xref: /openbmc/qemu/target/arm/cpu.c (revision d1972be1)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204                              cpu->sve_max_vq - 1 : 0;
205         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262             env->v7m.secure = true;
263         } else {
264             /* This bit resets to 0 if security is supported, but 1 if
265              * it is not. The bit is not present in v7M, but we set it
266              * here so we can avoid having to make checks on it conditional
267              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268              */
269             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270             /*
271              * Set NSACR to indicate "NS access permitted to everything";
272              * this avoids having to have all the tests of it being
273              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274              * v8.1M the guest-visible value of NSACR in a CPU without the
275              * Security Extension is 0xcff.
276              */
277             env->v7m.nsacr = 0xcff;
278         }
279 
280         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281          * that it resets to 1, so QEMU always does that rather than making
282          * it dependent on CPU model. In v8M it is RES1.
283          */
284         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286         if (arm_feature(env, ARM_FEATURE_V8)) {
287             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290         }
291         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294         }
295 
296         if (arm_feature(env, ARM_FEATURE_VFP)) {
297             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300         }
301         /* Unlike A/R profile, M profile defines the reset LR value */
302         env->regs[14] = 0xffffffff;
303 
304         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305 
306         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307         vecbase = env->v7m.vecbase[env->v7m.secure];
308         rom = rom_ptr(vecbase, 8);
309         if (rom) {
310             /* Address zero is covered by ROM which hasn't yet been
311              * copied into physical memory.
312              */
313             initial_msp = ldl_p(rom);
314             initial_pc = ldl_p(rom + 4);
315         } else {
316             /* Address zero not covered by a ROM blob, or the ROM blob
317              * is in non-modifiable memory and this is a second reset after
318              * it got copied into memory. In the latter case, rom_ptr
319              * will return a NULL pointer and we should use ldl_phys instead.
320              */
321             initial_msp = ldl_phys(s->as, vecbase);
322             initial_pc = ldl_phys(s->as, vecbase + 4);
323         }
324 
325         env->regs[13] = initial_msp & 0xFFFFFFFC;
326         env->regs[15] = initial_pc & ~1;
327         env->thumb = initial_pc & 1;
328     }
329 
330     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
331      * executing as AArch32 then check if highvecs are enabled and
332      * adjust the PC accordingly.
333      */
334     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335         env->regs[15] = 0xFFFF0000;
336     }
337 
338     /* M profile requires that reset clears the exclusive monitor;
339      * A profile does not, but clearing it makes more sense than having it
340      * set with an exclusive access on address zero.
341      */
342     arm_clear_exclusive(env);
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_PMSA)) {
348         if (cpu->pmsav7_dregion > 0) {
349             if (arm_feature(env, ARM_FEATURE_V8)) {
350                 memset(env->pmsav8.rbar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rbar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 memset(env->pmsav8.rlar[M_REG_NS], 0,
354                        sizeof(*env->pmsav8.rlar[M_REG_NS])
355                        * cpu->pmsav7_dregion);
356                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357                     memset(env->pmsav8.rbar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rbar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                     memset(env->pmsav8.rlar[M_REG_S], 0,
361                            sizeof(*env->pmsav8.rlar[M_REG_S])
362                            * cpu->pmsav7_dregion);
363                 }
364             } else if (arm_feature(env, ARM_FEATURE_V7)) {
365                 memset(env->pmsav7.drbar, 0,
366                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.drsr, 0,
368                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369                 memset(env->pmsav7.dracr, 0,
370                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371             }
372         }
373         env->pmsav7.rnr[M_REG_NS] = 0;
374         env->pmsav7.rnr[M_REG_S] = 0;
375         env->pmsav8.mair0[M_REG_NS] = 0;
376         env->pmsav8.mair0[M_REG_S] = 0;
377         env->pmsav8.mair1[M_REG_NS] = 0;
378         env->pmsav8.mair1[M_REG_S] = 0;
379     }
380 
381     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382         if (cpu->sau_sregion > 0) {
383             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385         }
386         env->sau.rnr = 0;
387         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388          * the Cortex-M33 does.
389          */
390         env->sau.ctrl = 0;
391     }
392 
393     set_flush_to_zero(1, &env->vfp.standard_fp_status);
394     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395     set_default_nan_mode(1, &env->vfp.standard_fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.standard_fp_status);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
414 {
415     CPUClass *cc = CPU_GET_CLASS(cs);
416     CPUARMState *env = cs->env_ptr;
417     uint32_t cur_el = arm_current_el(env);
418     bool secure = arm_is_secure(env);
419     uint32_t target_el;
420     uint32_t excp_idx;
421     bool ret = false;
422 
423     if (interrupt_request & CPU_INTERRUPT_FIQ) {
424         excp_idx = EXCP_FIQ;
425         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427             cs->exception_index = excp_idx;
428             env->exception.target_el = target_el;
429             cc->do_interrupt(cs);
430             ret = true;
431         }
432     }
433     if (interrupt_request & CPU_INTERRUPT_HARD) {
434         excp_idx = EXCP_IRQ;
435         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
436         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437             cs->exception_index = excp_idx;
438             env->exception.target_el = target_el;
439             cc->do_interrupt(cs);
440             ret = true;
441         }
442     }
443     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
444         excp_idx = EXCP_VIRQ;
445         target_el = 1;
446         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447             cs->exception_index = excp_idx;
448             env->exception.target_el = target_el;
449             cc->do_interrupt(cs);
450             ret = true;
451         }
452     }
453     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
454         excp_idx = EXCP_VFIQ;
455         target_el = 1;
456         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
457             cs->exception_index = excp_idx;
458             env->exception.target_el = target_el;
459             cc->do_interrupt(cs);
460             ret = true;
461         }
462     }
463 
464     return ret;
465 }
466 
467 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
468 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
469 {
470     CPUClass *cc = CPU_GET_CLASS(cs);
471     ARMCPU *cpu = ARM_CPU(cs);
472     CPUARMState *env = &cpu->env;
473     bool ret = false;
474 
475     /* ARMv7-M interrupt masking works differently than -A or -R.
476      * There is no FIQ/IRQ distinction. Instead of I and F bits
477      * masking FIQ and IRQ interrupts, an exception is taken only
478      * if it is higher priority than the current execution priority
479      * (which depends on state like BASEPRI, FAULTMASK and the
480      * currently active exception).
481      */
482     if (interrupt_request & CPU_INTERRUPT_HARD
483         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
484         cs->exception_index = EXCP_IRQ;
485         cc->do_interrupt(cs);
486         ret = true;
487     }
488     return ret;
489 }
490 #endif
491 
492 void arm_cpu_update_virq(ARMCPU *cpu)
493 {
494     /*
495      * Update the interrupt level for VIRQ, which is the logical OR of
496      * the HCR_EL2.VI bit and the input line level from the GIC.
497      */
498     CPUARMState *env = &cpu->env;
499     CPUState *cs = CPU(cpu);
500 
501     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
502         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
503 
504     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
505         if (new_state) {
506             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         } else {
508             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
509         }
510     }
511 }
512 
513 void arm_cpu_update_vfiq(ARMCPU *cpu)
514 {
515     /*
516      * Update the interrupt level for VFIQ, which is the logical OR of
517      * the HCR_EL2.VF bit and the input line level from the GIC.
518      */
519     CPUARMState *env = &cpu->env;
520     CPUState *cs = CPU(cpu);
521 
522     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
523         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
524 
525     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
526         if (new_state) {
527             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         } else {
529             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
530         }
531     }
532 }
533 
534 #ifndef CONFIG_USER_ONLY
535 static void arm_cpu_set_irq(void *opaque, int irq, int level)
536 {
537     ARMCPU *cpu = opaque;
538     CPUARMState *env = &cpu->env;
539     CPUState *cs = CPU(cpu);
540     static const int mask[] = {
541         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
542         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
543         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
544         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
545     };
546 
547     if (level) {
548         env->irq_line_state |= mask[irq];
549     } else {
550         env->irq_line_state &= ~mask[irq];
551     }
552 
553     switch (irq) {
554     case ARM_CPU_VIRQ:
555         assert(arm_feature(env, ARM_FEATURE_EL2));
556         arm_cpu_update_virq(cpu);
557         break;
558     case ARM_CPU_VFIQ:
559         assert(arm_feature(env, ARM_FEATURE_EL2));
560         arm_cpu_update_vfiq(cpu);
561         break;
562     case ARM_CPU_IRQ:
563     case ARM_CPU_FIQ:
564         if (level) {
565             cpu_interrupt(cs, mask[irq]);
566         } else {
567             cpu_reset_interrupt(cs, mask[irq]);
568         }
569         break;
570     default:
571         g_assert_not_reached();
572     }
573 }
574 
575 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
576 {
577 #ifdef CONFIG_KVM
578     ARMCPU *cpu = opaque;
579     CPUARMState *env = &cpu->env;
580     CPUState *cs = CPU(cpu);
581     uint32_t linestate_bit;
582     int irq_id;
583 
584     switch (irq) {
585     case ARM_CPU_IRQ:
586         irq_id = KVM_ARM_IRQ_CPU_IRQ;
587         linestate_bit = CPU_INTERRUPT_HARD;
588         break;
589     case ARM_CPU_FIQ:
590         irq_id = KVM_ARM_IRQ_CPU_FIQ;
591         linestate_bit = CPU_INTERRUPT_FIQ;
592         break;
593     default:
594         g_assert_not_reached();
595     }
596 
597     if (level) {
598         env->irq_line_state |= linestate_bit;
599     } else {
600         env->irq_line_state &= ~linestate_bit;
601     }
602     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
603 #endif
604 }
605 
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608     ARMCPU *cpu = ARM_CPU(cs);
609     CPUARMState *env = &cpu->env;
610 
611     cpu_synchronize_state(cs);
612     return arm_cpu_data_is_big_endian(env);
613 }
614 
615 #endif
616 
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619     env->features |= 1ULL << feature;
620 }
621 
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624     env->features &= ~(1ULL << feature);
625 }
626 
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630   return print_insn_arm(pc | 1, info);
631 }
632 
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635     ARMCPU *ac = ARM_CPU(cpu);
636     CPUARMState *env = &ac->env;
637     bool sctlr_b;
638 
639     if (is_a64(env)) {
640         /* We might not be compiled with the A64 disassembler
641          * because it needs a C++ compiler. Leave print_insn
642          * unset in this case to use the caller default behaviour.
643          */
644 #if defined(CONFIG_ARM_A64_DIS)
645         info->print_insn = print_insn_arm_a64;
646 #endif
647         info->cap_arch = CS_ARCH_ARM64;
648         info->cap_insn_unit = 4;
649         info->cap_insn_split = 4;
650     } else {
651         int cap_mode;
652         if (env->thumb) {
653             info->print_insn = print_insn_thumb1;
654             info->cap_insn_unit = 2;
655             info->cap_insn_split = 4;
656             cap_mode = CS_MODE_THUMB;
657         } else {
658             info->print_insn = print_insn_arm;
659             info->cap_insn_unit = 4;
660             info->cap_insn_split = 4;
661             cap_mode = CS_MODE_ARM;
662         }
663         if (arm_feature(env, ARM_FEATURE_V8)) {
664             cap_mode |= CS_MODE_V8;
665         }
666         if (arm_feature(env, ARM_FEATURE_M)) {
667             cap_mode |= CS_MODE_MCLASS;
668         }
669         info->cap_arch = CS_ARCH_ARM;
670         info->cap_mode = cap_mode;
671     }
672 
673     sctlr_b = arm_sctlr_b(env);
674     if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676         info->endian = BFD_ENDIAN_LITTLE;
677 #else
678         info->endian = BFD_ENDIAN_BIG;
679 #endif
680     }
681     info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683     if (sctlr_b) {
684         info->flags |= INSN_ARM_BE32;
685     }
686 #endif
687 }
688 
689 #ifdef TARGET_AARCH64
690 
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695     uint32_t psr = pstate_read(env);
696     int i;
697     int el = arm_current_el(env);
698     const char *ns_status;
699 
700     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701     for (i = 0; i < 32; i++) {
702         if (i == 31) {
703             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704         } else {
705             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706                          (i + 2) % 3 ? " " : "\n");
707         }
708     }
709 
710     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712     } else {
713         ns_status = "";
714     }
715     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716                  psr,
717                  psr & PSTATE_N ? 'N' : '-',
718                  psr & PSTATE_Z ? 'Z' : '-',
719                  psr & PSTATE_C ? 'C' : '-',
720                  psr & PSTATE_V ? 'V' : '-',
721                  ns_status,
722                  el,
723                  psr & PSTATE_SP ? 'h' : 't');
724 
725     if (cpu_isar_feature(aa64_bti, cpu)) {
726         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727     }
728     if (!(flags & CPU_DUMP_FPU)) {
729         qemu_fprintf(f, "\n");
730         return;
731     }
732     if (fp_exception_el(env, el) != 0) {
733         qemu_fprintf(f, "    FPU disabled\n");
734         return;
735     }
736     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
737                  vfp_get_fpcr(env), vfp_get_fpsr(env));
738 
739     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740         int j, zcr_len = sve_zcr_len_for_el(env, el);
741 
742         for (i = 0; i <= FFR_PRED_NUM; i++) {
743             bool eol;
744             if (i == FFR_PRED_NUM) {
745                 qemu_fprintf(f, "FFR=");
746                 /* It's last, so end the line.  */
747                 eol = true;
748             } else {
749                 qemu_fprintf(f, "P%02d=", i);
750                 switch (zcr_len) {
751                 case 0:
752                     eol = i % 8 == 7;
753                     break;
754                 case 1:
755                     eol = i % 6 == 5;
756                     break;
757                 case 2:
758                 case 3:
759                     eol = i % 3 == 2;
760                     break;
761                 default:
762                     /* More than one quadword per predicate.  */
763                     eol = true;
764                     break;
765                 }
766             }
767             for (j = zcr_len / 4; j >= 0; j--) {
768                 int digits;
769                 if (j * 4 + 4 <= zcr_len + 1) {
770                     digits = 16;
771                 } else {
772                     digits = (zcr_len % 4 + 1) * 4;
773                 }
774                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775                              env->vfp.pregs[i].p[j],
776                              j ? ":" : eol ? "\n" : " ");
777             }
778         }
779 
780         for (i = 0; i < 32; i++) {
781             if (zcr_len == 0) {
782                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783                              i, env->vfp.zregs[i].d[1],
784                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785             } else if (zcr_len == 1) {
786                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787                              ":%016" PRIx64 ":%016" PRIx64 "\n",
788                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790             } else {
791                 for (j = zcr_len; j >= 0; j--) {
792                     bool odd = (zcr_len - j) % 2 != 0;
793                     if (j == zcr_len) {
794                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795                     } else if (!odd) {
796                         if (j > 0) {
797                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
798                         } else {
799                             qemu_fprintf(f, "     [%x]=", j);
800                         }
801                     }
802                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803                                  env->vfp.zregs[i].d[j * 2 + 1],
804                                  env->vfp.zregs[i].d[j * 2],
805                                  odd || j == 0 ? "\n" : ":");
806                 }
807             }
808         }
809     } else {
810         for (i = 0; i < 32; i++) {
811             uint64_t *q = aa64_vfp_qreg(env, i);
812             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813                          i, q[1], q[0], (i & 1 ? "\n" : " "));
814         }
815     }
816 }
817 
818 #else
819 
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822     g_assert_not_reached();
823 }
824 
825 #endif
826 
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829     ARMCPU *cpu = ARM_CPU(cs);
830     CPUARMState *env = &cpu->env;
831     int i;
832 
833     if (is_a64(env)) {
834         aarch64_cpu_dump_state(cs, f, flags);
835         return;
836     }
837 
838     for (i = 0; i < 16; i++) {
839         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840         if ((i % 4) == 3) {
841             qemu_fprintf(f, "\n");
842         } else {
843             qemu_fprintf(f, " ");
844         }
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         uint32_t xpsr = xpsr_read(env);
849         const char *mode;
850         const char *ns_status = "";
851 
852         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853             ns_status = env->v7m.secure ? "S " : "NS ";
854         }
855 
856         if (xpsr & XPSR_EXCP) {
857             mode = "handler";
858         } else {
859             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860                 mode = "unpriv-thread";
861             } else {
862                 mode = "priv-thread";
863             }
864         }
865 
866         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867                      xpsr,
868                      xpsr & XPSR_N ? 'N' : '-',
869                      xpsr & XPSR_Z ? 'Z' : '-',
870                      xpsr & XPSR_C ? 'C' : '-',
871                      xpsr & XPSR_V ? 'V' : '-',
872                      xpsr & XPSR_T ? 'T' : 'A',
873                      ns_status,
874                      mode);
875     } else {
876         uint32_t psr = cpsr_read(env);
877         const char *ns_status = "";
878 
879         if (arm_feature(env, ARM_FEATURE_EL3) &&
880             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882         }
883 
884         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885                      psr,
886                      psr & CPSR_N ? 'N' : '-',
887                      psr & CPSR_Z ? 'Z' : '-',
888                      psr & CPSR_C ? 'C' : '-',
889                      psr & CPSR_V ? 'V' : '-',
890                      psr & CPSR_T ? 'T' : 'A',
891                      ns_status,
892                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893     }
894 
895     if (flags & CPU_DUMP_FPU) {
896         int numvfpregs = 0;
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             numvfpregs += 16;
899         }
900         if (arm_feature(env, ARM_FEATURE_VFP3)) {
901             numvfpregs += 16;
902         }
903         for (i = 0; i < numvfpregs; i++) {
904             uint64_t v = *aa32_vfp_dreg(env, i);
905             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906                          i * 2, (uint32_t)v,
907                          i * 2 + 1, (uint32_t)(v >> 32),
908                          i, v);
909         }
910         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911     }
912 }
913 
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916     uint32_t Aff1 = idx / clustersz;
917     uint32_t Aff0 = idx % clustersz;
918     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920 
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923     /*
924      * Destroy function for cpu->cp_regs hashtable data entries.
925      * We must free the name string because it was g_strdup()ed in
926      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927      * from r->name because we know we definitely allocated it.
928      */
929     ARMCPRegInfo *r = data;
930 
931     g_free((void *)r->name);
932     g_free(r);
933 }
934 
935 static void arm_cpu_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu_set_cpustate_pointers(cpu);
940     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941                                          g_free, cpreg_hashtable_data_destroy);
942 
943     QLIST_INIT(&cpu->pre_el_change_hooks);
944     QLIST_INIT(&cpu->el_change_hooks);
945 
946 #ifndef CONFIG_USER_ONLY
947     /* Our inbound IRQ and FIQ lines */
948     if (kvm_enabled()) {
949         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950          * the same interface as non-KVM CPUs.
951          */
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953     } else {
954         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955     }
956 
957     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958                        ARRAY_SIZE(cpu->gt_timer_outputs));
959 
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961                              "gicv3-maintenance-interrupt", 1);
962     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963                              "pmu-interrupt", 1);
964 #endif
965 
966     /* DTB consumers generally don't in fact care what the 'compatible'
967      * string is, so always provide some string and trust that a hypothetical
968      * picky DTB consumer will also provide a helpful error message.
969      */
970     cpu->dtb_compatible = "qemu,unknown";
971     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973 
974     if (tcg_enabled()) {
975         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976     }
977 }
978 
979 static Property arm_cpu_gt_cntfrq_property =
980             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
981                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
982 
983 static Property arm_cpu_reset_cbar_property =
984             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
985 
986 static Property arm_cpu_reset_hivecs_property =
987             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
988 
989 static Property arm_cpu_rvbar_property =
990             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
991 
992 static Property arm_cpu_has_el2_property =
993             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
994 
995 static Property arm_cpu_has_el3_property =
996             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
997 
998 static Property arm_cpu_cfgend_property =
999             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1000 
1001 static Property arm_cpu_has_vfp_property =
1002             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1003 
1004 static Property arm_cpu_has_neon_property =
1005             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1006 
1007 static Property arm_cpu_has_dsp_property =
1008             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1009 
1010 static Property arm_cpu_has_mpu_property =
1011             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1012 
1013 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1014  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1015  * the right value for that particular CPU type, and we don't want
1016  * to override that with an incorrect constant value.
1017  */
1018 static Property arm_cpu_pmsav7_dregion_property =
1019             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1020                                            pmsav7_dregion,
1021                                            qdev_prop_uint32, uint32_t);
1022 
1023 static bool arm_get_pmu(Object *obj, Error **errp)
1024 {
1025     ARMCPU *cpu = ARM_CPU(obj);
1026 
1027     return cpu->has_pmu;
1028 }
1029 
1030 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1031 {
1032     ARMCPU *cpu = ARM_CPU(obj);
1033 
1034     if (value) {
1035         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1036             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1037             return;
1038         }
1039         set_feature(&cpu->env, ARM_FEATURE_PMU);
1040     } else {
1041         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1042     }
1043     cpu->has_pmu = value;
1044 }
1045 
1046 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1047                                void *opaque, Error **errp)
1048 {
1049     ARMCPU *cpu = ARM_CPU(obj);
1050 
1051     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1052 }
1053 
1054 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1055                                void *opaque, Error **errp)
1056 {
1057     ARMCPU *cpu = ARM_CPU(obj);
1058 
1059     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1060 }
1061 
1062 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1063 {
1064     /*
1065      * The exact approach to calculating guest ticks is:
1066      *
1067      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1068      *              NANOSECONDS_PER_SECOND);
1069      *
1070      * We don't do that. Rather we intentionally use integer division
1071      * truncation below and in the caller for the conversion of host monotonic
1072      * time to guest ticks to provide the exact inverse for the semantics of
1073      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1074      * it loses precision when representing frequencies where
1075      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1076      * provide an exact inverse leads to scheduling timers with negative
1077      * periods, which in turn leads to sticky behaviour in the guest.
1078      *
1079      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1080      * cannot become zero.
1081      */
1082     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1083       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1084 }
1085 
1086 void arm_cpu_post_init(Object *obj)
1087 {
1088     ARMCPU *cpu = ARM_CPU(obj);
1089 
1090     /* M profile implies PMSA. We have to do this here rather than
1091      * in realize with the other feature-implication checks because
1092      * we look at the PMSA bit to see if we should add some properties.
1093      */
1094     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1095         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1096     }
1097     /* Similarly for the VFP feature bits */
1098     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1099         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1100     }
1101     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1102         set_feature(&cpu->env, ARM_FEATURE_VFP);
1103     }
1104 
1105     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1106         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1107         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1108                                  &error_abort);
1109     }
1110 
1111     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1112         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1113                                  &error_abort);
1114     }
1115 
1116     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1117         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1118                                  &error_abort);
1119     }
1120 
1121     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1122         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1123          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1124          */
1125         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1126                                  &error_abort);
1127 
1128 #ifndef CONFIG_USER_ONLY
1129         object_property_add_link(obj, "secure-memory",
1130                                  TYPE_MEMORY_REGION,
1131                                  (Object **)&cpu->secure_memory,
1132                                  qdev_prop_allow_set_link_before_realize,
1133                                  OBJ_PROP_LINK_STRONG,
1134                                  &error_abort);
1135 #endif
1136     }
1137 
1138     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1139         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1140                                  &error_abort);
1141     }
1142 
1143     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1144         cpu->has_pmu = true;
1145         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1146                                  &error_abort);
1147     }
1148 
1149     /*
1150      * Allow user to turn off VFP and Neon support, but only for TCG --
1151      * KVM does not currently allow us to lie to the guest about its
1152      * ID/feature registers, so the guest always sees what the host has.
1153      */
1154     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1155         cpu->has_vfp = true;
1156         if (!kvm_enabled()) {
1157             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1158                                      &error_abort);
1159         }
1160     }
1161 
1162     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1163         cpu->has_neon = true;
1164         if (!kvm_enabled()) {
1165             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1166                                      &error_abort);
1167         }
1168     }
1169 
1170     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1171         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1172         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1173                                  &error_abort);
1174     }
1175 
1176     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1177         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1178                                  &error_abort);
1179         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1180             qdev_property_add_static(DEVICE(obj),
1181                                      &arm_cpu_pmsav7_dregion_property,
1182                                      &error_abort);
1183         }
1184     }
1185 
1186     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1187         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1188                                  qdev_prop_allow_set_link_before_realize,
1189                                  OBJ_PROP_LINK_STRONG,
1190                                  &error_abort);
1191         /*
1192          * M profile: initial value of the Secure VTOR. We can't just use
1193          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1194          * the property to be set after realize.
1195          */
1196         object_property_add(obj, "init-svtor", "uint32",
1197                             arm_get_init_svtor, arm_set_init_svtor,
1198                             NULL, NULL, &error_abort);
1199     }
1200 
1201     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1202                              &error_abort);
1203 
1204     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1205         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property,
1206                                  &error_abort);
1207     }
1208 }
1209 
1210 static void arm_cpu_finalizefn(Object *obj)
1211 {
1212     ARMCPU *cpu = ARM_CPU(obj);
1213     ARMELChangeHook *hook, *next;
1214 
1215     g_hash_table_destroy(cpu->cp_regs);
1216 
1217     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1218         QLIST_REMOVE(hook, node);
1219         g_free(hook);
1220     }
1221     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1222         QLIST_REMOVE(hook, node);
1223         g_free(hook);
1224     }
1225 #ifndef CONFIG_USER_ONLY
1226     if (cpu->pmu_timer) {
1227         timer_del(cpu->pmu_timer);
1228         timer_deinit(cpu->pmu_timer);
1229         timer_free(cpu->pmu_timer);
1230     }
1231 #endif
1232 }
1233 
1234 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1235 {
1236     Error *local_err = NULL;
1237 
1238     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1239         arm_cpu_sve_finalize(cpu, &local_err);
1240         if (local_err != NULL) {
1241             error_propagate(errp, local_err);
1242             return;
1243         }
1244     }
1245 }
1246 
1247 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1248 {
1249     CPUState *cs = CPU(dev);
1250     ARMCPU *cpu = ARM_CPU(dev);
1251     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1252     CPUARMState *env = &cpu->env;
1253     int pagebits;
1254     Error *local_err = NULL;
1255     bool no_aa32 = false;
1256 
1257     /* If we needed to query the host kernel for the CPU features
1258      * then it's possible that might have failed in the initfn, but
1259      * this is the first point where we can report it.
1260      */
1261     if (cpu->host_cpu_probe_failed) {
1262         if (!kvm_enabled()) {
1263             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1264         } else {
1265             error_setg(errp, "Failed to retrieve host CPU features");
1266         }
1267         return;
1268     }
1269 
1270 #ifndef CONFIG_USER_ONLY
1271     /* The NVIC and M-profile CPU are two halves of a single piece of
1272      * hardware; trying to use one without the other is a command line
1273      * error and will result in segfaults if not caught here.
1274      */
1275     if (arm_feature(env, ARM_FEATURE_M)) {
1276         if (!env->nvic) {
1277             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1278             return;
1279         }
1280     } else {
1281         if (env->nvic) {
1282             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1283             return;
1284         }
1285     }
1286 
1287 
1288     {
1289         uint64_t scale;
1290 
1291         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1292             if (!cpu->gt_cntfrq_hz) {
1293                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1294                            cpu->gt_cntfrq_hz);
1295                 return;
1296             }
1297             scale = gt_cntfrq_period_ns(cpu);
1298         } else {
1299             scale = GTIMER_SCALE;
1300         }
1301 
1302         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1303                                                arm_gt_ptimer_cb, cpu);
1304         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1305                                                arm_gt_vtimer_cb, cpu);
1306         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1307                                               arm_gt_htimer_cb, cpu);
1308         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1309                                               arm_gt_stimer_cb, cpu);
1310     }
1311 #endif
1312 
1313     cpu_exec_realizefn(cs, &local_err);
1314     if (local_err != NULL) {
1315         error_propagate(errp, local_err);
1316         return;
1317     }
1318 
1319     arm_cpu_finalize_features(cpu, &local_err);
1320     if (local_err != NULL) {
1321         error_propagate(errp, local_err);
1322         return;
1323     }
1324 
1325     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1326         cpu->has_vfp != cpu->has_neon) {
1327         /*
1328          * This is an architectural requirement for AArch64; AArch32 is
1329          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1330          */
1331         error_setg(errp,
1332                    "AArch64 CPUs must have both VFP and Neon or neither");
1333         return;
1334     }
1335 
1336     if (!cpu->has_vfp) {
1337         uint64_t t;
1338         uint32_t u;
1339 
1340         unset_feature(env, ARM_FEATURE_VFP);
1341         unset_feature(env, ARM_FEATURE_VFP3);
1342         unset_feature(env, ARM_FEATURE_VFP4);
1343 
1344         t = cpu->isar.id_aa64isar1;
1345         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1346         cpu->isar.id_aa64isar1 = t;
1347 
1348         t = cpu->isar.id_aa64pfr0;
1349         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1350         cpu->isar.id_aa64pfr0 = t;
1351 
1352         u = cpu->isar.id_isar6;
1353         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1354         cpu->isar.id_isar6 = u;
1355 
1356         u = cpu->isar.mvfr0;
1357         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1358         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1359         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1360         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1361         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1362         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1363         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1364         cpu->isar.mvfr0 = u;
1365 
1366         u = cpu->isar.mvfr1;
1367         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1368         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1369         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1370         cpu->isar.mvfr1 = u;
1371 
1372         u = cpu->isar.mvfr2;
1373         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1374         cpu->isar.mvfr2 = u;
1375     }
1376 
1377     if (!cpu->has_neon) {
1378         uint64_t t;
1379         uint32_t u;
1380 
1381         unset_feature(env, ARM_FEATURE_NEON);
1382 
1383         t = cpu->isar.id_aa64isar0;
1384         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1385         cpu->isar.id_aa64isar0 = t;
1386 
1387         t = cpu->isar.id_aa64isar1;
1388         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1389         cpu->isar.id_aa64isar1 = t;
1390 
1391         t = cpu->isar.id_aa64pfr0;
1392         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1393         cpu->isar.id_aa64pfr0 = t;
1394 
1395         u = cpu->isar.id_isar5;
1396         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1397         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1398         cpu->isar.id_isar5 = u;
1399 
1400         u = cpu->isar.id_isar6;
1401         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1402         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1403         cpu->isar.id_isar6 = u;
1404 
1405         u = cpu->isar.mvfr1;
1406         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1407         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1408         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1409         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1410         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1411         cpu->isar.mvfr1 = u;
1412 
1413         u = cpu->isar.mvfr2;
1414         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1415         cpu->isar.mvfr2 = u;
1416     }
1417 
1418     if (!cpu->has_neon && !cpu->has_vfp) {
1419         uint64_t t;
1420         uint32_t u;
1421 
1422         t = cpu->isar.id_aa64isar0;
1423         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1424         cpu->isar.id_aa64isar0 = t;
1425 
1426         t = cpu->isar.id_aa64isar1;
1427         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1428         cpu->isar.id_aa64isar1 = t;
1429 
1430         u = cpu->isar.mvfr0;
1431         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1432         cpu->isar.mvfr0 = u;
1433     }
1434 
1435     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1436         uint32_t u;
1437 
1438         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1439 
1440         u = cpu->isar.id_isar1;
1441         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1442         cpu->isar.id_isar1 = u;
1443 
1444         u = cpu->isar.id_isar2;
1445         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1446         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1447         cpu->isar.id_isar2 = u;
1448 
1449         u = cpu->isar.id_isar3;
1450         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1451         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1452         cpu->isar.id_isar3 = u;
1453     }
1454 
1455     /* Some features automatically imply others: */
1456     if (arm_feature(env, ARM_FEATURE_V8)) {
1457         if (arm_feature(env, ARM_FEATURE_M)) {
1458             set_feature(env, ARM_FEATURE_V7);
1459         } else {
1460             set_feature(env, ARM_FEATURE_V7VE);
1461         }
1462     }
1463 
1464     /*
1465      * There exist AArch64 cpus without AArch32 support.  When KVM
1466      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1467      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1468      * As a general principle, we also do not make ID register
1469      * consistency checks anywhere unless using TCG, because only
1470      * for TCG would a consistency-check failure be a QEMU bug.
1471      */
1472     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1473         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1474     }
1475 
1476     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1477         /* v7 Virtualization Extensions. In real hardware this implies
1478          * EL2 and also the presence of the Security Extensions.
1479          * For QEMU, for backwards-compatibility we implement some
1480          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1481          * include the various other features that V7VE implies.
1482          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1483          * Security Extensions is ARM_FEATURE_EL3.
1484          */
1485         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1486         set_feature(env, ARM_FEATURE_LPAE);
1487         set_feature(env, ARM_FEATURE_V7);
1488     }
1489     if (arm_feature(env, ARM_FEATURE_V7)) {
1490         set_feature(env, ARM_FEATURE_VAPA);
1491         set_feature(env, ARM_FEATURE_THUMB2);
1492         set_feature(env, ARM_FEATURE_MPIDR);
1493         if (!arm_feature(env, ARM_FEATURE_M)) {
1494             set_feature(env, ARM_FEATURE_V6K);
1495         } else {
1496             set_feature(env, ARM_FEATURE_V6);
1497         }
1498 
1499         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1500          * non-EL3 configs. This is needed by some legacy boards.
1501          */
1502         set_feature(env, ARM_FEATURE_VBAR);
1503     }
1504     if (arm_feature(env, ARM_FEATURE_V6K)) {
1505         set_feature(env, ARM_FEATURE_V6);
1506         set_feature(env, ARM_FEATURE_MVFR);
1507     }
1508     if (arm_feature(env, ARM_FEATURE_V6)) {
1509         set_feature(env, ARM_FEATURE_V5);
1510         if (!arm_feature(env, ARM_FEATURE_M)) {
1511             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1512             set_feature(env, ARM_FEATURE_AUXCR);
1513         }
1514     }
1515     if (arm_feature(env, ARM_FEATURE_V5)) {
1516         set_feature(env, ARM_FEATURE_V4T);
1517     }
1518     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1519         set_feature(env, ARM_FEATURE_V7MP);
1520         set_feature(env, ARM_FEATURE_PXN);
1521     }
1522     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1523         set_feature(env, ARM_FEATURE_CBAR);
1524     }
1525     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1526         !arm_feature(env, ARM_FEATURE_M)) {
1527         set_feature(env, ARM_FEATURE_THUMB_DSP);
1528     }
1529 
1530     /*
1531      * We rely on no XScale CPU having VFP so we can use the same bits in the
1532      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1533      */
1534     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1535              arm_feature(env, ARM_FEATURE_XSCALE)));
1536 
1537     if (arm_feature(env, ARM_FEATURE_V7) &&
1538         !arm_feature(env, ARM_FEATURE_M) &&
1539         !arm_feature(env, ARM_FEATURE_PMSA)) {
1540         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1541          * can use 4K pages.
1542          */
1543         pagebits = 12;
1544     } else {
1545         /* For CPUs which might have tiny 1K pages, or which have an
1546          * MPU and might have small region sizes, stick with 1K pages.
1547          */
1548         pagebits = 10;
1549     }
1550     if (!set_preferred_target_page_bits(pagebits)) {
1551         /* This can only ever happen for hotplugging a CPU, or if
1552          * the board code incorrectly creates a CPU which it has
1553          * promised via minimum_page_size that it will not.
1554          */
1555         error_setg(errp, "This CPU requires a smaller page size than the "
1556                    "system is using");
1557         return;
1558     }
1559 
1560     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1561      * We don't support setting cluster ID ([16..23]) (known as Aff2
1562      * in later ARM ARM versions), or any of the higher affinity level fields,
1563      * so these bits always RAZ.
1564      */
1565     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1566         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1567                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1568     }
1569 
1570     if (cpu->reset_hivecs) {
1571             cpu->reset_sctlr |= (1 << 13);
1572     }
1573 
1574     if (cpu->cfgend) {
1575         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1576             cpu->reset_sctlr |= SCTLR_EE;
1577         } else {
1578             cpu->reset_sctlr |= SCTLR_B;
1579         }
1580     }
1581 
1582     if (!cpu->has_el3) {
1583         /* If the has_el3 CPU property is disabled then we need to disable the
1584          * feature.
1585          */
1586         unset_feature(env, ARM_FEATURE_EL3);
1587 
1588         /* Disable the security extension feature bits in the processor feature
1589          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1590          */
1591         cpu->id_pfr1 &= ~0xf0;
1592         cpu->isar.id_aa64pfr0 &= ~0xf000;
1593     }
1594 
1595     if (!cpu->has_el2) {
1596         unset_feature(env, ARM_FEATURE_EL2);
1597     }
1598 
1599     if (!cpu->has_pmu) {
1600         unset_feature(env, ARM_FEATURE_PMU);
1601     }
1602     if (arm_feature(env, ARM_FEATURE_PMU)) {
1603         pmu_init(cpu);
1604 
1605         if (!kvm_enabled()) {
1606             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1607             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1608         }
1609 
1610 #ifndef CONFIG_USER_ONLY
1611         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1612                 cpu);
1613 #endif
1614     } else {
1615         cpu->id_aa64dfr0 &= ~0xf00;
1616         cpu->id_dfr0 &= ~(0xf << 24);
1617         cpu->pmceid0 = 0;
1618         cpu->pmceid1 = 0;
1619     }
1620 
1621     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1622         /* Disable the hypervisor feature bits in the processor feature
1623          * registers if we don't have EL2. These are id_pfr1[15:12] and
1624          * id_aa64pfr0_el1[11:8].
1625          */
1626         cpu->isar.id_aa64pfr0 &= ~0xf00;
1627         cpu->id_pfr1 &= ~0xf000;
1628     }
1629 
1630     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1631      * to false or by setting pmsav7-dregion to 0.
1632      */
1633     if (!cpu->has_mpu) {
1634         cpu->pmsav7_dregion = 0;
1635     }
1636     if (cpu->pmsav7_dregion == 0) {
1637         cpu->has_mpu = false;
1638     }
1639 
1640     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1641         arm_feature(env, ARM_FEATURE_V7)) {
1642         uint32_t nr = cpu->pmsav7_dregion;
1643 
1644         if (nr > 0xff) {
1645             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1646             return;
1647         }
1648 
1649         if (nr) {
1650             if (arm_feature(env, ARM_FEATURE_V8)) {
1651                 /* PMSAv8 */
1652                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1653                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1654                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1655                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1656                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1657                 }
1658             } else {
1659                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1660                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1661                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1662             }
1663         }
1664     }
1665 
1666     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1667         uint32_t nr = cpu->sau_sregion;
1668 
1669         if (nr > 0xff) {
1670             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1671             return;
1672         }
1673 
1674         if (nr) {
1675             env->sau.rbar = g_new0(uint32_t, nr);
1676             env->sau.rlar = g_new0(uint32_t, nr);
1677         }
1678     }
1679 
1680     if (arm_feature(env, ARM_FEATURE_EL3)) {
1681         set_feature(env, ARM_FEATURE_VBAR);
1682     }
1683 
1684     register_cp_regs_for_features(cpu);
1685     arm_cpu_register_gdb_regs_for_features(cpu);
1686 
1687     init_cpreg_list(cpu);
1688 
1689 #ifndef CONFIG_USER_ONLY
1690     MachineState *ms = MACHINE(qdev_get_machine());
1691     unsigned int smp_cpus = ms->smp.cpus;
1692 
1693     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1694         cs->num_ases = 2;
1695 
1696         if (!cpu->secure_memory) {
1697             cpu->secure_memory = cs->memory;
1698         }
1699         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1700                                cpu->secure_memory);
1701     } else {
1702         cs->num_ases = 1;
1703     }
1704     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1705 
1706     /* No core_count specified, default to smp_cpus. */
1707     if (cpu->core_count == -1) {
1708         cpu->core_count = smp_cpus;
1709     }
1710 #endif
1711 
1712     qemu_init_vcpu(cs);
1713     cpu_reset(cs);
1714 
1715     acc->parent_realize(dev, errp);
1716 }
1717 
1718 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1719 {
1720     ObjectClass *oc;
1721     char *typename;
1722     char **cpuname;
1723     const char *cpunamestr;
1724 
1725     cpuname = g_strsplit(cpu_model, ",", 1);
1726     cpunamestr = cpuname[0];
1727 #ifdef CONFIG_USER_ONLY
1728     /* For backwards compatibility usermode emulation allows "-cpu any",
1729      * which has the same semantics as "-cpu max".
1730      */
1731     if (!strcmp(cpunamestr, "any")) {
1732         cpunamestr = "max";
1733     }
1734 #endif
1735     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1736     oc = object_class_by_name(typename);
1737     g_strfreev(cpuname);
1738     g_free(typename);
1739     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1740         object_class_is_abstract(oc)) {
1741         return NULL;
1742     }
1743     return oc;
1744 }
1745 
1746 /* CPU models. These are not needed for the AArch64 linux-user build. */
1747 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1748 
1749 static void arm926_initfn(Object *obj)
1750 {
1751     ARMCPU *cpu = ARM_CPU(obj);
1752 
1753     cpu->dtb_compatible = "arm,arm926";
1754     set_feature(&cpu->env, ARM_FEATURE_V5);
1755     set_feature(&cpu->env, ARM_FEATURE_VFP);
1756     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1757     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1758     cpu->midr = 0x41069265;
1759     cpu->reset_fpsid = 0x41011090;
1760     cpu->ctr = 0x1dd20d2;
1761     cpu->reset_sctlr = 0x00090078;
1762 
1763     /*
1764      * ARMv5 does not have the ID_ISAR registers, but we can still
1765      * set the field to indicate Jazelle support within QEMU.
1766      */
1767     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1768     /*
1769      * Similarly, we need to set MVFR0 fields to enable double precision
1770      * and short vector support even though ARMv5 doesn't have this register.
1771      */
1772     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1773     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1774 }
1775 
1776 static void arm946_initfn(Object *obj)
1777 {
1778     ARMCPU *cpu = ARM_CPU(obj);
1779 
1780     cpu->dtb_compatible = "arm,arm946";
1781     set_feature(&cpu->env, ARM_FEATURE_V5);
1782     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1783     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1784     cpu->midr = 0x41059461;
1785     cpu->ctr = 0x0f004006;
1786     cpu->reset_sctlr = 0x00000078;
1787 }
1788 
1789 static void arm1026_initfn(Object *obj)
1790 {
1791     ARMCPU *cpu = ARM_CPU(obj);
1792 
1793     cpu->dtb_compatible = "arm,arm1026";
1794     set_feature(&cpu->env, ARM_FEATURE_V5);
1795     set_feature(&cpu->env, ARM_FEATURE_VFP);
1796     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1797     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1798     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1799     cpu->midr = 0x4106a262;
1800     cpu->reset_fpsid = 0x410110a0;
1801     cpu->ctr = 0x1dd20d2;
1802     cpu->reset_sctlr = 0x00090078;
1803     cpu->reset_auxcr = 1;
1804 
1805     /*
1806      * ARMv5 does not have the ID_ISAR registers, but we can still
1807      * set the field to indicate Jazelle support within QEMU.
1808      */
1809     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1810     /*
1811      * Similarly, we need to set MVFR0 fields to enable double precision
1812      * and short vector support even though ARMv5 doesn't have this register.
1813      */
1814     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1815     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1816 
1817     {
1818         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1819         ARMCPRegInfo ifar = {
1820             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1821             .access = PL1_RW,
1822             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1823             .resetvalue = 0
1824         };
1825         define_one_arm_cp_reg(cpu, &ifar);
1826     }
1827 }
1828 
1829 static void arm1136_r2_initfn(Object *obj)
1830 {
1831     ARMCPU *cpu = ARM_CPU(obj);
1832     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1833      * older core than plain "arm1136". In particular this does not
1834      * have the v6K features.
1835      * These ID register values are correct for 1136 but may be wrong
1836      * for 1136_r2 (in particular r0p2 does not actually implement most
1837      * of the ID registers).
1838      */
1839 
1840     cpu->dtb_compatible = "arm,arm1136";
1841     set_feature(&cpu->env, ARM_FEATURE_V6);
1842     set_feature(&cpu->env, ARM_FEATURE_VFP);
1843     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1844     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1845     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1846     cpu->midr = 0x4107b362;
1847     cpu->reset_fpsid = 0x410120b4;
1848     cpu->isar.mvfr0 = 0x11111111;
1849     cpu->isar.mvfr1 = 0x00000000;
1850     cpu->ctr = 0x1dd20d2;
1851     cpu->reset_sctlr = 0x00050078;
1852     cpu->id_pfr0 = 0x111;
1853     cpu->id_pfr1 = 0x1;
1854     cpu->id_dfr0 = 0x2;
1855     cpu->id_afr0 = 0x3;
1856     cpu->id_mmfr0 = 0x01130003;
1857     cpu->id_mmfr1 = 0x10030302;
1858     cpu->id_mmfr2 = 0x01222110;
1859     cpu->isar.id_isar0 = 0x00140011;
1860     cpu->isar.id_isar1 = 0x12002111;
1861     cpu->isar.id_isar2 = 0x11231111;
1862     cpu->isar.id_isar3 = 0x01102131;
1863     cpu->isar.id_isar4 = 0x141;
1864     cpu->reset_auxcr = 7;
1865 }
1866 
1867 static void arm1136_initfn(Object *obj)
1868 {
1869     ARMCPU *cpu = ARM_CPU(obj);
1870 
1871     cpu->dtb_compatible = "arm,arm1136";
1872     set_feature(&cpu->env, ARM_FEATURE_V6K);
1873     set_feature(&cpu->env, ARM_FEATURE_V6);
1874     set_feature(&cpu->env, ARM_FEATURE_VFP);
1875     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1876     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1877     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1878     cpu->midr = 0x4117b363;
1879     cpu->reset_fpsid = 0x410120b4;
1880     cpu->isar.mvfr0 = 0x11111111;
1881     cpu->isar.mvfr1 = 0x00000000;
1882     cpu->ctr = 0x1dd20d2;
1883     cpu->reset_sctlr = 0x00050078;
1884     cpu->id_pfr0 = 0x111;
1885     cpu->id_pfr1 = 0x1;
1886     cpu->id_dfr0 = 0x2;
1887     cpu->id_afr0 = 0x3;
1888     cpu->id_mmfr0 = 0x01130003;
1889     cpu->id_mmfr1 = 0x10030302;
1890     cpu->id_mmfr2 = 0x01222110;
1891     cpu->isar.id_isar0 = 0x00140011;
1892     cpu->isar.id_isar1 = 0x12002111;
1893     cpu->isar.id_isar2 = 0x11231111;
1894     cpu->isar.id_isar3 = 0x01102131;
1895     cpu->isar.id_isar4 = 0x141;
1896     cpu->reset_auxcr = 7;
1897 }
1898 
1899 static void arm1176_initfn(Object *obj)
1900 {
1901     ARMCPU *cpu = ARM_CPU(obj);
1902 
1903     cpu->dtb_compatible = "arm,arm1176";
1904     set_feature(&cpu->env, ARM_FEATURE_V6K);
1905     set_feature(&cpu->env, ARM_FEATURE_VFP);
1906     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1907     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1908     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1909     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1910     set_feature(&cpu->env, ARM_FEATURE_EL3);
1911     cpu->midr = 0x410fb767;
1912     cpu->reset_fpsid = 0x410120b5;
1913     cpu->isar.mvfr0 = 0x11111111;
1914     cpu->isar.mvfr1 = 0x00000000;
1915     cpu->ctr = 0x1dd20d2;
1916     cpu->reset_sctlr = 0x00050078;
1917     cpu->id_pfr0 = 0x111;
1918     cpu->id_pfr1 = 0x11;
1919     cpu->id_dfr0 = 0x33;
1920     cpu->id_afr0 = 0;
1921     cpu->id_mmfr0 = 0x01130003;
1922     cpu->id_mmfr1 = 0x10030302;
1923     cpu->id_mmfr2 = 0x01222100;
1924     cpu->isar.id_isar0 = 0x0140011;
1925     cpu->isar.id_isar1 = 0x12002111;
1926     cpu->isar.id_isar2 = 0x11231121;
1927     cpu->isar.id_isar3 = 0x01102131;
1928     cpu->isar.id_isar4 = 0x01141;
1929     cpu->reset_auxcr = 7;
1930 }
1931 
1932 static void arm11mpcore_initfn(Object *obj)
1933 {
1934     ARMCPU *cpu = ARM_CPU(obj);
1935 
1936     cpu->dtb_compatible = "arm,arm11mpcore";
1937     set_feature(&cpu->env, ARM_FEATURE_V6K);
1938     set_feature(&cpu->env, ARM_FEATURE_VFP);
1939     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1940     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1941     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1942     cpu->midr = 0x410fb022;
1943     cpu->reset_fpsid = 0x410120b4;
1944     cpu->isar.mvfr0 = 0x11111111;
1945     cpu->isar.mvfr1 = 0x00000000;
1946     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1947     cpu->id_pfr0 = 0x111;
1948     cpu->id_pfr1 = 0x1;
1949     cpu->id_dfr0 = 0;
1950     cpu->id_afr0 = 0x2;
1951     cpu->id_mmfr0 = 0x01100103;
1952     cpu->id_mmfr1 = 0x10020302;
1953     cpu->id_mmfr2 = 0x01222000;
1954     cpu->isar.id_isar0 = 0x00100011;
1955     cpu->isar.id_isar1 = 0x12002111;
1956     cpu->isar.id_isar2 = 0x11221011;
1957     cpu->isar.id_isar3 = 0x01102131;
1958     cpu->isar.id_isar4 = 0x141;
1959     cpu->reset_auxcr = 1;
1960 }
1961 
1962 static void cortex_m0_initfn(Object *obj)
1963 {
1964     ARMCPU *cpu = ARM_CPU(obj);
1965     set_feature(&cpu->env, ARM_FEATURE_V6);
1966     set_feature(&cpu->env, ARM_FEATURE_M);
1967 
1968     cpu->midr = 0x410cc200;
1969 }
1970 
1971 static void cortex_m3_initfn(Object *obj)
1972 {
1973     ARMCPU *cpu = ARM_CPU(obj);
1974     set_feature(&cpu->env, ARM_FEATURE_V7);
1975     set_feature(&cpu->env, ARM_FEATURE_M);
1976     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1977     cpu->midr = 0x410fc231;
1978     cpu->pmsav7_dregion = 8;
1979     cpu->id_pfr0 = 0x00000030;
1980     cpu->id_pfr1 = 0x00000200;
1981     cpu->id_dfr0 = 0x00100000;
1982     cpu->id_afr0 = 0x00000000;
1983     cpu->id_mmfr0 = 0x00000030;
1984     cpu->id_mmfr1 = 0x00000000;
1985     cpu->id_mmfr2 = 0x00000000;
1986     cpu->id_mmfr3 = 0x00000000;
1987     cpu->isar.id_isar0 = 0x01141110;
1988     cpu->isar.id_isar1 = 0x02111000;
1989     cpu->isar.id_isar2 = 0x21112231;
1990     cpu->isar.id_isar3 = 0x01111110;
1991     cpu->isar.id_isar4 = 0x01310102;
1992     cpu->isar.id_isar5 = 0x00000000;
1993     cpu->isar.id_isar6 = 0x00000000;
1994 }
1995 
1996 static void cortex_m4_initfn(Object *obj)
1997 {
1998     ARMCPU *cpu = ARM_CPU(obj);
1999 
2000     set_feature(&cpu->env, ARM_FEATURE_V7);
2001     set_feature(&cpu->env, ARM_FEATURE_M);
2002     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2003     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2004     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2005     cpu->midr = 0x410fc240; /* r0p0 */
2006     cpu->pmsav7_dregion = 8;
2007     cpu->isar.mvfr0 = 0x10110021;
2008     cpu->isar.mvfr1 = 0x11000011;
2009     cpu->isar.mvfr2 = 0x00000000;
2010     cpu->id_pfr0 = 0x00000030;
2011     cpu->id_pfr1 = 0x00000200;
2012     cpu->id_dfr0 = 0x00100000;
2013     cpu->id_afr0 = 0x00000000;
2014     cpu->id_mmfr0 = 0x00000030;
2015     cpu->id_mmfr1 = 0x00000000;
2016     cpu->id_mmfr2 = 0x00000000;
2017     cpu->id_mmfr3 = 0x00000000;
2018     cpu->isar.id_isar0 = 0x01141110;
2019     cpu->isar.id_isar1 = 0x02111000;
2020     cpu->isar.id_isar2 = 0x21112231;
2021     cpu->isar.id_isar3 = 0x01111110;
2022     cpu->isar.id_isar4 = 0x01310102;
2023     cpu->isar.id_isar5 = 0x00000000;
2024     cpu->isar.id_isar6 = 0x00000000;
2025 }
2026 
2027 static void cortex_m7_initfn(Object *obj)
2028 {
2029     ARMCPU *cpu = ARM_CPU(obj);
2030 
2031     set_feature(&cpu->env, ARM_FEATURE_V7);
2032     set_feature(&cpu->env, ARM_FEATURE_M);
2033     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2034     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2035     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2036     cpu->midr = 0x411fc272; /* r1p2 */
2037     cpu->pmsav7_dregion = 8;
2038     cpu->isar.mvfr0 = 0x10110221;
2039     cpu->isar.mvfr1 = 0x12000011;
2040     cpu->isar.mvfr2 = 0x00000040;
2041     cpu->id_pfr0 = 0x00000030;
2042     cpu->id_pfr1 = 0x00000200;
2043     cpu->id_dfr0 = 0x00100000;
2044     cpu->id_afr0 = 0x00000000;
2045     cpu->id_mmfr0 = 0x00100030;
2046     cpu->id_mmfr1 = 0x00000000;
2047     cpu->id_mmfr2 = 0x01000000;
2048     cpu->id_mmfr3 = 0x00000000;
2049     cpu->isar.id_isar0 = 0x01101110;
2050     cpu->isar.id_isar1 = 0x02112000;
2051     cpu->isar.id_isar2 = 0x20232231;
2052     cpu->isar.id_isar3 = 0x01111131;
2053     cpu->isar.id_isar4 = 0x01310132;
2054     cpu->isar.id_isar5 = 0x00000000;
2055     cpu->isar.id_isar6 = 0x00000000;
2056 }
2057 
2058 static void cortex_m33_initfn(Object *obj)
2059 {
2060     ARMCPU *cpu = ARM_CPU(obj);
2061 
2062     set_feature(&cpu->env, ARM_FEATURE_V8);
2063     set_feature(&cpu->env, ARM_FEATURE_M);
2064     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2065     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2066     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2067     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2068     cpu->midr = 0x410fd213; /* r0p3 */
2069     cpu->pmsav7_dregion = 16;
2070     cpu->sau_sregion = 8;
2071     cpu->isar.mvfr0 = 0x10110021;
2072     cpu->isar.mvfr1 = 0x11000011;
2073     cpu->isar.mvfr2 = 0x00000040;
2074     cpu->id_pfr0 = 0x00000030;
2075     cpu->id_pfr1 = 0x00000210;
2076     cpu->id_dfr0 = 0x00200000;
2077     cpu->id_afr0 = 0x00000000;
2078     cpu->id_mmfr0 = 0x00101F40;
2079     cpu->id_mmfr1 = 0x00000000;
2080     cpu->id_mmfr2 = 0x01000000;
2081     cpu->id_mmfr3 = 0x00000000;
2082     cpu->isar.id_isar0 = 0x01101110;
2083     cpu->isar.id_isar1 = 0x02212000;
2084     cpu->isar.id_isar2 = 0x20232232;
2085     cpu->isar.id_isar3 = 0x01111131;
2086     cpu->isar.id_isar4 = 0x01310132;
2087     cpu->isar.id_isar5 = 0x00000000;
2088     cpu->isar.id_isar6 = 0x00000000;
2089     cpu->clidr = 0x00000000;
2090     cpu->ctr = 0x8000c000;
2091 }
2092 
2093 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2094 {
2095     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2096     CPUClass *cc = CPU_CLASS(oc);
2097 
2098     acc->info = data;
2099 #ifndef CONFIG_USER_ONLY
2100     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2101 #endif
2102 
2103     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2104 }
2105 
2106 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2107     /* Dummy the TCM region regs for the moment */
2108     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2109       .access = PL1_RW, .type = ARM_CP_CONST },
2110     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2111       .access = PL1_RW, .type = ARM_CP_CONST },
2112     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2113       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2114     REGINFO_SENTINEL
2115 };
2116 
2117 static void cortex_r5_initfn(Object *obj)
2118 {
2119     ARMCPU *cpu = ARM_CPU(obj);
2120 
2121     set_feature(&cpu->env, ARM_FEATURE_V7);
2122     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2123     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2124     cpu->midr = 0x411fc153; /* r1p3 */
2125     cpu->id_pfr0 = 0x0131;
2126     cpu->id_pfr1 = 0x001;
2127     cpu->id_dfr0 = 0x010400;
2128     cpu->id_afr0 = 0x0;
2129     cpu->id_mmfr0 = 0x0210030;
2130     cpu->id_mmfr1 = 0x00000000;
2131     cpu->id_mmfr2 = 0x01200000;
2132     cpu->id_mmfr3 = 0x0211;
2133     cpu->isar.id_isar0 = 0x02101111;
2134     cpu->isar.id_isar1 = 0x13112111;
2135     cpu->isar.id_isar2 = 0x21232141;
2136     cpu->isar.id_isar3 = 0x01112131;
2137     cpu->isar.id_isar4 = 0x0010142;
2138     cpu->isar.id_isar5 = 0x0;
2139     cpu->isar.id_isar6 = 0x0;
2140     cpu->mp_is_up = true;
2141     cpu->pmsav7_dregion = 16;
2142     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2143 }
2144 
2145 static void cortex_r5f_initfn(Object *obj)
2146 {
2147     ARMCPU *cpu = ARM_CPU(obj);
2148 
2149     cortex_r5_initfn(obj);
2150     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2151     cpu->isar.mvfr0 = 0x10110221;
2152     cpu->isar.mvfr1 = 0x00000011;
2153 }
2154 
2155 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2156     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2157       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2158     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2159       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2160     REGINFO_SENTINEL
2161 };
2162 
2163 static void cortex_a8_initfn(Object *obj)
2164 {
2165     ARMCPU *cpu = ARM_CPU(obj);
2166 
2167     cpu->dtb_compatible = "arm,cortex-a8";
2168     set_feature(&cpu->env, ARM_FEATURE_V7);
2169     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2170     set_feature(&cpu->env, ARM_FEATURE_NEON);
2171     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2172     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2173     set_feature(&cpu->env, ARM_FEATURE_EL3);
2174     cpu->midr = 0x410fc080;
2175     cpu->reset_fpsid = 0x410330c0;
2176     cpu->isar.mvfr0 = 0x11110222;
2177     cpu->isar.mvfr1 = 0x00011111;
2178     cpu->ctr = 0x82048004;
2179     cpu->reset_sctlr = 0x00c50078;
2180     cpu->id_pfr0 = 0x1031;
2181     cpu->id_pfr1 = 0x11;
2182     cpu->id_dfr0 = 0x400;
2183     cpu->id_afr0 = 0;
2184     cpu->id_mmfr0 = 0x31100003;
2185     cpu->id_mmfr1 = 0x20000000;
2186     cpu->id_mmfr2 = 0x01202000;
2187     cpu->id_mmfr3 = 0x11;
2188     cpu->isar.id_isar0 = 0x00101111;
2189     cpu->isar.id_isar1 = 0x12112111;
2190     cpu->isar.id_isar2 = 0x21232031;
2191     cpu->isar.id_isar3 = 0x11112131;
2192     cpu->isar.id_isar4 = 0x00111142;
2193     cpu->dbgdidr = 0x15141000;
2194     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2195     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2196     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2197     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2198     cpu->reset_auxcr = 2;
2199     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2200 }
2201 
2202 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2203     /* power_control should be set to maximum latency. Again,
2204      * default to 0 and set by private hook
2205      */
2206     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2207       .access = PL1_RW, .resetvalue = 0,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2209     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2210       .access = PL1_RW, .resetvalue = 0,
2211       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2212     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2213       .access = PL1_RW, .resetvalue = 0,
2214       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2215     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2216       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2217     /* TLB lockdown control */
2218     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2219       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2220     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2221       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2222     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2223       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2224     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2225       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2226     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2227       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2228     REGINFO_SENTINEL
2229 };
2230 
2231 static void cortex_a9_initfn(Object *obj)
2232 {
2233     ARMCPU *cpu = ARM_CPU(obj);
2234 
2235     cpu->dtb_compatible = "arm,cortex-a9";
2236     set_feature(&cpu->env, ARM_FEATURE_V7);
2237     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2238     set_feature(&cpu->env, ARM_FEATURE_NEON);
2239     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2240     set_feature(&cpu->env, ARM_FEATURE_EL3);
2241     /* Note that A9 supports the MP extensions even for
2242      * A9UP and single-core A9MP (which are both different
2243      * and valid configurations; we don't model A9UP).
2244      */
2245     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2246     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2247     cpu->midr = 0x410fc090;
2248     cpu->reset_fpsid = 0x41033090;
2249     cpu->isar.mvfr0 = 0x11110222;
2250     cpu->isar.mvfr1 = 0x01111111;
2251     cpu->ctr = 0x80038003;
2252     cpu->reset_sctlr = 0x00c50078;
2253     cpu->id_pfr0 = 0x1031;
2254     cpu->id_pfr1 = 0x11;
2255     cpu->id_dfr0 = 0x000;
2256     cpu->id_afr0 = 0;
2257     cpu->id_mmfr0 = 0x00100103;
2258     cpu->id_mmfr1 = 0x20000000;
2259     cpu->id_mmfr2 = 0x01230000;
2260     cpu->id_mmfr3 = 0x00002111;
2261     cpu->isar.id_isar0 = 0x00101111;
2262     cpu->isar.id_isar1 = 0x13112111;
2263     cpu->isar.id_isar2 = 0x21232041;
2264     cpu->isar.id_isar3 = 0x11112131;
2265     cpu->isar.id_isar4 = 0x00111142;
2266     cpu->dbgdidr = 0x35141000;
2267     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2268     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2269     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2270     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2271 }
2272 
2273 #ifndef CONFIG_USER_ONLY
2274 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2275 {
2276     MachineState *ms = MACHINE(qdev_get_machine());
2277 
2278     /* Linux wants the number of processors from here.
2279      * Might as well set the interrupt-controller bit too.
2280      */
2281     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2282 }
2283 #endif
2284 
2285 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2286 #ifndef CONFIG_USER_ONLY
2287     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2288       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2289       .writefn = arm_cp_write_ignore, },
2290 #endif
2291     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2292       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2293     REGINFO_SENTINEL
2294 };
2295 
2296 static void cortex_a7_initfn(Object *obj)
2297 {
2298     ARMCPU *cpu = ARM_CPU(obj);
2299 
2300     cpu->dtb_compatible = "arm,cortex-a7";
2301     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2302     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2303     set_feature(&cpu->env, ARM_FEATURE_NEON);
2304     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2305     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2306     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2307     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2308     set_feature(&cpu->env, ARM_FEATURE_EL2);
2309     set_feature(&cpu->env, ARM_FEATURE_EL3);
2310     set_feature(&cpu->env, ARM_FEATURE_PMU);
2311     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2312     cpu->midr = 0x410fc075;
2313     cpu->reset_fpsid = 0x41023075;
2314     cpu->isar.mvfr0 = 0x10110222;
2315     cpu->isar.mvfr1 = 0x11111111;
2316     cpu->ctr = 0x84448003;
2317     cpu->reset_sctlr = 0x00c50078;
2318     cpu->id_pfr0 = 0x00001131;
2319     cpu->id_pfr1 = 0x00011011;
2320     cpu->id_dfr0 = 0x02010555;
2321     cpu->id_afr0 = 0x00000000;
2322     cpu->id_mmfr0 = 0x10101105;
2323     cpu->id_mmfr1 = 0x40000000;
2324     cpu->id_mmfr2 = 0x01240000;
2325     cpu->id_mmfr3 = 0x02102211;
2326     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2327      * table 4-41 gives 0x02101110, which includes the arm div insns.
2328      */
2329     cpu->isar.id_isar0 = 0x02101110;
2330     cpu->isar.id_isar1 = 0x13112111;
2331     cpu->isar.id_isar2 = 0x21232041;
2332     cpu->isar.id_isar3 = 0x11112131;
2333     cpu->isar.id_isar4 = 0x10011142;
2334     cpu->dbgdidr = 0x3515f005;
2335     cpu->clidr = 0x0a200023;
2336     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2337     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2338     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2339     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2340 }
2341 
2342 static void cortex_a15_initfn(Object *obj)
2343 {
2344     ARMCPU *cpu = ARM_CPU(obj);
2345 
2346     cpu->dtb_compatible = "arm,cortex-a15";
2347     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2348     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2349     set_feature(&cpu->env, ARM_FEATURE_NEON);
2350     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2351     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2352     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2353     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2354     set_feature(&cpu->env, ARM_FEATURE_EL2);
2355     set_feature(&cpu->env, ARM_FEATURE_EL3);
2356     set_feature(&cpu->env, ARM_FEATURE_PMU);
2357     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2358     cpu->midr = 0x412fc0f1;
2359     cpu->reset_fpsid = 0x410430f0;
2360     cpu->isar.mvfr0 = 0x10110222;
2361     cpu->isar.mvfr1 = 0x11111111;
2362     cpu->ctr = 0x8444c004;
2363     cpu->reset_sctlr = 0x00c50078;
2364     cpu->id_pfr0 = 0x00001131;
2365     cpu->id_pfr1 = 0x00011011;
2366     cpu->id_dfr0 = 0x02010555;
2367     cpu->id_afr0 = 0x00000000;
2368     cpu->id_mmfr0 = 0x10201105;
2369     cpu->id_mmfr1 = 0x20000000;
2370     cpu->id_mmfr2 = 0x01240000;
2371     cpu->id_mmfr3 = 0x02102211;
2372     cpu->isar.id_isar0 = 0x02101110;
2373     cpu->isar.id_isar1 = 0x13112111;
2374     cpu->isar.id_isar2 = 0x21232041;
2375     cpu->isar.id_isar3 = 0x11112131;
2376     cpu->isar.id_isar4 = 0x10011142;
2377     cpu->dbgdidr = 0x3515f021;
2378     cpu->clidr = 0x0a200023;
2379     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2380     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2381     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2382     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2383 }
2384 
2385 static void ti925t_initfn(Object *obj)
2386 {
2387     ARMCPU *cpu = ARM_CPU(obj);
2388     set_feature(&cpu->env, ARM_FEATURE_V4T);
2389     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2390     cpu->midr = ARM_CPUID_TI925T;
2391     cpu->ctr = 0x5109149;
2392     cpu->reset_sctlr = 0x00000070;
2393 }
2394 
2395 static void sa1100_initfn(Object *obj)
2396 {
2397     ARMCPU *cpu = ARM_CPU(obj);
2398 
2399     cpu->dtb_compatible = "intel,sa1100";
2400     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2401     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2402     cpu->midr = 0x4401A11B;
2403     cpu->reset_sctlr = 0x00000070;
2404 }
2405 
2406 static void sa1110_initfn(Object *obj)
2407 {
2408     ARMCPU *cpu = ARM_CPU(obj);
2409     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2410     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2411     cpu->midr = 0x6901B119;
2412     cpu->reset_sctlr = 0x00000070;
2413 }
2414 
2415 static void pxa250_initfn(Object *obj)
2416 {
2417     ARMCPU *cpu = ARM_CPU(obj);
2418 
2419     cpu->dtb_compatible = "marvell,xscale";
2420     set_feature(&cpu->env, ARM_FEATURE_V5);
2421     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2422     cpu->midr = 0x69052100;
2423     cpu->ctr = 0xd172172;
2424     cpu->reset_sctlr = 0x00000078;
2425 }
2426 
2427 static void pxa255_initfn(Object *obj)
2428 {
2429     ARMCPU *cpu = ARM_CPU(obj);
2430 
2431     cpu->dtb_compatible = "marvell,xscale";
2432     set_feature(&cpu->env, ARM_FEATURE_V5);
2433     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2434     cpu->midr = 0x69052d00;
2435     cpu->ctr = 0xd172172;
2436     cpu->reset_sctlr = 0x00000078;
2437 }
2438 
2439 static void pxa260_initfn(Object *obj)
2440 {
2441     ARMCPU *cpu = ARM_CPU(obj);
2442 
2443     cpu->dtb_compatible = "marvell,xscale";
2444     set_feature(&cpu->env, ARM_FEATURE_V5);
2445     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2446     cpu->midr = 0x69052903;
2447     cpu->ctr = 0xd172172;
2448     cpu->reset_sctlr = 0x00000078;
2449 }
2450 
2451 static void pxa261_initfn(Object *obj)
2452 {
2453     ARMCPU *cpu = ARM_CPU(obj);
2454 
2455     cpu->dtb_compatible = "marvell,xscale";
2456     set_feature(&cpu->env, ARM_FEATURE_V5);
2457     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2458     cpu->midr = 0x69052d05;
2459     cpu->ctr = 0xd172172;
2460     cpu->reset_sctlr = 0x00000078;
2461 }
2462 
2463 static void pxa262_initfn(Object *obj)
2464 {
2465     ARMCPU *cpu = ARM_CPU(obj);
2466 
2467     cpu->dtb_compatible = "marvell,xscale";
2468     set_feature(&cpu->env, ARM_FEATURE_V5);
2469     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2470     cpu->midr = 0x69052d06;
2471     cpu->ctr = 0xd172172;
2472     cpu->reset_sctlr = 0x00000078;
2473 }
2474 
2475 static void pxa270a0_initfn(Object *obj)
2476 {
2477     ARMCPU *cpu = ARM_CPU(obj);
2478 
2479     cpu->dtb_compatible = "marvell,xscale";
2480     set_feature(&cpu->env, ARM_FEATURE_V5);
2481     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2482     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2483     cpu->midr = 0x69054110;
2484     cpu->ctr = 0xd172172;
2485     cpu->reset_sctlr = 0x00000078;
2486 }
2487 
2488 static void pxa270a1_initfn(Object *obj)
2489 {
2490     ARMCPU *cpu = ARM_CPU(obj);
2491 
2492     cpu->dtb_compatible = "marvell,xscale";
2493     set_feature(&cpu->env, ARM_FEATURE_V5);
2494     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2495     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2496     cpu->midr = 0x69054111;
2497     cpu->ctr = 0xd172172;
2498     cpu->reset_sctlr = 0x00000078;
2499 }
2500 
2501 static void pxa270b0_initfn(Object *obj)
2502 {
2503     ARMCPU *cpu = ARM_CPU(obj);
2504 
2505     cpu->dtb_compatible = "marvell,xscale";
2506     set_feature(&cpu->env, ARM_FEATURE_V5);
2507     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2508     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2509     cpu->midr = 0x69054112;
2510     cpu->ctr = 0xd172172;
2511     cpu->reset_sctlr = 0x00000078;
2512 }
2513 
2514 static void pxa270b1_initfn(Object *obj)
2515 {
2516     ARMCPU *cpu = ARM_CPU(obj);
2517 
2518     cpu->dtb_compatible = "marvell,xscale";
2519     set_feature(&cpu->env, ARM_FEATURE_V5);
2520     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2521     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2522     cpu->midr = 0x69054113;
2523     cpu->ctr = 0xd172172;
2524     cpu->reset_sctlr = 0x00000078;
2525 }
2526 
2527 static void pxa270c0_initfn(Object *obj)
2528 {
2529     ARMCPU *cpu = ARM_CPU(obj);
2530 
2531     cpu->dtb_compatible = "marvell,xscale";
2532     set_feature(&cpu->env, ARM_FEATURE_V5);
2533     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2534     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2535     cpu->midr = 0x69054114;
2536     cpu->ctr = 0xd172172;
2537     cpu->reset_sctlr = 0x00000078;
2538 }
2539 
2540 static void pxa270c5_initfn(Object *obj)
2541 {
2542     ARMCPU *cpu = ARM_CPU(obj);
2543 
2544     cpu->dtb_compatible = "marvell,xscale";
2545     set_feature(&cpu->env, ARM_FEATURE_V5);
2546     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2547     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2548     cpu->midr = 0x69054117;
2549     cpu->ctr = 0xd172172;
2550     cpu->reset_sctlr = 0x00000078;
2551 }
2552 
2553 #ifndef TARGET_AARCH64
2554 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2555  * otherwise, a CPU with as many features enabled as our emulation supports.
2556  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2557  * this only needs to handle 32 bits.
2558  */
2559 static void arm_max_initfn(Object *obj)
2560 {
2561     ARMCPU *cpu = ARM_CPU(obj);
2562 
2563     if (kvm_enabled()) {
2564         kvm_arm_set_cpu_features_from_host(cpu);
2565     } else {
2566         cortex_a15_initfn(obj);
2567 
2568         /* old-style VFP short-vector support */
2569         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2570 
2571 #ifdef CONFIG_USER_ONLY
2572         /* We don't set these in system emulation mode for the moment,
2573          * since we don't correctly set (all of) the ID registers to
2574          * advertise them.
2575          */
2576         set_feature(&cpu->env, ARM_FEATURE_V8);
2577         {
2578             uint32_t t;
2579 
2580             t = cpu->isar.id_isar5;
2581             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2582             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2583             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2584             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2585             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2586             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2587             cpu->isar.id_isar5 = t;
2588 
2589             t = cpu->isar.id_isar6;
2590             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2591             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2592             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2593             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2594             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2595             cpu->isar.id_isar6 = t;
2596 
2597             t = cpu->isar.mvfr1;
2598             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2599             cpu->isar.mvfr1 = t;
2600 
2601             t = cpu->isar.mvfr2;
2602             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2603             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2604             cpu->isar.mvfr2 = t;
2605 
2606             t = cpu->id_mmfr4;
2607             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2608             cpu->id_mmfr4 = t;
2609         }
2610 #endif
2611     }
2612 }
2613 #endif
2614 
2615 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2616 
2617 struct ARMCPUInfo {
2618     const char *name;
2619     void (*initfn)(Object *obj);
2620     void (*class_init)(ObjectClass *oc, void *data);
2621 };
2622 
2623 static const ARMCPUInfo arm_cpus[] = {
2624 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2625     { .name = "arm926",      .initfn = arm926_initfn },
2626     { .name = "arm946",      .initfn = arm946_initfn },
2627     { .name = "arm1026",     .initfn = arm1026_initfn },
2628     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2629      * older core than plain "arm1136". In particular this does not
2630      * have the v6K features.
2631      */
2632     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2633     { .name = "arm1136",     .initfn = arm1136_initfn },
2634     { .name = "arm1176",     .initfn = arm1176_initfn },
2635     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2636     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2637                              .class_init = arm_v7m_class_init },
2638     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2639                              .class_init = arm_v7m_class_init },
2640     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2641                              .class_init = arm_v7m_class_init },
2642     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2643                              .class_init = arm_v7m_class_init },
2644     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2645                              .class_init = arm_v7m_class_init },
2646     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2647     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2648     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2649     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2650     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2651     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2652     { .name = "ti925t",      .initfn = ti925t_initfn },
2653     { .name = "sa1100",      .initfn = sa1100_initfn },
2654     { .name = "sa1110",      .initfn = sa1110_initfn },
2655     { .name = "pxa250",      .initfn = pxa250_initfn },
2656     { .name = "pxa255",      .initfn = pxa255_initfn },
2657     { .name = "pxa260",      .initfn = pxa260_initfn },
2658     { .name = "pxa261",      .initfn = pxa261_initfn },
2659     { .name = "pxa262",      .initfn = pxa262_initfn },
2660     /* "pxa270" is an alias for "pxa270-a0" */
2661     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2662     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2663     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2664     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2665     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2666     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2667     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2668 #ifndef TARGET_AARCH64
2669     { .name = "max",         .initfn = arm_max_initfn },
2670 #endif
2671 #ifdef CONFIG_USER_ONLY
2672     { .name = "any",         .initfn = arm_max_initfn },
2673 #endif
2674 #endif
2675     { .name = NULL }
2676 };
2677 
2678 static Property arm_cpu_properties[] = {
2679     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2680     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2681     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2682     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2683                         mp_affinity, ARM64_AFFINITY_INVALID),
2684     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2685     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2686     DEFINE_PROP_END_OF_LIST()
2687 };
2688 
2689 static gchar *arm_gdb_arch_name(CPUState *cs)
2690 {
2691     ARMCPU *cpu = ARM_CPU(cs);
2692     CPUARMState *env = &cpu->env;
2693 
2694     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2695         return g_strdup("iwmmxt");
2696     }
2697     return g_strdup("arm");
2698 }
2699 
2700 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2701 {
2702     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2703     CPUClass *cc = CPU_CLASS(acc);
2704     DeviceClass *dc = DEVICE_CLASS(oc);
2705 
2706     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2707                                     &acc->parent_realize);
2708     dc->props = arm_cpu_properties;
2709 
2710     acc->parent_reset = cc->reset;
2711     cc->reset = arm_cpu_reset;
2712 
2713     cc->class_by_name = arm_cpu_class_by_name;
2714     cc->has_work = arm_cpu_has_work;
2715     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2716     cc->dump_state = arm_cpu_dump_state;
2717     cc->set_pc = arm_cpu_set_pc;
2718     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2719     cc->gdb_read_register = arm_cpu_gdb_read_register;
2720     cc->gdb_write_register = arm_cpu_gdb_write_register;
2721 #ifndef CONFIG_USER_ONLY
2722     cc->do_interrupt = arm_cpu_do_interrupt;
2723     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2724     cc->asidx_from_attrs = arm_asidx_from_attrs;
2725     cc->vmsd = &vmstate_arm_cpu;
2726     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2727     cc->write_elf64_note = arm_cpu_write_elf64_note;
2728     cc->write_elf32_note = arm_cpu_write_elf32_note;
2729 #endif
2730     cc->gdb_num_core_regs = 26;
2731     cc->gdb_core_xml_file = "arm-core.xml";
2732     cc->gdb_arch_name = arm_gdb_arch_name;
2733     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2734     cc->gdb_stop_before_watchpoint = true;
2735     cc->disas_set_info = arm_disas_set_info;
2736 #ifdef CONFIG_TCG
2737     cc->tcg_initialize = arm_translate_init;
2738     cc->tlb_fill = arm_cpu_tlb_fill;
2739     cc->debug_excp_handler = arm_debug_excp_handler;
2740     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2741 #if !defined(CONFIG_USER_ONLY)
2742     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2743     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2744     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2745 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2746 #endif
2747 }
2748 
2749 #ifdef CONFIG_KVM
2750 static void arm_host_initfn(Object *obj)
2751 {
2752     ARMCPU *cpu = ARM_CPU(obj);
2753 
2754     kvm_arm_set_cpu_features_from_host(cpu);
2755     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2756         aarch64_add_sve_properties(obj);
2757     }
2758     arm_cpu_post_init(obj);
2759 }
2760 
2761 static const TypeInfo host_arm_cpu_type_info = {
2762     .name = TYPE_ARM_HOST_CPU,
2763 #ifdef TARGET_AARCH64
2764     .parent = TYPE_AARCH64_CPU,
2765 #else
2766     .parent = TYPE_ARM_CPU,
2767 #endif
2768     .instance_init = arm_host_initfn,
2769 };
2770 
2771 #endif
2772 
2773 static void arm_cpu_instance_init(Object *obj)
2774 {
2775     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2776 
2777     acc->info->initfn(obj);
2778     arm_cpu_post_init(obj);
2779 }
2780 
2781 static void cpu_register_class_init(ObjectClass *oc, void *data)
2782 {
2783     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2784 
2785     acc->info = data;
2786 }
2787 
2788 static void cpu_register(const ARMCPUInfo *info)
2789 {
2790     TypeInfo type_info = {
2791         .parent = TYPE_ARM_CPU,
2792         .instance_size = sizeof(ARMCPU),
2793         .instance_init = arm_cpu_instance_init,
2794         .class_size = sizeof(ARMCPUClass),
2795         .class_init = info->class_init ?: cpu_register_class_init,
2796         .class_data = (void *)info,
2797     };
2798 
2799     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2800     type_register(&type_info);
2801     g_free((void *)type_info.name);
2802 }
2803 
2804 static const TypeInfo arm_cpu_type_info = {
2805     .name = TYPE_ARM_CPU,
2806     .parent = TYPE_CPU,
2807     .instance_size = sizeof(ARMCPU),
2808     .instance_init = arm_cpu_initfn,
2809     .instance_finalize = arm_cpu_finalizefn,
2810     .abstract = true,
2811     .class_size = sizeof(ARMCPUClass),
2812     .class_init = arm_cpu_class_init,
2813 };
2814 
2815 static const TypeInfo idau_interface_type_info = {
2816     .name = TYPE_IDAU_INTERFACE,
2817     .parent = TYPE_INTERFACE,
2818     .class_size = sizeof(IDAUInterfaceClass),
2819 };
2820 
2821 static void arm_cpu_register_types(void)
2822 {
2823     const ARMCPUInfo *info = arm_cpus;
2824 
2825     type_register_static(&arm_cpu_type_info);
2826     type_register_static(&idau_interface_type_info);
2827 
2828     while (info->name) {
2829         cpu_register(info);
2830         info++;
2831     }
2832 
2833 #ifdef CONFIG_KVM
2834     type_register_static(&host_arm_cpu_type_info);
2835 #endif
2836 }
2837 
2838 type_init(arm_cpu_register_types)
2839