset_feature(env, ARM_FEATURE_EL3);
2142 
2143         /*
2144          * Disable the security extension feature bits in the processor
2145          * feature registers as well.
2146          */
2147         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2148         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2149         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2150                                            ID_AA64PFR0, EL3, 0);
2151 
2152         /* Disable the realm management extension, which requires EL3. */
2153         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2154                                            ID_AA64PFR0, RME, 0);
2155     }
2156 
2157     if (!cpu->has_el2) {
2158         unset_feature(env, ARM_FEATURE_EL2);
2159     }
2160 
2161     if (!cpu->has_pmu) {
2162         unset_feature(env, ARM_FEATURE_PMU);
2163     }
2164     if (arm_feature(env, ARM_FEATURE_PMU)) {
2165         pmu_init(cpu);
2166 
2167         if (!kvm_enabled()) {
2168             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2169             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2170         }
2171 
2172 #ifndef CONFIG_USER_ONLY
2173         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2174                 cpu);
2175 #endif
2176     } else {
2177         cpu->isar.id_aa64dfr0 =
2178             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2179         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2180         cpu->pmceid0 = 0;
2181         cpu->pmceid1 = 0;
2182     }
2183 
2184     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2185         /*
2186          * Disable the hypervisor feature bits in the processor feature
2187          * registers if we don't have EL2.
2188          */
2189         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2190                                            ID_AA64PFR0, EL2, 0);
2191         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2192                                        ID_PFR1, VIRTUALIZATION, 0);
2193     }
2194 
2195     if (cpu_isar_feature(aa64_mte, cpu)) {
2196         /*
2197          * The architectural range of GM blocksize is 2-6, however qemu
2198          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2199          */
2200         if (tcg_enabled()) {
2201             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2202         }
2203 
2204 #ifndef CONFIG_USER_ONLY
2205         /*
2206          * If we do not have tag-memory provided by the machine,
2207          * reduce MTE support to instructions enabled at EL0.
2208          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2209          */
2210         if (cpu->tag_memory == NULL) {
2211             cpu->isar.id_aa64pfr1 =
2212                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2213         }
2214 #endif
2215     }
2216 
2217     if (tcg_enabled()) {
2218         /*
2219          * Don't report some architectural features in the ID registers
2220          * where TCG does not yet implement it (not even a minimal
2221          * stub version). This avoids guests falling over when they
2222          * try to access the non-existent system registers for them.
2223          */
2224         /* FEAT_SPE (Statistical Profiling Extension) */
2225         cpu->isar.id_aa64dfr0 =
2226             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2227         /* FEAT_TRBE (Trace Buffer Extension) */
2228         cpu->isar.id_aa64dfr0 =
2229             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2230         /* FEAT_TRF (Self-hosted Trace Extension) */
2231         cpu->isar.id_aa64dfr0 =
2232             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2233         cpu->isar.id_dfr0 =
2234             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2235         /* Trace Macrocell system register access */
2236         cpu->isar.id_aa64dfr0 =
2237             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2238         cpu->isar.id_dfr0 =
2239             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2240         /* Memory mapped trace */
2241         cpu->isar.id_dfr0 =
2242             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2243         /* FEAT_AMU (Activity Monitors Extension) */
2244         cpu->isar.id_aa64pfr0 =
2245             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2246         cpu->isar.id_pfr0 =
2247             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2248         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2249         cpu->isar.id_aa64pfr0 =
2250             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2251     }
2252 
2253     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2254      * to false or by setting pmsav7-dregion to 0.
2255      */
2256     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2257         cpu->has_mpu = false;
2258         cpu->pmsav7_dregion = 0;
2259         cpu->pmsav8r_hdregion = 0;
2260     }
2261 
2262     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2263         arm_feature(env, ARM_FEATURE_V7)) {
2264         uint32_t nr = cpu->pmsav7_dregion;
2265 
2266         if (nr > 0xff) {
2267             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2268             return;
2269         }
2270 
2271         if (nr) {
2272             if (arm_feature(env, ARM_FEATURE_V8)) {
2273                 /* PMSAv8 */
2274                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2275                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2276                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2277                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2278                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2279                 }
2280             } else {
2281                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2282                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2283                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2284             }
2285         }
2286 
2287         if (cpu->pmsav8r_hdregion > 0xff) {
2288             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2289                               cpu->pmsav8r_hdregion);
2290             return;
2291         }
2292 
2293         if (cpu->pmsav8r_hdregion) {
2294             env->pmsav8.hprbar = g_new0(uint32_t,
2295                                         cpu->pmsav8r_hdregion);
2296             env->pmsav8.hprlar = g_new0(uint32_t,
2297                                         cpu->pmsav8r_hdregion);
2298         }
2299     }
2300 
2301     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2302         uint32_t nr = cpu->sau_sregion;
2303 
2304         if (nr > 0xff) {
2305             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2306             return;
2307         }
2308 
2309         if (nr) {
2310             env->sau.rbar = g_new0(uint32_t, nr);
2311             env->sau.rlar = g_new0(uint32_t, nr);
2312         }
2313     }
2314 
2315     if (arm_feature(env, ARM_FEATURE_EL3)) {
2316         set_feature(env, ARM_FEATURE_VBAR);
2317     }
2318 
2319 #ifndef CONFIG_USER_ONLY
2320     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2321         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2322     }
2323 #endif
2324 
2325     register_cp_regs_for_features(cpu);
2326     arm_cpu_register_gdb_regs_for_features(cpu);
2327 
2328     init_cpreg_list(cpu);
2329 
2330 #ifndef CONFIG_USER_ONLY
2331     MachineState *ms = MACHINE(qdev_get_machine());
2332     unsigned int smp_cpus = ms->smp.cpus;
2333     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2334 
2335     /*
2336      * We must set cs->num_ases to the final value before
2337      * the first call to cpu_address_space_init.
2338      */
2339     if (cpu->tag_memory != NULL) {
2340         cs->num_ases = 3 + has_secure;
2341     } else {
2342         cs->num_ases = 1 + has_secure;
2343     }
2344 
2345     if (has_secure) {
2346         if (!cpu->secure_memory) {
2347             cpu->secure_memory = cs->memory;
2348         }
2349         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2350                                cpu->secure_memory);
2351     }
2352 
2353     if (cpu->tag_memory != NULL) {
2354         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2355                                cpu->tag_memory);
2356         if (has_secure) {
2357             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2358                                    cpu->secure_tag_memory);
2359         }
2360     }
2361 
2362     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2363 
2364     /* No core_count specified, default to smp_cpus. */
2365     if (cpu->core_count == -1) {
2366         cpu->core_count = smp_cpus;
2367     }
2368 #endif
2369 
2370     if (tcg_enabled()) {
2371         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2372 
2373         /*
2374          * We only support DCZ blocklen that fits on one page.
2375          *
2376          * Architectually this is always true.  However TARGET_PAGE_SIZE
2377          * is variable and, for compatibility with -machine virt-2.7,
2378          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2379          * But even then, while the largest architectural DCZ blocklen
2380          * is 2KiB, no cpu actually uses such a large blocklen.
2381          */
2382         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2383 
2384         /*
2385          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2386          * both nibbles of each byte storing tag data may be written at once.
2387          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2388          */
2389         if (cpu_isar_feature(aa64_mte, cpu)) {
2390             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2391         }
2392     }
2393 
2394     qemu_init_vcpu(cs);
2395     cpu_reset(cs);
2396 
2397     acc->parent_realize(dev, errp);
2398 }
2399 
2400 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2401 {
2402     ObjectClass *oc;
2403     char *typename;
2404     char **cpuname;
2405     const char *cpunamestr;
2406 
2407     cpuname = g_strsplit(cpu_model, ",", 1);
2408     cpunamestr = cpuname[0];
2409 #ifdef CONFIG_USER_ONLY
2410     /* For backwards compatibility usermode emulation allows "-cpu any",
2411      * which has the same semantics as "-cpu max".
2412      */
2413     if (!strcmp(cpunamestr, "any")) {
2414         cpunamestr = "max";
2415     }
2416 #endif
2417     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2418     oc = object_class_by_name(typename);
2419     g_strfreev(cpuname);
2420     g_free(typename);
2421 
2422     return oc;
2423 }
2424 
2425 static Property arm_cpu_properties[] = {
2426     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2427     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2428                         mp_affinity, ARM64_AFFINITY_INVALID),
2429     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2430     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2431     DEFINE_PROP_END_OF_LIST()
2432 };
2433 
2434 static const gchar *arm_gdb_arch_name(CPUState *cs)
2435 {
2436     ARMCPU *cpu = ARM_CPU(cs);
2437     CPUARMState *env = &cpu->env;
2438 
2439     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2440         return "iwmmxt";
2441     }
2442     return "arm";
2443 }
2444 
2445 #ifndef CONFIG_USER_ONLY
2446 #include "hw/core/sysemu-cpu-ops.h"
2447 
2448 static const struct SysemuCPUOps arm_sysemu_ops = {
2449     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2450     .asidx_from_attrs = arm_asidx_from_attrs,
2451     .write_elf32_note = arm_cpu_write_elf32_note,
2452     .write_elf64_note = arm_cpu_write_elf64_note,
2453     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2454     .legacy_vmsd = &vmstate_arm_cpu,
2455 };
2456 #endif
2457 
2458 #ifdef CONFIG_TCG
2459 static const struct TCGCPUOps arm_tcg_ops = {
2460     .initialize = arm_translate_init,
2461     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2462     .debug_excp_handler = arm_debug_excp_handler,
2463     .restore_state_to_opc = arm_restore_state_to_opc,
2464 
2465 #ifdef CONFIG_USER_ONLY
2466     .record_sigsegv = arm_cpu_record_sigsegv,
2467     .record_sigbus = arm_cpu_record_sigbus,
2468 #else
2469     .tlb_fill = arm_cpu_tlb_fill,
2470     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2471     .do_interrupt = arm_cpu_do_interrupt,
2472     .do_transaction_failed = arm_cpu_do_transaction_failed,
2473     .do_unaligned_access = arm_cpu_do_unaligned_access,
2474     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2475     .debug_check_watchpoint = arm_debug_check_watchpoint,
2476     .debug_check_breakpoint = arm_debug_check_breakpoint,
2477 #endif /* !CONFIG_USER_ONLY */
2478 };
2479 #endif /* CONFIG_TCG */
2480 
2481 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2482 {
2483     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2484     CPUClass *cc = CPU_CLASS(acc);
2485     DeviceClass *dc = DEVICE_CLASS(oc);
2486     ResettableClass *rc = RESETTABLE_CLASS(oc);
2487 
2488     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2489                                     &acc->parent_realize);
2490 
2491     device_class_set_props(dc, arm_cpu_properties);
2492 
2493     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2494                                        &acc->parent_phases);
2495 
2496     cc->class_by_name = arm_cpu_class_by_name;
2497     cc->has_work = arm_cpu_has_work;
2498     cc->dump_state = arm_cpu_dump_state;
2499     cc->set_pc = arm_cpu_set_pc;
2500     cc->get_pc = arm_cpu_get_pc;
2501     cc->gdb_read_register = arm_cpu_gdb_read_register;
2502     cc->gdb_write_register = arm_cpu_gdb_write_register;
2503 #ifndef CONFIG_USER_ONLY
2504     cc->sysemu_ops = &arm_sysemu_ops;
2505 #endif
2506     cc->gdb_num_core_regs = 26;
2507     cc->gdb_arch_name = arm_gdb_arch_name;
2508     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2509     cc->gdb_stop_before_watchpoint = true;
2510     cc->disas_set_info = arm_disas_set_info;
2511 
2512 #ifdef CONFIG_TCG
2513     cc->tcg_ops = &arm_tcg_ops;
2514 #endif /* CONFIG_TCG */
2515 }
2516 
2517 static void arm_cpu_instance_init(Object *obj)
2518 {
2519     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2520 
2521     acc->info->initfn(obj);
2522     arm_cpu_post_init(obj);
2523 }
2524 
2525 static void cpu_register_class_init(ObjectClass *oc, void *data)
2526 {
2527     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2528     CPUClass *cc = CPU_CLASS(acc);
2529 
2530     acc->info = data;
2531     cc->gdb_core_xml_file = "arm-core.xml";
2532 }
2533 
2534 void arm_cpu_register(const ARMCPUInfo *info)
2535 {
2536     TypeInfo type_info = {
2537         .parent = TYPE_ARM_CPU,
2538         .instance_init = arm_cpu_instance_init,
2539         .class_init = info->class_init ?: cpu_register_class_init,
2540         .class_data = (void *)info,
2541     };
2542 
2543     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2544     type_register(&type_info);
2545     g_free((void *)type_info.name);
2546 }
2547 
2548 static const TypeInfo arm_cpu_type_info = {
2549     .name = TYPE_ARM_CPU,
2550     .parent = TYPE_CPU,
2551     .instance_size = sizeof(ARMCPU),
2552     .instance_align = __alignof__(ARMCPU),
2553     .instance_init = arm_cpu_initfn,
2554     .instance_finalize = arm_cpu_finalizefn,
2555     .abstract = true,
2556     .class_size = sizeof(ARMCPUClass),
2557     .class_init = arm_cpu_class_init,
2558 };
2559 
2560 static void arm_cpu_register_types(void)
2561 {
2562     type_register_static(&arm_cpu_type_info);
2563 }
2564 
2565 type_init(arm_cpu_register_types)
2566