xref: /openbmc/qemu/target/arm/cpu.c (revision daa55f3e)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47 
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50     ARMCPU *cpu = ARM_CPU(cs);
51     CPUARMState *env = &cpu->env;
52 
53     if (is_a64(env)) {
54         env->pc = value;
55         env->thumb = false;
56     } else {
57         env->regs[15] = value & ~1;
58         env->thumb = value & 1;
59     }
60 }
61 
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64                                  const TranslationBlock *tb)
65 {
66     ARMCPU *cpu = ARM_CPU(cs);
67     CPUARMState *env = &cpu->env;
68 
69     /*
70      * It's OK to look at env for the current mode here, because it's
71      * never possible for an AArch64 TB to chain to an AArch32 TB.
72      */
73     if (is_a64(env)) {
74         env->pc = tb->pc;
75     } else {
76         env->regs[15] = tb->pc;
77     }
78 }
79 #endif /* CONFIG_TCG */
80 
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83     ARMCPU *cpu = ARM_CPU(cs);
84 
85     return (cpu->power_state != PSCI_OFF)
86         && cs->interrupt_request &
87         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89          | CPU_INTERRUPT_EXITTB);
90 }
91 
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102 
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104                                  void *opaque)
105 {
106     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 
108     entry->hook = hook;
109     entry->opaque = opaque;
110 
111     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113 
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116     /* Reset a single ARMCPRegInfo register */
117     ARMCPRegInfo *ri = value;
118     ARMCPU *cpu = opaque;
119 
120     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121         return;
122     }
123 
124     if (ri->resetfn) {
125         ri->resetfn(&cpu->env, ri);
126         return;
127     }
128 
129     /* A zero offset is never possible as it would be regs[0]
130      * so we use it to indicate that reset is being handled elsewhere.
131      * This is basically only used for fields in non-core coprocessors
132      * (like the pxa2xx ones).
133      */
134     if (!ri->fieldoffset) {
135         return;
136     }
137 
138     if (cpreg_field_is_64bit(ri)) {
139         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140     } else {
141         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142     }
143 }
144 
145 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
146 {
147     /* Purely an assertion check: we've already done reset once,
148      * so now check that running the reset for the cpreg doesn't
149      * change its value. This traps bugs where two different cpregs
150      * both try to reset the same state field but to different values.
151      */
152     ARMCPRegInfo *ri = value;
153     ARMCPU *cpu = opaque;
154     uint64_t oldvalue, newvalue;
155 
156     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157         return;
158     }
159 
160     oldvalue = read_raw_cp_reg(&cpu->env, ri);
161     cp_reg_reset(key, value, opaque);
162     newvalue = read_raw_cp_reg(&cpu->env, ri);
163     assert(oldvalue == newvalue);
164 }
165 
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168     CPUState *s = CPU(dev);
169     ARMCPU *cpu = ARM_CPU(s);
170     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171     CPUARMState *env = &cpu->env;
172 
173     acc->parent_reset(dev);
174 
175     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 
180     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 
185     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 
187     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189     }
190 
191     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192         /* 64 bit CPUs always start in 64 bit mode */
193         env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195         env->pstate = PSTATE_MODE_EL0t;
196         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198         /* Enable all PAC keys.  */
199         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200                                   SCTLR_EnDA | SCTLR_EnDB);
201         /* Trap on btype=3 for PACIxSP. */
202         env->cp15.sctlr_el[1] |= SCTLR_BT0;
203         /* and to the FP/Neon instructions */
204         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
205                                          CPACR_EL1, FPEN, 3);
206         /* and to the SVE instructions */
207         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
208                                          CPACR_EL1, ZEN, 3);
209         /* with reasonable vector length */
210         if (cpu_isar_feature(aa64_sve, cpu)) {
211             env->vfp.zcr_el[1] =
212                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
213         }
214         /*
215          * Enable 48-bit address space (TODO: take reserved_va into account).
216          * Enable TBI0 but not TBI1.
217          * Note that this must match useronly_clean_ptr.
218          */
219         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
220 
221         /* Enable MTE */
222         if (cpu_isar_feature(aa64_mte, cpu)) {
223             /* Enable tag access, but leave TCF0 as No Effect (0). */
224             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
225             /*
226              * Exclude all tags, so that tag 0 is always used.
227              * This corresponds to Linux current->thread.gcr_incl = 0.
228              *
229              * Set RRND, so that helper_irg() will generate a seed later.
230              * Here in cpu_reset(), the crypto subsystem has not yet been
231              * initialized.
232              */
233             env->cp15.gcr_el1 = 0x1ffff;
234         }
235         /*
236          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
237          * This is not yet exposed from the Linux kernel in any way.
238          */
239         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
240 #else
241         /* Reset into the highest available EL */
242         if (arm_feature(env, ARM_FEATURE_EL3)) {
243             env->pstate = PSTATE_MODE_EL3h;
244         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
245             env->pstate = PSTATE_MODE_EL2h;
246         } else {
247             env->pstate = PSTATE_MODE_EL1h;
248         }
249 
250         /* Sample rvbar at reset.  */
251         env->cp15.rvbar = cpu->rvbar_prop;
252         env->pc = env->cp15.rvbar;
253 #endif
254     } else {
255 #if defined(CONFIG_USER_ONLY)
256         /* Userspace expects access to cp10 and cp11 for FP/Neon */
257         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
258                                          CPACR, CP10, 3);
259         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260                                          CPACR, CP11, 3);
261 #endif
262     }
263 
264 #if defined(CONFIG_USER_ONLY)
265     env->uncached_cpsr = ARM_CPU_MODE_USR;
266     /* For user mode we must enable access to coprocessors */
267     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
268     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
269         env->cp15.c15_cpar = 3;
270     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
271         env->cp15.c15_cpar = 1;
272     }
273 #else
274 
275     /*
276      * If the highest available EL is EL2, AArch32 will start in Hyp
277      * mode; otherwise it starts in SVC. Note that if we start in
278      * AArch64 then these values in the uncached_cpsr will be ignored.
279      */
280     if (arm_feature(env, ARM_FEATURE_EL2) &&
281         !arm_feature(env, ARM_FEATURE_EL3)) {
282         env->uncached_cpsr = ARM_CPU_MODE_HYP;
283     } else {
284         env->uncached_cpsr = ARM_CPU_MODE_SVC;
285     }
286     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
287 
288     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
289      * executing as AArch32 then check if highvecs are enabled and
290      * adjust the PC accordingly.
291      */
292     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
293         env->regs[15] = 0xFFFF0000;
294     }
295 
296     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
297 #endif
298 
299     if (arm_feature(env, ARM_FEATURE_M)) {
300 #ifndef CONFIG_USER_ONLY
301         uint32_t initial_msp; /* Loaded from 0x0 */
302         uint32_t initial_pc; /* Loaded from 0x4 */
303         uint8_t *rom;
304         uint32_t vecbase;
305 #endif
306 
307         if (cpu_isar_feature(aa32_lob, cpu)) {
308             /*
309              * LTPSIZE is constant 4 if MVE not implemented, and resets
310              * to an UNKNOWN value if MVE is implemented. We choose to
311              * always reset to 4.
312              */
313             env->v7m.ltpsize = 4;
314             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
315             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
316             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
317         }
318 
319         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320             env->v7m.secure = true;
321         } else {
322             /* This bit resets to 0 if security is supported, but 1 if
323              * it is not. The bit is not present in v7M, but we set it
324              * here so we can avoid having to make checks on it conditional
325              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
326              */
327             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
328             /*
329              * Set NSACR to indicate "NS access permitted to everything";
330              * this avoids having to have all the tests of it being
331              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
332              * v8.1M the guest-visible value of NSACR in a CPU without the
333              * Security Extension is 0xcff.
334              */
335             env->v7m.nsacr = 0xcff;
336         }
337 
338         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
339          * that it resets to 1, so QEMU always does that rather than making
340          * it dependent on CPU model. In v8M it is RES1.
341          */
342         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
343         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
344         if (arm_feature(env, ARM_FEATURE_V8)) {
345             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
346             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
348         }
349         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
350             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
352         }
353 
354         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
355             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
356             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
357                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
358         }
359 
360 #ifndef CONFIG_USER_ONLY
361         /* Unlike A/R profile, M profile defines the reset LR value */
362         env->regs[14] = 0xffffffff;
363 
364         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
365         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
366 
367         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
368         vecbase = env->v7m.vecbase[env->v7m.secure];
369         rom = rom_ptr_for_as(s->as, vecbase, 8);
370         if (rom) {
371             /* Address zero is covered by ROM which hasn't yet been
372              * copied into physical memory.
373              */
374             initial_msp = ldl_p(rom);
375             initial_pc = ldl_p(rom + 4);
376         } else {
377             /* Address zero not covered by a ROM blob, or the ROM blob
378              * is in non-modifiable memory and this is a second reset after
379              * it got copied into memory. In the latter case, rom_ptr
380              * will return a NULL pointer and we should use ldl_phys instead.
381              */
382             initial_msp = ldl_phys(s->as, vecbase);
383             initial_pc = ldl_phys(s->as, vecbase + 4);
384         }
385 
386         qemu_log_mask(CPU_LOG_INT,
387                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
388                       initial_msp, initial_pc);
389 
390         env->regs[13] = initial_msp & 0xFFFFFFFC;
391         env->regs[15] = initial_pc & ~1;
392         env->thumb = initial_pc & 1;
393 #else
394         /*
395          * For user mode we run non-secure and with access to the FPU.
396          * The FPU context is active (ie does not need further setup)
397          * and is owned by non-secure.
398          */
399         env->v7m.secure = false;
400         env->v7m.nsacr = 0xcff;
401         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
402         env->v7m.fpccr[M_REG_S] &=
403             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
404         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
405 #endif
406     }
407 
408     /* M profile requires that reset clears the exclusive monitor;
409      * A profile does not, but clearing it makes more sense than having it
410      * set with an exclusive access on address zero.
411      */
412     arm_clear_exclusive(env);
413 
414     if (arm_feature(env, ARM_FEATURE_PMSA)) {
415         if (cpu->pmsav7_dregion > 0) {
416             if (arm_feature(env, ARM_FEATURE_V8)) {
417                 memset(env->pmsav8.rbar[M_REG_NS], 0,
418                        sizeof(*env->pmsav8.rbar[M_REG_NS])
419                        * cpu->pmsav7_dregion);
420                 memset(env->pmsav8.rlar[M_REG_NS], 0,
421                        sizeof(*env->pmsav8.rlar[M_REG_NS])
422                        * cpu->pmsav7_dregion);
423                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
424                     memset(env->pmsav8.rbar[M_REG_S], 0,
425                            sizeof(*env->pmsav8.rbar[M_REG_S])
426                            * cpu->pmsav7_dregion);
427                     memset(env->pmsav8.rlar[M_REG_S], 0,
428                            sizeof(*env->pmsav8.rlar[M_REG_S])
429                            * cpu->pmsav7_dregion);
430                 }
431             } else if (arm_feature(env, ARM_FEATURE_V7)) {
432                 memset(env->pmsav7.drbar, 0,
433                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
434                 memset(env->pmsav7.drsr, 0,
435                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
436                 memset(env->pmsav7.dracr, 0,
437                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
438             }
439         }
440         env->pmsav7.rnr[M_REG_NS] = 0;
441         env->pmsav7.rnr[M_REG_S] = 0;
442         env->pmsav8.mair0[M_REG_NS] = 0;
443         env->pmsav8.mair0[M_REG_S] = 0;
444         env->pmsav8.mair1[M_REG_NS] = 0;
445         env->pmsav8.mair1[M_REG_S] = 0;
446     }
447 
448     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
449         if (cpu->sau_sregion > 0) {
450             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
451             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
452         }
453         env->sau.rnr = 0;
454         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
455          * the Cortex-M33 does.
456          */
457         env->sau.ctrl = 0;
458     }
459 
460     set_flush_to_zero(1, &env->vfp.standard_fp_status);
461     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
462     set_default_nan_mode(1, &env->vfp.standard_fp_status);
463     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
464     set_float_detect_tininess(float_tininess_before_rounding,
465                               &env->vfp.fp_status);
466     set_float_detect_tininess(float_tininess_before_rounding,
467                               &env->vfp.standard_fp_status);
468     set_float_detect_tininess(float_tininess_before_rounding,
469                               &env->vfp.fp_status_f16);
470     set_float_detect_tininess(float_tininess_before_rounding,
471                               &env->vfp.standard_fp_status_f16);
472 #ifndef CONFIG_USER_ONLY
473     if (kvm_enabled()) {
474         kvm_arm_reset_vcpu(cpu);
475     }
476 #endif
477 
478     hw_breakpoint_update_all(cpu);
479     hw_watchpoint_update_all(cpu);
480     arm_rebuild_hflags(env);
481 }
482 
483 #ifndef CONFIG_USER_ONLY
484 
485 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
486                                      unsigned int target_el,
487                                      unsigned int cur_el, bool secure,
488                                      uint64_t hcr_el2)
489 {
490     CPUARMState *env = cs->env_ptr;
491     bool pstate_unmasked;
492     bool unmasked = false;
493 
494     /*
495      * Don't take exceptions if they target a lower EL.
496      * This check should catch any exceptions that would not be taken
497      * but left pending.
498      */
499     if (cur_el > target_el) {
500         return false;
501     }
502 
503     switch (excp_idx) {
504     case EXCP_FIQ:
505         pstate_unmasked = !(env->daif & PSTATE_F);
506         break;
507 
508     case EXCP_IRQ:
509         pstate_unmasked = !(env->daif & PSTATE_I);
510         break;
511 
512     case EXCP_VFIQ:
513         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
514             /* VFIQs are only taken when hypervized.  */
515             return false;
516         }
517         return !(env->daif & PSTATE_F);
518     case EXCP_VIRQ:
519         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
520             /* VIRQs are only taken when hypervized.  */
521             return false;
522         }
523         return !(env->daif & PSTATE_I);
524     case EXCP_VSERR:
525         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
526             /* VIRQs are only taken when hypervized.  */
527             return false;
528         }
529         return !(env->daif & PSTATE_A);
530     default:
531         g_assert_not_reached();
532     }
533 
534     /*
535      * Use the target EL, current execution state and SCR/HCR settings to
536      * determine whether the corresponding CPSR bit is used to mask the
537      * interrupt.
538      */
539     if ((target_el > cur_el) && (target_el != 1)) {
540         /* Exceptions targeting a higher EL may not be maskable */
541         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
542             /*
543              * 64-bit masking rules are simple: exceptions to EL3
544              * can't be masked, and exceptions to EL2 can only be
545              * masked from Secure state. The HCR and SCR settings
546              * don't affect the masking logic, only the interrupt routing.
547              */
548             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
549                 unmasked = true;
550             }
551         } else {
552             /*
553              * The old 32-bit-only environment has a more complicated
554              * masking setup. HCR and SCR bits not only affect interrupt
555              * routing but also change the behaviour of masking.
556              */
557             bool hcr, scr;
558 
559             switch (excp_idx) {
560             case EXCP_FIQ:
561                 /*
562                  * If FIQs are routed to EL3 or EL2 then there are cases where
563                  * we override the CPSR.F in determining if the exception is
564                  * masked or not. If neither of these are set then we fall back
565                  * to the CPSR.F setting otherwise we further assess the state
566                  * below.
567                  */
568                 hcr = hcr_el2 & HCR_FMO;
569                 scr = (env->cp15.scr_el3 & SCR_FIQ);
570 
571                 /*
572                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
573                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
574                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
575                  * when non-secure but only when FIQs are only routed to EL3.
576                  */
577                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
578                 break;
579             case EXCP_IRQ:
580                 /*
581                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
582                  * we may override the CPSR.I masking when in non-secure state.
583                  * The SCR.IRQ setting has already been taken into consideration
584                  * when setting the target EL, so it does not have a further
585                  * affect here.
586                  */
587                 hcr = hcr_el2 & HCR_IMO;
588                 scr = false;
589                 break;
590             default:
591                 g_assert_not_reached();
592             }
593 
594             if ((scr || hcr) && !secure) {
595                 unmasked = true;
596             }
597         }
598     }
599 
600     /*
601      * The PSTATE bits only mask the interrupt if we have not overriden the
602      * ability above.
603      */
604     return unmasked || pstate_unmasked;
605 }
606 
607 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
608 {
609     CPUClass *cc = CPU_GET_CLASS(cs);
610     CPUARMState *env = cs->env_ptr;
611     uint32_t cur_el = arm_current_el(env);
612     bool secure = arm_is_secure(env);
613     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
614     uint32_t target_el;
615     uint32_t excp_idx;
616 
617     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
618 
619     if (interrupt_request & CPU_INTERRUPT_FIQ) {
620         excp_idx = EXCP_FIQ;
621         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
622         if (arm_excp_unmasked(cs, excp_idx, target_el,
623                               cur_el, secure, hcr_el2)) {
624             goto found;
625         }
626     }
627     if (interrupt_request & CPU_INTERRUPT_HARD) {
628         excp_idx = EXCP_IRQ;
629         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
630         if (arm_excp_unmasked(cs, excp_idx, target_el,
631                               cur_el, secure, hcr_el2)) {
632             goto found;
633         }
634     }
635     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
636         excp_idx = EXCP_VIRQ;
637         target_el = 1;
638         if (arm_excp_unmasked(cs, excp_idx, target_el,
639                               cur_el, secure, hcr_el2)) {
640             goto found;
641         }
642     }
643     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
644         excp_idx = EXCP_VFIQ;
645         target_el = 1;
646         if (arm_excp_unmasked(cs, excp_idx, target_el,
647                               cur_el, secure, hcr_el2)) {
648             goto found;
649         }
650     }
651     if (interrupt_request & CPU_INTERRUPT_VSERR) {
652         excp_idx = EXCP_VSERR;
653         target_el = 1;
654         if (arm_excp_unmasked(cs, excp_idx, target_el,
655                               cur_el, secure, hcr_el2)) {
656             /* Taking a virtual abort clears HCR_EL2.VSE */
657             env->cp15.hcr_el2 &= ~HCR_VSE;
658             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
659             goto found;
660         }
661     }
662     return false;
663 
664  found:
665     cs->exception_index = excp_idx;
666     env->exception.target_el = target_el;
667     cc->tcg_ops->do_interrupt(cs);
668     return true;
669 }
670 #endif /* !CONFIG_USER_ONLY */
671 
672 void arm_cpu_update_virq(ARMCPU *cpu)
673 {
674     /*
675      * Update the interrupt level for VIRQ, which is the logical OR of
676      * the HCR_EL2.VI bit and the input line level from the GIC.
677      */
678     CPUARMState *env = &cpu->env;
679     CPUState *cs = CPU(cpu);
680 
681     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
682         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
683 
684     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
685         if (new_state) {
686             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
687         } else {
688             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
689         }
690     }
691 }
692 
693 void arm_cpu_update_vfiq(ARMCPU *cpu)
694 {
695     /*
696      * Update the interrupt level for VFIQ, which is the logical OR of
697      * the HCR_EL2.VF bit and the input line level from the GIC.
698      */
699     CPUARMState *env = &cpu->env;
700     CPUState *cs = CPU(cpu);
701 
702     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
703         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
704 
705     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
706         if (new_state) {
707             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
708         } else {
709             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
710         }
711     }
712 }
713 
714 void arm_cpu_update_vserr(ARMCPU *cpu)
715 {
716     /*
717      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
718      */
719     CPUARMState *env = &cpu->env;
720     CPUState *cs = CPU(cpu);
721 
722     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
723 
724     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
725         if (new_state) {
726             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
727         } else {
728             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
729         }
730     }
731 }
732 
733 #ifndef CONFIG_USER_ONLY
734 static void arm_cpu_set_irq(void *opaque, int irq, int level)
735 {
736     ARMCPU *cpu = opaque;
737     CPUARMState *env = &cpu->env;
738     CPUState *cs = CPU(cpu);
739     static const int mask[] = {
740         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
741         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
742         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
743         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
744     };
745 
746     if (!arm_feature(env, ARM_FEATURE_EL2) &&
747         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
748         /*
749          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
750          * have EL2 support we don't care. (Unless the guest is doing something
751          * silly this will only be calls saying "level is still 0".)
752          */
753         return;
754     }
755 
756     if (level) {
757         env->irq_line_state |= mask[irq];
758     } else {
759         env->irq_line_state &= ~mask[irq];
760     }
761 
762     switch (irq) {
763     case ARM_CPU_VIRQ:
764         arm_cpu_update_virq(cpu);
765         break;
766     case ARM_CPU_VFIQ:
767         arm_cpu_update_vfiq(cpu);
768         break;
769     case ARM_CPU_IRQ:
770     case ARM_CPU_FIQ:
771         if (level) {
772             cpu_interrupt(cs, mask[irq]);
773         } else {
774             cpu_reset_interrupt(cs, mask[irq]);
775         }
776         break;
777     default:
778         g_assert_not_reached();
779     }
780 }
781 
782 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
783 {
784 #ifdef CONFIG_KVM
785     ARMCPU *cpu = opaque;
786     CPUARMState *env = &cpu->env;
787     CPUState *cs = CPU(cpu);
788     uint32_t linestate_bit;
789     int irq_id;
790 
791     switch (irq) {
792     case ARM_CPU_IRQ:
793         irq_id = KVM_ARM_IRQ_CPU_IRQ;
794         linestate_bit = CPU_INTERRUPT_HARD;
795         break;
796     case ARM_CPU_FIQ:
797         irq_id = KVM_ARM_IRQ_CPU_FIQ;
798         linestate_bit = CPU_INTERRUPT_FIQ;
799         break;
800     default:
801         g_assert_not_reached();
802     }
803 
804     if (level) {
805         env->irq_line_state |= linestate_bit;
806     } else {
807         env->irq_line_state &= ~linestate_bit;
808     }
809     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
810 #endif
811 }
812 
813 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
814 {
815     ARMCPU *cpu = ARM_CPU(cs);
816     CPUARMState *env = &cpu->env;
817 
818     cpu_synchronize_state(cs);
819     return arm_cpu_data_is_big_endian(env);
820 }
821 
822 #endif
823 
824 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
825 {
826     ARMCPU *ac = ARM_CPU(cpu);
827     CPUARMState *env = &ac->env;
828     bool sctlr_b;
829 
830     if (is_a64(env)) {
831         /* We might not be compiled with the A64 disassembler
832          * because it needs a C++ compiler. Leave print_insn
833          * unset in this case to use the caller default behaviour.
834          */
835 #if defined(CONFIG_ARM_A64_DIS)
836         info->print_insn = print_insn_arm_a64;
837 #endif
838         info->cap_arch = CS_ARCH_ARM64;
839         info->cap_insn_unit = 4;
840         info->cap_insn_split = 4;
841     } else {
842         int cap_mode;
843         if (env->thumb) {
844             info->cap_insn_unit = 2;
845             info->cap_insn_split = 4;
846             cap_mode = CS_MODE_THUMB;
847         } else {
848             info->cap_insn_unit = 4;
849             info->cap_insn_split = 4;
850             cap_mode = CS_MODE_ARM;
851         }
852         if (arm_feature(env, ARM_FEATURE_V8)) {
853             cap_mode |= CS_MODE_V8;
854         }
855         if (arm_feature(env, ARM_FEATURE_M)) {
856             cap_mode |= CS_MODE_MCLASS;
857         }
858         info->cap_arch = CS_ARCH_ARM;
859         info->cap_mode = cap_mode;
860     }
861 
862     sctlr_b = arm_sctlr_b(env);
863     if (bswap_code(sctlr_b)) {
864 #if TARGET_BIG_ENDIAN
865         info->endian = BFD_ENDIAN_LITTLE;
866 #else
867         info->endian = BFD_ENDIAN_BIG;
868 #endif
869     }
870     info->flags &= ~INSN_ARM_BE32;
871 #ifndef CONFIG_USER_ONLY
872     if (sctlr_b) {
873         info->flags |= INSN_ARM_BE32;
874     }
875 #endif
876 }
877 
878 #ifdef TARGET_AARCH64
879 
880 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
881 {
882     ARMCPU *cpu = ARM_CPU(cs);
883     CPUARMState *env = &cpu->env;
884     uint32_t psr = pstate_read(env);
885     int i;
886     int el = arm_current_el(env);
887     const char *ns_status;
888 
889     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
890     for (i = 0; i < 32; i++) {
891         if (i == 31) {
892             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
893         } else {
894             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
895                          (i + 2) % 3 ? " " : "\n");
896         }
897     }
898 
899     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
900         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
901     } else {
902         ns_status = "";
903     }
904     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
905                  psr,
906                  psr & PSTATE_N ? 'N' : '-',
907                  psr & PSTATE_Z ? 'Z' : '-',
908                  psr & PSTATE_C ? 'C' : '-',
909                  psr & PSTATE_V ? 'V' : '-',
910                  ns_status,
911                  el,
912                  psr & PSTATE_SP ? 'h' : 't');
913 
914     if (cpu_isar_feature(aa64_bti, cpu)) {
915         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
916     }
917     if (!(flags & CPU_DUMP_FPU)) {
918         qemu_fprintf(f, "\n");
919         return;
920     }
921     if (fp_exception_el(env, el) != 0) {
922         qemu_fprintf(f, "    FPU disabled\n");
923         return;
924     }
925     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
926                  vfp_get_fpcr(env), vfp_get_fpsr(env));
927 
928     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
929         int j, zcr_len = sve_zcr_len_for_el(env, el);
930 
931         for (i = 0; i <= FFR_PRED_NUM; i++) {
932             bool eol;
933             if (i == FFR_PRED_NUM) {
934                 qemu_fprintf(f, "FFR=");
935                 /* It's last, so end the line.  */
936                 eol = true;
937             } else {
938                 qemu_fprintf(f, "P%02d=", i);
939                 switch (zcr_len) {
940                 case 0:
941                     eol = i % 8 == 7;
942                     break;
943                 case 1:
944                     eol = i % 6 == 5;
945                     break;
946                 case 2:
947                 case 3:
948                     eol = i % 3 == 2;
949                     break;
950                 default:
951                     /* More than one quadword per predicate.  */
952                     eol = true;
953                     break;
954                 }
955             }
956             for (j = zcr_len / 4; j >= 0; j--) {
957                 int digits;
958                 if (j * 4 + 4 <= zcr_len + 1) {
959                     digits = 16;
960                 } else {
961                     digits = (zcr_len % 4 + 1) * 4;
962                 }
963                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
964                              env->vfp.pregs[i].p[j],
965                              j ? ":" : eol ? "\n" : " ");
966             }
967         }
968 
969         for (i = 0; i < 32; i++) {
970             if (zcr_len == 0) {
971                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
972                              i, env->vfp.zregs[i].d[1],
973                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
974             } else if (zcr_len == 1) {
975                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
976                              ":%016" PRIx64 ":%016" PRIx64 "\n",
977                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
978                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
979             } else {
980                 for (j = zcr_len; j >= 0; j--) {
981                     bool odd = (zcr_len - j) % 2 != 0;
982                     if (j == zcr_len) {
983                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
984                     } else if (!odd) {
985                         if (j > 0) {
986                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
987                         } else {
988                             qemu_fprintf(f, "     [%x]=", j);
989                         }
990                     }
991                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
992                                  env->vfp.zregs[i].d[j * 2 + 1],
993                                  env->vfp.zregs[i].d[j * 2],
994                                  odd || j == 0 ? "\n" : ":");
995                 }
996             }
997         }
998     } else {
999         for (i = 0; i < 32; i++) {
1000             uint64_t *q = aa64_vfp_qreg(env, i);
1001             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1002                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1003         }
1004     }
1005 }
1006 
1007 #else
1008 
1009 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1010 {
1011     g_assert_not_reached();
1012 }
1013 
1014 #endif
1015 
1016 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1017 {
1018     ARMCPU *cpu = ARM_CPU(cs);
1019     CPUARMState *env = &cpu->env;
1020     int i;
1021 
1022     if (is_a64(env)) {
1023         aarch64_cpu_dump_state(cs, f, flags);
1024         return;
1025     }
1026 
1027     for (i = 0; i < 16; i++) {
1028         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1029         if ((i % 4) == 3) {
1030             qemu_fprintf(f, "\n");
1031         } else {
1032             qemu_fprintf(f, " ");
1033         }
1034     }
1035 
1036     if (arm_feature(env, ARM_FEATURE_M)) {
1037         uint32_t xpsr = xpsr_read(env);
1038         const char *mode;
1039         const char *ns_status = "";
1040 
1041         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1042             ns_status = env->v7m.secure ? "S " : "NS ";
1043         }
1044 
1045         if (xpsr & XPSR_EXCP) {
1046             mode = "handler";
1047         } else {
1048             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1049                 mode = "unpriv-thread";
1050             } else {
1051                 mode = "priv-thread";
1052             }
1053         }
1054 
1055         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1056                      xpsr,
1057                      xpsr & XPSR_N ? 'N' : '-',
1058                      xpsr & XPSR_Z ? 'Z' : '-',
1059                      xpsr & XPSR_C ? 'C' : '-',
1060                      xpsr & XPSR_V ? 'V' : '-',
1061                      xpsr & XPSR_T ? 'T' : 'A',
1062                      ns_status,
1063                      mode);
1064     } else {
1065         uint32_t psr = cpsr_read(env);
1066         const char *ns_status = "";
1067 
1068         if (arm_feature(env, ARM_FEATURE_EL3) &&
1069             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1070             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1071         }
1072 
1073         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1074                      psr,
1075                      psr & CPSR_N ? 'N' : '-',
1076                      psr & CPSR_Z ? 'Z' : '-',
1077                      psr & CPSR_C ? 'C' : '-',
1078                      psr & CPSR_V ? 'V' : '-',
1079                      psr & CPSR_T ? 'T' : 'A',
1080                      ns_status,
1081                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1082     }
1083 
1084     if (flags & CPU_DUMP_FPU) {
1085         int numvfpregs = 0;
1086         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1087             numvfpregs = 32;
1088         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1089             numvfpregs = 16;
1090         }
1091         for (i = 0; i < numvfpregs; i++) {
1092             uint64_t v = *aa32_vfp_dreg(env, i);
1093             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1094                          i * 2, (uint32_t)v,
1095                          i * 2 + 1, (uint32_t)(v >> 32),
1096                          i, v);
1097         }
1098         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1099         if (cpu_isar_feature(aa32_mve, cpu)) {
1100             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1101         }
1102     }
1103 }
1104 
1105 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1106 {
1107     uint32_t Aff1 = idx / clustersz;
1108     uint32_t Aff0 = idx % clustersz;
1109     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1110 }
1111 
1112 static void arm_cpu_initfn(Object *obj)
1113 {
1114     ARMCPU *cpu = ARM_CPU(obj);
1115 
1116     cpu_set_cpustate_pointers(cpu);
1117     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1118                                          NULL, g_free);
1119 
1120     QLIST_INIT(&cpu->pre_el_change_hooks);
1121     QLIST_INIT(&cpu->el_change_hooks);
1122 
1123 #ifdef CONFIG_USER_ONLY
1124 # ifdef TARGET_AARCH64
1125     /*
1126      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1127      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1128      * our corresponding sve-default-vector-length cpu property.
1129      */
1130     cpu->sve_default_vq = 4;
1131 # endif
1132 #else
1133     /* Our inbound IRQ and FIQ lines */
1134     if (kvm_enabled()) {
1135         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1136          * the same interface as non-KVM CPUs.
1137          */
1138         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1139     } else {
1140         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1141     }
1142 
1143     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1144                        ARRAY_SIZE(cpu->gt_timer_outputs));
1145 
1146     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1147                              "gicv3-maintenance-interrupt", 1);
1148     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1149                              "pmu-interrupt", 1);
1150 #endif
1151 
1152     /* DTB consumers generally don't in fact care what the 'compatible'
1153      * string is, so always provide some string and trust that a hypothetical
1154      * picky DTB consumer will also provide a helpful error message.
1155      */
1156     cpu->dtb_compatible = "qemu,unknown";
1157     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1158     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1159 
1160     if (tcg_enabled() || hvf_enabled()) {
1161         /* TCG and HVF implement PSCI 1.1 */
1162         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1163     }
1164 }
1165 
1166 static Property arm_cpu_gt_cntfrq_property =
1167             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1168                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1169 
1170 static Property arm_cpu_reset_cbar_property =
1171             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1172 
1173 static Property arm_cpu_reset_hivecs_property =
1174             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1175 
1176 #ifndef CONFIG_USER_ONLY
1177 static Property arm_cpu_has_el2_property =
1178             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1179 
1180 static Property arm_cpu_has_el3_property =
1181             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1182 #endif
1183 
1184 static Property arm_cpu_cfgend_property =
1185             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1186 
1187 static Property arm_cpu_has_vfp_property =
1188             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1189 
1190 static Property arm_cpu_has_neon_property =
1191             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1192 
1193 static Property arm_cpu_has_dsp_property =
1194             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1195 
1196 static Property arm_cpu_has_mpu_property =
1197             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1198 
1199 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1200  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1201  * the right value for that particular CPU type, and we don't want
1202  * to override that with an incorrect constant value.
1203  */
1204 static Property arm_cpu_pmsav7_dregion_property =
1205             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1206                                            pmsav7_dregion,
1207                                            qdev_prop_uint32, uint32_t);
1208 
1209 static bool arm_get_pmu(Object *obj, Error **errp)
1210 {
1211     ARMCPU *cpu = ARM_CPU(obj);
1212 
1213     return cpu->has_pmu;
1214 }
1215 
1216 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1217 {
1218     ARMCPU *cpu = ARM_CPU(obj);
1219 
1220     if (value) {
1221         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1222             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1223             return;
1224         }
1225         set_feature(&cpu->env, ARM_FEATURE_PMU);
1226     } else {
1227         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1228     }
1229     cpu->has_pmu = value;
1230 }
1231 
1232 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1233 {
1234     /*
1235      * The exact approach to calculating guest ticks is:
1236      *
1237      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1238      *              NANOSECONDS_PER_SECOND);
1239      *
1240      * We don't do that. Rather we intentionally use integer division
1241      * truncation below and in the caller for the conversion of host monotonic
1242      * time to guest ticks to provide the exact inverse for the semantics of
1243      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1244      * it loses precision when representing frequencies where
1245      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1246      * provide an exact inverse leads to scheduling timers with negative
1247      * periods, which in turn leads to sticky behaviour in the guest.
1248      *
1249      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1250      * cannot become zero.
1251      */
1252     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1253       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1254 }
1255 
1256 void arm_cpu_post_init(Object *obj)
1257 {
1258     ARMCPU *cpu = ARM_CPU(obj);
1259 
1260     /* M profile implies PMSA. We have to do this here rather than
1261      * in realize with the other feature-implication checks because
1262      * we look at the PMSA bit to see if we should add some properties.
1263      */
1264     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1265         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1266     }
1267 
1268     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1269         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1270         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1271     }
1272 
1273     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1274         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1275     }
1276 
1277     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1278         object_property_add_uint64_ptr(obj, "rvbar",
1279                                        &cpu->rvbar_prop,
1280                                        OBJ_PROP_FLAG_READWRITE);
1281     }
1282 
1283 #ifndef CONFIG_USER_ONLY
1284     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1285         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1286          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1287          */
1288         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1289 
1290         object_property_add_link(obj, "secure-memory",
1291                                  TYPE_MEMORY_REGION,
1292                                  (Object **)&cpu->secure_memory,
1293                                  qdev_prop_allow_set_link_before_realize,
1294                                  OBJ_PROP_LINK_STRONG);
1295     }
1296 
1297     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1298         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1299     }
1300 #endif
1301 
1302     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1303         cpu->has_pmu = true;
1304         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1305     }
1306 
1307     /*
1308      * Allow user to turn off VFP and Neon support, but only for TCG --
1309      * KVM does not currently allow us to lie to the guest about its
1310      * ID/feature registers, so the guest always sees what the host has.
1311      */
1312     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1313         ? cpu_isar_feature(aa64_fp_simd, cpu)
1314         : cpu_isar_feature(aa32_vfp, cpu)) {
1315         cpu->has_vfp = true;
1316         if (!kvm_enabled()) {
1317             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1318         }
1319     }
1320 
1321     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1322         cpu->has_neon = true;
1323         if (!kvm_enabled()) {
1324             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1325         }
1326     }
1327 
1328     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1329         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1330         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1331     }
1332 
1333     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1334         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1335         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1336             qdev_property_add_static(DEVICE(obj),
1337                                      &arm_cpu_pmsav7_dregion_property);
1338         }
1339     }
1340 
1341     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1342         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1343                                  qdev_prop_allow_set_link_before_realize,
1344                                  OBJ_PROP_LINK_STRONG);
1345         /*
1346          * M profile: initial value of the Secure VTOR. We can't just use
1347          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1348          * the property to be set after realize.
1349          */
1350         object_property_add_uint32_ptr(obj, "init-svtor",
1351                                        &cpu->init_svtor,
1352                                        OBJ_PROP_FLAG_READWRITE);
1353     }
1354     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1355         /*
1356          * Initial value of the NS VTOR (for cores without the Security
1357          * extension, this is the only VTOR)
1358          */
1359         object_property_add_uint32_ptr(obj, "init-nsvtor",
1360                                        &cpu->init_nsvtor,
1361                                        OBJ_PROP_FLAG_READWRITE);
1362     }
1363 
1364     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1365     object_property_add_uint32_ptr(obj, "psci-conduit",
1366                                    &cpu->psci_conduit,
1367                                    OBJ_PROP_FLAG_READWRITE);
1368 
1369     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1370 
1371     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1372         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1373     }
1374 
1375     if (kvm_enabled()) {
1376         kvm_arm_add_vcpu_properties(obj);
1377     }
1378 
1379 #ifndef CONFIG_USER_ONLY
1380     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1381         cpu_isar_feature(aa64_mte, cpu)) {
1382         object_property_add_link(obj, "tag-memory",
1383                                  TYPE_MEMORY_REGION,
1384                                  (Object **)&cpu->tag_memory,
1385                                  qdev_prop_allow_set_link_before_realize,
1386                                  OBJ_PROP_LINK_STRONG);
1387 
1388         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1389             object_property_add_link(obj, "secure-tag-memory",
1390                                      TYPE_MEMORY_REGION,
1391                                      (Object **)&cpu->secure_tag_memory,
1392                                      qdev_prop_allow_set_link_before_realize,
1393                                      OBJ_PROP_LINK_STRONG);
1394         }
1395     }
1396 #endif
1397 }
1398 
1399 static void arm_cpu_finalizefn(Object *obj)
1400 {
1401     ARMCPU *cpu = ARM_CPU(obj);
1402     ARMELChangeHook *hook, *next;
1403 
1404     g_hash_table_destroy(cpu->cp_regs);
1405 
1406     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1407         QLIST_REMOVE(hook, node);
1408         g_free(hook);
1409     }
1410     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1411         QLIST_REMOVE(hook, node);
1412         g_free(hook);
1413     }
1414 #ifndef CONFIG_USER_ONLY
1415     if (cpu->pmu_timer) {
1416         timer_free(cpu->pmu_timer);
1417     }
1418 #endif
1419 }
1420 
1421 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1422 {
1423     Error *local_err = NULL;
1424 
1425     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1426         arm_cpu_sve_finalize(cpu, &local_err);
1427         if (local_err != NULL) {
1428             error_propagate(errp, local_err);
1429             return;
1430         }
1431 
1432         arm_cpu_pauth_finalize(cpu, &local_err);
1433         if (local_err != NULL) {
1434             error_propagate(errp, local_err);
1435             return;
1436         }
1437 
1438         arm_cpu_lpa2_finalize(cpu, &local_err);
1439         if (local_err != NULL) {
1440             error_propagate(errp, local_err);
1441             return;
1442         }
1443     }
1444 
1445     if (kvm_enabled()) {
1446         kvm_arm_steal_time_finalize(cpu, &local_err);
1447         if (local_err != NULL) {
1448             error_propagate(errp, local_err);
1449             return;
1450         }
1451     }
1452 }
1453 
1454 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1455 {
1456     CPUState *cs = CPU(dev);
1457     ARMCPU *cpu = ARM_CPU(dev);
1458     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1459     CPUARMState *env = &cpu->env;
1460     int pagebits;
1461     Error *local_err = NULL;
1462     bool no_aa32 = false;
1463 
1464     /* If we needed to query the host kernel for the CPU features
1465      * then it's possible that might have failed in the initfn, but
1466      * this is the first point where we can report it.
1467      */
1468     if (cpu->host_cpu_probe_failed) {
1469         if (!kvm_enabled() && !hvf_enabled()) {
1470             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1471         } else {
1472             error_setg(errp, "Failed to retrieve host CPU features");
1473         }
1474         return;
1475     }
1476 
1477 #ifndef CONFIG_USER_ONLY
1478     /* The NVIC and M-profile CPU are two halves of a single piece of
1479      * hardware; trying to use one without the other is a command line
1480      * error and will result in segfaults if not caught here.
1481      */
1482     if (arm_feature(env, ARM_FEATURE_M)) {
1483         if (!env->nvic) {
1484             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1485             return;
1486         }
1487     } else {
1488         if (env->nvic) {
1489             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1490             return;
1491         }
1492     }
1493 
1494     if (kvm_enabled()) {
1495         /*
1496          * Catch all the cases which might cause us to create more than one
1497          * address space for the CPU (otherwise we will assert() later in
1498          * cpu_address_space_init()).
1499          */
1500         if (arm_feature(env, ARM_FEATURE_M)) {
1501             error_setg(errp,
1502                        "Cannot enable KVM when using an M-profile guest CPU");
1503             return;
1504         }
1505         if (cpu->has_el3) {
1506             error_setg(errp,
1507                        "Cannot enable KVM when guest CPU has EL3 enabled");
1508             return;
1509         }
1510         if (cpu->tag_memory) {
1511             error_setg(errp,
1512                        "Cannot enable KVM when guest CPUs has MTE enabled");
1513             return;
1514         }
1515     }
1516 
1517     {
1518         uint64_t scale;
1519 
1520         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1521             if (!cpu->gt_cntfrq_hz) {
1522                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1523                            cpu->gt_cntfrq_hz);
1524                 return;
1525             }
1526             scale = gt_cntfrq_period_ns(cpu);
1527         } else {
1528             scale = GTIMER_SCALE;
1529         }
1530 
1531         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1532                                                arm_gt_ptimer_cb, cpu);
1533         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1534                                                arm_gt_vtimer_cb, cpu);
1535         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1536                                               arm_gt_htimer_cb, cpu);
1537         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1538                                               arm_gt_stimer_cb, cpu);
1539         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1540                                                   arm_gt_hvtimer_cb, cpu);
1541     }
1542 #endif
1543 
1544     cpu_exec_realizefn(cs, &local_err);
1545     if (local_err != NULL) {
1546         error_propagate(errp, local_err);
1547         return;
1548     }
1549 
1550     arm_cpu_finalize_features(cpu, &local_err);
1551     if (local_err != NULL) {
1552         error_propagate(errp, local_err);
1553         return;
1554     }
1555 
1556     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1557         cpu->has_vfp != cpu->has_neon) {
1558         /*
1559          * This is an architectural requirement for AArch64; AArch32 is
1560          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1561          */
1562         error_setg(errp,
1563                    "AArch64 CPUs must have both VFP and Neon or neither");
1564         return;
1565     }
1566 
1567     if (!cpu->has_vfp) {
1568         uint64_t t;
1569         uint32_t u;
1570 
1571         t = cpu->isar.id_aa64isar1;
1572         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1573         cpu->isar.id_aa64isar1 = t;
1574 
1575         t = cpu->isar.id_aa64pfr0;
1576         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1577         cpu->isar.id_aa64pfr0 = t;
1578 
1579         u = cpu->isar.id_isar6;
1580         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1581         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1582         cpu->isar.id_isar6 = u;
1583 
1584         u = cpu->isar.mvfr0;
1585         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1586         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1587         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1588         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1589         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1590         if (!arm_feature(env, ARM_FEATURE_M)) {
1591             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1592             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1593         }
1594         cpu->isar.mvfr0 = u;
1595 
1596         u = cpu->isar.mvfr1;
1597         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1598         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1599         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1600         if (arm_feature(env, ARM_FEATURE_M)) {
1601             u = FIELD_DP32(u, MVFR1, FP16, 0);
1602         }
1603         cpu->isar.mvfr1 = u;
1604 
1605         u = cpu->isar.mvfr2;
1606         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1607         cpu->isar.mvfr2 = u;
1608     }
1609 
1610     if (!cpu->has_neon) {
1611         uint64_t t;
1612         uint32_t u;
1613 
1614         unset_feature(env, ARM_FEATURE_NEON);
1615 
1616         t = cpu->isar.id_aa64isar0;
1617         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1618         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1619         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1620         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1621         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1622         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1623         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1624         cpu->isar.id_aa64isar0 = t;
1625 
1626         t = cpu->isar.id_aa64isar1;
1627         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1628         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1629         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1630         cpu->isar.id_aa64isar1 = t;
1631 
1632         t = cpu->isar.id_aa64pfr0;
1633         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1634         cpu->isar.id_aa64pfr0 = t;
1635 
1636         u = cpu->isar.id_isar5;
1637         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1638         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1639         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1640         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1641         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1642         cpu->isar.id_isar5 = u;
1643 
1644         u = cpu->isar.id_isar6;
1645         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1646         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1647         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1648         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1649         cpu->isar.id_isar6 = u;
1650 
1651         if (!arm_feature(env, ARM_FEATURE_M)) {
1652             u = cpu->isar.mvfr1;
1653             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1654             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1655             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1656             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1657             cpu->isar.mvfr1 = u;
1658 
1659             u = cpu->isar.mvfr2;
1660             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1661             cpu->isar.mvfr2 = u;
1662         }
1663     }
1664 
1665     if (!cpu->has_neon && !cpu->has_vfp) {
1666         uint64_t t;
1667         uint32_t u;
1668 
1669         t = cpu->isar.id_aa64isar0;
1670         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1671         cpu->isar.id_aa64isar0 = t;
1672 
1673         t = cpu->isar.id_aa64isar1;
1674         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1675         cpu->isar.id_aa64isar1 = t;
1676 
1677         u = cpu->isar.mvfr0;
1678         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1679         cpu->isar.mvfr0 = u;
1680 
1681         /* Despite the name, this field covers both VFP and Neon */
1682         u = cpu->isar.mvfr1;
1683         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1684         cpu->isar.mvfr1 = u;
1685     }
1686 
1687     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1688         uint32_t u;
1689 
1690         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1691 
1692         u = cpu->isar.id_isar1;
1693         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1694         cpu->isar.id_isar1 = u;
1695 
1696         u = cpu->isar.id_isar2;
1697         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1698         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1699         cpu->isar.id_isar2 = u;
1700 
1701         u = cpu->isar.id_isar3;
1702         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1703         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1704         cpu->isar.id_isar3 = u;
1705     }
1706 
1707     /* Some features automatically imply others: */
1708     if (arm_feature(env, ARM_FEATURE_V8)) {
1709         if (arm_feature(env, ARM_FEATURE_M)) {
1710             set_feature(env, ARM_FEATURE_V7);
1711         } else {
1712             set_feature(env, ARM_FEATURE_V7VE);
1713         }
1714     }
1715 
1716     /*
1717      * There exist AArch64 cpus without AArch32 support.  When KVM
1718      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1719      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1720      * As a general principle, we also do not make ID register
1721      * consistency checks anywhere unless using TCG, because only
1722      * for TCG would a consistency-check failure be a QEMU bug.
1723      */
1724     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1725         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1726     }
1727 
1728     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1729         /* v7 Virtualization Extensions. In real hardware this implies
1730          * EL2 and also the presence of the Security Extensions.
1731          * For QEMU, for backwards-compatibility we implement some
1732          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1733          * include the various other features that V7VE implies.
1734          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1735          * Security Extensions is ARM_FEATURE_EL3.
1736          */
1737         assert(!tcg_enabled() || no_aa32 ||
1738                cpu_isar_feature(aa32_arm_div, cpu));
1739         set_feature(env, ARM_FEATURE_LPAE);
1740         set_feature(env, ARM_FEATURE_V7);
1741     }
1742     if (arm_feature(env, ARM_FEATURE_V7)) {
1743         set_feature(env, ARM_FEATURE_VAPA);
1744         set_feature(env, ARM_FEATURE_THUMB2);
1745         set_feature(env, ARM_FEATURE_MPIDR);
1746         if (!arm_feature(env, ARM_FEATURE_M)) {
1747             set_feature(env, ARM_FEATURE_V6K);
1748         } else {
1749             set_feature(env, ARM_FEATURE_V6);
1750         }
1751 
1752         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1753          * non-EL3 configs. This is needed by some legacy boards.
1754          */
1755         set_feature(env, ARM_FEATURE_VBAR);
1756     }
1757     if (arm_feature(env, ARM_FEATURE_V6K)) {
1758         set_feature(env, ARM_FEATURE_V6);
1759         set_feature(env, ARM_FEATURE_MVFR);
1760     }
1761     if (arm_feature(env, ARM_FEATURE_V6)) {
1762         set_feature(env, ARM_FEATURE_V5);
1763         if (!arm_feature(env, ARM_FEATURE_M)) {
1764             assert(!tcg_enabled() || no_aa32 ||
1765                    cpu_isar_feature(aa32_jazelle, cpu));
1766             set_feature(env, ARM_FEATURE_AUXCR);
1767         }
1768     }
1769     if (arm_feature(env, ARM_FEATURE_V5)) {
1770         set_feature(env, ARM_FEATURE_V4T);
1771     }
1772     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1773         set_feature(env, ARM_FEATURE_V7MP);
1774     }
1775     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1776         set_feature(env, ARM_FEATURE_CBAR);
1777     }
1778     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1779         !arm_feature(env, ARM_FEATURE_M)) {
1780         set_feature(env, ARM_FEATURE_THUMB_DSP);
1781     }
1782 
1783     /*
1784      * We rely on no XScale CPU having VFP so we can use the same bits in the
1785      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1786      */
1787     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1788            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1789            !arm_feature(env, ARM_FEATURE_XSCALE));
1790 
1791     if (arm_feature(env, ARM_FEATURE_V7) &&
1792         !arm_feature(env, ARM_FEATURE_M) &&
1793         !arm_feature(env, ARM_FEATURE_PMSA)) {
1794         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1795          * can use 4K pages.
1796          */
1797         pagebits = 12;
1798     } else {
1799         /* For CPUs which might have tiny 1K pages, or which have an
1800          * MPU and might have small region sizes, stick with 1K pages.
1801          */
1802         pagebits = 10;
1803     }
1804     if (!set_preferred_target_page_bits(pagebits)) {
1805         /* This can only ever happen for hotplugging a CPU, or if
1806          * the board code incorrectly creates a CPU which it has
1807          * promised via minimum_page_size that it will not.
1808          */
1809         error_setg(errp, "This CPU requires a smaller page size than the "
1810                    "system is using");
1811         return;
1812     }
1813 
1814     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1815      * We don't support setting cluster ID ([16..23]) (known as Aff2
1816      * in later ARM ARM versions), or any of the higher affinity level fields,
1817      * so these bits always RAZ.
1818      */
1819     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1820         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1821                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1822     }
1823 
1824     if (cpu->reset_hivecs) {
1825             cpu->reset_sctlr |= (1 << 13);
1826     }
1827 
1828     if (cpu->cfgend) {
1829         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1830             cpu->reset_sctlr |= SCTLR_EE;
1831         } else {
1832             cpu->reset_sctlr |= SCTLR_B;
1833         }
1834     }
1835 
1836     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1837         /* If the has_el3 CPU property is disabled then we need to disable the
1838          * feature.
1839          */
1840         unset_feature(env, ARM_FEATURE_EL3);
1841 
1842         /*
1843          * Disable the security extension feature bits in the processor
1844          * feature registers as well.
1845          */
1846         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1847         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1848         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1849                                            ID_AA64PFR0, EL3, 0);
1850     }
1851 
1852     if (!cpu->has_el2) {
1853         unset_feature(env, ARM_FEATURE_EL2);
1854     }
1855 
1856     if (!cpu->has_pmu) {
1857         unset_feature(env, ARM_FEATURE_PMU);
1858     }
1859     if (arm_feature(env, ARM_FEATURE_PMU)) {
1860         pmu_init(cpu);
1861 
1862         if (!kvm_enabled()) {
1863             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1864             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1865         }
1866 
1867 #ifndef CONFIG_USER_ONLY
1868         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1869                 cpu);
1870 #endif
1871     } else {
1872         cpu->isar.id_aa64dfr0 =
1873             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1874         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1875         cpu->pmceid0 = 0;
1876         cpu->pmceid1 = 0;
1877     }
1878 
1879     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1880         /*
1881          * Disable the hypervisor feature bits in the processor feature
1882          * registers if we don't have EL2.
1883          */
1884         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1885                                            ID_AA64PFR0, EL2, 0);
1886         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1887                                        ID_PFR1, VIRTUALIZATION, 0);
1888     }
1889 
1890 #ifndef CONFIG_USER_ONLY
1891     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1892         /*
1893          * Disable the MTE feature bits if we do not have tag-memory
1894          * provided by the machine.
1895          */
1896         cpu->isar.id_aa64pfr1 =
1897             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1898     }
1899 #endif
1900 
1901     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1902      * to false or by setting pmsav7-dregion to 0.
1903      */
1904     if (!cpu->has_mpu) {
1905         cpu->pmsav7_dregion = 0;
1906     }
1907     if (cpu->pmsav7_dregion == 0) {
1908         cpu->has_mpu = false;
1909     }
1910 
1911     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1912         arm_feature(env, ARM_FEATURE_V7)) {
1913         uint32_t nr = cpu->pmsav7_dregion;
1914 
1915         if (nr > 0xff) {
1916             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1917             return;
1918         }
1919 
1920         if (nr) {
1921             if (arm_feature(env, ARM_FEATURE_V8)) {
1922                 /* PMSAv8 */
1923                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1924                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1925                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1926                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1927                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1928                 }
1929             } else {
1930                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1931                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1932                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1933             }
1934         }
1935     }
1936 
1937     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1938         uint32_t nr = cpu->sau_sregion;
1939 
1940         if (nr > 0xff) {
1941             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1942             return;
1943         }
1944 
1945         if (nr) {
1946             env->sau.rbar = g_new0(uint32_t, nr);
1947             env->sau.rlar = g_new0(uint32_t, nr);
1948         }
1949     }
1950 
1951     if (arm_feature(env, ARM_FEATURE_EL3)) {
1952         set_feature(env, ARM_FEATURE_VBAR);
1953     }
1954 
1955     register_cp_regs_for_features(cpu);
1956     arm_cpu_register_gdb_regs_for_features(cpu);
1957 
1958     init_cpreg_list(cpu);
1959 
1960 #ifndef CONFIG_USER_ONLY
1961     MachineState *ms = MACHINE(qdev_get_machine());
1962     unsigned int smp_cpus = ms->smp.cpus;
1963     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1964 
1965     /*
1966      * We must set cs->num_ases to the final value before
1967      * the first call to cpu_address_space_init.
1968      */
1969     if (cpu->tag_memory != NULL) {
1970         cs->num_ases = 3 + has_secure;
1971     } else {
1972         cs->num_ases = 1 + has_secure;
1973     }
1974 
1975     if (has_secure) {
1976         if (!cpu->secure_memory) {
1977             cpu->secure_memory = cs->memory;
1978         }
1979         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1980                                cpu->secure_memory);
1981     }
1982 
1983     if (cpu->tag_memory != NULL) {
1984         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1985                                cpu->tag_memory);
1986         if (has_secure) {
1987             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1988                                    cpu->secure_tag_memory);
1989         }
1990     }
1991 
1992     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1993 
1994     /* No core_count specified, default to smp_cpus. */
1995     if (cpu->core_count == -1) {
1996         cpu->core_count = smp_cpus;
1997     }
1998 #endif
1999 
2000     if (tcg_enabled()) {
2001         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2002 
2003         /*
2004          * We only support DCZ blocklen that fits on one page.
2005          *
2006          * Architectually this is always true.  However TARGET_PAGE_SIZE
2007          * is variable and, for compatibility with -machine virt-2.7,
2008          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2009          * But even then, while the largest architectural DCZ blocklen
2010          * is 2KiB, no cpu actually uses such a large blocklen.
2011          */
2012         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2013 
2014         /*
2015          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2016          * both nibbles of each byte storing tag data may be written at once.
2017          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2018          */
2019         if (cpu_isar_feature(aa64_mte, cpu)) {
2020             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2021         }
2022     }
2023 
2024     qemu_init_vcpu(cs);
2025     cpu_reset(cs);
2026 
2027     acc->parent_realize(dev, errp);
2028 }
2029 
2030 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2031 {
2032     ObjectClass *oc;
2033     char *typename;
2034     char **cpuname;
2035     const char *cpunamestr;
2036 
2037     cpuname = g_strsplit(cpu_model, ",", 1);
2038     cpunamestr = cpuname[0];
2039 #ifdef CONFIG_USER_ONLY
2040     /* For backwards compatibility usermode emulation allows "-cpu any",
2041      * which has the same semantics as "-cpu max".
2042      */
2043     if (!strcmp(cpunamestr, "any")) {
2044         cpunamestr = "max";
2045     }
2046 #endif
2047     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2048     oc = object_class_by_name(typename);
2049     g_strfreev(cpuname);
2050     g_free(typename);
2051     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2052         object_class_is_abstract(oc)) {
2053         return NULL;
2054     }
2055     return oc;
2056 }
2057 
2058 static Property arm_cpu_properties[] = {
2059     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2060     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2061                         mp_affinity, ARM64_AFFINITY_INVALID),
2062     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2063     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2064     DEFINE_PROP_END_OF_LIST()
2065 };
2066 
2067 static gchar *arm_gdb_arch_name(CPUState *cs)
2068 {
2069     ARMCPU *cpu = ARM_CPU(cs);
2070     CPUARMState *env = &cpu->env;
2071 
2072     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2073         return g_strdup("iwmmxt");
2074     }
2075     return g_strdup("arm");
2076 }
2077 
2078 #ifndef CONFIG_USER_ONLY
2079 #include "hw/core/sysemu-cpu-ops.h"
2080 
2081 static const struct SysemuCPUOps arm_sysemu_ops = {
2082     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2083     .asidx_from_attrs = arm_asidx_from_attrs,
2084     .write_elf32_note = arm_cpu_write_elf32_note,
2085     .write_elf64_note = arm_cpu_write_elf64_note,
2086     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2087     .legacy_vmsd = &vmstate_arm_cpu,
2088 };
2089 #endif
2090 
2091 #ifdef CONFIG_TCG
2092 static const struct TCGCPUOps arm_tcg_ops = {
2093     .initialize = arm_translate_init,
2094     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2095     .debug_excp_handler = arm_debug_excp_handler,
2096 
2097 #ifdef CONFIG_USER_ONLY
2098     .record_sigsegv = arm_cpu_record_sigsegv,
2099     .record_sigbus = arm_cpu_record_sigbus,
2100 #else
2101     .tlb_fill = arm_cpu_tlb_fill,
2102     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2103     .do_interrupt = arm_cpu_do_interrupt,
2104     .do_transaction_failed = arm_cpu_do_transaction_failed,
2105     .do_unaligned_access = arm_cpu_do_unaligned_access,
2106     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2107     .debug_check_watchpoint = arm_debug_check_watchpoint,
2108     .debug_check_breakpoint = arm_debug_check_breakpoint,
2109 #endif /* !CONFIG_USER_ONLY */
2110 };
2111 #endif /* CONFIG_TCG */
2112 
2113 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2114 {
2115     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2116     CPUClass *cc = CPU_CLASS(acc);
2117     DeviceClass *dc = DEVICE_CLASS(oc);
2118 
2119     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2120                                     &acc->parent_realize);
2121 
2122     device_class_set_props(dc, arm_cpu_properties);
2123     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2124 
2125     cc->class_by_name = arm_cpu_class_by_name;
2126     cc->has_work = arm_cpu_has_work;
2127     cc->dump_state = arm_cpu_dump_state;
2128     cc->set_pc = arm_cpu_set_pc;
2129     cc->gdb_read_register = arm_cpu_gdb_read_register;
2130     cc->gdb_write_register = arm_cpu_gdb_write_register;
2131 #ifndef CONFIG_USER_ONLY
2132     cc->sysemu_ops = &arm_sysemu_ops;
2133 #endif
2134     cc->gdb_num_core_regs = 26;
2135     cc->gdb_core_xml_file = "arm-core.xml";
2136     cc->gdb_arch_name = arm_gdb_arch_name;
2137     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2138     cc->gdb_stop_before_watchpoint = true;
2139     cc->disas_set_info = arm_disas_set_info;
2140 
2141 #ifdef CONFIG_TCG
2142     cc->tcg_ops = &arm_tcg_ops;
2143 #endif /* CONFIG_TCG */
2144 }
2145 
2146 static void arm_cpu_instance_init(Object *obj)
2147 {
2148     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2149 
2150     acc->info->initfn(obj);
2151     arm_cpu_post_init(obj);
2152 }
2153 
2154 static void cpu_register_class_init(ObjectClass *oc, void *data)
2155 {
2156     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2157 
2158     acc->info = data;
2159 }
2160 
2161 void arm_cpu_register(const ARMCPUInfo *info)
2162 {
2163     TypeInfo type_info = {
2164         .parent = TYPE_ARM_CPU,
2165         .instance_size = sizeof(ARMCPU),
2166         .instance_align = __alignof__(ARMCPU),
2167         .instance_init = arm_cpu_instance_init,
2168         .class_size = sizeof(ARMCPUClass),
2169         .class_init = info->class_init ?: cpu_register_class_init,
2170         .class_data = (void *)info,
2171     };
2172 
2173     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2174     type_register(&type_info);
2175     g_free((void *)type_info.name);
2176 }
2177 
2178 static const TypeInfo arm_cpu_type_info = {
2179     .name = TYPE_ARM_CPU,
2180     .parent = TYPE_CPU,
2181     .instance_size = sizeof(ARMCPU),
2182     .instance_align = __alignof__(ARMCPU),
2183     .instance_init = arm_cpu_initfn,
2184     .instance_finalize = arm_cpu_finalizefn,
2185     .abstract = true,
2186     .class_size = sizeof(ARMCPUClass),
2187     .class_init = arm_cpu_class_init,
2188 };
2189 
2190 static void arm_cpu_register_types(void)
2191 {
2192     type_register_static(&arm_cpu_type_info);
2193 }
2194 
2195 type_init(arm_cpu_register_types)
2196