xref: /openbmc/qemu/target/arm/cpu.c (revision da1849c1)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         }
191 
192         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
193          * that it resets to 1, so QEMU always does that rather than making
194          * it dependent on CPU model. In v8M it is RES1.
195          */
196         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
197         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
198         if (arm_feature(env, ARM_FEATURE_V8)) {
199             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
200             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
201             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
202         }
203 
204         /* Unlike A/R profile, M profile defines the reset LR value */
205         env->regs[14] = 0xffffffff;
206 
207         /* Load the initial SP and PC from the vector table at address 0 */
208         rom = rom_ptr(0);
209         if (rom) {
210             /* Address zero is covered by ROM which hasn't yet been
211              * copied into physical memory.
212              */
213             initial_msp = ldl_p(rom);
214             initial_pc = ldl_p(rom + 4);
215         } else {
216             /* Address zero not covered by a ROM blob, or the ROM blob
217              * is in non-modifiable memory and this is a second reset after
218              * it got copied into memory. In the latter case, rom_ptr
219              * will return a NULL pointer and we should use ldl_phys instead.
220              */
221             initial_msp = ldl_phys(s->as, 0);
222             initial_pc = ldl_phys(s->as, 4);
223         }
224 
225         env->regs[13] = initial_msp & 0xFFFFFFFC;
226         env->regs[15] = initial_pc & ~1;
227         env->thumb = initial_pc & 1;
228     }
229 
230     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
231      * executing as AArch32 then check if highvecs are enabled and
232      * adjust the PC accordingly.
233      */
234     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
235         env->regs[15] = 0xFFFF0000;
236     }
237 
238     /* M profile requires that reset clears the exclusive monitor;
239      * A profile does not, but clearing it makes more sense than having it
240      * set with an exclusive access on address zero.
241      */
242     arm_clear_exclusive(env);
243 
244     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
245 #endif
246 
247     if (arm_feature(env, ARM_FEATURE_PMSA)) {
248         if (cpu->pmsav7_dregion > 0) {
249             if (arm_feature(env, ARM_FEATURE_V8)) {
250                 memset(env->pmsav8.rbar[M_REG_NS], 0,
251                        sizeof(*env->pmsav8.rbar[M_REG_NS])
252                        * cpu->pmsav7_dregion);
253                 memset(env->pmsav8.rlar[M_REG_NS], 0,
254                        sizeof(*env->pmsav8.rlar[M_REG_NS])
255                        * cpu->pmsav7_dregion);
256                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257                     memset(env->pmsav8.rbar[M_REG_S], 0,
258                            sizeof(*env->pmsav8.rbar[M_REG_S])
259                            * cpu->pmsav7_dregion);
260                     memset(env->pmsav8.rlar[M_REG_S], 0,
261                            sizeof(*env->pmsav8.rlar[M_REG_S])
262                            * cpu->pmsav7_dregion);
263                 }
264             } else if (arm_feature(env, ARM_FEATURE_V7)) {
265                 memset(env->pmsav7.drbar, 0,
266                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
267                 memset(env->pmsav7.drsr, 0,
268                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
269                 memset(env->pmsav7.dracr, 0,
270                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
271             }
272         }
273         env->pmsav7.rnr[M_REG_NS] = 0;
274         env->pmsav7.rnr[M_REG_S] = 0;
275         env->pmsav8.mair0[M_REG_NS] = 0;
276         env->pmsav8.mair0[M_REG_S] = 0;
277         env->pmsav8.mair1[M_REG_NS] = 0;
278         env->pmsav8.mair1[M_REG_S] = 0;
279     }
280 
281     set_flush_to_zero(1, &env->vfp.standard_fp_status);
282     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
283     set_default_nan_mode(1, &env->vfp.standard_fp_status);
284     set_float_detect_tininess(float_tininess_before_rounding,
285                               &env->vfp.fp_status);
286     set_float_detect_tininess(float_tininess_before_rounding,
287                               &env->vfp.standard_fp_status);
288 #ifndef CONFIG_USER_ONLY
289     if (kvm_enabled()) {
290         kvm_arm_reset_vcpu(cpu);
291     }
292 #endif
293 
294     hw_breakpoint_update_all(cpu);
295     hw_watchpoint_update_all(cpu);
296 }
297 
298 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
299 {
300     CPUClass *cc = CPU_GET_CLASS(cs);
301     CPUARMState *env = cs->env_ptr;
302     uint32_t cur_el = arm_current_el(env);
303     bool secure = arm_is_secure(env);
304     uint32_t target_el;
305     uint32_t excp_idx;
306     bool ret = false;
307 
308     if (interrupt_request & CPU_INTERRUPT_FIQ) {
309         excp_idx = EXCP_FIQ;
310         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
311         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
312             cs->exception_index = excp_idx;
313             env->exception.target_el = target_el;
314             cc->do_interrupt(cs);
315             ret = true;
316         }
317     }
318     if (interrupt_request & CPU_INTERRUPT_HARD) {
319         excp_idx = EXCP_IRQ;
320         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
321         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
322             cs->exception_index = excp_idx;
323             env->exception.target_el = target_el;
324             cc->do_interrupt(cs);
325             ret = true;
326         }
327     }
328     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
329         excp_idx = EXCP_VIRQ;
330         target_el = 1;
331         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
332             cs->exception_index = excp_idx;
333             env->exception.target_el = target_el;
334             cc->do_interrupt(cs);
335             ret = true;
336         }
337     }
338     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
339         excp_idx = EXCP_VFIQ;
340         target_el = 1;
341         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
342             cs->exception_index = excp_idx;
343             env->exception.target_el = target_el;
344             cc->do_interrupt(cs);
345             ret = true;
346         }
347     }
348 
349     return ret;
350 }
351 
352 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
353 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
354 {
355     CPUClass *cc = CPU_GET_CLASS(cs);
356     ARMCPU *cpu = ARM_CPU(cs);
357     CPUARMState *env = &cpu->env;
358     bool ret = false;
359 
360     /* ARMv7-M interrupt masking works differently than -A or -R.
361      * There is no FIQ/IRQ distinction. Instead of I and F bits
362      * masking FIQ and IRQ interrupts, an exception is taken only
363      * if it is higher priority than the current execution priority
364      * (which depends on state like BASEPRI, FAULTMASK and the
365      * currently active exception).
366      */
367     if (interrupt_request & CPU_INTERRUPT_HARD
368         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
369         cs->exception_index = EXCP_IRQ;
370         cc->do_interrupt(cs);
371         ret = true;
372     }
373     return ret;
374 }
375 #endif
376 
377 #ifndef CONFIG_USER_ONLY
378 static void arm_cpu_set_irq(void *opaque, int irq, int level)
379 {
380     ARMCPU *cpu = opaque;
381     CPUARMState *env = &cpu->env;
382     CPUState *cs = CPU(cpu);
383     static const int mask[] = {
384         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
385         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
386         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
387         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
388     };
389 
390     switch (irq) {
391     case ARM_CPU_VIRQ:
392     case ARM_CPU_VFIQ:
393         assert(arm_feature(env, ARM_FEATURE_EL2));
394         /* fall through */
395     case ARM_CPU_IRQ:
396     case ARM_CPU_FIQ:
397         if (level) {
398             cpu_interrupt(cs, mask[irq]);
399         } else {
400             cpu_reset_interrupt(cs, mask[irq]);
401         }
402         break;
403     default:
404         g_assert_not_reached();
405     }
406 }
407 
408 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
409 {
410 #ifdef CONFIG_KVM
411     ARMCPU *cpu = opaque;
412     CPUState *cs = CPU(cpu);
413     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
414 
415     switch (irq) {
416     case ARM_CPU_IRQ:
417         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
418         break;
419     case ARM_CPU_FIQ:
420         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
421         break;
422     default:
423         g_assert_not_reached();
424     }
425     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
426     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
427 #endif
428 }
429 
430 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
431 {
432     ARMCPU *cpu = ARM_CPU(cs);
433     CPUARMState *env = &cpu->env;
434 
435     cpu_synchronize_state(cs);
436     return arm_cpu_data_is_big_endian(env);
437 }
438 
439 #endif
440 
441 static inline void set_feature(CPUARMState *env, int feature)
442 {
443     env->features |= 1ULL << feature;
444 }
445 
446 static inline void unset_feature(CPUARMState *env, int feature)
447 {
448     env->features &= ~(1ULL << feature);
449 }
450 
451 static int
452 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
453 {
454   return print_insn_arm(pc | 1, info);
455 }
456 
457 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
458                                 int length, struct disassemble_info *info)
459 {
460     assert(info->read_memory_inner_func);
461     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
462 
463     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
464         assert(info->endian == BFD_ENDIAN_LITTLE);
465         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
466                                             info);
467     } else {
468         return info->read_memory_inner_func(memaddr, b, length, info);
469     }
470 }
471 
472 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
473 {
474     ARMCPU *ac = ARM_CPU(cpu);
475     CPUARMState *env = &ac->env;
476 
477     if (is_a64(env)) {
478         /* We might not be compiled with the A64 disassembler
479          * because it needs a C++ compiler. Leave print_insn
480          * unset in this case to use the caller default behaviour.
481          */
482 #if defined(CONFIG_ARM_A64_DIS)
483         info->print_insn = print_insn_arm_a64;
484 #endif
485     } else if (env->thumb) {
486         info->print_insn = print_insn_thumb1;
487     } else {
488         info->print_insn = print_insn_arm;
489     }
490     if (bswap_code(arm_sctlr_b(env))) {
491 #ifdef TARGET_WORDS_BIGENDIAN
492         info->endian = BFD_ENDIAN_LITTLE;
493 #else
494         info->endian = BFD_ENDIAN_BIG;
495 #endif
496     }
497     if (info->read_memory_inner_func == NULL) {
498         info->read_memory_inner_func = info->read_memory_func;
499         info->read_memory_func = arm_read_memory_func;
500     }
501     info->flags &= ~INSN_ARM_BE32;
502     if (arm_sctlr_b(env)) {
503         info->flags |= INSN_ARM_BE32;
504     }
505 }
506 
507 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
508 {
509     uint32_t Aff1 = idx / clustersz;
510     uint32_t Aff0 = idx % clustersz;
511     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
512 }
513 
514 static void arm_cpu_initfn(Object *obj)
515 {
516     CPUState *cs = CPU(obj);
517     ARMCPU *cpu = ARM_CPU(obj);
518     static bool inited;
519 
520     cs->env_ptr = &cpu->env;
521     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
522                                          g_free, g_free);
523 
524 #ifndef CONFIG_USER_ONLY
525     /* Our inbound IRQ and FIQ lines */
526     if (kvm_enabled()) {
527         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
528          * the same interface as non-KVM CPUs.
529          */
530         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
531     } else {
532         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
533     }
534 
535     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
536                                                 arm_gt_ptimer_cb, cpu);
537     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
538                                                 arm_gt_vtimer_cb, cpu);
539     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
540                                                 arm_gt_htimer_cb, cpu);
541     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
542                                                 arm_gt_stimer_cb, cpu);
543     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
544                        ARRAY_SIZE(cpu->gt_timer_outputs));
545 
546     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
547                              "gicv3-maintenance-interrupt", 1);
548     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
549                              "pmu-interrupt", 1);
550 #endif
551 
552     /* DTB consumers generally don't in fact care what the 'compatible'
553      * string is, so always provide some string and trust that a hypothetical
554      * picky DTB consumer will also provide a helpful error message.
555      */
556     cpu->dtb_compatible = "qemu,unknown";
557     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
558     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
559 
560     if (tcg_enabled()) {
561         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
562         if (!inited) {
563             inited = true;
564             arm_translate_init();
565         }
566     }
567 }
568 
569 static Property arm_cpu_reset_cbar_property =
570             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
571 
572 static Property arm_cpu_reset_hivecs_property =
573             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
574 
575 static Property arm_cpu_rvbar_property =
576             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
577 
578 static Property arm_cpu_has_el2_property =
579             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
580 
581 static Property arm_cpu_has_el3_property =
582             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
583 
584 static Property arm_cpu_cfgend_property =
585             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
586 
587 /* use property name "pmu" to match other archs and virt tools */
588 static Property arm_cpu_has_pmu_property =
589             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
590 
591 static Property arm_cpu_has_mpu_property =
592             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
593 
594 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
595  * because the CPU initfn will have already set cpu->pmsav7_dregion to
596  * the right value for that particular CPU type, and we don't want
597  * to override that with an incorrect constant value.
598  */
599 static Property arm_cpu_pmsav7_dregion_property =
600             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
601                                            pmsav7_dregion,
602                                            qdev_prop_uint32, uint32_t);
603 
604 static void arm_cpu_post_init(Object *obj)
605 {
606     ARMCPU *cpu = ARM_CPU(obj);
607 
608     /* M profile implies PMSA. We have to do this here rather than
609      * in realize with the other feature-implication checks because
610      * we look at the PMSA bit to see if we should add some properties.
611      */
612     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
613         set_feature(&cpu->env, ARM_FEATURE_PMSA);
614     }
615 
616     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
617         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
618         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
619                                  &error_abort);
620     }
621 
622     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
623         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
624                                  &error_abort);
625     }
626 
627     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
628         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
629                                  &error_abort);
630     }
631 
632     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
633         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
634          * prevent "has_el3" from existing on CPUs which cannot support EL3.
635          */
636         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
637                                  &error_abort);
638 
639 #ifndef CONFIG_USER_ONLY
640         object_property_add_link(obj, "secure-memory",
641                                  TYPE_MEMORY_REGION,
642                                  (Object **)&cpu->secure_memory,
643                                  qdev_prop_allow_set_link_before_realize,
644                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
645                                  &error_abort);
646 #endif
647     }
648 
649     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
650         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
651                                  &error_abort);
652     }
653 
654     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
655         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
656                                  &error_abort);
657     }
658 
659     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
660         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
661                                  &error_abort);
662         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
663             qdev_property_add_static(DEVICE(obj),
664                                      &arm_cpu_pmsav7_dregion_property,
665                                      &error_abort);
666         }
667     }
668 
669     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
670                              &error_abort);
671 }
672 
673 static void arm_cpu_finalizefn(Object *obj)
674 {
675     ARMCPU *cpu = ARM_CPU(obj);
676     g_hash_table_destroy(cpu->cp_regs);
677 }
678 
679 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
680 {
681     CPUState *cs = CPU(dev);
682     ARMCPU *cpu = ARM_CPU(dev);
683     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
684     CPUARMState *env = &cpu->env;
685     int pagebits;
686     Error *local_err = NULL;
687 
688     cpu_exec_realizefn(cs, &local_err);
689     if (local_err != NULL) {
690         error_propagate(errp, local_err);
691         return;
692     }
693 
694     /* Some features automatically imply others: */
695     if (arm_feature(env, ARM_FEATURE_V8)) {
696         set_feature(env, ARM_FEATURE_V7);
697         set_feature(env, ARM_FEATURE_ARM_DIV);
698         set_feature(env, ARM_FEATURE_LPAE);
699     }
700     if (arm_feature(env, ARM_FEATURE_V7)) {
701         set_feature(env, ARM_FEATURE_VAPA);
702         set_feature(env, ARM_FEATURE_THUMB2);
703         set_feature(env, ARM_FEATURE_MPIDR);
704         if (!arm_feature(env, ARM_FEATURE_M)) {
705             set_feature(env, ARM_FEATURE_V6K);
706         } else {
707             set_feature(env, ARM_FEATURE_V6);
708         }
709 
710         /* Always define VBAR for V7 CPUs even if it doesn't exist in
711          * non-EL3 configs. This is needed by some legacy boards.
712          */
713         set_feature(env, ARM_FEATURE_VBAR);
714     }
715     if (arm_feature(env, ARM_FEATURE_V6K)) {
716         set_feature(env, ARM_FEATURE_V6);
717         set_feature(env, ARM_FEATURE_MVFR);
718     }
719     if (arm_feature(env, ARM_FEATURE_V6)) {
720         set_feature(env, ARM_FEATURE_V5);
721         set_feature(env, ARM_FEATURE_JAZELLE);
722         if (!arm_feature(env, ARM_FEATURE_M)) {
723             set_feature(env, ARM_FEATURE_AUXCR);
724         }
725     }
726     if (arm_feature(env, ARM_FEATURE_V5)) {
727         set_feature(env, ARM_FEATURE_V4T);
728     }
729     if (arm_feature(env, ARM_FEATURE_M)) {
730         set_feature(env, ARM_FEATURE_THUMB_DIV);
731     }
732     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
733         set_feature(env, ARM_FEATURE_THUMB_DIV);
734     }
735     if (arm_feature(env, ARM_FEATURE_VFP4)) {
736         set_feature(env, ARM_FEATURE_VFP3);
737         set_feature(env, ARM_FEATURE_VFP_FP16);
738     }
739     if (arm_feature(env, ARM_FEATURE_VFP3)) {
740         set_feature(env, ARM_FEATURE_VFP);
741     }
742     if (arm_feature(env, ARM_FEATURE_LPAE)) {
743         set_feature(env, ARM_FEATURE_V7MP);
744         set_feature(env, ARM_FEATURE_PXN);
745     }
746     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
747         set_feature(env, ARM_FEATURE_CBAR);
748     }
749     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
750         !arm_feature(env, ARM_FEATURE_M)) {
751         set_feature(env, ARM_FEATURE_THUMB_DSP);
752     }
753 
754     if (arm_feature(env, ARM_FEATURE_V7) &&
755         !arm_feature(env, ARM_FEATURE_M) &&
756         !arm_feature(env, ARM_FEATURE_PMSA)) {
757         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
758          * can use 4K pages.
759          */
760         pagebits = 12;
761     } else {
762         /* For CPUs which might have tiny 1K pages, or which have an
763          * MPU and might have small region sizes, stick with 1K pages.
764          */
765         pagebits = 10;
766     }
767     if (!set_preferred_target_page_bits(pagebits)) {
768         /* This can only ever happen for hotplugging a CPU, or if
769          * the board code incorrectly creates a CPU which it has
770          * promised via minimum_page_size that it will not.
771          */
772         error_setg(errp, "This CPU requires a smaller page size than the "
773                    "system is using");
774         return;
775     }
776 
777     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
778      * We don't support setting cluster ID ([16..23]) (known as Aff2
779      * in later ARM ARM versions), or any of the higher affinity level fields,
780      * so these bits always RAZ.
781      */
782     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
783         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
784                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
785     }
786 
787     if (cpu->reset_hivecs) {
788             cpu->reset_sctlr |= (1 << 13);
789     }
790 
791     if (cpu->cfgend) {
792         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
793             cpu->reset_sctlr |= SCTLR_EE;
794         } else {
795             cpu->reset_sctlr |= SCTLR_B;
796         }
797     }
798 
799     if (!cpu->has_el3) {
800         /* If the has_el3 CPU property is disabled then we need to disable the
801          * feature.
802          */
803         unset_feature(env, ARM_FEATURE_EL3);
804 
805         /* Disable the security extension feature bits in the processor feature
806          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
807          */
808         cpu->id_pfr1 &= ~0xf0;
809         cpu->id_aa64pfr0 &= ~0xf000;
810     }
811 
812     if (!cpu->has_el2) {
813         unset_feature(env, ARM_FEATURE_EL2);
814     }
815 
816     if (!cpu->has_pmu) {
817         unset_feature(env, ARM_FEATURE_PMU);
818         cpu->id_aa64dfr0 &= ~0xf00;
819     }
820 
821     if (!arm_feature(env, ARM_FEATURE_EL2)) {
822         /* Disable the hypervisor feature bits in the processor feature
823          * registers if we don't have EL2. These are id_pfr1[15:12] and
824          * id_aa64pfr0_el1[11:8].
825          */
826         cpu->id_aa64pfr0 &= ~0xf00;
827         cpu->id_pfr1 &= ~0xf000;
828     }
829 
830     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
831      * to false or by setting pmsav7-dregion to 0.
832      */
833     if (!cpu->has_mpu) {
834         cpu->pmsav7_dregion = 0;
835     }
836     if (cpu->pmsav7_dregion == 0) {
837         cpu->has_mpu = false;
838     }
839 
840     if (arm_feature(env, ARM_FEATURE_PMSA) &&
841         arm_feature(env, ARM_FEATURE_V7)) {
842         uint32_t nr = cpu->pmsav7_dregion;
843 
844         if (nr > 0xff) {
845             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
846             return;
847         }
848 
849         if (nr) {
850             if (arm_feature(env, ARM_FEATURE_V8)) {
851                 /* PMSAv8 */
852                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
853                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
854                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
855                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
856                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
857                 }
858             } else {
859                 env->pmsav7.drbar = g_new0(uint32_t, nr);
860                 env->pmsav7.drsr = g_new0(uint32_t, nr);
861                 env->pmsav7.dracr = g_new0(uint32_t, nr);
862             }
863         }
864     }
865 
866     if (arm_feature(env, ARM_FEATURE_EL3)) {
867         set_feature(env, ARM_FEATURE_VBAR);
868     }
869 
870     register_cp_regs_for_features(cpu);
871     arm_cpu_register_gdb_regs_for_features(cpu);
872 
873     init_cpreg_list(cpu);
874 
875 #ifndef CONFIG_USER_ONLY
876     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
877         AddressSpace *as;
878 
879         cs->num_ases = 2;
880 
881         if (!cpu->secure_memory) {
882             cpu->secure_memory = cs->memory;
883         }
884         as = address_space_init_shareable(cpu->secure_memory,
885                                           "cpu-secure-memory");
886         cpu_address_space_init(cs, as, ARMASIdx_S);
887     } else {
888         cs->num_ases = 1;
889     }
890 
891     cpu_address_space_init(cs,
892                            address_space_init_shareable(cs->memory,
893                                                         "cpu-memory"),
894                            ARMASIdx_NS);
895 #endif
896 
897     qemu_init_vcpu(cs);
898     cpu_reset(cs);
899 
900     acc->parent_realize(dev, errp);
901 }
902 
903 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
904 {
905     ObjectClass *oc;
906     char *typename;
907     char **cpuname;
908 
909     if (!cpu_model) {
910         return NULL;
911     }
912 
913     cpuname = g_strsplit(cpu_model, ",", 1);
914     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
915     oc = object_class_by_name(typename);
916     g_strfreev(cpuname);
917     g_free(typename);
918     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
919         object_class_is_abstract(oc)) {
920         return NULL;
921     }
922     return oc;
923 }
924 
925 /* CPU models. These are not needed for the AArch64 linux-user build. */
926 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
927 
928 static void arm926_initfn(Object *obj)
929 {
930     ARMCPU *cpu = ARM_CPU(obj);
931 
932     cpu->dtb_compatible = "arm,arm926";
933     set_feature(&cpu->env, ARM_FEATURE_V5);
934     set_feature(&cpu->env, ARM_FEATURE_VFP);
935     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
936     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
937     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
938     cpu->midr = 0x41069265;
939     cpu->reset_fpsid = 0x41011090;
940     cpu->ctr = 0x1dd20d2;
941     cpu->reset_sctlr = 0x00090078;
942 }
943 
944 static void arm946_initfn(Object *obj)
945 {
946     ARMCPU *cpu = ARM_CPU(obj);
947 
948     cpu->dtb_compatible = "arm,arm946";
949     set_feature(&cpu->env, ARM_FEATURE_V5);
950     set_feature(&cpu->env, ARM_FEATURE_PMSA);
951     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
952     cpu->midr = 0x41059461;
953     cpu->ctr = 0x0f004006;
954     cpu->reset_sctlr = 0x00000078;
955 }
956 
957 static void arm1026_initfn(Object *obj)
958 {
959     ARMCPU *cpu = ARM_CPU(obj);
960 
961     cpu->dtb_compatible = "arm,arm1026";
962     set_feature(&cpu->env, ARM_FEATURE_V5);
963     set_feature(&cpu->env, ARM_FEATURE_VFP);
964     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
965     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
966     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
967     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
968     cpu->midr = 0x4106a262;
969     cpu->reset_fpsid = 0x410110a0;
970     cpu->ctr = 0x1dd20d2;
971     cpu->reset_sctlr = 0x00090078;
972     cpu->reset_auxcr = 1;
973     {
974         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
975         ARMCPRegInfo ifar = {
976             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
977             .access = PL1_RW,
978             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
979             .resetvalue = 0
980         };
981         define_one_arm_cp_reg(cpu, &ifar);
982     }
983 }
984 
985 static void arm1136_r2_initfn(Object *obj)
986 {
987     ARMCPU *cpu = ARM_CPU(obj);
988     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
989      * older core than plain "arm1136". In particular this does not
990      * have the v6K features.
991      * These ID register values are correct for 1136 but may be wrong
992      * for 1136_r2 (in particular r0p2 does not actually implement most
993      * of the ID registers).
994      */
995 
996     cpu->dtb_compatible = "arm,arm1136";
997     set_feature(&cpu->env, ARM_FEATURE_V6);
998     set_feature(&cpu->env, ARM_FEATURE_VFP);
999     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1000     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1001     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1002     cpu->midr = 0x4107b362;
1003     cpu->reset_fpsid = 0x410120b4;
1004     cpu->mvfr0 = 0x11111111;
1005     cpu->mvfr1 = 0x00000000;
1006     cpu->ctr = 0x1dd20d2;
1007     cpu->reset_sctlr = 0x00050078;
1008     cpu->id_pfr0 = 0x111;
1009     cpu->id_pfr1 = 0x1;
1010     cpu->id_dfr0 = 0x2;
1011     cpu->id_afr0 = 0x3;
1012     cpu->id_mmfr0 = 0x01130003;
1013     cpu->id_mmfr1 = 0x10030302;
1014     cpu->id_mmfr2 = 0x01222110;
1015     cpu->id_isar0 = 0x00140011;
1016     cpu->id_isar1 = 0x12002111;
1017     cpu->id_isar2 = 0x11231111;
1018     cpu->id_isar3 = 0x01102131;
1019     cpu->id_isar4 = 0x141;
1020     cpu->reset_auxcr = 7;
1021 }
1022 
1023 static void arm1136_initfn(Object *obj)
1024 {
1025     ARMCPU *cpu = ARM_CPU(obj);
1026 
1027     cpu->dtb_compatible = "arm,arm1136";
1028     set_feature(&cpu->env, ARM_FEATURE_V6K);
1029     set_feature(&cpu->env, ARM_FEATURE_V6);
1030     set_feature(&cpu->env, ARM_FEATURE_VFP);
1031     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1032     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1033     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1034     cpu->midr = 0x4117b363;
1035     cpu->reset_fpsid = 0x410120b4;
1036     cpu->mvfr0 = 0x11111111;
1037     cpu->mvfr1 = 0x00000000;
1038     cpu->ctr = 0x1dd20d2;
1039     cpu->reset_sctlr = 0x00050078;
1040     cpu->id_pfr0 = 0x111;
1041     cpu->id_pfr1 = 0x1;
1042     cpu->id_dfr0 = 0x2;
1043     cpu->id_afr0 = 0x3;
1044     cpu->id_mmfr0 = 0x01130003;
1045     cpu->id_mmfr1 = 0x10030302;
1046     cpu->id_mmfr2 = 0x01222110;
1047     cpu->id_isar0 = 0x00140011;
1048     cpu->id_isar1 = 0x12002111;
1049     cpu->id_isar2 = 0x11231111;
1050     cpu->id_isar3 = 0x01102131;
1051     cpu->id_isar4 = 0x141;
1052     cpu->reset_auxcr = 7;
1053 }
1054 
1055 static void arm1176_initfn(Object *obj)
1056 {
1057     ARMCPU *cpu = ARM_CPU(obj);
1058 
1059     cpu->dtb_compatible = "arm,arm1176";
1060     set_feature(&cpu->env, ARM_FEATURE_V6K);
1061     set_feature(&cpu->env, ARM_FEATURE_VFP);
1062     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1063     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1064     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1065     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1066     set_feature(&cpu->env, ARM_FEATURE_EL3);
1067     cpu->midr = 0x410fb767;
1068     cpu->reset_fpsid = 0x410120b5;
1069     cpu->mvfr0 = 0x11111111;
1070     cpu->mvfr1 = 0x00000000;
1071     cpu->ctr = 0x1dd20d2;
1072     cpu->reset_sctlr = 0x00050078;
1073     cpu->id_pfr0 = 0x111;
1074     cpu->id_pfr1 = 0x11;
1075     cpu->id_dfr0 = 0x33;
1076     cpu->id_afr0 = 0;
1077     cpu->id_mmfr0 = 0x01130003;
1078     cpu->id_mmfr1 = 0x10030302;
1079     cpu->id_mmfr2 = 0x01222100;
1080     cpu->id_isar0 = 0x0140011;
1081     cpu->id_isar1 = 0x12002111;
1082     cpu->id_isar2 = 0x11231121;
1083     cpu->id_isar3 = 0x01102131;
1084     cpu->id_isar4 = 0x01141;
1085     cpu->reset_auxcr = 7;
1086 }
1087 
1088 static void arm11mpcore_initfn(Object *obj)
1089 {
1090     ARMCPU *cpu = ARM_CPU(obj);
1091 
1092     cpu->dtb_compatible = "arm,arm11mpcore";
1093     set_feature(&cpu->env, ARM_FEATURE_V6K);
1094     set_feature(&cpu->env, ARM_FEATURE_VFP);
1095     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1096     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1097     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1098     cpu->midr = 0x410fb022;
1099     cpu->reset_fpsid = 0x410120b4;
1100     cpu->mvfr0 = 0x11111111;
1101     cpu->mvfr1 = 0x00000000;
1102     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1103     cpu->id_pfr0 = 0x111;
1104     cpu->id_pfr1 = 0x1;
1105     cpu->id_dfr0 = 0;
1106     cpu->id_afr0 = 0x2;
1107     cpu->id_mmfr0 = 0x01100103;
1108     cpu->id_mmfr1 = 0x10020302;
1109     cpu->id_mmfr2 = 0x01222000;
1110     cpu->id_isar0 = 0x00100011;
1111     cpu->id_isar1 = 0x12002111;
1112     cpu->id_isar2 = 0x11221011;
1113     cpu->id_isar3 = 0x01102131;
1114     cpu->id_isar4 = 0x141;
1115     cpu->reset_auxcr = 1;
1116 }
1117 
1118 static void cortex_m3_initfn(Object *obj)
1119 {
1120     ARMCPU *cpu = ARM_CPU(obj);
1121     set_feature(&cpu->env, ARM_FEATURE_V7);
1122     set_feature(&cpu->env, ARM_FEATURE_M);
1123     cpu->midr = 0x410fc231;
1124     cpu->pmsav7_dregion = 8;
1125 }
1126 
1127 static void cortex_m4_initfn(Object *obj)
1128 {
1129     ARMCPU *cpu = ARM_CPU(obj);
1130 
1131     set_feature(&cpu->env, ARM_FEATURE_V7);
1132     set_feature(&cpu->env, ARM_FEATURE_M);
1133     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1134     cpu->midr = 0x410fc240; /* r0p0 */
1135     cpu->pmsav7_dregion = 8;
1136 }
1137 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1138 {
1139     CPUClass *cc = CPU_CLASS(oc);
1140 
1141 #ifndef CONFIG_USER_ONLY
1142     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1143 #endif
1144 
1145     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1146 }
1147 
1148 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1149     /* Dummy the TCM region regs for the moment */
1150     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1151       .access = PL1_RW, .type = ARM_CP_CONST },
1152     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1153       .access = PL1_RW, .type = ARM_CP_CONST },
1154     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1155       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1156     REGINFO_SENTINEL
1157 };
1158 
1159 static void cortex_r5_initfn(Object *obj)
1160 {
1161     ARMCPU *cpu = ARM_CPU(obj);
1162 
1163     set_feature(&cpu->env, ARM_FEATURE_V7);
1164     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1165     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1166     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1167     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1168     cpu->midr = 0x411fc153; /* r1p3 */
1169     cpu->id_pfr0 = 0x0131;
1170     cpu->id_pfr1 = 0x001;
1171     cpu->id_dfr0 = 0x010400;
1172     cpu->id_afr0 = 0x0;
1173     cpu->id_mmfr0 = 0x0210030;
1174     cpu->id_mmfr1 = 0x00000000;
1175     cpu->id_mmfr2 = 0x01200000;
1176     cpu->id_mmfr3 = 0x0211;
1177     cpu->id_isar0 = 0x2101111;
1178     cpu->id_isar1 = 0x13112111;
1179     cpu->id_isar2 = 0x21232141;
1180     cpu->id_isar3 = 0x01112131;
1181     cpu->id_isar4 = 0x0010142;
1182     cpu->id_isar5 = 0x0;
1183     cpu->mp_is_up = true;
1184     cpu->pmsav7_dregion = 16;
1185     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1186 }
1187 
1188 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1189     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1190       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1191     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1192       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1193     REGINFO_SENTINEL
1194 };
1195 
1196 static void cortex_a8_initfn(Object *obj)
1197 {
1198     ARMCPU *cpu = ARM_CPU(obj);
1199 
1200     cpu->dtb_compatible = "arm,cortex-a8";
1201     set_feature(&cpu->env, ARM_FEATURE_V7);
1202     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1203     set_feature(&cpu->env, ARM_FEATURE_NEON);
1204     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1205     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1206     set_feature(&cpu->env, ARM_FEATURE_EL3);
1207     cpu->midr = 0x410fc080;
1208     cpu->reset_fpsid = 0x410330c0;
1209     cpu->mvfr0 = 0x11110222;
1210     cpu->mvfr1 = 0x00011111;
1211     cpu->ctr = 0x82048004;
1212     cpu->reset_sctlr = 0x00c50078;
1213     cpu->id_pfr0 = 0x1031;
1214     cpu->id_pfr1 = 0x11;
1215     cpu->id_dfr0 = 0x400;
1216     cpu->id_afr0 = 0;
1217     cpu->id_mmfr0 = 0x31100003;
1218     cpu->id_mmfr1 = 0x20000000;
1219     cpu->id_mmfr2 = 0x01202000;
1220     cpu->id_mmfr3 = 0x11;
1221     cpu->id_isar0 = 0x00101111;
1222     cpu->id_isar1 = 0x12112111;
1223     cpu->id_isar2 = 0x21232031;
1224     cpu->id_isar3 = 0x11112131;
1225     cpu->id_isar4 = 0x00111142;
1226     cpu->dbgdidr = 0x15141000;
1227     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1228     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1229     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1230     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1231     cpu->reset_auxcr = 2;
1232     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1233 }
1234 
1235 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1236     /* power_control should be set to maximum latency. Again,
1237      * default to 0 and set by private hook
1238      */
1239     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1240       .access = PL1_RW, .resetvalue = 0,
1241       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1242     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1243       .access = PL1_RW, .resetvalue = 0,
1244       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1245     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1246       .access = PL1_RW, .resetvalue = 0,
1247       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1248     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1249       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1250     /* TLB lockdown control */
1251     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1252       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1253     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1254       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1255     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1256       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1257     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1258       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1259     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1260       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1261     REGINFO_SENTINEL
1262 };
1263 
1264 static void cortex_a9_initfn(Object *obj)
1265 {
1266     ARMCPU *cpu = ARM_CPU(obj);
1267 
1268     cpu->dtb_compatible = "arm,cortex-a9";
1269     set_feature(&cpu->env, ARM_FEATURE_V7);
1270     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1271     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1272     set_feature(&cpu->env, ARM_FEATURE_NEON);
1273     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1274     set_feature(&cpu->env, ARM_FEATURE_EL3);
1275     /* Note that A9 supports the MP extensions even for
1276      * A9UP and single-core A9MP (which are both different
1277      * and valid configurations; we don't model A9UP).
1278      */
1279     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1280     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1281     cpu->midr = 0x410fc090;
1282     cpu->reset_fpsid = 0x41033090;
1283     cpu->mvfr0 = 0x11110222;
1284     cpu->mvfr1 = 0x01111111;
1285     cpu->ctr = 0x80038003;
1286     cpu->reset_sctlr = 0x00c50078;
1287     cpu->id_pfr0 = 0x1031;
1288     cpu->id_pfr1 = 0x11;
1289     cpu->id_dfr0 = 0x000;
1290     cpu->id_afr0 = 0;
1291     cpu->id_mmfr0 = 0x00100103;
1292     cpu->id_mmfr1 = 0x20000000;
1293     cpu->id_mmfr2 = 0x01230000;
1294     cpu->id_mmfr3 = 0x00002111;
1295     cpu->id_isar0 = 0x00101111;
1296     cpu->id_isar1 = 0x13112111;
1297     cpu->id_isar2 = 0x21232041;
1298     cpu->id_isar3 = 0x11112131;
1299     cpu->id_isar4 = 0x00111142;
1300     cpu->dbgdidr = 0x35141000;
1301     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1302     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1303     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1304     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1305 }
1306 
1307 #ifndef CONFIG_USER_ONLY
1308 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1309 {
1310     /* Linux wants the number of processors from here.
1311      * Might as well set the interrupt-controller bit too.
1312      */
1313     return ((smp_cpus - 1) << 24) | (1 << 23);
1314 }
1315 #endif
1316 
1317 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1318 #ifndef CONFIG_USER_ONLY
1319     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1320       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1321       .writefn = arm_cp_write_ignore, },
1322 #endif
1323     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1324       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1325     REGINFO_SENTINEL
1326 };
1327 
1328 static void cortex_a7_initfn(Object *obj)
1329 {
1330     ARMCPU *cpu = ARM_CPU(obj);
1331 
1332     cpu->dtb_compatible = "arm,cortex-a7";
1333     set_feature(&cpu->env, ARM_FEATURE_V7);
1334     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1335     set_feature(&cpu->env, ARM_FEATURE_NEON);
1336     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1337     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1338     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1339     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1340     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1341     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1342     set_feature(&cpu->env, ARM_FEATURE_EL3);
1343     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1344     cpu->midr = 0x410fc075;
1345     cpu->reset_fpsid = 0x41023075;
1346     cpu->mvfr0 = 0x10110222;
1347     cpu->mvfr1 = 0x11111111;
1348     cpu->ctr = 0x84448003;
1349     cpu->reset_sctlr = 0x00c50078;
1350     cpu->id_pfr0 = 0x00001131;
1351     cpu->id_pfr1 = 0x00011011;
1352     cpu->id_dfr0 = 0x02010555;
1353     cpu->pmceid0 = 0x00000000;
1354     cpu->pmceid1 = 0x00000000;
1355     cpu->id_afr0 = 0x00000000;
1356     cpu->id_mmfr0 = 0x10101105;
1357     cpu->id_mmfr1 = 0x40000000;
1358     cpu->id_mmfr2 = 0x01240000;
1359     cpu->id_mmfr3 = 0x02102211;
1360     cpu->id_isar0 = 0x01101110;
1361     cpu->id_isar1 = 0x13112111;
1362     cpu->id_isar2 = 0x21232041;
1363     cpu->id_isar3 = 0x11112131;
1364     cpu->id_isar4 = 0x10011142;
1365     cpu->dbgdidr = 0x3515f005;
1366     cpu->clidr = 0x0a200023;
1367     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1368     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1369     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1370     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1371 }
1372 
1373 static void cortex_a15_initfn(Object *obj)
1374 {
1375     ARMCPU *cpu = ARM_CPU(obj);
1376 
1377     cpu->dtb_compatible = "arm,cortex-a15";
1378     set_feature(&cpu->env, ARM_FEATURE_V7);
1379     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1380     set_feature(&cpu->env, ARM_FEATURE_NEON);
1381     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1382     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1383     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1384     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1385     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1386     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1387     set_feature(&cpu->env, ARM_FEATURE_EL3);
1388     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1389     cpu->midr = 0x412fc0f1;
1390     cpu->reset_fpsid = 0x410430f0;
1391     cpu->mvfr0 = 0x10110222;
1392     cpu->mvfr1 = 0x11111111;
1393     cpu->ctr = 0x8444c004;
1394     cpu->reset_sctlr = 0x00c50078;
1395     cpu->id_pfr0 = 0x00001131;
1396     cpu->id_pfr1 = 0x00011011;
1397     cpu->id_dfr0 = 0x02010555;
1398     cpu->pmceid0 = 0x0000000;
1399     cpu->pmceid1 = 0x00000000;
1400     cpu->id_afr0 = 0x00000000;
1401     cpu->id_mmfr0 = 0x10201105;
1402     cpu->id_mmfr1 = 0x20000000;
1403     cpu->id_mmfr2 = 0x01240000;
1404     cpu->id_mmfr3 = 0x02102211;
1405     cpu->id_isar0 = 0x02101110;
1406     cpu->id_isar1 = 0x13112111;
1407     cpu->id_isar2 = 0x21232041;
1408     cpu->id_isar3 = 0x11112131;
1409     cpu->id_isar4 = 0x10011142;
1410     cpu->dbgdidr = 0x3515f021;
1411     cpu->clidr = 0x0a200023;
1412     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1413     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1414     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1415     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1416 }
1417 
1418 static void ti925t_initfn(Object *obj)
1419 {
1420     ARMCPU *cpu = ARM_CPU(obj);
1421     set_feature(&cpu->env, ARM_FEATURE_V4T);
1422     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1423     cpu->midr = ARM_CPUID_TI925T;
1424     cpu->ctr = 0x5109149;
1425     cpu->reset_sctlr = 0x00000070;
1426 }
1427 
1428 static void sa1100_initfn(Object *obj)
1429 {
1430     ARMCPU *cpu = ARM_CPU(obj);
1431 
1432     cpu->dtb_compatible = "intel,sa1100";
1433     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1434     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1435     cpu->midr = 0x4401A11B;
1436     cpu->reset_sctlr = 0x00000070;
1437 }
1438 
1439 static void sa1110_initfn(Object *obj)
1440 {
1441     ARMCPU *cpu = ARM_CPU(obj);
1442     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1443     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1444     cpu->midr = 0x6901B119;
1445     cpu->reset_sctlr = 0x00000070;
1446 }
1447 
1448 static void pxa250_initfn(Object *obj)
1449 {
1450     ARMCPU *cpu = ARM_CPU(obj);
1451 
1452     cpu->dtb_compatible = "marvell,xscale";
1453     set_feature(&cpu->env, ARM_FEATURE_V5);
1454     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1455     cpu->midr = 0x69052100;
1456     cpu->ctr = 0xd172172;
1457     cpu->reset_sctlr = 0x00000078;
1458 }
1459 
1460 static void pxa255_initfn(Object *obj)
1461 {
1462     ARMCPU *cpu = ARM_CPU(obj);
1463 
1464     cpu->dtb_compatible = "marvell,xscale";
1465     set_feature(&cpu->env, ARM_FEATURE_V5);
1466     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1467     cpu->midr = 0x69052d00;
1468     cpu->ctr = 0xd172172;
1469     cpu->reset_sctlr = 0x00000078;
1470 }
1471 
1472 static void pxa260_initfn(Object *obj)
1473 {
1474     ARMCPU *cpu = ARM_CPU(obj);
1475 
1476     cpu->dtb_compatible = "marvell,xscale";
1477     set_feature(&cpu->env, ARM_FEATURE_V5);
1478     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1479     cpu->midr = 0x69052903;
1480     cpu->ctr = 0xd172172;
1481     cpu->reset_sctlr = 0x00000078;
1482 }
1483 
1484 static void pxa261_initfn(Object *obj)
1485 {
1486     ARMCPU *cpu = ARM_CPU(obj);
1487 
1488     cpu->dtb_compatible = "marvell,xscale";
1489     set_feature(&cpu->env, ARM_FEATURE_V5);
1490     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1491     cpu->midr = 0x69052d05;
1492     cpu->ctr = 0xd172172;
1493     cpu->reset_sctlr = 0x00000078;
1494 }
1495 
1496 static void pxa262_initfn(Object *obj)
1497 {
1498     ARMCPU *cpu = ARM_CPU(obj);
1499 
1500     cpu->dtb_compatible = "marvell,xscale";
1501     set_feature(&cpu->env, ARM_FEATURE_V5);
1502     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1503     cpu->midr = 0x69052d06;
1504     cpu->ctr = 0xd172172;
1505     cpu->reset_sctlr = 0x00000078;
1506 }
1507 
1508 static void pxa270a0_initfn(Object *obj)
1509 {
1510     ARMCPU *cpu = ARM_CPU(obj);
1511 
1512     cpu->dtb_compatible = "marvell,xscale";
1513     set_feature(&cpu->env, ARM_FEATURE_V5);
1514     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1515     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1516     cpu->midr = 0x69054110;
1517     cpu->ctr = 0xd172172;
1518     cpu->reset_sctlr = 0x00000078;
1519 }
1520 
1521 static void pxa270a1_initfn(Object *obj)
1522 {
1523     ARMCPU *cpu = ARM_CPU(obj);
1524 
1525     cpu->dtb_compatible = "marvell,xscale";
1526     set_feature(&cpu->env, ARM_FEATURE_V5);
1527     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1528     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1529     cpu->midr = 0x69054111;
1530     cpu->ctr = 0xd172172;
1531     cpu->reset_sctlr = 0x00000078;
1532 }
1533 
1534 static void pxa270b0_initfn(Object *obj)
1535 {
1536     ARMCPU *cpu = ARM_CPU(obj);
1537 
1538     cpu->dtb_compatible = "marvell,xscale";
1539     set_feature(&cpu->env, ARM_FEATURE_V5);
1540     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1541     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1542     cpu->midr = 0x69054112;
1543     cpu->ctr = 0xd172172;
1544     cpu->reset_sctlr = 0x00000078;
1545 }
1546 
1547 static void pxa270b1_initfn(Object *obj)
1548 {
1549     ARMCPU *cpu = ARM_CPU(obj);
1550 
1551     cpu->dtb_compatible = "marvell,xscale";
1552     set_feature(&cpu->env, ARM_FEATURE_V5);
1553     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1554     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1555     cpu->midr = 0x69054113;
1556     cpu->ctr = 0xd172172;
1557     cpu->reset_sctlr = 0x00000078;
1558 }
1559 
1560 static void pxa270c0_initfn(Object *obj)
1561 {
1562     ARMCPU *cpu = ARM_CPU(obj);
1563 
1564     cpu->dtb_compatible = "marvell,xscale";
1565     set_feature(&cpu->env, ARM_FEATURE_V5);
1566     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1567     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1568     cpu->midr = 0x69054114;
1569     cpu->ctr = 0xd172172;
1570     cpu->reset_sctlr = 0x00000078;
1571 }
1572 
1573 static void pxa270c5_initfn(Object *obj)
1574 {
1575     ARMCPU *cpu = ARM_CPU(obj);
1576 
1577     cpu->dtb_compatible = "marvell,xscale";
1578     set_feature(&cpu->env, ARM_FEATURE_V5);
1579     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1580     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1581     cpu->midr = 0x69054117;
1582     cpu->ctr = 0xd172172;
1583     cpu->reset_sctlr = 0x00000078;
1584 }
1585 
1586 #ifdef CONFIG_USER_ONLY
1587 static void arm_any_initfn(Object *obj)
1588 {
1589     ARMCPU *cpu = ARM_CPU(obj);
1590     set_feature(&cpu->env, ARM_FEATURE_V8);
1591     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1592     set_feature(&cpu->env, ARM_FEATURE_NEON);
1593     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1594     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1595     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1596     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1597     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1598     set_feature(&cpu->env, ARM_FEATURE_CRC);
1599     cpu->midr = 0xffffffff;
1600 }
1601 #endif
1602 
1603 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1604 
1605 typedef struct ARMCPUInfo {
1606     const char *name;
1607     void (*initfn)(Object *obj);
1608     void (*class_init)(ObjectClass *oc, void *data);
1609 } ARMCPUInfo;
1610 
1611 static const ARMCPUInfo arm_cpus[] = {
1612 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1613     { .name = "arm926",      .initfn = arm926_initfn },
1614     { .name = "arm946",      .initfn = arm946_initfn },
1615     { .name = "arm1026",     .initfn = arm1026_initfn },
1616     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1617      * older core than plain "arm1136". In particular this does not
1618      * have the v6K features.
1619      */
1620     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1621     { .name = "arm1136",     .initfn = arm1136_initfn },
1622     { .name = "arm1176",     .initfn = arm1176_initfn },
1623     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1624     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1625                              .class_init = arm_v7m_class_init },
1626     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1627                              .class_init = arm_v7m_class_init },
1628     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1629     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1630     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1631     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1632     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1633     { .name = "ti925t",      .initfn = ti925t_initfn },
1634     { .name = "sa1100",      .initfn = sa1100_initfn },
1635     { .name = "sa1110",      .initfn = sa1110_initfn },
1636     { .name = "pxa250",      .initfn = pxa250_initfn },
1637     { .name = "pxa255",      .initfn = pxa255_initfn },
1638     { .name = "pxa260",      .initfn = pxa260_initfn },
1639     { .name = "pxa261",      .initfn = pxa261_initfn },
1640     { .name = "pxa262",      .initfn = pxa262_initfn },
1641     /* "pxa270" is an alias for "pxa270-a0" */
1642     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1643     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1644     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1645     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1646     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1647     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1648     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1649 #ifdef CONFIG_USER_ONLY
1650     { .name = "any",         .initfn = arm_any_initfn },
1651 #endif
1652 #endif
1653     { .name = NULL }
1654 };
1655 
1656 static Property arm_cpu_properties[] = {
1657     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1658     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1659     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1660     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1661                         mp_affinity, ARM64_AFFINITY_INVALID),
1662     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1663     DEFINE_PROP_END_OF_LIST()
1664 };
1665 
1666 #ifdef CONFIG_USER_ONLY
1667 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1668                                     int mmu_idx)
1669 {
1670     ARMCPU *cpu = ARM_CPU(cs);
1671     CPUARMState *env = &cpu->env;
1672 
1673     env->exception.vaddress = address;
1674     if (rw == 2) {
1675         cs->exception_index = EXCP_PREFETCH_ABORT;
1676     } else {
1677         cs->exception_index = EXCP_DATA_ABORT;
1678     }
1679     return 1;
1680 }
1681 #endif
1682 
1683 static gchar *arm_gdb_arch_name(CPUState *cs)
1684 {
1685     ARMCPU *cpu = ARM_CPU(cs);
1686     CPUARMState *env = &cpu->env;
1687 
1688     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1689         return g_strdup("iwmmxt");
1690     }
1691     return g_strdup("arm");
1692 }
1693 
1694 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1695 {
1696     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1697     CPUClass *cc = CPU_CLASS(acc);
1698     DeviceClass *dc = DEVICE_CLASS(oc);
1699 
1700     acc->parent_realize = dc->realize;
1701     dc->realize = arm_cpu_realizefn;
1702     dc->props = arm_cpu_properties;
1703 
1704     acc->parent_reset = cc->reset;
1705     cc->reset = arm_cpu_reset;
1706 
1707     cc->class_by_name = arm_cpu_class_by_name;
1708     cc->has_work = arm_cpu_has_work;
1709     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1710     cc->dump_state = arm_cpu_dump_state;
1711     cc->set_pc = arm_cpu_set_pc;
1712     cc->gdb_read_register = arm_cpu_gdb_read_register;
1713     cc->gdb_write_register = arm_cpu_gdb_write_register;
1714 #ifdef CONFIG_USER_ONLY
1715     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1716 #else
1717     cc->do_interrupt = arm_cpu_do_interrupt;
1718     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1719     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1720     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1721     cc->asidx_from_attrs = arm_asidx_from_attrs;
1722     cc->vmsd = &vmstate_arm_cpu;
1723     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1724     cc->write_elf64_note = arm_cpu_write_elf64_note;
1725     cc->write_elf32_note = arm_cpu_write_elf32_note;
1726 #endif
1727     cc->gdb_num_core_regs = 26;
1728     cc->gdb_core_xml_file = "arm-core.xml";
1729     cc->gdb_arch_name = arm_gdb_arch_name;
1730     cc->gdb_stop_before_watchpoint = true;
1731     cc->debug_excp_handler = arm_debug_excp_handler;
1732     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1733 #if !defined(CONFIG_USER_ONLY)
1734     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1735 #endif
1736 
1737     cc->disas_set_info = arm_disas_set_info;
1738 }
1739 
1740 static void cpu_register(const ARMCPUInfo *info)
1741 {
1742     TypeInfo type_info = {
1743         .parent = TYPE_ARM_CPU,
1744         .instance_size = sizeof(ARMCPU),
1745         .instance_init = info->initfn,
1746         .class_size = sizeof(ARMCPUClass),
1747         .class_init = info->class_init,
1748     };
1749 
1750     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1751     type_register(&type_info);
1752     g_free((void *)type_info.name);
1753 }
1754 
1755 static const TypeInfo arm_cpu_type_info = {
1756     .name = TYPE_ARM_CPU,
1757     .parent = TYPE_CPU,
1758     .instance_size = sizeof(ARMCPU),
1759     .instance_init = arm_cpu_initfn,
1760     .instance_post_init = arm_cpu_post_init,
1761     .instance_finalize = arm_cpu_finalizefn,
1762     .abstract = true,
1763     .class_size = sizeof(ARMCPUClass),
1764     .class_init = arm_cpu_class_init,
1765 };
1766 
1767 static void arm_cpu_register_types(void)
1768 {
1769     const ARMCPUInfo *info = arm_cpus;
1770 
1771     type_register_static(&arm_cpu_type_info);
1772 
1773     while (info->name) {
1774         cpu_register(info);
1775         info++;
1776     }
1777 }
1778 
1779 type_init(arm_cpu_register_types)
1780