1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "target/arm/idau.h" 23 #include "qapi/error.h" 24 #include "qapi/visitor.h" 25 #include "cpu.h" 26 #include "internals.h" 27 #include "qemu-common.h" 28 #include "exec/exec-all.h" 29 #include "hw/qdev-properties.h" 30 #if !defined(CONFIG_USER_ONLY) 31 #include "hw/loader.h" 32 #endif 33 #include "hw/arm/arm.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/hw_accel.h" 36 #include "kvm_arm.h" 37 #include "disas/capstone.h" 38 #include "fpu/softfloat.h" 39 40 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 41 { 42 ARMCPU *cpu = ARM_CPU(cs); 43 CPUARMState *env = &cpu->env; 44 45 if (is_a64(env)) { 46 env->pc = value; 47 env->thumb = 0; 48 } else { 49 env->regs[15] = value & ~1; 50 env->thumb = value & 1; 51 } 52 } 53 54 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) 55 { 56 ARMCPU *cpu = ARM_CPU(cs); 57 CPUARMState *env = &cpu->env; 58 59 /* 60 * It's OK to look at env for the current mode here, because it's 61 * never possible for an AArch64 TB to chain to an AArch32 TB. 62 */ 63 if (is_a64(env)) { 64 env->pc = tb->pc; 65 } else { 66 env->regs[15] = tb->pc; 67 } 68 } 69 70 static bool arm_cpu_has_work(CPUState *cs) 71 { 72 ARMCPU *cpu = ARM_CPU(cs); 73 74 return (cpu->power_state != PSCI_OFF) 75 && cs->interrupt_request & 76 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 77 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 78 | CPU_INTERRUPT_EXITTB); 79 } 80 81 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 82 void *opaque) 83 { 84 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 85 86 entry->hook = hook; 87 entry->opaque = opaque; 88 89 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 90 } 91 92 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 93 void *opaque) 94 { 95 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 96 97 entry->hook = hook; 98 entry->opaque = opaque; 99 100 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 101 } 102 103 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 104 { 105 /* Reset a single ARMCPRegInfo register */ 106 ARMCPRegInfo *ri = value; 107 ARMCPU *cpu = opaque; 108 109 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 110 return; 111 } 112 113 if (ri->resetfn) { 114 ri->resetfn(&cpu->env, ri); 115 return; 116 } 117 118 /* A zero offset is never possible as it would be regs[0] 119 * so we use it to indicate that reset is being handled elsewhere. 120 * This is basically only used for fields in non-core coprocessors 121 * (like the pxa2xx ones). 122 */ 123 if (!ri->fieldoffset) { 124 return; 125 } 126 127 if (cpreg_field_is_64bit(ri)) { 128 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 129 } else { 130 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 131 } 132 } 133 134 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 135 { 136 /* Purely an assertion check: we've already done reset once, 137 * so now check that running the reset for the cpreg doesn't 138 * change its value. This traps bugs where two different cpregs 139 * both try to reset the same state field but to different values. 140 */ 141 ARMCPRegInfo *ri = value; 142 ARMCPU *cpu = opaque; 143 uint64_t oldvalue, newvalue; 144 145 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 146 return; 147 } 148 149 oldvalue = read_raw_cp_reg(&cpu->env, ri); 150 cp_reg_reset(key, value, opaque); 151 newvalue = read_raw_cp_reg(&cpu->env, ri); 152 assert(oldvalue == newvalue); 153 } 154 155 /* CPUClass::reset() */ 156 static void arm_cpu_reset(CPUState *s) 157 { 158 ARMCPU *cpu = ARM_CPU(s); 159 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 160 CPUARMState *env = &cpu->env; 161 162 acc->parent_reset(s); 163 164 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 165 166 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 167 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 168 169 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 170 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 171 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 172 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 173 174 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 175 s->halted = cpu->start_powered_off; 176 177 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 178 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 179 } 180 181 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 182 /* 64 bit CPUs always start in 64 bit mode */ 183 env->aarch64 = 1; 184 #if defined(CONFIG_USER_ONLY) 185 env->pstate = PSTATE_MODE_EL0t; 186 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 187 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 188 /* Enable all PAC keys. */ 189 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 190 SCTLR_EnDA | SCTLR_EnDB); 191 /* Enable all PAC instructions */ 192 env->cp15.hcr_el2 |= HCR_API; 193 env->cp15.scr_el3 |= SCR_API; 194 /* and to the FP/Neon instructions */ 195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 196 /* and to the SVE instructions */ 197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 198 env->cp15.cptr_el[3] |= CPTR_EZ; 199 /* with maximum vector length */ 200 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1; 201 env->vfp.zcr_el[2] = env->vfp.zcr_el[1]; 202 env->vfp.zcr_el[3] = env->vfp.zcr_el[1]; 203 /* 204 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 205 * turning on both here will produce smaller code and otherwise 206 * make no difference to the user-level emulation. 207 */ 208 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 209 #else 210 /* Reset into the highest available EL */ 211 if (arm_feature(env, ARM_FEATURE_EL3)) { 212 env->pstate = PSTATE_MODE_EL3h; 213 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 214 env->pstate = PSTATE_MODE_EL2h; 215 } else { 216 env->pstate = PSTATE_MODE_EL1h; 217 } 218 env->pc = cpu->rvbar; 219 #endif 220 } else { 221 #if defined(CONFIG_USER_ONLY) 222 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 223 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 224 #endif 225 } 226 227 #if defined(CONFIG_USER_ONLY) 228 env->uncached_cpsr = ARM_CPU_MODE_USR; 229 /* For user mode we must enable access to coprocessors */ 230 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 231 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 232 env->cp15.c15_cpar = 3; 233 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 234 env->cp15.c15_cpar = 1; 235 } 236 #else 237 238 /* 239 * If the highest available EL is EL2, AArch32 will start in Hyp 240 * mode; otherwise it starts in SVC. Note that if we start in 241 * AArch64 then these values in the uncached_cpsr will be ignored. 242 */ 243 if (arm_feature(env, ARM_FEATURE_EL2) && 244 !arm_feature(env, ARM_FEATURE_EL3)) { 245 env->uncached_cpsr = ARM_CPU_MODE_HYP; 246 } else { 247 env->uncached_cpsr = ARM_CPU_MODE_SVC; 248 } 249 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 250 251 if (arm_feature(env, ARM_FEATURE_M)) { 252 uint32_t initial_msp; /* Loaded from 0x0 */ 253 uint32_t initial_pc; /* Loaded from 0x4 */ 254 uint8_t *rom; 255 uint32_t vecbase; 256 257 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 258 env->v7m.secure = true; 259 } else { 260 /* This bit resets to 0 if security is supported, but 1 if 261 * it is not. The bit is not present in v7M, but we set it 262 * here so we can avoid having to make checks on it conditional 263 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 264 */ 265 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 266 } 267 268 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 269 * that it resets to 1, so QEMU always does that rather than making 270 * it dependent on CPU model. In v8M it is RES1. 271 */ 272 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 273 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 274 if (arm_feature(env, ARM_FEATURE_V8)) { 275 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 276 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 277 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 278 } 279 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 280 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 281 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 282 } 283 284 if (arm_feature(env, ARM_FEATURE_VFP)) { 285 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 286 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 287 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 288 } 289 /* Unlike A/R profile, M profile defines the reset LR value */ 290 env->regs[14] = 0xffffffff; 291 292 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 293 294 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 295 vecbase = env->v7m.vecbase[env->v7m.secure]; 296 rom = rom_ptr(vecbase, 8); 297 if (rom) { 298 /* Address zero is covered by ROM which hasn't yet been 299 * copied into physical memory. 300 */ 301 initial_msp = ldl_p(rom); 302 initial_pc = ldl_p(rom + 4); 303 } else { 304 /* Address zero not covered by a ROM blob, or the ROM blob 305 * is in non-modifiable memory and this is a second reset after 306 * it got copied into memory. In the latter case, rom_ptr 307 * will return a NULL pointer and we should use ldl_phys instead. 308 */ 309 initial_msp = ldl_phys(s->as, vecbase); 310 initial_pc = ldl_phys(s->as, vecbase + 4); 311 } 312 313 env->regs[13] = initial_msp & 0xFFFFFFFC; 314 env->regs[15] = initial_pc & ~1; 315 env->thumb = initial_pc & 1; 316 } 317 318 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 319 * executing as AArch32 then check if highvecs are enabled and 320 * adjust the PC accordingly. 321 */ 322 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 323 env->regs[15] = 0xFFFF0000; 324 } 325 326 /* M profile requires that reset clears the exclusive monitor; 327 * A profile does not, but clearing it makes more sense than having it 328 * set with an exclusive access on address zero. 329 */ 330 arm_clear_exclusive(env); 331 332 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 333 #endif 334 335 if (arm_feature(env, ARM_FEATURE_PMSA)) { 336 if (cpu->pmsav7_dregion > 0) { 337 if (arm_feature(env, ARM_FEATURE_V8)) { 338 memset(env->pmsav8.rbar[M_REG_NS], 0, 339 sizeof(*env->pmsav8.rbar[M_REG_NS]) 340 * cpu->pmsav7_dregion); 341 memset(env->pmsav8.rlar[M_REG_NS], 0, 342 sizeof(*env->pmsav8.rlar[M_REG_NS]) 343 * cpu->pmsav7_dregion); 344 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 345 memset(env->pmsav8.rbar[M_REG_S], 0, 346 sizeof(*env->pmsav8.rbar[M_REG_S]) 347 * cpu->pmsav7_dregion); 348 memset(env->pmsav8.rlar[M_REG_S], 0, 349 sizeof(*env->pmsav8.rlar[M_REG_S]) 350 * cpu->pmsav7_dregion); 351 } 352 } else if (arm_feature(env, ARM_FEATURE_V7)) { 353 memset(env->pmsav7.drbar, 0, 354 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 355 memset(env->pmsav7.drsr, 0, 356 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 357 memset(env->pmsav7.dracr, 0, 358 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 359 } 360 } 361 env->pmsav7.rnr[M_REG_NS] = 0; 362 env->pmsav7.rnr[M_REG_S] = 0; 363 env->pmsav8.mair0[M_REG_NS] = 0; 364 env->pmsav8.mair0[M_REG_S] = 0; 365 env->pmsav8.mair1[M_REG_NS] = 0; 366 env->pmsav8.mair1[M_REG_S] = 0; 367 } 368 369 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 370 if (cpu->sau_sregion > 0) { 371 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 372 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 373 } 374 env->sau.rnr = 0; 375 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 376 * the Cortex-M33 does. 377 */ 378 env->sau.ctrl = 0; 379 } 380 381 set_flush_to_zero(1, &env->vfp.standard_fp_status); 382 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 383 set_default_nan_mode(1, &env->vfp.standard_fp_status); 384 set_float_detect_tininess(float_tininess_before_rounding, 385 &env->vfp.fp_status); 386 set_float_detect_tininess(float_tininess_before_rounding, 387 &env->vfp.standard_fp_status); 388 set_float_detect_tininess(float_tininess_before_rounding, 389 &env->vfp.fp_status_f16); 390 #ifndef CONFIG_USER_ONLY 391 if (kvm_enabled()) { 392 kvm_arm_reset_vcpu(cpu); 393 } 394 #endif 395 396 hw_breakpoint_update_all(cpu); 397 hw_watchpoint_update_all(cpu); 398 } 399 400 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 401 { 402 CPUClass *cc = CPU_GET_CLASS(cs); 403 CPUARMState *env = cs->env_ptr; 404 uint32_t cur_el = arm_current_el(env); 405 bool secure = arm_is_secure(env); 406 uint32_t target_el; 407 uint32_t excp_idx; 408 bool ret = false; 409 410 if (interrupt_request & CPU_INTERRUPT_FIQ) { 411 excp_idx = EXCP_FIQ; 412 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 413 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 414 cs->exception_index = excp_idx; 415 env->exception.target_el = target_el; 416 cc->do_interrupt(cs); 417 ret = true; 418 } 419 } 420 if (interrupt_request & CPU_INTERRUPT_HARD) { 421 excp_idx = EXCP_IRQ; 422 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 423 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 424 cs->exception_index = excp_idx; 425 env->exception.target_el = target_el; 426 cc->do_interrupt(cs); 427 ret = true; 428 } 429 } 430 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 431 excp_idx = EXCP_VIRQ; 432 target_el = 1; 433 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 434 cs->exception_index = excp_idx; 435 env->exception.target_el = target_el; 436 cc->do_interrupt(cs); 437 ret = true; 438 } 439 } 440 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 441 excp_idx = EXCP_VFIQ; 442 target_el = 1; 443 if (arm_excp_unmasked(cs, excp_idx, target_el)) { 444 cs->exception_index = excp_idx; 445 env->exception.target_el = target_el; 446 cc->do_interrupt(cs); 447 ret = true; 448 } 449 } 450 451 return ret; 452 } 453 454 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 455 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 456 { 457 CPUClass *cc = CPU_GET_CLASS(cs); 458 ARMCPU *cpu = ARM_CPU(cs); 459 CPUARMState *env = &cpu->env; 460 bool ret = false; 461 462 /* ARMv7-M interrupt masking works differently than -A or -R. 463 * There is no FIQ/IRQ distinction. Instead of I and F bits 464 * masking FIQ and IRQ interrupts, an exception is taken only 465 * if it is higher priority than the current execution priority 466 * (which depends on state like BASEPRI, FAULTMASK and the 467 * currently active exception). 468 */ 469 if (interrupt_request & CPU_INTERRUPT_HARD 470 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 471 cs->exception_index = EXCP_IRQ; 472 cc->do_interrupt(cs); 473 ret = true; 474 } 475 return ret; 476 } 477 #endif 478 479 void arm_cpu_update_virq(ARMCPU *cpu) 480 { 481 /* 482 * Update the interrupt level for VIRQ, which is the logical OR of 483 * the HCR_EL2.VI bit and the input line level from the GIC. 484 */ 485 CPUARMState *env = &cpu->env; 486 CPUState *cs = CPU(cpu); 487 488 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 489 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 490 491 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 492 if (new_state) { 493 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 494 } else { 495 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 496 } 497 } 498 } 499 500 void arm_cpu_update_vfiq(ARMCPU *cpu) 501 { 502 /* 503 * Update the interrupt level for VFIQ, which is the logical OR of 504 * the HCR_EL2.VF bit and the input line level from the GIC. 505 */ 506 CPUARMState *env = &cpu->env; 507 CPUState *cs = CPU(cpu); 508 509 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 510 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 511 512 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 513 if (new_state) { 514 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 515 } else { 516 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 517 } 518 } 519 } 520 521 #ifndef CONFIG_USER_ONLY 522 static void arm_cpu_set_irq(void *opaque, int irq, int level) 523 { 524 ARMCPU *cpu = opaque; 525 CPUARMState *env = &cpu->env; 526 CPUState *cs = CPU(cpu); 527 static const int mask[] = { 528 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 529 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 530 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 531 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 532 }; 533 534 if (level) { 535 env->irq_line_state |= mask[irq]; 536 } else { 537 env->irq_line_state &= ~mask[irq]; 538 } 539 540 switch (irq) { 541 case ARM_CPU_VIRQ: 542 assert(arm_feature(env, ARM_FEATURE_EL2)); 543 arm_cpu_update_virq(cpu); 544 break; 545 case ARM_CPU_VFIQ: 546 assert(arm_feature(env, ARM_FEATURE_EL2)); 547 arm_cpu_update_vfiq(cpu); 548 break; 549 case ARM_CPU_IRQ: 550 case ARM_CPU_FIQ: 551 if (level) { 552 cpu_interrupt(cs, mask[irq]); 553 } else { 554 cpu_reset_interrupt(cs, mask[irq]); 555 } 556 break; 557 default: 558 g_assert_not_reached(); 559 } 560 } 561 562 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 563 { 564 #ifdef CONFIG_KVM 565 ARMCPU *cpu = opaque; 566 CPUARMState *env = &cpu->env; 567 CPUState *cs = CPU(cpu); 568 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT; 569 uint32_t linestate_bit; 570 571 switch (irq) { 572 case ARM_CPU_IRQ: 573 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ; 574 linestate_bit = CPU_INTERRUPT_HARD; 575 break; 576 case ARM_CPU_FIQ: 577 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ; 578 linestate_bit = CPU_INTERRUPT_FIQ; 579 break; 580 default: 581 g_assert_not_reached(); 582 } 583 584 if (level) { 585 env->irq_line_state |= linestate_bit; 586 } else { 587 env->irq_line_state &= ~linestate_bit; 588 } 589 590 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT; 591 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0); 592 #endif 593 } 594 595 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 596 { 597 ARMCPU *cpu = ARM_CPU(cs); 598 CPUARMState *env = &cpu->env; 599 600 cpu_synchronize_state(cs); 601 return arm_cpu_data_is_big_endian(env); 602 } 603 604 #endif 605 606 static inline void set_feature(CPUARMState *env, int feature) 607 { 608 env->features |= 1ULL << feature; 609 } 610 611 static inline void unset_feature(CPUARMState *env, int feature) 612 { 613 env->features &= ~(1ULL << feature); 614 } 615 616 static int 617 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 618 { 619 return print_insn_arm(pc | 1, info); 620 } 621 622 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 623 { 624 ARMCPU *ac = ARM_CPU(cpu); 625 CPUARMState *env = &ac->env; 626 bool sctlr_b; 627 628 if (is_a64(env)) { 629 /* We might not be compiled with the A64 disassembler 630 * because it needs a C++ compiler. Leave print_insn 631 * unset in this case to use the caller default behaviour. 632 */ 633 #if defined(CONFIG_ARM_A64_DIS) 634 info->print_insn = print_insn_arm_a64; 635 #endif 636 info->cap_arch = CS_ARCH_ARM64; 637 info->cap_insn_unit = 4; 638 info->cap_insn_split = 4; 639 } else { 640 int cap_mode; 641 if (env->thumb) { 642 info->print_insn = print_insn_thumb1; 643 info->cap_insn_unit = 2; 644 info->cap_insn_split = 4; 645 cap_mode = CS_MODE_THUMB; 646 } else { 647 info->print_insn = print_insn_arm; 648 info->cap_insn_unit = 4; 649 info->cap_insn_split = 4; 650 cap_mode = CS_MODE_ARM; 651 } 652 if (arm_feature(env, ARM_FEATURE_V8)) { 653 cap_mode |= CS_MODE_V8; 654 } 655 if (arm_feature(env, ARM_FEATURE_M)) { 656 cap_mode |= CS_MODE_MCLASS; 657 } 658 info->cap_arch = CS_ARCH_ARM; 659 info->cap_mode = cap_mode; 660 } 661 662 sctlr_b = arm_sctlr_b(env); 663 if (bswap_code(sctlr_b)) { 664 #ifdef TARGET_WORDS_BIGENDIAN 665 info->endian = BFD_ENDIAN_LITTLE; 666 #else 667 info->endian = BFD_ENDIAN_BIG; 668 #endif 669 } 670 info->flags &= ~INSN_ARM_BE32; 671 #ifndef CONFIG_USER_ONLY 672 if (sctlr_b) { 673 info->flags |= INSN_ARM_BE32; 674 } 675 #endif 676 } 677 678 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 679 { 680 uint32_t Aff1 = idx / clustersz; 681 uint32_t Aff0 = idx % clustersz; 682 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 683 } 684 685 static void cpreg_hashtable_data_destroy(gpointer data) 686 { 687 /* 688 * Destroy function for cpu->cp_regs hashtable data entries. 689 * We must free the name string because it was g_strdup()ed in 690 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 691 * from r->name because we know we definitely allocated it. 692 */ 693 ARMCPRegInfo *r = data; 694 695 g_free((void *)r->name); 696 g_free(r); 697 } 698 699 static void arm_cpu_initfn(Object *obj) 700 { 701 CPUState *cs = CPU(obj); 702 ARMCPU *cpu = ARM_CPU(obj); 703 704 cs->env_ptr = &cpu->env; 705 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 706 g_free, cpreg_hashtable_data_destroy); 707 708 QLIST_INIT(&cpu->pre_el_change_hooks); 709 QLIST_INIT(&cpu->el_change_hooks); 710 711 #ifndef CONFIG_USER_ONLY 712 /* Our inbound IRQ and FIQ lines */ 713 if (kvm_enabled()) { 714 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 715 * the same interface as non-KVM CPUs. 716 */ 717 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 718 } else { 719 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 720 } 721 722 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 723 ARRAY_SIZE(cpu->gt_timer_outputs)); 724 725 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 726 "gicv3-maintenance-interrupt", 1); 727 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 728 "pmu-interrupt", 1); 729 #endif 730 731 /* DTB consumers generally don't in fact care what the 'compatible' 732 * string is, so always provide some string and trust that a hypothetical 733 * picky DTB consumer will also provide a helpful error message. 734 */ 735 cpu->dtb_compatible = "qemu,unknown"; 736 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 737 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 738 739 if (tcg_enabled()) { 740 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 741 } 742 } 743 744 static Property arm_cpu_reset_cbar_property = 745 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 746 747 static Property arm_cpu_reset_hivecs_property = 748 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 749 750 static Property arm_cpu_rvbar_property = 751 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 752 753 static Property arm_cpu_has_el2_property = 754 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 755 756 static Property arm_cpu_has_el3_property = 757 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 758 759 static Property arm_cpu_cfgend_property = 760 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 761 762 /* use property name "pmu" to match other archs and virt tools */ 763 static Property arm_cpu_has_pmu_property = 764 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true); 765 766 static Property arm_cpu_has_mpu_property = 767 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 768 769 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 770 * because the CPU initfn will have already set cpu->pmsav7_dregion to 771 * the right value for that particular CPU type, and we don't want 772 * to override that with an incorrect constant value. 773 */ 774 static Property arm_cpu_pmsav7_dregion_property = 775 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 776 pmsav7_dregion, 777 qdev_prop_uint32, uint32_t); 778 779 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name, 780 void *opaque, Error **errp) 781 { 782 ARMCPU *cpu = ARM_CPU(obj); 783 784 visit_type_uint32(v, name, &cpu->init_svtor, errp); 785 } 786 787 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name, 788 void *opaque, Error **errp) 789 { 790 ARMCPU *cpu = ARM_CPU(obj); 791 792 visit_type_uint32(v, name, &cpu->init_svtor, errp); 793 } 794 795 void arm_cpu_post_init(Object *obj) 796 { 797 ARMCPU *cpu = ARM_CPU(obj); 798 799 /* M profile implies PMSA. We have to do this here rather than 800 * in realize with the other feature-implication checks because 801 * we look at the PMSA bit to see if we should add some properties. 802 */ 803 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 804 set_feature(&cpu->env, ARM_FEATURE_PMSA); 805 } 806 807 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 808 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 809 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property, 810 &error_abort); 811 } 812 813 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 814 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property, 815 &error_abort); 816 } 817 818 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 819 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property, 820 &error_abort); 821 } 822 823 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 824 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 825 * prevent "has_el3" from existing on CPUs which cannot support EL3. 826 */ 827 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property, 828 &error_abort); 829 830 #ifndef CONFIG_USER_ONLY 831 object_property_add_link(obj, "secure-memory", 832 TYPE_MEMORY_REGION, 833 (Object **)&cpu->secure_memory, 834 qdev_prop_allow_set_link_before_realize, 835 OBJ_PROP_LINK_STRONG, 836 &error_abort); 837 #endif 838 } 839 840 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 841 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property, 842 &error_abort); 843 } 844 845 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 846 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property, 847 &error_abort); 848 } 849 850 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 851 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property, 852 &error_abort); 853 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 854 qdev_property_add_static(DEVICE(obj), 855 &arm_cpu_pmsav7_dregion_property, 856 &error_abort); 857 } 858 } 859 860 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 861 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 862 qdev_prop_allow_set_link_before_realize, 863 OBJ_PROP_LINK_STRONG, 864 &error_abort); 865 /* 866 * M profile: initial value of the Secure VTOR. We can't just use 867 * a simple DEFINE_PROP_UINT32 for this because we want to permit 868 * the property to be set after realize. 869 */ 870 object_property_add(obj, "init-svtor", "uint32", 871 arm_get_init_svtor, arm_set_init_svtor, 872 NULL, NULL, &error_abort); 873 } 874 875 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property, 876 &error_abort); 877 } 878 879 static void arm_cpu_finalizefn(Object *obj) 880 { 881 ARMCPU *cpu = ARM_CPU(obj); 882 ARMELChangeHook *hook, *next; 883 884 g_hash_table_destroy(cpu->cp_regs); 885 886 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 887 QLIST_REMOVE(hook, node); 888 g_free(hook); 889 } 890 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 891 QLIST_REMOVE(hook, node); 892 g_free(hook); 893 } 894 #ifndef CONFIG_USER_ONLY 895 if (cpu->pmu_timer) { 896 timer_del(cpu->pmu_timer); 897 timer_deinit(cpu->pmu_timer); 898 timer_free(cpu->pmu_timer); 899 } 900 #endif 901 } 902 903 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 904 { 905 CPUState *cs = CPU(dev); 906 ARMCPU *cpu = ARM_CPU(dev); 907 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 908 CPUARMState *env = &cpu->env; 909 int pagebits; 910 Error *local_err = NULL; 911 bool no_aa32 = false; 912 913 /* If we needed to query the host kernel for the CPU features 914 * then it's possible that might have failed in the initfn, but 915 * this is the first point where we can report it. 916 */ 917 if (cpu->host_cpu_probe_failed) { 918 if (!kvm_enabled()) { 919 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 920 } else { 921 error_setg(errp, "Failed to retrieve host CPU features"); 922 } 923 return; 924 } 925 926 #ifndef CONFIG_USER_ONLY 927 /* The NVIC and M-profile CPU are two halves of a single piece of 928 * hardware; trying to use one without the other is a command line 929 * error and will result in segfaults if not caught here. 930 */ 931 if (arm_feature(env, ARM_FEATURE_M)) { 932 if (!env->nvic) { 933 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 934 return; 935 } 936 } else { 937 if (env->nvic) { 938 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 939 return; 940 } 941 } 942 943 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 944 arm_gt_ptimer_cb, cpu); 945 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 946 arm_gt_vtimer_cb, cpu); 947 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 948 arm_gt_htimer_cb, cpu); 949 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE, 950 arm_gt_stimer_cb, cpu); 951 #endif 952 953 cpu_exec_realizefn(cs, &local_err); 954 if (local_err != NULL) { 955 error_propagate(errp, local_err); 956 return; 957 } 958 959 /* Some features automatically imply others: */ 960 if (arm_feature(env, ARM_FEATURE_V8)) { 961 if (arm_feature(env, ARM_FEATURE_M)) { 962 set_feature(env, ARM_FEATURE_V7); 963 } else { 964 set_feature(env, ARM_FEATURE_V7VE); 965 } 966 } 967 968 /* 969 * There exist AArch64 cpus without AArch32 support. When KVM 970 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 971 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 972 */ 973 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 974 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 975 } 976 977 if (arm_feature(env, ARM_FEATURE_V7VE)) { 978 /* v7 Virtualization Extensions. In real hardware this implies 979 * EL2 and also the presence of the Security Extensions. 980 * For QEMU, for backwards-compatibility we implement some 981 * CPUs or CPU configs which have no actual EL2 or EL3 but do 982 * include the various other features that V7VE implies. 983 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 984 * Security Extensions is ARM_FEATURE_EL3. 985 */ 986 assert(no_aa32 || cpu_isar_feature(arm_div, cpu)); 987 set_feature(env, ARM_FEATURE_LPAE); 988 set_feature(env, ARM_FEATURE_V7); 989 } 990 if (arm_feature(env, ARM_FEATURE_V7)) { 991 set_feature(env, ARM_FEATURE_VAPA); 992 set_feature(env, ARM_FEATURE_THUMB2); 993 set_feature(env, ARM_FEATURE_MPIDR); 994 if (!arm_feature(env, ARM_FEATURE_M)) { 995 set_feature(env, ARM_FEATURE_V6K); 996 } else { 997 set_feature(env, ARM_FEATURE_V6); 998 } 999 1000 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1001 * non-EL3 configs. This is needed by some legacy boards. 1002 */ 1003 set_feature(env, ARM_FEATURE_VBAR); 1004 } 1005 if (arm_feature(env, ARM_FEATURE_V6K)) { 1006 set_feature(env, ARM_FEATURE_V6); 1007 set_feature(env, ARM_FEATURE_MVFR); 1008 } 1009 if (arm_feature(env, ARM_FEATURE_V6)) { 1010 set_feature(env, ARM_FEATURE_V5); 1011 if (!arm_feature(env, ARM_FEATURE_M)) { 1012 assert(no_aa32 || cpu_isar_feature(jazelle, cpu)); 1013 set_feature(env, ARM_FEATURE_AUXCR); 1014 } 1015 } 1016 if (arm_feature(env, ARM_FEATURE_V5)) { 1017 set_feature(env, ARM_FEATURE_V4T); 1018 } 1019 if (arm_feature(env, ARM_FEATURE_VFP4)) { 1020 set_feature(env, ARM_FEATURE_VFP3); 1021 } 1022 if (arm_feature(env, ARM_FEATURE_VFP3)) { 1023 set_feature(env, ARM_FEATURE_VFP); 1024 } 1025 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1026 set_feature(env, ARM_FEATURE_V7MP); 1027 set_feature(env, ARM_FEATURE_PXN); 1028 } 1029 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1030 set_feature(env, ARM_FEATURE_CBAR); 1031 } 1032 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1033 !arm_feature(env, ARM_FEATURE_M)) { 1034 set_feature(env, ARM_FEATURE_THUMB_DSP); 1035 } 1036 1037 if (arm_feature(env, ARM_FEATURE_V7) && 1038 !arm_feature(env, ARM_FEATURE_M) && 1039 !arm_feature(env, ARM_FEATURE_PMSA)) { 1040 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1041 * can use 4K pages. 1042 */ 1043 pagebits = 12; 1044 } else { 1045 /* For CPUs which might have tiny 1K pages, or which have an 1046 * MPU and might have small region sizes, stick with 1K pages. 1047 */ 1048 pagebits = 10; 1049 } 1050 if (!set_preferred_target_page_bits(pagebits)) { 1051 /* This can only ever happen for hotplugging a CPU, or if 1052 * the board code incorrectly creates a CPU which it has 1053 * promised via minimum_page_size that it will not. 1054 */ 1055 error_setg(errp, "This CPU requires a smaller page size than the " 1056 "system is using"); 1057 return; 1058 } 1059 1060 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1061 * We don't support setting cluster ID ([16..23]) (known as Aff2 1062 * in later ARM ARM versions), or any of the higher affinity level fields, 1063 * so these bits always RAZ. 1064 */ 1065 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1066 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1067 ARM_DEFAULT_CPUS_PER_CLUSTER); 1068 } 1069 1070 if (cpu->reset_hivecs) { 1071 cpu->reset_sctlr |= (1 << 13); 1072 } 1073 1074 if (cpu->cfgend) { 1075 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1076 cpu->reset_sctlr |= SCTLR_EE; 1077 } else { 1078 cpu->reset_sctlr |= SCTLR_B; 1079 } 1080 } 1081 1082 if (!cpu->has_el3) { 1083 /* If the has_el3 CPU property is disabled then we need to disable the 1084 * feature. 1085 */ 1086 unset_feature(env, ARM_FEATURE_EL3); 1087 1088 /* Disable the security extension feature bits in the processor feature 1089 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1090 */ 1091 cpu->id_pfr1 &= ~0xf0; 1092 cpu->isar.id_aa64pfr0 &= ~0xf000; 1093 } 1094 1095 if (!cpu->has_el2) { 1096 unset_feature(env, ARM_FEATURE_EL2); 1097 } 1098 1099 if (!cpu->has_pmu) { 1100 unset_feature(env, ARM_FEATURE_PMU); 1101 } 1102 if (arm_feature(env, ARM_FEATURE_PMU)) { 1103 pmu_init(cpu); 1104 1105 if (!kvm_enabled()) { 1106 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1107 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1108 } 1109 1110 #ifndef CONFIG_USER_ONLY 1111 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1112 cpu); 1113 #endif 1114 } else { 1115 cpu->id_aa64dfr0 &= ~0xf00; 1116 cpu->id_dfr0 &= ~(0xf << 24); 1117 cpu->pmceid0 = 0; 1118 cpu->pmceid1 = 0; 1119 } 1120 1121 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1122 /* Disable the hypervisor feature bits in the processor feature 1123 * registers if we don't have EL2. These are id_pfr1[15:12] and 1124 * id_aa64pfr0_el1[11:8]. 1125 */ 1126 cpu->isar.id_aa64pfr0 &= ~0xf00; 1127 cpu->id_pfr1 &= ~0xf000; 1128 } 1129 1130 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1131 * to false or by setting pmsav7-dregion to 0. 1132 */ 1133 if (!cpu->has_mpu) { 1134 cpu->pmsav7_dregion = 0; 1135 } 1136 if (cpu->pmsav7_dregion == 0) { 1137 cpu->has_mpu = false; 1138 } 1139 1140 if (arm_feature(env, ARM_FEATURE_PMSA) && 1141 arm_feature(env, ARM_FEATURE_V7)) { 1142 uint32_t nr = cpu->pmsav7_dregion; 1143 1144 if (nr > 0xff) { 1145 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1146 return; 1147 } 1148 1149 if (nr) { 1150 if (arm_feature(env, ARM_FEATURE_V8)) { 1151 /* PMSAv8 */ 1152 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1153 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1154 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1155 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1156 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1157 } 1158 } else { 1159 env->pmsav7.drbar = g_new0(uint32_t, nr); 1160 env->pmsav7.drsr = g_new0(uint32_t, nr); 1161 env->pmsav7.dracr = g_new0(uint32_t, nr); 1162 } 1163 } 1164 } 1165 1166 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1167 uint32_t nr = cpu->sau_sregion; 1168 1169 if (nr > 0xff) { 1170 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1171 return; 1172 } 1173 1174 if (nr) { 1175 env->sau.rbar = g_new0(uint32_t, nr); 1176 env->sau.rlar = g_new0(uint32_t, nr); 1177 } 1178 } 1179 1180 if (arm_feature(env, ARM_FEATURE_EL3)) { 1181 set_feature(env, ARM_FEATURE_VBAR); 1182 } 1183 1184 register_cp_regs_for_features(cpu); 1185 arm_cpu_register_gdb_regs_for_features(cpu); 1186 1187 init_cpreg_list(cpu); 1188 1189 #ifndef CONFIG_USER_ONLY 1190 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1191 cs->num_ases = 2; 1192 1193 if (!cpu->secure_memory) { 1194 cpu->secure_memory = cs->memory; 1195 } 1196 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1197 cpu->secure_memory); 1198 } else { 1199 cs->num_ases = 1; 1200 } 1201 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1202 1203 /* No core_count specified, default to smp_cpus. */ 1204 if (cpu->core_count == -1) { 1205 cpu->core_count = smp_cpus; 1206 } 1207 #endif 1208 1209 qemu_init_vcpu(cs); 1210 cpu_reset(cs); 1211 1212 acc->parent_realize(dev, errp); 1213 } 1214 1215 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1216 { 1217 ObjectClass *oc; 1218 char *typename; 1219 char **cpuname; 1220 const char *cpunamestr; 1221 1222 cpuname = g_strsplit(cpu_model, ",", 1); 1223 cpunamestr = cpuname[0]; 1224 #ifdef CONFIG_USER_ONLY 1225 /* For backwards compatibility usermode emulation allows "-cpu any", 1226 * which has the same semantics as "-cpu max". 1227 */ 1228 if (!strcmp(cpunamestr, "any")) { 1229 cpunamestr = "max"; 1230 } 1231 #endif 1232 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1233 oc = object_class_by_name(typename); 1234 g_strfreev(cpuname); 1235 g_free(typename); 1236 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1237 object_class_is_abstract(oc)) { 1238 return NULL; 1239 } 1240 return oc; 1241 } 1242 1243 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1244 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1245 1246 static void arm926_initfn(Object *obj) 1247 { 1248 ARMCPU *cpu = ARM_CPU(obj); 1249 1250 cpu->dtb_compatible = "arm,arm926"; 1251 set_feature(&cpu->env, ARM_FEATURE_V5); 1252 set_feature(&cpu->env, ARM_FEATURE_VFP); 1253 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1254 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1255 cpu->midr = 0x41069265; 1256 cpu->reset_fpsid = 0x41011090; 1257 cpu->ctr = 0x1dd20d2; 1258 cpu->reset_sctlr = 0x00090078; 1259 1260 /* 1261 * ARMv5 does not have the ID_ISAR registers, but we can still 1262 * set the field to indicate Jazelle support within QEMU. 1263 */ 1264 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1265 } 1266 1267 static void arm946_initfn(Object *obj) 1268 { 1269 ARMCPU *cpu = ARM_CPU(obj); 1270 1271 cpu->dtb_compatible = "arm,arm946"; 1272 set_feature(&cpu->env, ARM_FEATURE_V5); 1273 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1274 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1275 cpu->midr = 0x41059461; 1276 cpu->ctr = 0x0f004006; 1277 cpu->reset_sctlr = 0x00000078; 1278 } 1279 1280 static void arm1026_initfn(Object *obj) 1281 { 1282 ARMCPU *cpu = ARM_CPU(obj); 1283 1284 cpu->dtb_compatible = "arm,arm1026"; 1285 set_feature(&cpu->env, ARM_FEATURE_V5); 1286 set_feature(&cpu->env, ARM_FEATURE_VFP); 1287 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 1288 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1289 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1290 cpu->midr = 0x4106a262; 1291 cpu->reset_fpsid = 0x410110a0; 1292 cpu->ctr = 0x1dd20d2; 1293 cpu->reset_sctlr = 0x00090078; 1294 cpu->reset_auxcr = 1; 1295 1296 /* 1297 * ARMv5 does not have the ID_ISAR registers, but we can still 1298 * set the field to indicate Jazelle support within QEMU. 1299 */ 1300 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1301 1302 { 1303 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 1304 ARMCPRegInfo ifar = { 1305 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1306 .access = PL1_RW, 1307 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 1308 .resetvalue = 0 1309 }; 1310 define_one_arm_cp_reg(cpu, &ifar); 1311 } 1312 } 1313 1314 static void arm1136_r2_initfn(Object *obj) 1315 { 1316 ARMCPU *cpu = ARM_CPU(obj); 1317 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 1318 * older core than plain "arm1136". In particular this does not 1319 * have the v6K features. 1320 * These ID register values are correct for 1136 but may be wrong 1321 * for 1136_r2 (in particular r0p2 does not actually implement most 1322 * of the ID registers). 1323 */ 1324 1325 cpu->dtb_compatible = "arm,arm1136"; 1326 set_feature(&cpu->env, ARM_FEATURE_V6); 1327 set_feature(&cpu->env, ARM_FEATURE_VFP); 1328 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1329 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1330 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1331 cpu->midr = 0x4107b362; 1332 cpu->reset_fpsid = 0x410120b4; 1333 cpu->isar.mvfr0 = 0x11111111; 1334 cpu->isar.mvfr1 = 0x00000000; 1335 cpu->ctr = 0x1dd20d2; 1336 cpu->reset_sctlr = 0x00050078; 1337 cpu->id_pfr0 = 0x111; 1338 cpu->id_pfr1 = 0x1; 1339 cpu->id_dfr0 = 0x2; 1340 cpu->id_afr0 = 0x3; 1341 cpu->id_mmfr0 = 0x01130003; 1342 cpu->id_mmfr1 = 0x10030302; 1343 cpu->id_mmfr2 = 0x01222110; 1344 cpu->isar.id_isar0 = 0x00140011; 1345 cpu->isar.id_isar1 = 0x12002111; 1346 cpu->isar.id_isar2 = 0x11231111; 1347 cpu->isar.id_isar3 = 0x01102131; 1348 cpu->isar.id_isar4 = 0x141; 1349 cpu->reset_auxcr = 7; 1350 } 1351 1352 static void arm1136_initfn(Object *obj) 1353 { 1354 ARMCPU *cpu = ARM_CPU(obj); 1355 1356 cpu->dtb_compatible = "arm,arm1136"; 1357 set_feature(&cpu->env, ARM_FEATURE_V6K); 1358 set_feature(&cpu->env, ARM_FEATURE_V6); 1359 set_feature(&cpu->env, ARM_FEATURE_VFP); 1360 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1361 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1362 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1363 cpu->midr = 0x4117b363; 1364 cpu->reset_fpsid = 0x410120b4; 1365 cpu->isar.mvfr0 = 0x11111111; 1366 cpu->isar.mvfr1 = 0x00000000; 1367 cpu->ctr = 0x1dd20d2; 1368 cpu->reset_sctlr = 0x00050078; 1369 cpu->id_pfr0 = 0x111; 1370 cpu->id_pfr1 = 0x1; 1371 cpu->id_dfr0 = 0x2; 1372 cpu->id_afr0 = 0x3; 1373 cpu->id_mmfr0 = 0x01130003; 1374 cpu->id_mmfr1 = 0x10030302; 1375 cpu->id_mmfr2 = 0x01222110; 1376 cpu->isar.id_isar0 = 0x00140011; 1377 cpu->isar.id_isar1 = 0x12002111; 1378 cpu->isar.id_isar2 = 0x11231111; 1379 cpu->isar.id_isar3 = 0x01102131; 1380 cpu->isar.id_isar4 = 0x141; 1381 cpu->reset_auxcr = 7; 1382 } 1383 1384 static void arm1176_initfn(Object *obj) 1385 { 1386 ARMCPU *cpu = ARM_CPU(obj); 1387 1388 cpu->dtb_compatible = "arm,arm1176"; 1389 set_feature(&cpu->env, ARM_FEATURE_V6K); 1390 set_feature(&cpu->env, ARM_FEATURE_VFP); 1391 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1392 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1393 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1394 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1395 set_feature(&cpu->env, ARM_FEATURE_EL3); 1396 cpu->midr = 0x410fb767; 1397 cpu->reset_fpsid = 0x410120b5; 1398 cpu->isar.mvfr0 = 0x11111111; 1399 cpu->isar.mvfr1 = 0x00000000; 1400 cpu->ctr = 0x1dd20d2; 1401 cpu->reset_sctlr = 0x00050078; 1402 cpu->id_pfr0 = 0x111; 1403 cpu->id_pfr1 = 0x11; 1404 cpu->id_dfr0 = 0x33; 1405 cpu->id_afr0 = 0; 1406 cpu->id_mmfr0 = 0x01130003; 1407 cpu->id_mmfr1 = 0x10030302; 1408 cpu->id_mmfr2 = 0x01222100; 1409 cpu->isar.id_isar0 = 0x0140011; 1410 cpu->isar.id_isar1 = 0x12002111; 1411 cpu->isar.id_isar2 = 0x11231121; 1412 cpu->isar.id_isar3 = 0x01102131; 1413 cpu->isar.id_isar4 = 0x01141; 1414 cpu->reset_auxcr = 7; 1415 } 1416 1417 static void arm11mpcore_initfn(Object *obj) 1418 { 1419 ARMCPU *cpu = ARM_CPU(obj); 1420 1421 cpu->dtb_compatible = "arm,arm11mpcore"; 1422 set_feature(&cpu->env, ARM_FEATURE_V6K); 1423 set_feature(&cpu->env, ARM_FEATURE_VFP); 1424 set_feature(&cpu->env, ARM_FEATURE_VAPA); 1425 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 1426 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1427 cpu->midr = 0x410fb022; 1428 cpu->reset_fpsid = 0x410120b4; 1429 cpu->isar.mvfr0 = 0x11111111; 1430 cpu->isar.mvfr1 = 0x00000000; 1431 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 1432 cpu->id_pfr0 = 0x111; 1433 cpu->id_pfr1 = 0x1; 1434 cpu->id_dfr0 = 0; 1435 cpu->id_afr0 = 0x2; 1436 cpu->id_mmfr0 = 0x01100103; 1437 cpu->id_mmfr1 = 0x10020302; 1438 cpu->id_mmfr2 = 0x01222000; 1439 cpu->isar.id_isar0 = 0x00100011; 1440 cpu->isar.id_isar1 = 0x12002111; 1441 cpu->isar.id_isar2 = 0x11221011; 1442 cpu->isar.id_isar3 = 0x01102131; 1443 cpu->isar.id_isar4 = 0x141; 1444 cpu->reset_auxcr = 1; 1445 } 1446 1447 static void cortex_m0_initfn(Object *obj) 1448 { 1449 ARMCPU *cpu = ARM_CPU(obj); 1450 set_feature(&cpu->env, ARM_FEATURE_V6); 1451 set_feature(&cpu->env, ARM_FEATURE_M); 1452 1453 cpu->midr = 0x410cc200; 1454 } 1455 1456 static void cortex_m3_initfn(Object *obj) 1457 { 1458 ARMCPU *cpu = ARM_CPU(obj); 1459 set_feature(&cpu->env, ARM_FEATURE_V7); 1460 set_feature(&cpu->env, ARM_FEATURE_M); 1461 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1462 cpu->midr = 0x410fc231; 1463 cpu->pmsav7_dregion = 8; 1464 cpu->id_pfr0 = 0x00000030; 1465 cpu->id_pfr1 = 0x00000200; 1466 cpu->id_dfr0 = 0x00100000; 1467 cpu->id_afr0 = 0x00000000; 1468 cpu->id_mmfr0 = 0x00000030; 1469 cpu->id_mmfr1 = 0x00000000; 1470 cpu->id_mmfr2 = 0x00000000; 1471 cpu->id_mmfr3 = 0x00000000; 1472 cpu->isar.id_isar0 = 0x01141110; 1473 cpu->isar.id_isar1 = 0x02111000; 1474 cpu->isar.id_isar2 = 0x21112231; 1475 cpu->isar.id_isar3 = 0x01111110; 1476 cpu->isar.id_isar4 = 0x01310102; 1477 cpu->isar.id_isar5 = 0x00000000; 1478 cpu->isar.id_isar6 = 0x00000000; 1479 } 1480 1481 static void cortex_m4_initfn(Object *obj) 1482 { 1483 ARMCPU *cpu = ARM_CPU(obj); 1484 1485 set_feature(&cpu->env, ARM_FEATURE_V7); 1486 set_feature(&cpu->env, ARM_FEATURE_M); 1487 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1488 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1489 cpu->midr = 0x410fc240; /* r0p0 */ 1490 cpu->pmsav7_dregion = 8; 1491 cpu->id_pfr0 = 0x00000030; 1492 cpu->id_pfr1 = 0x00000200; 1493 cpu->id_dfr0 = 0x00100000; 1494 cpu->id_afr0 = 0x00000000; 1495 cpu->id_mmfr0 = 0x00000030; 1496 cpu->id_mmfr1 = 0x00000000; 1497 cpu->id_mmfr2 = 0x00000000; 1498 cpu->id_mmfr3 = 0x00000000; 1499 cpu->isar.id_isar0 = 0x01141110; 1500 cpu->isar.id_isar1 = 0x02111000; 1501 cpu->isar.id_isar2 = 0x21112231; 1502 cpu->isar.id_isar3 = 0x01111110; 1503 cpu->isar.id_isar4 = 0x01310102; 1504 cpu->isar.id_isar5 = 0x00000000; 1505 cpu->isar.id_isar6 = 0x00000000; 1506 } 1507 1508 static void cortex_m33_initfn(Object *obj) 1509 { 1510 ARMCPU *cpu = ARM_CPU(obj); 1511 1512 set_feature(&cpu->env, ARM_FEATURE_V8); 1513 set_feature(&cpu->env, ARM_FEATURE_M); 1514 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 1515 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY); 1516 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 1517 cpu->midr = 0x410fd213; /* r0p3 */ 1518 cpu->pmsav7_dregion = 16; 1519 cpu->sau_sregion = 8; 1520 cpu->id_pfr0 = 0x00000030; 1521 cpu->id_pfr1 = 0x00000210; 1522 cpu->id_dfr0 = 0x00200000; 1523 cpu->id_afr0 = 0x00000000; 1524 cpu->id_mmfr0 = 0x00101F40; 1525 cpu->id_mmfr1 = 0x00000000; 1526 cpu->id_mmfr2 = 0x01000000; 1527 cpu->id_mmfr3 = 0x00000000; 1528 cpu->isar.id_isar0 = 0x01101110; 1529 cpu->isar.id_isar1 = 0x02212000; 1530 cpu->isar.id_isar2 = 0x20232232; 1531 cpu->isar.id_isar3 = 0x01111131; 1532 cpu->isar.id_isar4 = 0x01310132; 1533 cpu->isar.id_isar5 = 0x00000000; 1534 cpu->isar.id_isar6 = 0x00000000; 1535 cpu->clidr = 0x00000000; 1536 cpu->ctr = 0x8000c000; 1537 } 1538 1539 static void arm_v7m_class_init(ObjectClass *oc, void *data) 1540 { 1541 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 1542 CPUClass *cc = CPU_CLASS(oc); 1543 1544 acc->info = data; 1545 #ifndef CONFIG_USER_ONLY 1546 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 1547 #endif 1548 1549 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 1550 } 1551 1552 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 1553 /* Dummy the TCM region regs for the moment */ 1554 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 1555 .access = PL1_RW, .type = ARM_CP_CONST }, 1556 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 1557 .access = PL1_RW, .type = ARM_CP_CONST }, 1558 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 1559 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 1560 REGINFO_SENTINEL 1561 }; 1562 1563 static void cortex_r5_initfn(Object *obj) 1564 { 1565 ARMCPU *cpu = ARM_CPU(obj); 1566 1567 set_feature(&cpu->env, ARM_FEATURE_V7); 1568 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1569 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1570 cpu->midr = 0x411fc153; /* r1p3 */ 1571 cpu->id_pfr0 = 0x0131; 1572 cpu->id_pfr1 = 0x001; 1573 cpu->id_dfr0 = 0x010400; 1574 cpu->id_afr0 = 0x0; 1575 cpu->id_mmfr0 = 0x0210030; 1576 cpu->id_mmfr1 = 0x00000000; 1577 cpu->id_mmfr2 = 0x01200000; 1578 cpu->id_mmfr3 = 0x0211; 1579 cpu->isar.id_isar0 = 0x02101111; 1580 cpu->isar.id_isar1 = 0x13112111; 1581 cpu->isar.id_isar2 = 0x21232141; 1582 cpu->isar.id_isar3 = 0x01112131; 1583 cpu->isar.id_isar4 = 0x0010142; 1584 cpu->isar.id_isar5 = 0x0; 1585 cpu->isar.id_isar6 = 0x0; 1586 cpu->mp_is_up = true; 1587 cpu->pmsav7_dregion = 16; 1588 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 1589 } 1590 1591 static void cortex_r5f_initfn(Object *obj) 1592 { 1593 ARMCPU *cpu = ARM_CPU(obj); 1594 1595 cortex_r5_initfn(obj); 1596 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1597 } 1598 1599 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1600 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1601 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1602 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1603 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1604 REGINFO_SENTINEL 1605 }; 1606 1607 static void cortex_a8_initfn(Object *obj) 1608 { 1609 ARMCPU *cpu = ARM_CPU(obj); 1610 1611 cpu->dtb_compatible = "arm,cortex-a8"; 1612 set_feature(&cpu->env, ARM_FEATURE_V7); 1613 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1614 set_feature(&cpu->env, ARM_FEATURE_NEON); 1615 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1616 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1617 set_feature(&cpu->env, ARM_FEATURE_EL3); 1618 cpu->midr = 0x410fc080; 1619 cpu->reset_fpsid = 0x410330c0; 1620 cpu->isar.mvfr0 = 0x11110222; 1621 cpu->isar.mvfr1 = 0x00011111; 1622 cpu->ctr = 0x82048004; 1623 cpu->reset_sctlr = 0x00c50078; 1624 cpu->id_pfr0 = 0x1031; 1625 cpu->id_pfr1 = 0x11; 1626 cpu->id_dfr0 = 0x400; 1627 cpu->id_afr0 = 0; 1628 cpu->id_mmfr0 = 0x31100003; 1629 cpu->id_mmfr1 = 0x20000000; 1630 cpu->id_mmfr2 = 0x01202000; 1631 cpu->id_mmfr3 = 0x11; 1632 cpu->isar.id_isar0 = 0x00101111; 1633 cpu->isar.id_isar1 = 0x12112111; 1634 cpu->isar.id_isar2 = 0x21232031; 1635 cpu->isar.id_isar3 = 0x11112131; 1636 cpu->isar.id_isar4 = 0x00111142; 1637 cpu->dbgdidr = 0x15141000; 1638 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1639 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1640 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1641 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1642 cpu->reset_auxcr = 2; 1643 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1644 } 1645 1646 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1647 /* power_control should be set to maximum latency. Again, 1648 * default to 0 and set by private hook 1649 */ 1650 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1651 .access = PL1_RW, .resetvalue = 0, 1652 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1653 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1654 .access = PL1_RW, .resetvalue = 0, 1655 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1656 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1657 .access = PL1_RW, .resetvalue = 0, 1658 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1659 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1660 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1661 /* TLB lockdown control */ 1662 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1663 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1664 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1665 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1666 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1667 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1668 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1669 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1670 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1671 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1672 REGINFO_SENTINEL 1673 }; 1674 1675 static void cortex_a9_initfn(Object *obj) 1676 { 1677 ARMCPU *cpu = ARM_CPU(obj); 1678 1679 cpu->dtb_compatible = "arm,cortex-a9"; 1680 set_feature(&cpu->env, ARM_FEATURE_V7); 1681 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1682 set_feature(&cpu->env, ARM_FEATURE_NEON); 1683 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1684 set_feature(&cpu->env, ARM_FEATURE_EL3); 1685 /* Note that A9 supports the MP extensions even for 1686 * A9UP and single-core A9MP (which are both different 1687 * and valid configurations; we don't model A9UP). 1688 */ 1689 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1690 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1691 cpu->midr = 0x410fc090; 1692 cpu->reset_fpsid = 0x41033090; 1693 cpu->isar.mvfr0 = 0x11110222; 1694 cpu->isar.mvfr1 = 0x01111111; 1695 cpu->ctr = 0x80038003; 1696 cpu->reset_sctlr = 0x00c50078; 1697 cpu->id_pfr0 = 0x1031; 1698 cpu->id_pfr1 = 0x11; 1699 cpu->id_dfr0 = 0x000; 1700 cpu->id_afr0 = 0; 1701 cpu->id_mmfr0 = 0x00100103; 1702 cpu->id_mmfr1 = 0x20000000; 1703 cpu->id_mmfr2 = 0x01230000; 1704 cpu->id_mmfr3 = 0x00002111; 1705 cpu->isar.id_isar0 = 0x00101111; 1706 cpu->isar.id_isar1 = 0x13112111; 1707 cpu->isar.id_isar2 = 0x21232041; 1708 cpu->isar.id_isar3 = 0x11112131; 1709 cpu->isar.id_isar4 = 0x00111142; 1710 cpu->dbgdidr = 0x35141000; 1711 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1712 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1713 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1714 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1715 } 1716 1717 #ifndef CONFIG_USER_ONLY 1718 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1719 { 1720 /* Linux wants the number of processors from here. 1721 * Might as well set the interrupt-controller bit too. 1722 */ 1723 return ((smp_cpus - 1) << 24) | (1 << 23); 1724 } 1725 #endif 1726 1727 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 1728 #ifndef CONFIG_USER_ONLY 1729 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1730 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 1731 .writefn = arm_cp_write_ignore, }, 1732 #endif 1733 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 1734 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1735 REGINFO_SENTINEL 1736 }; 1737 1738 static void cortex_a7_initfn(Object *obj) 1739 { 1740 ARMCPU *cpu = ARM_CPU(obj); 1741 1742 cpu->dtb_compatible = "arm,cortex-a7"; 1743 set_feature(&cpu->env, ARM_FEATURE_V7VE); 1744 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1745 set_feature(&cpu->env, ARM_FEATURE_NEON); 1746 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1747 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1748 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1749 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1750 set_feature(&cpu->env, ARM_FEATURE_EL2); 1751 set_feature(&cpu->env, ARM_FEATURE_EL3); 1752 set_feature(&cpu->env, ARM_FEATURE_PMU); 1753 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 1754 cpu->midr = 0x410fc075; 1755 cpu->reset_fpsid = 0x41023075; 1756 cpu->isar.mvfr0 = 0x10110222; 1757 cpu->isar.mvfr1 = 0x11111111; 1758 cpu->ctr = 0x84448003; 1759 cpu->reset_sctlr = 0x00c50078; 1760 cpu->id_pfr0 = 0x00001131; 1761 cpu->id_pfr1 = 0x00011011; 1762 cpu->id_dfr0 = 0x02010555; 1763 cpu->id_afr0 = 0x00000000; 1764 cpu->id_mmfr0 = 0x10101105; 1765 cpu->id_mmfr1 = 0x40000000; 1766 cpu->id_mmfr2 = 0x01240000; 1767 cpu->id_mmfr3 = 0x02102211; 1768 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 1769 * table 4-41 gives 0x02101110, which includes the arm div insns. 1770 */ 1771 cpu->isar.id_isar0 = 0x02101110; 1772 cpu->isar.id_isar1 = 0x13112111; 1773 cpu->isar.id_isar2 = 0x21232041; 1774 cpu->isar.id_isar3 = 0x11112131; 1775 cpu->isar.id_isar4 = 0x10011142; 1776 cpu->dbgdidr = 0x3515f005; 1777 cpu->clidr = 0x0a200023; 1778 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1779 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1780 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1781 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 1782 } 1783 1784 static void cortex_a15_initfn(Object *obj) 1785 { 1786 ARMCPU *cpu = ARM_CPU(obj); 1787 1788 cpu->dtb_compatible = "arm,cortex-a15"; 1789 set_feature(&cpu->env, ARM_FEATURE_V7VE); 1790 set_feature(&cpu->env, ARM_FEATURE_VFP4); 1791 set_feature(&cpu->env, ARM_FEATURE_NEON); 1792 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1793 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 1794 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1795 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 1796 set_feature(&cpu->env, ARM_FEATURE_EL2); 1797 set_feature(&cpu->env, ARM_FEATURE_EL3); 1798 set_feature(&cpu->env, ARM_FEATURE_PMU); 1799 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 1800 cpu->midr = 0x412fc0f1; 1801 cpu->reset_fpsid = 0x410430f0; 1802 cpu->isar.mvfr0 = 0x10110222; 1803 cpu->isar.mvfr1 = 0x11111111; 1804 cpu->ctr = 0x8444c004; 1805 cpu->reset_sctlr = 0x00c50078; 1806 cpu->id_pfr0 = 0x00001131; 1807 cpu->id_pfr1 = 0x00011011; 1808 cpu->id_dfr0 = 0x02010555; 1809 cpu->id_afr0 = 0x00000000; 1810 cpu->id_mmfr0 = 0x10201105; 1811 cpu->id_mmfr1 = 0x20000000; 1812 cpu->id_mmfr2 = 0x01240000; 1813 cpu->id_mmfr3 = 0x02102211; 1814 cpu->isar.id_isar0 = 0x02101110; 1815 cpu->isar.id_isar1 = 0x13112111; 1816 cpu->isar.id_isar2 = 0x21232041; 1817 cpu->isar.id_isar3 = 0x11112131; 1818 cpu->isar.id_isar4 = 0x10011142; 1819 cpu->dbgdidr = 0x3515f021; 1820 cpu->clidr = 0x0a200023; 1821 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 1822 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 1823 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 1824 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 1825 } 1826 1827 static void ti925t_initfn(Object *obj) 1828 { 1829 ARMCPU *cpu = ARM_CPU(obj); 1830 set_feature(&cpu->env, ARM_FEATURE_V4T); 1831 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 1832 cpu->midr = ARM_CPUID_TI925T; 1833 cpu->ctr = 0x5109149; 1834 cpu->reset_sctlr = 0x00000070; 1835 } 1836 1837 static void sa1100_initfn(Object *obj) 1838 { 1839 ARMCPU *cpu = ARM_CPU(obj); 1840 1841 cpu->dtb_compatible = "intel,sa1100"; 1842 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1843 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1844 cpu->midr = 0x4401A11B; 1845 cpu->reset_sctlr = 0x00000070; 1846 } 1847 1848 static void sa1110_initfn(Object *obj) 1849 { 1850 ARMCPU *cpu = ARM_CPU(obj); 1851 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 1852 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1853 cpu->midr = 0x6901B119; 1854 cpu->reset_sctlr = 0x00000070; 1855 } 1856 1857 static void pxa250_initfn(Object *obj) 1858 { 1859 ARMCPU *cpu = ARM_CPU(obj); 1860 1861 cpu->dtb_compatible = "marvell,xscale"; 1862 set_feature(&cpu->env, ARM_FEATURE_V5); 1863 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1864 cpu->midr = 0x69052100; 1865 cpu->ctr = 0xd172172; 1866 cpu->reset_sctlr = 0x00000078; 1867 } 1868 1869 static void pxa255_initfn(Object *obj) 1870 { 1871 ARMCPU *cpu = ARM_CPU(obj); 1872 1873 cpu->dtb_compatible = "marvell,xscale"; 1874 set_feature(&cpu->env, ARM_FEATURE_V5); 1875 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1876 cpu->midr = 0x69052d00; 1877 cpu->ctr = 0xd172172; 1878 cpu->reset_sctlr = 0x00000078; 1879 } 1880 1881 static void pxa260_initfn(Object *obj) 1882 { 1883 ARMCPU *cpu = ARM_CPU(obj); 1884 1885 cpu->dtb_compatible = "marvell,xscale"; 1886 set_feature(&cpu->env, ARM_FEATURE_V5); 1887 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1888 cpu->midr = 0x69052903; 1889 cpu->ctr = 0xd172172; 1890 cpu->reset_sctlr = 0x00000078; 1891 } 1892 1893 static void pxa261_initfn(Object *obj) 1894 { 1895 ARMCPU *cpu = ARM_CPU(obj); 1896 1897 cpu->dtb_compatible = "marvell,xscale"; 1898 set_feature(&cpu->env, ARM_FEATURE_V5); 1899 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1900 cpu->midr = 0x69052d05; 1901 cpu->ctr = 0xd172172; 1902 cpu->reset_sctlr = 0x00000078; 1903 } 1904 1905 static void pxa262_initfn(Object *obj) 1906 { 1907 ARMCPU *cpu = ARM_CPU(obj); 1908 1909 cpu->dtb_compatible = "marvell,xscale"; 1910 set_feature(&cpu->env, ARM_FEATURE_V5); 1911 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1912 cpu->midr = 0x69052d06; 1913 cpu->ctr = 0xd172172; 1914 cpu->reset_sctlr = 0x00000078; 1915 } 1916 1917 static void pxa270a0_initfn(Object *obj) 1918 { 1919 ARMCPU *cpu = ARM_CPU(obj); 1920 1921 cpu->dtb_compatible = "marvell,xscale"; 1922 set_feature(&cpu->env, ARM_FEATURE_V5); 1923 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1924 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1925 cpu->midr = 0x69054110; 1926 cpu->ctr = 0xd172172; 1927 cpu->reset_sctlr = 0x00000078; 1928 } 1929 1930 static void pxa270a1_initfn(Object *obj) 1931 { 1932 ARMCPU *cpu = ARM_CPU(obj); 1933 1934 cpu->dtb_compatible = "marvell,xscale"; 1935 set_feature(&cpu->env, ARM_FEATURE_V5); 1936 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1937 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1938 cpu->midr = 0x69054111; 1939 cpu->ctr = 0xd172172; 1940 cpu->reset_sctlr = 0x00000078; 1941 } 1942 1943 static void pxa270b0_initfn(Object *obj) 1944 { 1945 ARMCPU *cpu = ARM_CPU(obj); 1946 1947 cpu->dtb_compatible = "marvell,xscale"; 1948 set_feature(&cpu->env, ARM_FEATURE_V5); 1949 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1950 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1951 cpu->midr = 0x69054112; 1952 cpu->ctr = 0xd172172; 1953 cpu->reset_sctlr = 0x00000078; 1954 } 1955 1956 static void pxa270b1_initfn(Object *obj) 1957 { 1958 ARMCPU *cpu = ARM_CPU(obj); 1959 1960 cpu->dtb_compatible = "marvell,xscale"; 1961 set_feature(&cpu->env, ARM_FEATURE_V5); 1962 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1963 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1964 cpu->midr = 0x69054113; 1965 cpu->ctr = 0xd172172; 1966 cpu->reset_sctlr = 0x00000078; 1967 } 1968 1969 static void pxa270c0_initfn(Object *obj) 1970 { 1971 ARMCPU *cpu = ARM_CPU(obj); 1972 1973 cpu->dtb_compatible = "marvell,xscale"; 1974 set_feature(&cpu->env, ARM_FEATURE_V5); 1975 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1976 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1977 cpu->midr = 0x69054114; 1978 cpu->ctr = 0xd172172; 1979 cpu->reset_sctlr = 0x00000078; 1980 } 1981 1982 static void pxa270c5_initfn(Object *obj) 1983 { 1984 ARMCPU *cpu = ARM_CPU(obj); 1985 1986 cpu->dtb_compatible = "marvell,xscale"; 1987 set_feature(&cpu->env, ARM_FEATURE_V5); 1988 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 1989 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 1990 cpu->midr = 0x69054117; 1991 cpu->ctr = 0xd172172; 1992 cpu->reset_sctlr = 0x00000078; 1993 } 1994 1995 #ifndef TARGET_AARCH64 1996 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 1997 * otherwise, a CPU with as many features enabled as our emulation supports. 1998 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 1999 * this only needs to handle 32 bits. 2000 */ 2001 static void arm_max_initfn(Object *obj) 2002 { 2003 ARMCPU *cpu = ARM_CPU(obj); 2004 2005 if (kvm_enabled()) { 2006 kvm_arm_set_cpu_features_from_host(cpu); 2007 } else { 2008 cortex_a15_initfn(obj); 2009 #ifdef CONFIG_USER_ONLY 2010 /* We don't set these in system emulation mode for the moment, 2011 * since we don't correctly set (all of) the ID registers to 2012 * advertise them. 2013 */ 2014 set_feature(&cpu->env, ARM_FEATURE_V8); 2015 { 2016 uint32_t t; 2017 2018 t = cpu->isar.id_isar5; 2019 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2020 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2021 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2022 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2023 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2024 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2025 cpu->isar.id_isar5 = t; 2026 2027 t = cpu->isar.id_isar6; 2028 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2029 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2030 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2031 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2032 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2033 cpu->isar.id_isar6 = t; 2034 2035 t = cpu->isar.mvfr2; 2036 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */ 2037 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */ 2038 cpu->isar.mvfr2 = t; 2039 2040 t = cpu->id_mmfr4; 2041 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2042 cpu->id_mmfr4 = t; 2043 } 2044 #endif 2045 } 2046 } 2047 #endif 2048 2049 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2050 2051 struct ARMCPUInfo { 2052 const char *name; 2053 void (*initfn)(Object *obj); 2054 void (*class_init)(ObjectClass *oc, void *data); 2055 }; 2056 2057 static const ARMCPUInfo arm_cpus[] = { 2058 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2059 { .name = "arm926", .initfn = arm926_initfn }, 2060 { .name = "arm946", .initfn = arm946_initfn }, 2061 { .name = "arm1026", .initfn = arm1026_initfn }, 2062 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 2063 * older core than plain "arm1136". In particular this does not 2064 * have the v6K features. 2065 */ 2066 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 2067 { .name = "arm1136", .initfn = arm1136_initfn }, 2068 { .name = "arm1176", .initfn = arm1176_initfn }, 2069 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 2070 { .name = "cortex-m0", .initfn = cortex_m0_initfn, 2071 .class_init = arm_v7m_class_init }, 2072 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 2073 .class_init = arm_v7m_class_init }, 2074 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 2075 .class_init = arm_v7m_class_init }, 2076 { .name = "cortex-m33", .initfn = cortex_m33_initfn, 2077 .class_init = arm_v7m_class_init }, 2078 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 2079 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn }, 2080 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2081 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2082 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2083 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2084 { .name = "ti925t", .initfn = ti925t_initfn }, 2085 { .name = "sa1100", .initfn = sa1100_initfn }, 2086 { .name = "sa1110", .initfn = sa1110_initfn }, 2087 { .name = "pxa250", .initfn = pxa250_initfn }, 2088 { .name = "pxa255", .initfn = pxa255_initfn }, 2089 { .name = "pxa260", .initfn = pxa260_initfn }, 2090 { .name = "pxa261", .initfn = pxa261_initfn }, 2091 { .name = "pxa262", .initfn = pxa262_initfn }, 2092 /* "pxa270" is an alias for "pxa270-a0" */ 2093 { .name = "pxa270", .initfn = pxa270a0_initfn }, 2094 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 2095 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 2096 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 2097 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 2098 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 2099 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 2100 #ifndef TARGET_AARCH64 2101 { .name = "max", .initfn = arm_max_initfn }, 2102 #endif 2103 #ifdef CONFIG_USER_ONLY 2104 { .name = "any", .initfn = arm_max_initfn }, 2105 #endif 2106 #endif 2107 { .name = NULL } 2108 }; 2109 2110 static Property arm_cpu_properties[] = { 2111 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 2112 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2113 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 2114 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2115 mp_affinity, ARM64_AFFINITY_INVALID), 2116 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2117 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2118 DEFINE_PROP_END_OF_LIST() 2119 }; 2120 2121 #ifdef CONFIG_USER_ONLY 2122 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, 2123 int rw, int mmu_idx) 2124 { 2125 ARMCPU *cpu = ARM_CPU(cs); 2126 CPUARMState *env = &cpu->env; 2127 2128 env->exception.vaddress = address; 2129 if (rw == 2) { 2130 cs->exception_index = EXCP_PREFETCH_ABORT; 2131 } else { 2132 cs->exception_index = EXCP_DATA_ABORT; 2133 } 2134 return 1; 2135 } 2136 #endif 2137 2138 static gchar *arm_gdb_arch_name(CPUState *cs) 2139 { 2140 ARMCPU *cpu = ARM_CPU(cs); 2141 CPUARMState *env = &cpu->env; 2142 2143 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2144 return g_strdup("iwmmxt"); 2145 } 2146 return g_strdup("arm"); 2147 } 2148 2149 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2150 { 2151 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2152 CPUClass *cc = CPU_CLASS(acc); 2153 DeviceClass *dc = DEVICE_CLASS(oc); 2154 2155 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2156 &acc->parent_realize); 2157 dc->props = arm_cpu_properties; 2158 2159 acc->parent_reset = cc->reset; 2160 cc->reset = arm_cpu_reset; 2161 2162 cc->class_by_name = arm_cpu_class_by_name; 2163 cc->has_work = arm_cpu_has_work; 2164 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 2165 cc->dump_state = arm_cpu_dump_state; 2166 cc->set_pc = arm_cpu_set_pc; 2167 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; 2168 cc->gdb_read_register = arm_cpu_gdb_read_register; 2169 cc->gdb_write_register = arm_cpu_gdb_write_register; 2170 #ifdef CONFIG_USER_ONLY 2171 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault; 2172 #else 2173 cc->do_interrupt = arm_cpu_do_interrupt; 2174 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2175 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 2176 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2177 cc->asidx_from_attrs = arm_asidx_from_attrs; 2178 cc->vmsd = &vmstate_arm_cpu; 2179 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2180 cc->write_elf64_note = arm_cpu_write_elf64_note; 2181 cc->write_elf32_note = arm_cpu_write_elf32_note; 2182 #endif 2183 cc->gdb_num_core_regs = 26; 2184 cc->gdb_core_xml_file = "arm-core.xml"; 2185 cc->gdb_arch_name = arm_gdb_arch_name; 2186 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2187 cc->gdb_stop_before_watchpoint = true; 2188 cc->debug_excp_handler = arm_debug_excp_handler; 2189 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2190 #if !defined(CONFIG_USER_ONLY) 2191 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2192 #endif 2193 2194 cc->disas_set_info = arm_disas_set_info; 2195 #ifdef CONFIG_TCG 2196 cc->tcg_initialize = arm_translate_init; 2197 #endif 2198 } 2199 2200 #ifdef CONFIG_KVM 2201 static void arm_host_initfn(Object *obj) 2202 { 2203 ARMCPU *cpu = ARM_CPU(obj); 2204 2205 kvm_arm_set_cpu_features_from_host(cpu); 2206 arm_cpu_post_init(obj); 2207 } 2208 2209 static const TypeInfo host_arm_cpu_type_info = { 2210 .name = TYPE_ARM_HOST_CPU, 2211 #ifdef TARGET_AARCH64 2212 .parent = TYPE_AARCH64_CPU, 2213 #else 2214 .parent = TYPE_ARM_CPU, 2215 #endif 2216 .instance_init = arm_host_initfn, 2217 }; 2218 2219 #endif 2220 2221 static void arm_cpu_instance_init(Object *obj) 2222 { 2223 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2224 2225 acc->info->initfn(obj); 2226 arm_cpu_post_init(obj); 2227 } 2228 2229 static void cpu_register_class_init(ObjectClass *oc, void *data) 2230 { 2231 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2232 2233 acc->info = data; 2234 } 2235 2236 static void cpu_register(const ARMCPUInfo *info) 2237 { 2238 TypeInfo type_info = { 2239 .parent = TYPE_ARM_CPU, 2240 .instance_size = sizeof(ARMCPU), 2241 .instance_init = arm_cpu_instance_init, 2242 .class_size = sizeof(ARMCPUClass), 2243 .class_init = info->class_init ?: cpu_register_class_init, 2244 .class_data = (void *)info, 2245 }; 2246 2247 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2248 type_register(&type_info); 2249 g_free((void *)type_info.name); 2250 } 2251 2252 static const TypeInfo arm_cpu_type_info = { 2253 .name = TYPE_ARM_CPU, 2254 .parent = TYPE_CPU, 2255 .instance_size = sizeof(ARMCPU), 2256 .instance_init = arm_cpu_initfn, 2257 .instance_finalize = arm_cpu_finalizefn, 2258 .abstract = true, 2259 .class_size = sizeof(ARMCPUClass), 2260 .class_init = arm_cpu_class_init, 2261 }; 2262 2263 static const TypeInfo idau_interface_type_info = { 2264 .name = TYPE_IDAU_INTERFACE, 2265 .parent = TYPE_INTERFACE, 2266 .class_size = sizeof(IDAUInterfaceClass), 2267 }; 2268 2269 static void arm_cpu_register_types(void) 2270 { 2271 const ARMCPUInfo *info = arm_cpus; 2272 2273 type_register_static(&arm_cpu_type_info); 2274 type_register_static(&idau_interface_type_info); 2275 2276 while (info->name) { 2277 cpu_register(info); 2278 info++; 2279 } 2280 2281 #ifdef CONFIG_KVM 2282 type_register_static(&host_arm_cpu_type_info); 2283 #endif 2284 } 2285 2286 type_init(arm_cpu_register_types) 2287