xref: /openbmc/qemu/target/arm/cpu.c (revision d25f2a72)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 
38 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 {
40     ARMCPU *cpu = ARM_CPU(cs);
41 
42     cpu->env.regs[15] = value;
43 }
44 
45 static bool arm_cpu_has_work(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48 
49     return (cpu->power_state != PSCI_OFF)
50         && cs->interrupt_request &
51         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
52          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
53          | CPU_INTERRUPT_EXITTB);
54 }
55 
56 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
57                                  void *opaque)
58 {
59     /* We currently only support registering a single hook function */
60     assert(!cpu->el_change_hook);
61     cpu->el_change_hook = hook;
62     cpu->el_change_hook_opaque = opaque;
63 }
64 
65 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 {
67     /* Reset a single ARMCPRegInfo register */
68     ARMCPRegInfo *ri = value;
69     ARMCPU *cpu = opaque;
70 
71     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
72         return;
73     }
74 
75     if (ri->resetfn) {
76         ri->resetfn(&cpu->env, ri);
77         return;
78     }
79 
80     /* A zero offset is never possible as it would be regs[0]
81      * so we use it to indicate that reset is being handled elsewhere.
82      * This is basically only used for fields in non-core coprocessors
83      * (like the pxa2xx ones).
84      */
85     if (!ri->fieldoffset) {
86         return;
87     }
88 
89     if (cpreg_field_is_64bit(ri)) {
90         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
91     } else {
92         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
93     }
94 }
95 
96 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
97 {
98     /* Purely an assertion check: we've already done reset once,
99      * so now check that running the reset for the cpreg doesn't
100      * change its value. This traps bugs where two different cpregs
101      * both try to reset the same state field but to different values.
102      */
103     ARMCPRegInfo *ri = value;
104     ARMCPU *cpu = opaque;
105     uint64_t oldvalue, newvalue;
106 
107     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
108         return;
109     }
110 
111     oldvalue = read_raw_cp_reg(&cpu->env, ri);
112     cp_reg_reset(key, value, opaque);
113     newvalue = read_raw_cp_reg(&cpu->env, ri);
114     assert(oldvalue == newvalue);
115 }
116 
117 /* CPUClass::reset() */
118 static void arm_cpu_reset(CPUState *s)
119 {
120     ARMCPU *cpu = ARM_CPU(s);
121     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
122     CPUARMState *env = &cpu->env;
123 
124     acc->parent_reset(s);
125 
126     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
129     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 
131     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
132     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
133     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
134     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 
136     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
137     s->halted = cpu->start_powered_off;
138 
139     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
140         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
141     }
142 
143     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
144         /* 64 bit CPUs always start in 64 bit mode */
145         env->aarch64 = 1;
146 #if defined(CONFIG_USER_ONLY)
147         env->pstate = PSTATE_MODE_EL0t;
148         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
149         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
150         /* and to the FP/Neon instructions */
151         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
152 #else
153         /* Reset into the highest available EL */
154         if (arm_feature(env, ARM_FEATURE_EL3)) {
155             env->pstate = PSTATE_MODE_EL3h;
156         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
157             env->pstate = PSTATE_MODE_EL2h;
158         } else {
159             env->pstate = PSTATE_MODE_EL1h;
160         }
161         env->pc = cpu->rvbar;
162 #endif
163     } else {
164 #if defined(CONFIG_USER_ONLY)
165         /* Userspace expects access to cp10 and cp11 for FP/Neon */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
167 #endif
168     }
169 
170 #if defined(CONFIG_USER_ONLY)
171     env->uncached_cpsr = ARM_CPU_MODE_USR;
172     /* For user mode we must enable access to coprocessors */
173     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
174     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
175         env->cp15.c15_cpar = 3;
176     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
177         env->cp15.c15_cpar = 1;
178     }
179 #else
180     /* SVC mode with interrupts disabled.  */
181     env->uncached_cpsr = ARM_CPU_MODE_SVC;
182     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 
184     if (arm_feature(env, ARM_FEATURE_M)) {
185         uint32_t initial_msp; /* Loaded from 0x0 */
186         uint32_t initial_pc; /* Loaded from 0x4 */
187         uint8_t *rom;
188 
189         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
190             env->v7m.secure = true;
191         } else {
192             /* This bit resets to 0 if security is supported, but 1 if
193              * it is not. The bit is not present in v7M, but we set it
194              * here so we can avoid having to make checks on it conditional
195              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
196              */
197             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
198         }
199 
200         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
201          * that it resets to 1, so QEMU always does that rather than making
202          * it dependent on CPU model. In v8M it is RES1.
203          */
204         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
205         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
206         if (arm_feature(env, ARM_FEATURE_V8)) {
207             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
208             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
210         }
211 
212         /* Unlike A/R profile, M profile defines the reset LR value */
213         env->regs[14] = 0xffffffff;
214 
215         /* Load the initial SP and PC from the vector table at address 0 */
216         rom = rom_ptr(0);
217         if (rom) {
218             /* Address zero is covered by ROM which hasn't yet been
219              * copied into physical memory.
220              */
221             initial_msp = ldl_p(rom);
222             initial_pc = ldl_p(rom + 4);
223         } else {
224             /* Address zero not covered by a ROM blob, or the ROM blob
225              * is in non-modifiable memory and this is a second reset after
226              * it got copied into memory. In the latter case, rom_ptr
227              * will return a NULL pointer and we should use ldl_phys instead.
228              */
229             initial_msp = ldl_phys(s->as, 0);
230             initial_pc = ldl_phys(s->as, 4);
231         }
232 
233         env->regs[13] = initial_msp & 0xFFFFFFFC;
234         env->regs[15] = initial_pc & ~1;
235         env->thumb = initial_pc & 1;
236     }
237 
238     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
239      * executing as AArch32 then check if highvecs are enabled and
240      * adjust the PC accordingly.
241      */
242     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
243         env->regs[15] = 0xFFFF0000;
244     }
245 
246     /* M profile requires that reset clears the exclusive monitor;
247      * A profile does not, but clearing it makes more sense than having it
248      * set with an exclusive access on address zero.
249      */
250     arm_clear_exclusive(env);
251 
252     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
253 #endif
254 
255     if (arm_feature(env, ARM_FEATURE_PMSA)) {
256         if (cpu->pmsav7_dregion > 0) {
257             if (arm_feature(env, ARM_FEATURE_V8)) {
258                 memset(env->pmsav8.rbar[M_REG_NS], 0,
259                        sizeof(*env->pmsav8.rbar[M_REG_NS])
260                        * cpu->pmsav7_dregion);
261                 memset(env->pmsav8.rlar[M_REG_NS], 0,
262                        sizeof(*env->pmsav8.rlar[M_REG_NS])
263                        * cpu->pmsav7_dregion);
264                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
265                     memset(env->pmsav8.rbar[M_REG_S], 0,
266                            sizeof(*env->pmsav8.rbar[M_REG_S])
267                            * cpu->pmsav7_dregion);
268                     memset(env->pmsav8.rlar[M_REG_S], 0,
269                            sizeof(*env->pmsav8.rlar[M_REG_S])
270                            * cpu->pmsav7_dregion);
271                 }
272             } else if (arm_feature(env, ARM_FEATURE_V7)) {
273                 memset(env->pmsav7.drbar, 0,
274                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
275                 memset(env->pmsav7.drsr, 0,
276                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
277                 memset(env->pmsav7.dracr, 0,
278                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
279             }
280         }
281         env->pmsav7.rnr[M_REG_NS] = 0;
282         env->pmsav7.rnr[M_REG_S] = 0;
283         env->pmsav8.mair0[M_REG_NS] = 0;
284         env->pmsav8.mair0[M_REG_S] = 0;
285         env->pmsav8.mair1[M_REG_NS] = 0;
286         env->pmsav8.mair1[M_REG_S] = 0;
287     }
288 
289     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
290         if (cpu->sau_sregion > 0) {
291             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
292             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
293         }
294         env->sau.rnr = 0;
295         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
296          * the Cortex-M33 does.
297          */
298         env->sau.ctrl = 0;
299     }
300 
301     set_flush_to_zero(1, &env->vfp.standard_fp_status);
302     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
303     set_default_nan_mode(1, &env->vfp.standard_fp_status);
304     set_float_detect_tininess(float_tininess_before_rounding,
305                               &env->vfp.fp_status);
306     set_float_detect_tininess(float_tininess_before_rounding,
307                               &env->vfp.standard_fp_status);
308 #ifndef CONFIG_USER_ONLY
309     if (kvm_enabled()) {
310         kvm_arm_reset_vcpu(cpu);
311     }
312 #endif
313 
314     hw_breakpoint_update_all(cpu);
315     hw_watchpoint_update_all(cpu);
316 }
317 
318 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
319 {
320     CPUClass *cc = CPU_GET_CLASS(cs);
321     CPUARMState *env = cs->env_ptr;
322     uint32_t cur_el = arm_current_el(env);
323     bool secure = arm_is_secure(env);
324     uint32_t target_el;
325     uint32_t excp_idx;
326     bool ret = false;
327 
328     if (interrupt_request & CPU_INTERRUPT_FIQ) {
329         excp_idx = EXCP_FIQ;
330         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
331         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
332             cs->exception_index = excp_idx;
333             env->exception.target_el = target_el;
334             cc->do_interrupt(cs);
335             ret = true;
336         }
337     }
338     if (interrupt_request & CPU_INTERRUPT_HARD) {
339         excp_idx = EXCP_IRQ;
340         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
341         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
342             cs->exception_index = excp_idx;
343             env->exception.target_el = target_el;
344             cc->do_interrupt(cs);
345             ret = true;
346         }
347     }
348     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
349         excp_idx = EXCP_VIRQ;
350         target_el = 1;
351         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
352             cs->exception_index = excp_idx;
353             env->exception.target_el = target_el;
354             cc->do_interrupt(cs);
355             ret = true;
356         }
357     }
358     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
359         excp_idx = EXCP_VFIQ;
360         target_el = 1;
361         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
362             cs->exception_index = excp_idx;
363             env->exception.target_el = target_el;
364             cc->do_interrupt(cs);
365             ret = true;
366         }
367     }
368 
369     return ret;
370 }
371 
372 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
373 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
374 {
375     CPUClass *cc = CPU_GET_CLASS(cs);
376     ARMCPU *cpu = ARM_CPU(cs);
377     CPUARMState *env = &cpu->env;
378     bool ret = false;
379 
380     /* ARMv7-M interrupt masking works differently than -A or -R.
381      * There is no FIQ/IRQ distinction. Instead of I and F bits
382      * masking FIQ and IRQ interrupts, an exception is taken only
383      * if it is higher priority than the current execution priority
384      * (which depends on state like BASEPRI, FAULTMASK and the
385      * currently active exception).
386      */
387     if (interrupt_request & CPU_INTERRUPT_HARD
388         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
389         cs->exception_index = EXCP_IRQ;
390         cc->do_interrupt(cs);
391         ret = true;
392     }
393     return ret;
394 }
395 #endif
396 
397 #ifndef CONFIG_USER_ONLY
398 static void arm_cpu_set_irq(void *opaque, int irq, int level)
399 {
400     ARMCPU *cpu = opaque;
401     CPUARMState *env = &cpu->env;
402     CPUState *cs = CPU(cpu);
403     static const int mask[] = {
404         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
405         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
406         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
407         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
408     };
409 
410     switch (irq) {
411     case ARM_CPU_VIRQ:
412     case ARM_CPU_VFIQ:
413         assert(arm_feature(env, ARM_FEATURE_EL2));
414         /* fall through */
415     case ARM_CPU_IRQ:
416     case ARM_CPU_FIQ:
417         if (level) {
418             cpu_interrupt(cs, mask[irq]);
419         } else {
420             cpu_reset_interrupt(cs, mask[irq]);
421         }
422         break;
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
429 {
430 #ifdef CONFIG_KVM
431     ARMCPU *cpu = opaque;
432     CPUState *cs = CPU(cpu);
433     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
434 
435     switch (irq) {
436     case ARM_CPU_IRQ:
437         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
438         break;
439     case ARM_CPU_FIQ:
440         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
441         break;
442     default:
443         g_assert_not_reached();
444     }
445     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
446     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
447 #endif
448 }
449 
450 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
451 {
452     ARMCPU *cpu = ARM_CPU(cs);
453     CPUARMState *env = &cpu->env;
454 
455     cpu_synchronize_state(cs);
456     return arm_cpu_data_is_big_endian(env);
457 }
458 
459 #endif
460 
461 static inline void set_feature(CPUARMState *env, int feature)
462 {
463     env->features |= 1ULL << feature;
464 }
465 
466 static inline void unset_feature(CPUARMState *env, int feature)
467 {
468     env->features &= ~(1ULL << feature);
469 }
470 
471 static int
472 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
473 {
474   return print_insn_arm(pc | 1, info);
475 }
476 
477 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
478 {
479     ARMCPU *ac = ARM_CPU(cpu);
480     CPUARMState *env = &ac->env;
481     bool sctlr_b;
482 
483     if (is_a64(env)) {
484         /* We might not be compiled with the A64 disassembler
485          * because it needs a C++ compiler. Leave print_insn
486          * unset in this case to use the caller default behaviour.
487          */
488 #if defined(CONFIG_ARM_A64_DIS)
489         info->print_insn = print_insn_arm_a64;
490 #endif
491         info->cap_arch = CS_ARCH_ARM64;
492         info->cap_insn_unit = 4;
493         info->cap_insn_split = 4;
494     } else {
495         int cap_mode;
496         if (env->thumb) {
497             info->print_insn = print_insn_thumb1;
498             info->cap_insn_unit = 2;
499             info->cap_insn_split = 4;
500             cap_mode = CS_MODE_THUMB;
501         } else {
502             info->print_insn = print_insn_arm;
503             info->cap_insn_unit = 4;
504             info->cap_insn_split = 4;
505             cap_mode = CS_MODE_ARM;
506         }
507         if (arm_feature(env, ARM_FEATURE_V8)) {
508             cap_mode |= CS_MODE_V8;
509         }
510         if (arm_feature(env, ARM_FEATURE_M)) {
511             cap_mode |= CS_MODE_MCLASS;
512         }
513         info->cap_arch = CS_ARCH_ARM;
514         info->cap_mode = cap_mode;
515     }
516 
517     sctlr_b = arm_sctlr_b(env);
518     if (bswap_code(sctlr_b)) {
519 #ifdef TARGET_WORDS_BIGENDIAN
520         info->endian = BFD_ENDIAN_LITTLE;
521 #else
522         info->endian = BFD_ENDIAN_BIG;
523 #endif
524     }
525     info->flags &= ~INSN_ARM_BE32;
526 #ifndef CONFIG_USER_ONLY
527     if (sctlr_b) {
528         info->flags |= INSN_ARM_BE32;
529     }
530 #endif
531 }
532 
533 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
534 {
535     uint32_t Aff1 = idx / clustersz;
536     uint32_t Aff0 = idx % clustersz;
537     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
538 }
539 
540 static void arm_cpu_initfn(Object *obj)
541 {
542     CPUState *cs = CPU(obj);
543     ARMCPU *cpu = ARM_CPU(obj);
544 
545     cs->env_ptr = &cpu->env;
546     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
547                                          g_free, g_free);
548 
549 #ifndef CONFIG_USER_ONLY
550     /* Our inbound IRQ and FIQ lines */
551     if (kvm_enabled()) {
552         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
553          * the same interface as non-KVM CPUs.
554          */
555         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
556     } else {
557         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
558     }
559 
560     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
561                                                 arm_gt_ptimer_cb, cpu);
562     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
563                                                 arm_gt_vtimer_cb, cpu);
564     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
565                                                 arm_gt_htimer_cb, cpu);
566     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
567                                                 arm_gt_stimer_cb, cpu);
568     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
569                        ARRAY_SIZE(cpu->gt_timer_outputs));
570 
571     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
572                              "gicv3-maintenance-interrupt", 1);
573     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
574                              "pmu-interrupt", 1);
575 #endif
576 
577     /* DTB consumers generally don't in fact care what the 'compatible'
578      * string is, so always provide some string and trust that a hypothetical
579      * picky DTB consumer will also provide a helpful error message.
580      */
581     cpu->dtb_compatible = "qemu,unknown";
582     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
583     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
584 
585     if (tcg_enabled()) {
586         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
587     }
588 }
589 
590 static Property arm_cpu_reset_cbar_property =
591             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
592 
593 static Property arm_cpu_reset_hivecs_property =
594             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
595 
596 static Property arm_cpu_rvbar_property =
597             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
598 
599 static Property arm_cpu_has_el2_property =
600             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
601 
602 static Property arm_cpu_has_el3_property =
603             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
604 
605 static Property arm_cpu_cfgend_property =
606             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
607 
608 /* use property name "pmu" to match other archs and virt tools */
609 static Property arm_cpu_has_pmu_property =
610             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
611 
612 static Property arm_cpu_has_mpu_property =
613             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
614 
615 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
616  * because the CPU initfn will have already set cpu->pmsav7_dregion to
617  * the right value for that particular CPU type, and we don't want
618  * to override that with an incorrect constant value.
619  */
620 static Property arm_cpu_pmsav7_dregion_property =
621             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
622                                            pmsav7_dregion,
623                                            qdev_prop_uint32, uint32_t);
624 
625 static void arm_cpu_post_init(Object *obj)
626 {
627     ARMCPU *cpu = ARM_CPU(obj);
628 
629     /* M profile implies PMSA. We have to do this here rather than
630      * in realize with the other feature-implication checks because
631      * we look at the PMSA bit to see if we should add some properties.
632      */
633     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
634         set_feature(&cpu->env, ARM_FEATURE_PMSA);
635     }
636 
637     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
638         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
639         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
640                                  &error_abort);
641     }
642 
643     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
644         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
645                                  &error_abort);
646     }
647 
648     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
649         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
650                                  &error_abort);
651     }
652 
653     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
654         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
655          * prevent "has_el3" from existing on CPUs which cannot support EL3.
656          */
657         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
658                                  &error_abort);
659 
660 #ifndef CONFIG_USER_ONLY
661         object_property_add_link(obj, "secure-memory",
662                                  TYPE_MEMORY_REGION,
663                                  (Object **)&cpu->secure_memory,
664                                  qdev_prop_allow_set_link_before_realize,
665                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
666                                  &error_abort);
667 #endif
668     }
669 
670     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
671         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
672                                  &error_abort);
673     }
674 
675     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
676         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
677                                  &error_abort);
678     }
679 
680     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
681         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
682                                  &error_abort);
683         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
684             qdev_property_add_static(DEVICE(obj),
685                                      &arm_cpu_pmsav7_dregion_property,
686                                      &error_abort);
687         }
688     }
689 
690     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
691                              &error_abort);
692 }
693 
694 static void arm_cpu_finalizefn(Object *obj)
695 {
696     ARMCPU *cpu = ARM_CPU(obj);
697     g_hash_table_destroy(cpu->cp_regs);
698 }
699 
700 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
701 {
702     CPUState *cs = CPU(dev);
703     ARMCPU *cpu = ARM_CPU(dev);
704     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
705     CPUARMState *env = &cpu->env;
706     int pagebits;
707     Error *local_err = NULL;
708 #ifndef CONFIG_USER_ONLY
709     AddressSpace *as;
710 #endif
711 
712     cpu_exec_realizefn(cs, &local_err);
713     if (local_err != NULL) {
714         error_propagate(errp, local_err);
715         return;
716     }
717 
718     /* Some features automatically imply others: */
719     if (arm_feature(env, ARM_FEATURE_V8)) {
720         set_feature(env, ARM_FEATURE_V7);
721         set_feature(env, ARM_FEATURE_ARM_DIV);
722         set_feature(env, ARM_FEATURE_LPAE);
723     }
724     if (arm_feature(env, ARM_FEATURE_V7)) {
725         set_feature(env, ARM_FEATURE_VAPA);
726         set_feature(env, ARM_FEATURE_THUMB2);
727         set_feature(env, ARM_FEATURE_MPIDR);
728         if (!arm_feature(env, ARM_FEATURE_M)) {
729             set_feature(env, ARM_FEATURE_V6K);
730         } else {
731             set_feature(env, ARM_FEATURE_V6);
732         }
733 
734         /* Always define VBAR for V7 CPUs even if it doesn't exist in
735          * non-EL3 configs. This is needed by some legacy boards.
736          */
737         set_feature(env, ARM_FEATURE_VBAR);
738     }
739     if (arm_feature(env, ARM_FEATURE_V6K)) {
740         set_feature(env, ARM_FEATURE_V6);
741         set_feature(env, ARM_FEATURE_MVFR);
742     }
743     if (arm_feature(env, ARM_FEATURE_V6)) {
744         set_feature(env, ARM_FEATURE_V5);
745         set_feature(env, ARM_FEATURE_JAZELLE);
746         if (!arm_feature(env, ARM_FEATURE_M)) {
747             set_feature(env, ARM_FEATURE_AUXCR);
748         }
749     }
750     if (arm_feature(env, ARM_FEATURE_V5)) {
751         set_feature(env, ARM_FEATURE_V4T);
752     }
753     if (arm_feature(env, ARM_FEATURE_M)) {
754         set_feature(env, ARM_FEATURE_THUMB_DIV);
755     }
756     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
757         set_feature(env, ARM_FEATURE_THUMB_DIV);
758     }
759     if (arm_feature(env, ARM_FEATURE_VFP4)) {
760         set_feature(env, ARM_FEATURE_VFP3);
761         set_feature(env, ARM_FEATURE_VFP_FP16);
762     }
763     if (arm_feature(env, ARM_FEATURE_VFP3)) {
764         set_feature(env, ARM_FEATURE_VFP);
765     }
766     if (arm_feature(env, ARM_FEATURE_LPAE)) {
767         set_feature(env, ARM_FEATURE_V7MP);
768         set_feature(env, ARM_FEATURE_PXN);
769     }
770     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
771         set_feature(env, ARM_FEATURE_CBAR);
772     }
773     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
774         !arm_feature(env, ARM_FEATURE_M)) {
775         set_feature(env, ARM_FEATURE_THUMB_DSP);
776     }
777 
778     if (arm_feature(env, ARM_FEATURE_V7) &&
779         !arm_feature(env, ARM_FEATURE_M) &&
780         !arm_feature(env, ARM_FEATURE_PMSA)) {
781         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
782          * can use 4K pages.
783          */
784         pagebits = 12;
785     } else {
786         /* For CPUs which might have tiny 1K pages, or which have an
787          * MPU and might have small region sizes, stick with 1K pages.
788          */
789         pagebits = 10;
790     }
791     if (!set_preferred_target_page_bits(pagebits)) {
792         /* This can only ever happen for hotplugging a CPU, or if
793          * the board code incorrectly creates a CPU which it has
794          * promised via minimum_page_size that it will not.
795          */
796         error_setg(errp, "This CPU requires a smaller page size than the "
797                    "system is using");
798         return;
799     }
800 
801     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
802      * We don't support setting cluster ID ([16..23]) (known as Aff2
803      * in later ARM ARM versions), or any of the higher affinity level fields,
804      * so these bits always RAZ.
805      */
806     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
807         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
808                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
809     }
810 
811     if (cpu->reset_hivecs) {
812             cpu->reset_sctlr |= (1 << 13);
813     }
814 
815     if (cpu->cfgend) {
816         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
817             cpu->reset_sctlr |= SCTLR_EE;
818         } else {
819             cpu->reset_sctlr |= SCTLR_B;
820         }
821     }
822 
823     if (!cpu->has_el3) {
824         /* If the has_el3 CPU property is disabled then we need to disable the
825          * feature.
826          */
827         unset_feature(env, ARM_FEATURE_EL3);
828 
829         /* Disable the security extension feature bits in the processor feature
830          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
831          */
832         cpu->id_pfr1 &= ~0xf0;
833         cpu->id_aa64pfr0 &= ~0xf000;
834     }
835 
836     if (!cpu->has_el2) {
837         unset_feature(env, ARM_FEATURE_EL2);
838     }
839 
840     if (!cpu->has_pmu) {
841         unset_feature(env, ARM_FEATURE_PMU);
842         cpu->id_aa64dfr0 &= ~0xf00;
843     }
844 
845     if (!arm_feature(env, ARM_FEATURE_EL2)) {
846         /* Disable the hypervisor feature bits in the processor feature
847          * registers if we don't have EL2. These are id_pfr1[15:12] and
848          * id_aa64pfr0_el1[11:8].
849          */
850         cpu->id_aa64pfr0 &= ~0xf00;
851         cpu->id_pfr1 &= ~0xf000;
852     }
853 
854     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
855      * to false or by setting pmsav7-dregion to 0.
856      */
857     if (!cpu->has_mpu) {
858         cpu->pmsav7_dregion = 0;
859     }
860     if (cpu->pmsav7_dregion == 0) {
861         cpu->has_mpu = false;
862     }
863 
864     if (arm_feature(env, ARM_FEATURE_PMSA) &&
865         arm_feature(env, ARM_FEATURE_V7)) {
866         uint32_t nr = cpu->pmsav7_dregion;
867 
868         if (nr > 0xff) {
869             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
870             return;
871         }
872 
873         if (nr) {
874             if (arm_feature(env, ARM_FEATURE_V8)) {
875                 /* PMSAv8 */
876                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
877                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
878                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
879                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
880                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
881                 }
882             } else {
883                 env->pmsav7.drbar = g_new0(uint32_t, nr);
884                 env->pmsav7.drsr = g_new0(uint32_t, nr);
885                 env->pmsav7.dracr = g_new0(uint32_t, nr);
886             }
887         }
888     }
889 
890     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
891         uint32_t nr = cpu->sau_sregion;
892 
893         if (nr > 0xff) {
894             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
895             return;
896         }
897 
898         if (nr) {
899             env->sau.rbar = g_new0(uint32_t, nr);
900             env->sau.rlar = g_new0(uint32_t, nr);
901         }
902     }
903 
904     if (arm_feature(env, ARM_FEATURE_EL3)) {
905         set_feature(env, ARM_FEATURE_VBAR);
906     }
907 
908     register_cp_regs_for_features(cpu);
909     arm_cpu_register_gdb_regs_for_features(cpu);
910 
911     init_cpreg_list(cpu);
912 
913 #ifndef CONFIG_USER_ONLY
914     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
915         as = g_new0(AddressSpace, 1);
916 
917         cs->num_ases = 2;
918 
919         if (!cpu->secure_memory) {
920             cpu->secure_memory = cs->memory;
921         }
922         address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
923         cpu_address_space_init(cs, as, ARMASIdx_S);
924     } else {
925         cs->num_ases = 1;
926     }
927     as = g_new0(AddressSpace, 1);
928     address_space_init(as, cs->memory, "cpu-memory");
929     cpu_address_space_init(cs, as, ARMASIdx_NS);
930 #endif
931 
932     qemu_init_vcpu(cs);
933     cpu_reset(cs);
934 
935     acc->parent_realize(dev, errp);
936 }
937 
938 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
939 {
940     ObjectClass *oc;
941     char *typename;
942     char **cpuname;
943 
944     cpuname = g_strsplit(cpu_model, ",", 1);
945     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
946     oc = object_class_by_name(typename);
947     g_strfreev(cpuname);
948     g_free(typename);
949     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
950         object_class_is_abstract(oc)) {
951         return NULL;
952     }
953     return oc;
954 }
955 
956 /* CPU models. These are not needed for the AArch64 linux-user build. */
957 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
958 
959 static void arm926_initfn(Object *obj)
960 {
961     ARMCPU *cpu = ARM_CPU(obj);
962 
963     cpu->dtb_compatible = "arm,arm926";
964     set_feature(&cpu->env, ARM_FEATURE_V5);
965     set_feature(&cpu->env, ARM_FEATURE_VFP);
966     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
967     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
968     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
969     cpu->midr = 0x41069265;
970     cpu->reset_fpsid = 0x41011090;
971     cpu->ctr = 0x1dd20d2;
972     cpu->reset_sctlr = 0x00090078;
973 }
974 
975 static void arm946_initfn(Object *obj)
976 {
977     ARMCPU *cpu = ARM_CPU(obj);
978 
979     cpu->dtb_compatible = "arm,arm946";
980     set_feature(&cpu->env, ARM_FEATURE_V5);
981     set_feature(&cpu->env, ARM_FEATURE_PMSA);
982     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
983     cpu->midr = 0x41059461;
984     cpu->ctr = 0x0f004006;
985     cpu->reset_sctlr = 0x00000078;
986 }
987 
988 static void arm1026_initfn(Object *obj)
989 {
990     ARMCPU *cpu = ARM_CPU(obj);
991 
992     cpu->dtb_compatible = "arm,arm1026";
993     set_feature(&cpu->env, ARM_FEATURE_V5);
994     set_feature(&cpu->env, ARM_FEATURE_VFP);
995     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
996     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
997     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
998     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
999     cpu->midr = 0x4106a262;
1000     cpu->reset_fpsid = 0x410110a0;
1001     cpu->ctr = 0x1dd20d2;
1002     cpu->reset_sctlr = 0x00090078;
1003     cpu->reset_auxcr = 1;
1004     {
1005         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1006         ARMCPRegInfo ifar = {
1007             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1008             .access = PL1_RW,
1009             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1010             .resetvalue = 0
1011         };
1012         define_one_arm_cp_reg(cpu, &ifar);
1013     }
1014 }
1015 
1016 static void arm1136_r2_initfn(Object *obj)
1017 {
1018     ARMCPU *cpu = ARM_CPU(obj);
1019     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1020      * older core than plain "arm1136". In particular this does not
1021      * have the v6K features.
1022      * These ID register values are correct for 1136 but may be wrong
1023      * for 1136_r2 (in particular r0p2 does not actually implement most
1024      * of the ID registers).
1025      */
1026 
1027     cpu->dtb_compatible = "arm,arm1136";
1028     set_feature(&cpu->env, ARM_FEATURE_V6);
1029     set_feature(&cpu->env, ARM_FEATURE_VFP);
1030     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1031     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1032     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1033     cpu->midr = 0x4107b362;
1034     cpu->reset_fpsid = 0x410120b4;
1035     cpu->mvfr0 = 0x11111111;
1036     cpu->mvfr1 = 0x00000000;
1037     cpu->ctr = 0x1dd20d2;
1038     cpu->reset_sctlr = 0x00050078;
1039     cpu->id_pfr0 = 0x111;
1040     cpu->id_pfr1 = 0x1;
1041     cpu->id_dfr0 = 0x2;
1042     cpu->id_afr0 = 0x3;
1043     cpu->id_mmfr0 = 0x01130003;
1044     cpu->id_mmfr1 = 0x10030302;
1045     cpu->id_mmfr2 = 0x01222110;
1046     cpu->id_isar0 = 0x00140011;
1047     cpu->id_isar1 = 0x12002111;
1048     cpu->id_isar2 = 0x11231111;
1049     cpu->id_isar3 = 0x01102131;
1050     cpu->id_isar4 = 0x141;
1051     cpu->reset_auxcr = 7;
1052 }
1053 
1054 static void arm1136_initfn(Object *obj)
1055 {
1056     ARMCPU *cpu = ARM_CPU(obj);
1057 
1058     cpu->dtb_compatible = "arm,arm1136";
1059     set_feature(&cpu->env, ARM_FEATURE_V6K);
1060     set_feature(&cpu->env, ARM_FEATURE_V6);
1061     set_feature(&cpu->env, ARM_FEATURE_VFP);
1062     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1063     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1064     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1065     cpu->midr = 0x4117b363;
1066     cpu->reset_fpsid = 0x410120b4;
1067     cpu->mvfr0 = 0x11111111;
1068     cpu->mvfr1 = 0x00000000;
1069     cpu->ctr = 0x1dd20d2;
1070     cpu->reset_sctlr = 0x00050078;
1071     cpu->id_pfr0 = 0x111;
1072     cpu->id_pfr1 = 0x1;
1073     cpu->id_dfr0 = 0x2;
1074     cpu->id_afr0 = 0x3;
1075     cpu->id_mmfr0 = 0x01130003;
1076     cpu->id_mmfr1 = 0x10030302;
1077     cpu->id_mmfr2 = 0x01222110;
1078     cpu->id_isar0 = 0x00140011;
1079     cpu->id_isar1 = 0x12002111;
1080     cpu->id_isar2 = 0x11231111;
1081     cpu->id_isar3 = 0x01102131;
1082     cpu->id_isar4 = 0x141;
1083     cpu->reset_auxcr = 7;
1084 }
1085 
1086 static void arm1176_initfn(Object *obj)
1087 {
1088     ARMCPU *cpu = ARM_CPU(obj);
1089 
1090     cpu->dtb_compatible = "arm,arm1176";
1091     set_feature(&cpu->env, ARM_FEATURE_V6K);
1092     set_feature(&cpu->env, ARM_FEATURE_VFP);
1093     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1094     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1095     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1096     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1097     set_feature(&cpu->env, ARM_FEATURE_EL3);
1098     cpu->midr = 0x410fb767;
1099     cpu->reset_fpsid = 0x410120b5;
1100     cpu->mvfr0 = 0x11111111;
1101     cpu->mvfr1 = 0x00000000;
1102     cpu->ctr = 0x1dd20d2;
1103     cpu->reset_sctlr = 0x00050078;
1104     cpu->id_pfr0 = 0x111;
1105     cpu->id_pfr1 = 0x11;
1106     cpu->id_dfr0 = 0x33;
1107     cpu->id_afr0 = 0;
1108     cpu->id_mmfr0 = 0x01130003;
1109     cpu->id_mmfr1 = 0x10030302;
1110     cpu->id_mmfr2 = 0x01222100;
1111     cpu->id_isar0 = 0x0140011;
1112     cpu->id_isar1 = 0x12002111;
1113     cpu->id_isar2 = 0x11231121;
1114     cpu->id_isar3 = 0x01102131;
1115     cpu->id_isar4 = 0x01141;
1116     cpu->reset_auxcr = 7;
1117 }
1118 
1119 static void arm11mpcore_initfn(Object *obj)
1120 {
1121     ARMCPU *cpu = ARM_CPU(obj);
1122 
1123     cpu->dtb_compatible = "arm,arm11mpcore";
1124     set_feature(&cpu->env, ARM_FEATURE_V6K);
1125     set_feature(&cpu->env, ARM_FEATURE_VFP);
1126     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1127     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1128     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1129     cpu->midr = 0x410fb022;
1130     cpu->reset_fpsid = 0x410120b4;
1131     cpu->mvfr0 = 0x11111111;
1132     cpu->mvfr1 = 0x00000000;
1133     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1134     cpu->id_pfr0 = 0x111;
1135     cpu->id_pfr1 = 0x1;
1136     cpu->id_dfr0 = 0;
1137     cpu->id_afr0 = 0x2;
1138     cpu->id_mmfr0 = 0x01100103;
1139     cpu->id_mmfr1 = 0x10020302;
1140     cpu->id_mmfr2 = 0x01222000;
1141     cpu->id_isar0 = 0x00100011;
1142     cpu->id_isar1 = 0x12002111;
1143     cpu->id_isar2 = 0x11221011;
1144     cpu->id_isar3 = 0x01102131;
1145     cpu->id_isar4 = 0x141;
1146     cpu->reset_auxcr = 1;
1147 }
1148 
1149 static void cortex_m3_initfn(Object *obj)
1150 {
1151     ARMCPU *cpu = ARM_CPU(obj);
1152     set_feature(&cpu->env, ARM_FEATURE_V7);
1153     set_feature(&cpu->env, ARM_FEATURE_M);
1154     cpu->midr = 0x410fc231;
1155     cpu->pmsav7_dregion = 8;
1156 }
1157 
1158 static void cortex_m4_initfn(Object *obj)
1159 {
1160     ARMCPU *cpu = ARM_CPU(obj);
1161 
1162     set_feature(&cpu->env, ARM_FEATURE_V7);
1163     set_feature(&cpu->env, ARM_FEATURE_M);
1164     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1165     cpu->midr = 0x410fc240; /* r0p0 */
1166     cpu->pmsav7_dregion = 8;
1167 }
1168 
1169 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1170 {
1171     CPUClass *cc = CPU_CLASS(oc);
1172 
1173 #ifndef CONFIG_USER_ONLY
1174     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1175 #endif
1176 
1177     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1178 }
1179 
1180 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1181     /* Dummy the TCM region regs for the moment */
1182     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1183       .access = PL1_RW, .type = ARM_CP_CONST },
1184     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1185       .access = PL1_RW, .type = ARM_CP_CONST },
1186     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1187       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1188     REGINFO_SENTINEL
1189 };
1190 
1191 static void cortex_r5_initfn(Object *obj)
1192 {
1193     ARMCPU *cpu = ARM_CPU(obj);
1194 
1195     set_feature(&cpu->env, ARM_FEATURE_V7);
1196     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1197     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1198     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1199     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1200     cpu->midr = 0x411fc153; /* r1p3 */
1201     cpu->id_pfr0 = 0x0131;
1202     cpu->id_pfr1 = 0x001;
1203     cpu->id_dfr0 = 0x010400;
1204     cpu->id_afr0 = 0x0;
1205     cpu->id_mmfr0 = 0x0210030;
1206     cpu->id_mmfr1 = 0x00000000;
1207     cpu->id_mmfr2 = 0x01200000;
1208     cpu->id_mmfr3 = 0x0211;
1209     cpu->id_isar0 = 0x2101111;
1210     cpu->id_isar1 = 0x13112111;
1211     cpu->id_isar2 = 0x21232141;
1212     cpu->id_isar3 = 0x01112131;
1213     cpu->id_isar4 = 0x0010142;
1214     cpu->id_isar5 = 0x0;
1215     cpu->mp_is_up = true;
1216     cpu->pmsav7_dregion = 16;
1217     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1218 }
1219 
1220 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1221     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1222       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1223     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1224       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1225     REGINFO_SENTINEL
1226 };
1227 
1228 static void cortex_a8_initfn(Object *obj)
1229 {
1230     ARMCPU *cpu = ARM_CPU(obj);
1231 
1232     cpu->dtb_compatible = "arm,cortex-a8";
1233     set_feature(&cpu->env, ARM_FEATURE_V7);
1234     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1235     set_feature(&cpu->env, ARM_FEATURE_NEON);
1236     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1237     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1238     set_feature(&cpu->env, ARM_FEATURE_EL3);
1239     cpu->midr = 0x410fc080;
1240     cpu->reset_fpsid = 0x410330c0;
1241     cpu->mvfr0 = 0x11110222;
1242     cpu->mvfr1 = 0x00011111;
1243     cpu->ctr = 0x82048004;
1244     cpu->reset_sctlr = 0x00c50078;
1245     cpu->id_pfr0 = 0x1031;
1246     cpu->id_pfr1 = 0x11;
1247     cpu->id_dfr0 = 0x400;
1248     cpu->id_afr0 = 0;
1249     cpu->id_mmfr0 = 0x31100003;
1250     cpu->id_mmfr1 = 0x20000000;
1251     cpu->id_mmfr2 = 0x01202000;
1252     cpu->id_mmfr3 = 0x11;
1253     cpu->id_isar0 = 0x00101111;
1254     cpu->id_isar1 = 0x12112111;
1255     cpu->id_isar2 = 0x21232031;
1256     cpu->id_isar3 = 0x11112131;
1257     cpu->id_isar4 = 0x00111142;
1258     cpu->dbgdidr = 0x15141000;
1259     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1260     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1261     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1262     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1263     cpu->reset_auxcr = 2;
1264     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1265 }
1266 
1267 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1268     /* power_control should be set to maximum latency. Again,
1269      * default to 0 and set by private hook
1270      */
1271     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1272       .access = PL1_RW, .resetvalue = 0,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1274     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1275       .access = PL1_RW, .resetvalue = 0,
1276       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1277     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1278       .access = PL1_RW, .resetvalue = 0,
1279       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1280     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1281       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1282     /* TLB lockdown control */
1283     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1284       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1285     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1286       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1287     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1288       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1289     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1290       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1291     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1292       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1293     REGINFO_SENTINEL
1294 };
1295 
1296 static void cortex_a9_initfn(Object *obj)
1297 {
1298     ARMCPU *cpu = ARM_CPU(obj);
1299 
1300     cpu->dtb_compatible = "arm,cortex-a9";
1301     set_feature(&cpu->env, ARM_FEATURE_V7);
1302     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1303     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1304     set_feature(&cpu->env, ARM_FEATURE_NEON);
1305     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1306     set_feature(&cpu->env, ARM_FEATURE_EL3);
1307     /* Note that A9 supports the MP extensions even for
1308      * A9UP and single-core A9MP (which are both different
1309      * and valid configurations; we don't model A9UP).
1310      */
1311     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1312     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1313     cpu->midr = 0x410fc090;
1314     cpu->reset_fpsid = 0x41033090;
1315     cpu->mvfr0 = 0x11110222;
1316     cpu->mvfr1 = 0x01111111;
1317     cpu->ctr = 0x80038003;
1318     cpu->reset_sctlr = 0x00c50078;
1319     cpu->id_pfr0 = 0x1031;
1320     cpu->id_pfr1 = 0x11;
1321     cpu->id_dfr0 = 0x000;
1322     cpu->id_afr0 = 0;
1323     cpu->id_mmfr0 = 0x00100103;
1324     cpu->id_mmfr1 = 0x20000000;
1325     cpu->id_mmfr2 = 0x01230000;
1326     cpu->id_mmfr3 = 0x00002111;
1327     cpu->id_isar0 = 0x00101111;
1328     cpu->id_isar1 = 0x13112111;
1329     cpu->id_isar2 = 0x21232041;
1330     cpu->id_isar3 = 0x11112131;
1331     cpu->id_isar4 = 0x00111142;
1332     cpu->dbgdidr = 0x35141000;
1333     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1334     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1335     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1336     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1337 }
1338 
1339 #ifndef CONFIG_USER_ONLY
1340 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1341 {
1342     /* Linux wants the number of processors from here.
1343      * Might as well set the interrupt-controller bit too.
1344      */
1345     return ((smp_cpus - 1) << 24) | (1 << 23);
1346 }
1347 #endif
1348 
1349 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1350 #ifndef CONFIG_USER_ONLY
1351     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1352       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1353       .writefn = arm_cp_write_ignore, },
1354 #endif
1355     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1356       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1357     REGINFO_SENTINEL
1358 };
1359 
1360 static void cortex_a7_initfn(Object *obj)
1361 {
1362     ARMCPU *cpu = ARM_CPU(obj);
1363 
1364     cpu->dtb_compatible = "arm,cortex-a7";
1365     set_feature(&cpu->env, ARM_FEATURE_V7);
1366     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1367     set_feature(&cpu->env, ARM_FEATURE_NEON);
1368     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1369     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1370     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1371     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1372     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1373     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1374     set_feature(&cpu->env, ARM_FEATURE_EL3);
1375     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1376     cpu->midr = 0x410fc075;
1377     cpu->reset_fpsid = 0x41023075;
1378     cpu->mvfr0 = 0x10110222;
1379     cpu->mvfr1 = 0x11111111;
1380     cpu->ctr = 0x84448003;
1381     cpu->reset_sctlr = 0x00c50078;
1382     cpu->id_pfr0 = 0x00001131;
1383     cpu->id_pfr1 = 0x00011011;
1384     cpu->id_dfr0 = 0x02010555;
1385     cpu->pmceid0 = 0x00000000;
1386     cpu->pmceid1 = 0x00000000;
1387     cpu->id_afr0 = 0x00000000;
1388     cpu->id_mmfr0 = 0x10101105;
1389     cpu->id_mmfr1 = 0x40000000;
1390     cpu->id_mmfr2 = 0x01240000;
1391     cpu->id_mmfr3 = 0x02102211;
1392     cpu->id_isar0 = 0x01101110;
1393     cpu->id_isar1 = 0x13112111;
1394     cpu->id_isar2 = 0x21232041;
1395     cpu->id_isar3 = 0x11112131;
1396     cpu->id_isar4 = 0x10011142;
1397     cpu->dbgdidr = 0x3515f005;
1398     cpu->clidr = 0x0a200023;
1399     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1400     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1401     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1402     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1403 }
1404 
1405 static void cortex_a15_initfn(Object *obj)
1406 {
1407     ARMCPU *cpu = ARM_CPU(obj);
1408 
1409     cpu->dtb_compatible = "arm,cortex-a15";
1410     set_feature(&cpu->env, ARM_FEATURE_V7);
1411     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1412     set_feature(&cpu->env, ARM_FEATURE_NEON);
1413     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1414     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1415     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1416     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1417     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1418     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1419     set_feature(&cpu->env, ARM_FEATURE_EL3);
1420     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1421     cpu->midr = 0x412fc0f1;
1422     cpu->reset_fpsid = 0x410430f0;
1423     cpu->mvfr0 = 0x10110222;
1424     cpu->mvfr1 = 0x11111111;
1425     cpu->ctr = 0x8444c004;
1426     cpu->reset_sctlr = 0x00c50078;
1427     cpu->id_pfr0 = 0x00001131;
1428     cpu->id_pfr1 = 0x00011011;
1429     cpu->id_dfr0 = 0x02010555;
1430     cpu->pmceid0 = 0x0000000;
1431     cpu->pmceid1 = 0x00000000;
1432     cpu->id_afr0 = 0x00000000;
1433     cpu->id_mmfr0 = 0x10201105;
1434     cpu->id_mmfr1 = 0x20000000;
1435     cpu->id_mmfr2 = 0x01240000;
1436     cpu->id_mmfr3 = 0x02102211;
1437     cpu->id_isar0 = 0x02101110;
1438     cpu->id_isar1 = 0x13112111;
1439     cpu->id_isar2 = 0x21232041;
1440     cpu->id_isar3 = 0x11112131;
1441     cpu->id_isar4 = 0x10011142;
1442     cpu->dbgdidr = 0x3515f021;
1443     cpu->clidr = 0x0a200023;
1444     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1445     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1446     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1447     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1448 }
1449 
1450 static void ti925t_initfn(Object *obj)
1451 {
1452     ARMCPU *cpu = ARM_CPU(obj);
1453     set_feature(&cpu->env, ARM_FEATURE_V4T);
1454     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1455     cpu->midr = ARM_CPUID_TI925T;
1456     cpu->ctr = 0x5109149;
1457     cpu->reset_sctlr = 0x00000070;
1458 }
1459 
1460 static void sa1100_initfn(Object *obj)
1461 {
1462     ARMCPU *cpu = ARM_CPU(obj);
1463 
1464     cpu->dtb_compatible = "intel,sa1100";
1465     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1466     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1467     cpu->midr = 0x4401A11B;
1468     cpu->reset_sctlr = 0x00000070;
1469 }
1470 
1471 static void sa1110_initfn(Object *obj)
1472 {
1473     ARMCPU *cpu = ARM_CPU(obj);
1474     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1475     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1476     cpu->midr = 0x6901B119;
1477     cpu->reset_sctlr = 0x00000070;
1478 }
1479 
1480 static void pxa250_initfn(Object *obj)
1481 {
1482     ARMCPU *cpu = ARM_CPU(obj);
1483 
1484     cpu->dtb_compatible = "marvell,xscale";
1485     set_feature(&cpu->env, ARM_FEATURE_V5);
1486     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1487     cpu->midr = 0x69052100;
1488     cpu->ctr = 0xd172172;
1489     cpu->reset_sctlr = 0x00000078;
1490 }
1491 
1492 static void pxa255_initfn(Object *obj)
1493 {
1494     ARMCPU *cpu = ARM_CPU(obj);
1495 
1496     cpu->dtb_compatible = "marvell,xscale";
1497     set_feature(&cpu->env, ARM_FEATURE_V5);
1498     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1499     cpu->midr = 0x69052d00;
1500     cpu->ctr = 0xd172172;
1501     cpu->reset_sctlr = 0x00000078;
1502 }
1503 
1504 static void pxa260_initfn(Object *obj)
1505 {
1506     ARMCPU *cpu = ARM_CPU(obj);
1507 
1508     cpu->dtb_compatible = "marvell,xscale";
1509     set_feature(&cpu->env, ARM_FEATURE_V5);
1510     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1511     cpu->midr = 0x69052903;
1512     cpu->ctr = 0xd172172;
1513     cpu->reset_sctlr = 0x00000078;
1514 }
1515 
1516 static void pxa261_initfn(Object *obj)
1517 {
1518     ARMCPU *cpu = ARM_CPU(obj);
1519 
1520     cpu->dtb_compatible = "marvell,xscale";
1521     set_feature(&cpu->env, ARM_FEATURE_V5);
1522     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1523     cpu->midr = 0x69052d05;
1524     cpu->ctr = 0xd172172;
1525     cpu->reset_sctlr = 0x00000078;
1526 }
1527 
1528 static void pxa262_initfn(Object *obj)
1529 {
1530     ARMCPU *cpu = ARM_CPU(obj);
1531 
1532     cpu->dtb_compatible = "marvell,xscale";
1533     set_feature(&cpu->env, ARM_FEATURE_V5);
1534     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1535     cpu->midr = 0x69052d06;
1536     cpu->ctr = 0xd172172;
1537     cpu->reset_sctlr = 0x00000078;
1538 }
1539 
1540 static void pxa270a0_initfn(Object *obj)
1541 {
1542     ARMCPU *cpu = ARM_CPU(obj);
1543 
1544     cpu->dtb_compatible = "marvell,xscale";
1545     set_feature(&cpu->env, ARM_FEATURE_V5);
1546     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1547     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1548     cpu->midr = 0x69054110;
1549     cpu->ctr = 0xd172172;
1550     cpu->reset_sctlr = 0x00000078;
1551 }
1552 
1553 static void pxa270a1_initfn(Object *obj)
1554 {
1555     ARMCPU *cpu = ARM_CPU(obj);
1556 
1557     cpu->dtb_compatible = "marvell,xscale";
1558     set_feature(&cpu->env, ARM_FEATURE_V5);
1559     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1560     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1561     cpu->midr = 0x69054111;
1562     cpu->ctr = 0xd172172;
1563     cpu->reset_sctlr = 0x00000078;
1564 }
1565 
1566 static void pxa270b0_initfn(Object *obj)
1567 {
1568     ARMCPU *cpu = ARM_CPU(obj);
1569 
1570     cpu->dtb_compatible = "marvell,xscale";
1571     set_feature(&cpu->env, ARM_FEATURE_V5);
1572     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1573     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1574     cpu->midr = 0x69054112;
1575     cpu->ctr = 0xd172172;
1576     cpu->reset_sctlr = 0x00000078;
1577 }
1578 
1579 static void pxa270b1_initfn(Object *obj)
1580 {
1581     ARMCPU *cpu = ARM_CPU(obj);
1582 
1583     cpu->dtb_compatible = "marvell,xscale";
1584     set_feature(&cpu->env, ARM_FEATURE_V5);
1585     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1586     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1587     cpu->midr = 0x69054113;
1588     cpu->ctr = 0xd172172;
1589     cpu->reset_sctlr = 0x00000078;
1590 }
1591 
1592 static void pxa270c0_initfn(Object *obj)
1593 {
1594     ARMCPU *cpu = ARM_CPU(obj);
1595 
1596     cpu->dtb_compatible = "marvell,xscale";
1597     set_feature(&cpu->env, ARM_FEATURE_V5);
1598     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1599     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1600     cpu->midr = 0x69054114;
1601     cpu->ctr = 0xd172172;
1602     cpu->reset_sctlr = 0x00000078;
1603 }
1604 
1605 static void pxa270c5_initfn(Object *obj)
1606 {
1607     ARMCPU *cpu = ARM_CPU(obj);
1608 
1609     cpu->dtb_compatible = "marvell,xscale";
1610     set_feature(&cpu->env, ARM_FEATURE_V5);
1611     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1612     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1613     cpu->midr = 0x69054117;
1614     cpu->ctr = 0xd172172;
1615     cpu->reset_sctlr = 0x00000078;
1616 }
1617 
1618 #ifdef CONFIG_USER_ONLY
1619 static void arm_any_initfn(Object *obj)
1620 {
1621     ARMCPU *cpu = ARM_CPU(obj);
1622     set_feature(&cpu->env, ARM_FEATURE_V8);
1623     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1624     set_feature(&cpu->env, ARM_FEATURE_NEON);
1625     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1626     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1627     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1628     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1629     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1630     set_feature(&cpu->env, ARM_FEATURE_CRC);
1631     cpu->midr = 0xffffffff;
1632 }
1633 #endif
1634 
1635 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1636 
1637 typedef struct ARMCPUInfo {
1638     const char *name;
1639     void (*initfn)(Object *obj);
1640     void (*class_init)(ObjectClass *oc, void *data);
1641 } ARMCPUInfo;
1642 
1643 static const ARMCPUInfo arm_cpus[] = {
1644 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1645     { .name = "arm926",      .initfn = arm926_initfn },
1646     { .name = "arm946",      .initfn = arm946_initfn },
1647     { .name = "arm1026",     .initfn = arm1026_initfn },
1648     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1649      * older core than plain "arm1136". In particular this does not
1650      * have the v6K features.
1651      */
1652     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1653     { .name = "arm1136",     .initfn = arm1136_initfn },
1654     { .name = "arm1176",     .initfn = arm1176_initfn },
1655     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1656     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1657                              .class_init = arm_v7m_class_init },
1658     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1659                              .class_init = arm_v7m_class_init },
1660     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1661     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1662     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1663     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1664     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1665     { .name = "ti925t",      .initfn = ti925t_initfn },
1666     { .name = "sa1100",      .initfn = sa1100_initfn },
1667     { .name = "sa1110",      .initfn = sa1110_initfn },
1668     { .name = "pxa250",      .initfn = pxa250_initfn },
1669     { .name = "pxa255",      .initfn = pxa255_initfn },
1670     { .name = "pxa260",      .initfn = pxa260_initfn },
1671     { .name = "pxa261",      .initfn = pxa261_initfn },
1672     { .name = "pxa262",      .initfn = pxa262_initfn },
1673     /* "pxa270" is an alias for "pxa270-a0" */
1674     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1675     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1676     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1677     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1678     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1679     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1680     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1681 #ifdef CONFIG_USER_ONLY
1682     { .name = "any",         .initfn = arm_any_initfn },
1683 #endif
1684 #endif
1685     { .name = NULL }
1686 };
1687 
1688 static Property arm_cpu_properties[] = {
1689     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1690     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1691     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1692     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1693                         mp_affinity, ARM64_AFFINITY_INVALID),
1694     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1695     DEFINE_PROP_END_OF_LIST()
1696 };
1697 
1698 #ifdef CONFIG_USER_ONLY
1699 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1700                                     int mmu_idx)
1701 {
1702     ARMCPU *cpu = ARM_CPU(cs);
1703     CPUARMState *env = &cpu->env;
1704 
1705     env->exception.vaddress = address;
1706     if (rw == 2) {
1707         cs->exception_index = EXCP_PREFETCH_ABORT;
1708     } else {
1709         cs->exception_index = EXCP_DATA_ABORT;
1710     }
1711     return 1;
1712 }
1713 #endif
1714 
1715 static gchar *arm_gdb_arch_name(CPUState *cs)
1716 {
1717     ARMCPU *cpu = ARM_CPU(cs);
1718     CPUARMState *env = &cpu->env;
1719 
1720     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1721         return g_strdup("iwmmxt");
1722     }
1723     return g_strdup("arm");
1724 }
1725 
1726 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1727 {
1728     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1729     CPUClass *cc = CPU_CLASS(acc);
1730     DeviceClass *dc = DEVICE_CLASS(oc);
1731 
1732     acc->parent_realize = dc->realize;
1733     dc->realize = arm_cpu_realizefn;
1734     dc->props = arm_cpu_properties;
1735 
1736     acc->parent_reset = cc->reset;
1737     cc->reset = arm_cpu_reset;
1738 
1739     cc->class_by_name = arm_cpu_class_by_name;
1740     cc->has_work = arm_cpu_has_work;
1741     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1742     cc->dump_state = arm_cpu_dump_state;
1743     cc->set_pc = arm_cpu_set_pc;
1744     cc->gdb_read_register = arm_cpu_gdb_read_register;
1745     cc->gdb_write_register = arm_cpu_gdb_write_register;
1746 #ifdef CONFIG_USER_ONLY
1747     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1748 #else
1749     cc->do_interrupt = arm_cpu_do_interrupt;
1750     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1751     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1752     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1753     cc->asidx_from_attrs = arm_asidx_from_attrs;
1754     cc->vmsd = &vmstate_arm_cpu;
1755     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1756     cc->write_elf64_note = arm_cpu_write_elf64_note;
1757     cc->write_elf32_note = arm_cpu_write_elf32_note;
1758 #endif
1759     cc->gdb_num_core_regs = 26;
1760     cc->gdb_core_xml_file = "arm-core.xml";
1761     cc->gdb_arch_name = arm_gdb_arch_name;
1762     cc->gdb_stop_before_watchpoint = true;
1763     cc->debug_excp_handler = arm_debug_excp_handler;
1764     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1765 #if !defined(CONFIG_USER_ONLY)
1766     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1767 #endif
1768 
1769     cc->disas_set_info = arm_disas_set_info;
1770 #ifdef CONFIG_TCG
1771     cc->tcg_initialize = arm_translate_init;
1772 #endif
1773 }
1774 
1775 static void cpu_register(const ARMCPUInfo *info)
1776 {
1777     TypeInfo type_info = {
1778         .parent = TYPE_ARM_CPU,
1779         .instance_size = sizeof(ARMCPU),
1780         .instance_init = info->initfn,
1781         .class_size = sizeof(ARMCPUClass),
1782         .class_init = info->class_init,
1783     };
1784 
1785     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1786     type_register(&type_info);
1787     g_free((void *)type_info.name);
1788 }
1789 
1790 static const TypeInfo arm_cpu_type_info = {
1791     .name = TYPE_ARM_CPU,
1792     .parent = TYPE_CPU,
1793     .instance_size = sizeof(ARMCPU),
1794     .instance_init = arm_cpu_initfn,
1795     .instance_post_init = arm_cpu_post_init,
1796     .instance_finalize = arm_cpu_finalizefn,
1797     .abstract = true,
1798     .class_size = sizeof(ARMCPUClass),
1799     .class_init = arm_cpu_class_init,
1800 };
1801 
1802 static void arm_cpu_register_types(void)
1803 {
1804     const ARMCPUInfo *info = arm_cpus;
1805 
1806     type_register_static(&arm_cpu_type_info);
1807 
1808     while (info->name) {
1809         cpu_register(info);
1810         info++;
1811     }
1812 }
1813 
1814 type_init(arm_cpu_register_types)
1815