1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu-common.h" 24 #include "target/arm/idau.h" 25 #include "qemu/module.h" 26 #include "qapi/error.h" 27 #include "qapi/visitor.h" 28 #include "cpu.h" 29 #include "internals.h" 30 #include "exec/exec-all.h" 31 #include "hw/qdev-properties.h" 32 #if !defined(CONFIG_USER_ONLY) 33 #include "hw/loader.h" 34 #include "hw/boards.h" 35 #endif 36 #include "sysemu/sysemu.h" 37 #include "sysemu/tcg.h" 38 #include "sysemu/hw_accel.h" 39 #include "kvm_arm.h" 40 #include "disas/capstone.h" 41 #include "fpu/softfloat.h" 42 43 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 CPUARMState *env = &cpu->env; 47 48 if (is_a64(env)) { 49 env->pc = value; 50 env->thumb = 0; 51 } else { 52 env->regs[15] = value & ~1; 53 env->thumb = value & 1; 54 } 55 } 56 57 #ifdef CONFIG_TCG 58 static void arm_cpu_synchronize_from_tb(CPUState *cs, 59 const TranslationBlock *tb) 60 { 61 ARMCPU *cpu = ARM_CPU(cs); 62 CPUARMState *env = &cpu->env; 63 64 /* 65 * It's OK to look at env for the current mode here, because it's 66 * never possible for an AArch64 TB to chain to an AArch32 TB. 67 */ 68 if (is_a64(env)) { 69 env->pc = tb->pc; 70 } else { 71 env->regs[15] = tb->pc; 72 } 73 } 74 #endif /* CONFIG_TCG */ 75 76 static bool arm_cpu_has_work(CPUState *cs) 77 { 78 ARMCPU *cpu = ARM_CPU(cs); 79 80 return (cpu->power_state != PSCI_OFF) 81 && cs->interrupt_request & 82 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 83 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 84 | CPU_INTERRUPT_EXITTB); 85 } 86 87 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 88 void *opaque) 89 { 90 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 91 92 entry->hook = hook; 93 entry->opaque = opaque; 94 95 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 96 } 97 98 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 99 void *opaque) 100 { 101 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 102 103 entry->hook = hook; 104 entry->opaque = opaque; 105 106 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 107 } 108 109 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 110 { 111 /* Reset a single ARMCPRegInfo register */ 112 ARMCPRegInfo *ri = value; 113 ARMCPU *cpu = opaque; 114 115 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 116 return; 117 } 118 119 if (ri->resetfn) { 120 ri->resetfn(&cpu->env, ri); 121 return; 122 } 123 124 /* A zero offset is never possible as it would be regs[0] 125 * so we use it to indicate that reset is being handled elsewhere. 126 * This is basically only used for fields in non-core coprocessors 127 * (like the pxa2xx ones). 128 */ 129 if (!ri->fieldoffset) { 130 return; 131 } 132 133 if (cpreg_field_is_64bit(ri)) { 134 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 135 } else { 136 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 137 } 138 } 139 140 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 141 { 142 /* Purely an assertion check: we've already done reset once, 143 * so now check that running the reset for the cpreg doesn't 144 * change its value. This traps bugs where two different cpregs 145 * both try to reset the same state field but to different values. 146 */ 147 ARMCPRegInfo *ri = value; 148 ARMCPU *cpu = opaque; 149 uint64_t oldvalue, newvalue; 150 151 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 152 return; 153 } 154 155 oldvalue = read_raw_cp_reg(&cpu->env, ri); 156 cp_reg_reset(key, value, opaque); 157 newvalue = read_raw_cp_reg(&cpu->env, ri); 158 assert(oldvalue == newvalue); 159 } 160 161 static void arm_cpu_reset(DeviceState *dev) 162 { 163 CPUState *s = CPU(dev); 164 ARMCPU *cpu = ARM_CPU(s); 165 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 166 CPUARMState *env = &cpu->env; 167 168 acc->parent_reset(dev); 169 170 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 171 172 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 173 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 174 175 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 176 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 177 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 178 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 179 180 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 181 182 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 183 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 184 } 185 186 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 187 /* 64 bit CPUs always start in 64 bit mode */ 188 env->aarch64 = 1; 189 #if defined(CONFIG_USER_ONLY) 190 env->pstate = PSTATE_MODE_EL0t; 191 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 192 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 193 /* Enable all PAC keys. */ 194 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 195 SCTLR_EnDA | SCTLR_EnDB); 196 /* and to the FP/Neon instructions */ 197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 198 /* and to the SVE instructions */ 199 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 200 /* with reasonable vector length */ 201 if (cpu_isar_feature(aa64_sve, cpu)) { 202 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3); 203 } 204 /* 205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 206 * turning on both here will produce smaller code and otherwise 207 * make no difference to the user-level emulation. 208 * 209 * In sve_probe_page, we assume that this is set. 210 * Do not modify this without other changes. 211 */ 212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 213 #else 214 /* Reset into the highest available EL */ 215 if (arm_feature(env, ARM_FEATURE_EL3)) { 216 env->pstate = PSTATE_MODE_EL3h; 217 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 218 env->pstate = PSTATE_MODE_EL2h; 219 } else { 220 env->pstate = PSTATE_MODE_EL1h; 221 } 222 env->pc = cpu->rvbar; 223 #endif 224 } else { 225 #if defined(CONFIG_USER_ONLY) 226 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 228 #endif 229 } 230 231 #if defined(CONFIG_USER_ONLY) 232 env->uncached_cpsr = ARM_CPU_MODE_USR; 233 /* For user mode we must enable access to coprocessors */ 234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 236 env->cp15.c15_cpar = 3; 237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 238 env->cp15.c15_cpar = 1; 239 } 240 #else 241 242 /* 243 * If the highest available EL is EL2, AArch32 will start in Hyp 244 * mode; otherwise it starts in SVC. Note that if we start in 245 * AArch64 then these values in the uncached_cpsr will be ignored. 246 */ 247 if (arm_feature(env, ARM_FEATURE_EL2) && 248 !arm_feature(env, ARM_FEATURE_EL3)) { 249 env->uncached_cpsr = ARM_CPU_MODE_HYP; 250 } else { 251 env->uncached_cpsr = ARM_CPU_MODE_SVC; 252 } 253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 254 255 if (arm_feature(env, ARM_FEATURE_M)) { 256 uint32_t initial_msp; /* Loaded from 0x0 */ 257 uint32_t initial_pc; /* Loaded from 0x4 */ 258 uint8_t *rom; 259 uint32_t vecbase; 260 261 if (cpu_isar_feature(aa32_lob, cpu)) { 262 /* 263 * LTPSIZE is constant 4 if MVE not implemented, and resets 264 * to an UNKNOWN value if MVE is implemented. We choose to 265 * always reset to 4. 266 */ 267 env->v7m.ltpsize = 4; 268 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 269 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 270 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 271 } 272 273 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 274 env->v7m.secure = true; 275 } else { 276 /* This bit resets to 0 if security is supported, but 1 if 277 * it is not. The bit is not present in v7M, but we set it 278 * here so we can avoid having to make checks on it conditional 279 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 280 */ 281 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 282 /* 283 * Set NSACR to indicate "NS access permitted to everything"; 284 * this avoids having to have all the tests of it being 285 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 286 * v8.1M the guest-visible value of NSACR in a CPU without the 287 * Security Extension is 0xcff. 288 */ 289 env->v7m.nsacr = 0xcff; 290 } 291 292 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 293 * that it resets to 1, so QEMU always does that rather than making 294 * it dependent on CPU model. In v8M it is RES1. 295 */ 296 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 297 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 298 if (arm_feature(env, ARM_FEATURE_V8)) { 299 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 300 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 301 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 302 } 303 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 304 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 305 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 306 } 307 308 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 309 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 310 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 311 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 312 } 313 /* Unlike A/R profile, M profile defines the reset LR value */ 314 env->regs[14] = 0xffffffff; 315 316 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 317 318 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 319 vecbase = env->v7m.vecbase[env->v7m.secure]; 320 rom = rom_ptr(vecbase, 8); 321 if (rom) { 322 /* Address zero is covered by ROM which hasn't yet been 323 * copied into physical memory. 324 */ 325 initial_msp = ldl_p(rom); 326 initial_pc = ldl_p(rom + 4); 327 } else { 328 /* Address zero not covered by a ROM blob, or the ROM blob 329 * is in non-modifiable memory and this is a second reset after 330 * it got copied into memory. In the latter case, rom_ptr 331 * will return a NULL pointer and we should use ldl_phys instead. 332 */ 333 initial_msp = ldl_phys(s->as, vecbase); 334 initial_pc = ldl_phys(s->as, vecbase + 4); 335 } 336 337 env->regs[13] = initial_msp & 0xFFFFFFFC; 338 env->regs[15] = initial_pc & ~1; 339 env->thumb = initial_pc & 1; 340 } 341 342 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 343 * executing as AArch32 then check if highvecs are enabled and 344 * adjust the PC accordingly. 345 */ 346 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 347 env->regs[15] = 0xFFFF0000; 348 } 349 350 /* M profile requires that reset clears the exclusive monitor; 351 * A profile does not, but clearing it makes more sense than having it 352 * set with an exclusive access on address zero. 353 */ 354 arm_clear_exclusive(env); 355 356 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 357 #endif 358 359 if (arm_feature(env, ARM_FEATURE_PMSA)) { 360 if (cpu->pmsav7_dregion > 0) { 361 if (arm_feature(env, ARM_FEATURE_V8)) { 362 memset(env->pmsav8.rbar[M_REG_NS], 0, 363 sizeof(*env->pmsav8.rbar[M_REG_NS]) 364 * cpu->pmsav7_dregion); 365 memset(env->pmsav8.rlar[M_REG_NS], 0, 366 sizeof(*env->pmsav8.rlar[M_REG_NS]) 367 * cpu->pmsav7_dregion); 368 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 369 memset(env->pmsav8.rbar[M_REG_S], 0, 370 sizeof(*env->pmsav8.rbar[M_REG_S]) 371 * cpu->pmsav7_dregion); 372 memset(env->pmsav8.rlar[M_REG_S], 0, 373 sizeof(*env->pmsav8.rlar[M_REG_S]) 374 * cpu->pmsav7_dregion); 375 } 376 } else if (arm_feature(env, ARM_FEATURE_V7)) { 377 memset(env->pmsav7.drbar, 0, 378 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 379 memset(env->pmsav7.drsr, 0, 380 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 381 memset(env->pmsav7.dracr, 0, 382 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 383 } 384 } 385 env->pmsav7.rnr[M_REG_NS] = 0; 386 env->pmsav7.rnr[M_REG_S] = 0; 387 env->pmsav8.mair0[M_REG_NS] = 0; 388 env->pmsav8.mair0[M_REG_S] = 0; 389 env->pmsav8.mair1[M_REG_NS] = 0; 390 env->pmsav8.mair1[M_REG_S] = 0; 391 } 392 393 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 394 if (cpu->sau_sregion > 0) { 395 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 396 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 397 } 398 env->sau.rnr = 0; 399 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 400 * the Cortex-M33 does. 401 */ 402 env->sau.ctrl = 0; 403 } 404 405 set_flush_to_zero(1, &env->vfp.standard_fp_status); 406 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 407 set_default_nan_mode(1, &env->vfp.standard_fp_status); 408 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 409 set_float_detect_tininess(float_tininess_before_rounding, 410 &env->vfp.fp_status); 411 set_float_detect_tininess(float_tininess_before_rounding, 412 &env->vfp.standard_fp_status); 413 set_float_detect_tininess(float_tininess_before_rounding, 414 &env->vfp.fp_status_f16); 415 set_float_detect_tininess(float_tininess_before_rounding, 416 &env->vfp.standard_fp_status_f16); 417 #ifndef CONFIG_USER_ONLY 418 if (kvm_enabled()) { 419 kvm_arm_reset_vcpu(cpu); 420 } 421 #endif 422 423 hw_breakpoint_update_all(cpu); 424 hw_watchpoint_update_all(cpu); 425 arm_rebuild_hflags(env); 426 } 427 428 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 429 unsigned int target_el, 430 unsigned int cur_el, bool secure, 431 uint64_t hcr_el2) 432 { 433 CPUARMState *env = cs->env_ptr; 434 bool pstate_unmasked; 435 bool unmasked = false; 436 437 /* 438 * Don't take exceptions if they target a lower EL. 439 * This check should catch any exceptions that would not be taken 440 * but left pending. 441 */ 442 if (cur_el > target_el) { 443 return false; 444 } 445 446 switch (excp_idx) { 447 case EXCP_FIQ: 448 pstate_unmasked = !(env->daif & PSTATE_F); 449 break; 450 451 case EXCP_IRQ: 452 pstate_unmasked = !(env->daif & PSTATE_I); 453 break; 454 455 case EXCP_VFIQ: 456 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 457 /* VFIQs are only taken when hypervized. */ 458 return false; 459 } 460 return !(env->daif & PSTATE_F); 461 case EXCP_VIRQ: 462 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 463 /* VIRQs are only taken when hypervized. */ 464 return false; 465 } 466 return !(env->daif & PSTATE_I); 467 default: 468 g_assert_not_reached(); 469 } 470 471 /* 472 * Use the target EL, current execution state and SCR/HCR settings to 473 * determine whether the corresponding CPSR bit is used to mask the 474 * interrupt. 475 */ 476 if ((target_el > cur_el) && (target_el != 1)) { 477 /* Exceptions targeting a higher EL may not be maskable */ 478 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 479 /* 480 * 64-bit masking rules are simple: exceptions to EL3 481 * can't be masked, and exceptions to EL2 can only be 482 * masked from Secure state. The HCR and SCR settings 483 * don't affect the masking logic, only the interrupt routing. 484 */ 485 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) { 486 unmasked = true; 487 } 488 } else { 489 /* 490 * The old 32-bit-only environment has a more complicated 491 * masking setup. HCR and SCR bits not only affect interrupt 492 * routing but also change the behaviour of masking. 493 */ 494 bool hcr, scr; 495 496 switch (excp_idx) { 497 case EXCP_FIQ: 498 /* 499 * If FIQs are routed to EL3 or EL2 then there are cases where 500 * we override the CPSR.F in determining if the exception is 501 * masked or not. If neither of these are set then we fall back 502 * to the CPSR.F setting otherwise we further assess the state 503 * below. 504 */ 505 hcr = hcr_el2 & HCR_FMO; 506 scr = (env->cp15.scr_el3 & SCR_FIQ); 507 508 /* 509 * When EL3 is 32-bit, the SCR.FW bit controls whether the 510 * CPSR.F bit masks FIQ interrupts when taken in non-secure 511 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 512 * when non-secure but only when FIQs are only routed to EL3. 513 */ 514 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 515 break; 516 case EXCP_IRQ: 517 /* 518 * When EL3 execution state is 32-bit, if HCR.IMO is set then 519 * we may override the CPSR.I masking when in non-secure state. 520 * The SCR.IRQ setting has already been taken into consideration 521 * when setting the target EL, so it does not have a further 522 * affect here. 523 */ 524 hcr = hcr_el2 & HCR_IMO; 525 scr = false; 526 break; 527 default: 528 g_assert_not_reached(); 529 } 530 531 if ((scr || hcr) && !secure) { 532 unmasked = true; 533 } 534 } 535 } 536 537 /* 538 * The PSTATE bits only mask the interrupt if we have not overriden the 539 * ability above. 540 */ 541 return unmasked || pstate_unmasked; 542 } 543 544 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 545 { 546 CPUClass *cc = CPU_GET_CLASS(cs); 547 CPUARMState *env = cs->env_ptr; 548 uint32_t cur_el = arm_current_el(env); 549 bool secure = arm_is_secure(env); 550 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 551 uint32_t target_el; 552 uint32_t excp_idx; 553 554 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 555 556 if (interrupt_request & CPU_INTERRUPT_FIQ) { 557 excp_idx = EXCP_FIQ; 558 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 559 if (arm_excp_unmasked(cs, excp_idx, target_el, 560 cur_el, secure, hcr_el2)) { 561 goto found; 562 } 563 } 564 if (interrupt_request & CPU_INTERRUPT_HARD) { 565 excp_idx = EXCP_IRQ; 566 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 567 if (arm_excp_unmasked(cs, excp_idx, target_el, 568 cur_el, secure, hcr_el2)) { 569 goto found; 570 } 571 } 572 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 573 excp_idx = EXCP_VIRQ; 574 target_el = 1; 575 if (arm_excp_unmasked(cs, excp_idx, target_el, 576 cur_el, secure, hcr_el2)) { 577 goto found; 578 } 579 } 580 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 581 excp_idx = EXCP_VFIQ; 582 target_el = 1; 583 if (arm_excp_unmasked(cs, excp_idx, target_el, 584 cur_el, secure, hcr_el2)) { 585 goto found; 586 } 587 } 588 return false; 589 590 found: 591 cs->exception_index = excp_idx; 592 env->exception.target_el = target_el; 593 cc->tcg_ops.do_interrupt(cs); 594 return true; 595 } 596 597 void arm_cpu_update_virq(ARMCPU *cpu) 598 { 599 /* 600 * Update the interrupt level for VIRQ, which is the logical OR of 601 * the HCR_EL2.VI bit and the input line level from the GIC. 602 */ 603 CPUARMState *env = &cpu->env; 604 CPUState *cs = CPU(cpu); 605 606 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 607 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 608 609 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 610 if (new_state) { 611 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 612 } else { 613 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 614 } 615 } 616 } 617 618 void arm_cpu_update_vfiq(ARMCPU *cpu) 619 { 620 /* 621 * Update the interrupt level for VFIQ, which is the logical OR of 622 * the HCR_EL2.VF bit and the input line level from the GIC. 623 */ 624 CPUARMState *env = &cpu->env; 625 CPUState *cs = CPU(cpu); 626 627 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 628 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 629 630 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 631 if (new_state) { 632 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 633 } else { 634 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 635 } 636 } 637 } 638 639 #ifndef CONFIG_USER_ONLY 640 static void arm_cpu_set_irq(void *opaque, int irq, int level) 641 { 642 ARMCPU *cpu = opaque; 643 CPUARMState *env = &cpu->env; 644 CPUState *cs = CPU(cpu); 645 static const int mask[] = { 646 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 647 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 648 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 649 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 650 }; 651 652 if (level) { 653 env->irq_line_state |= mask[irq]; 654 } else { 655 env->irq_line_state &= ~mask[irq]; 656 } 657 658 switch (irq) { 659 case ARM_CPU_VIRQ: 660 assert(arm_feature(env, ARM_FEATURE_EL2)); 661 arm_cpu_update_virq(cpu); 662 break; 663 case ARM_CPU_VFIQ: 664 assert(arm_feature(env, ARM_FEATURE_EL2)); 665 arm_cpu_update_vfiq(cpu); 666 break; 667 case ARM_CPU_IRQ: 668 case ARM_CPU_FIQ: 669 if (level) { 670 cpu_interrupt(cs, mask[irq]); 671 } else { 672 cpu_reset_interrupt(cs, mask[irq]); 673 } 674 break; 675 default: 676 g_assert_not_reached(); 677 } 678 } 679 680 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 681 { 682 #ifdef CONFIG_KVM 683 ARMCPU *cpu = opaque; 684 CPUARMState *env = &cpu->env; 685 CPUState *cs = CPU(cpu); 686 uint32_t linestate_bit; 687 int irq_id; 688 689 switch (irq) { 690 case ARM_CPU_IRQ: 691 irq_id = KVM_ARM_IRQ_CPU_IRQ; 692 linestate_bit = CPU_INTERRUPT_HARD; 693 break; 694 case ARM_CPU_FIQ: 695 irq_id = KVM_ARM_IRQ_CPU_FIQ; 696 linestate_bit = CPU_INTERRUPT_FIQ; 697 break; 698 default: 699 g_assert_not_reached(); 700 } 701 702 if (level) { 703 env->irq_line_state |= linestate_bit; 704 } else { 705 env->irq_line_state &= ~linestate_bit; 706 } 707 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 708 #endif 709 } 710 711 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 712 { 713 ARMCPU *cpu = ARM_CPU(cs); 714 CPUARMState *env = &cpu->env; 715 716 cpu_synchronize_state(cs); 717 return arm_cpu_data_is_big_endian(env); 718 } 719 720 #endif 721 722 static int 723 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 724 { 725 return print_insn_arm(pc | 1, info); 726 } 727 728 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 729 { 730 ARMCPU *ac = ARM_CPU(cpu); 731 CPUARMState *env = &ac->env; 732 bool sctlr_b; 733 734 if (is_a64(env)) { 735 /* We might not be compiled with the A64 disassembler 736 * because it needs a C++ compiler. Leave print_insn 737 * unset in this case to use the caller default behaviour. 738 */ 739 #if defined(CONFIG_ARM_A64_DIS) 740 info->print_insn = print_insn_arm_a64; 741 #endif 742 info->cap_arch = CS_ARCH_ARM64; 743 info->cap_insn_unit = 4; 744 info->cap_insn_split = 4; 745 } else { 746 int cap_mode; 747 if (env->thumb) { 748 info->print_insn = print_insn_thumb1; 749 info->cap_insn_unit = 2; 750 info->cap_insn_split = 4; 751 cap_mode = CS_MODE_THUMB; 752 } else { 753 info->print_insn = print_insn_arm; 754 info->cap_insn_unit = 4; 755 info->cap_insn_split = 4; 756 cap_mode = CS_MODE_ARM; 757 } 758 if (arm_feature(env, ARM_FEATURE_V8)) { 759 cap_mode |= CS_MODE_V8; 760 } 761 if (arm_feature(env, ARM_FEATURE_M)) { 762 cap_mode |= CS_MODE_MCLASS; 763 } 764 info->cap_arch = CS_ARCH_ARM; 765 info->cap_mode = cap_mode; 766 } 767 768 sctlr_b = arm_sctlr_b(env); 769 if (bswap_code(sctlr_b)) { 770 #ifdef TARGET_WORDS_BIGENDIAN 771 info->endian = BFD_ENDIAN_LITTLE; 772 #else 773 info->endian = BFD_ENDIAN_BIG; 774 #endif 775 } 776 info->flags &= ~INSN_ARM_BE32; 777 #ifndef CONFIG_USER_ONLY 778 if (sctlr_b) { 779 info->flags |= INSN_ARM_BE32; 780 } 781 #endif 782 } 783 784 #ifdef TARGET_AARCH64 785 786 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 787 { 788 ARMCPU *cpu = ARM_CPU(cs); 789 CPUARMState *env = &cpu->env; 790 uint32_t psr = pstate_read(env); 791 int i; 792 int el = arm_current_el(env); 793 const char *ns_status; 794 795 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 796 for (i = 0; i < 32; i++) { 797 if (i == 31) { 798 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 799 } else { 800 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 801 (i + 2) % 3 ? " " : "\n"); 802 } 803 } 804 805 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 806 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 807 } else { 808 ns_status = ""; 809 } 810 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 811 psr, 812 psr & PSTATE_N ? 'N' : '-', 813 psr & PSTATE_Z ? 'Z' : '-', 814 psr & PSTATE_C ? 'C' : '-', 815 psr & PSTATE_V ? 'V' : '-', 816 ns_status, 817 el, 818 psr & PSTATE_SP ? 'h' : 't'); 819 820 if (cpu_isar_feature(aa64_bti, cpu)) { 821 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 822 } 823 if (!(flags & CPU_DUMP_FPU)) { 824 qemu_fprintf(f, "\n"); 825 return; 826 } 827 if (fp_exception_el(env, el) != 0) { 828 qemu_fprintf(f, " FPU disabled\n"); 829 return; 830 } 831 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 832 vfp_get_fpcr(env), vfp_get_fpsr(env)); 833 834 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { 835 int j, zcr_len = sve_zcr_len_for_el(env, el); 836 837 for (i = 0; i <= FFR_PRED_NUM; i++) { 838 bool eol; 839 if (i == FFR_PRED_NUM) { 840 qemu_fprintf(f, "FFR="); 841 /* It's last, so end the line. */ 842 eol = true; 843 } else { 844 qemu_fprintf(f, "P%02d=", i); 845 switch (zcr_len) { 846 case 0: 847 eol = i % 8 == 7; 848 break; 849 case 1: 850 eol = i % 6 == 5; 851 break; 852 case 2: 853 case 3: 854 eol = i % 3 == 2; 855 break; 856 default: 857 /* More than one quadword per predicate. */ 858 eol = true; 859 break; 860 } 861 } 862 for (j = zcr_len / 4; j >= 0; j--) { 863 int digits; 864 if (j * 4 + 4 <= zcr_len + 1) { 865 digits = 16; 866 } else { 867 digits = (zcr_len % 4 + 1) * 4; 868 } 869 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 870 env->vfp.pregs[i].p[j], 871 j ? ":" : eol ? "\n" : " "); 872 } 873 } 874 875 for (i = 0; i < 32; i++) { 876 if (zcr_len == 0) { 877 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 878 i, env->vfp.zregs[i].d[1], 879 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 880 } else if (zcr_len == 1) { 881 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 882 ":%016" PRIx64 ":%016" PRIx64 "\n", 883 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 884 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 885 } else { 886 for (j = zcr_len; j >= 0; j--) { 887 bool odd = (zcr_len - j) % 2 != 0; 888 if (j == zcr_len) { 889 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 890 } else if (!odd) { 891 if (j > 0) { 892 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 893 } else { 894 qemu_fprintf(f, " [%x]=", j); 895 } 896 } 897 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 898 env->vfp.zregs[i].d[j * 2 + 1], 899 env->vfp.zregs[i].d[j * 2], 900 odd || j == 0 ? "\n" : ":"); 901 } 902 } 903 } 904 } else { 905 for (i = 0; i < 32; i++) { 906 uint64_t *q = aa64_vfp_qreg(env, i); 907 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 908 i, q[1], q[0], (i & 1 ? "\n" : " ")); 909 } 910 } 911 } 912 913 #else 914 915 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 916 { 917 g_assert_not_reached(); 918 } 919 920 #endif 921 922 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 923 { 924 ARMCPU *cpu = ARM_CPU(cs); 925 CPUARMState *env = &cpu->env; 926 int i; 927 928 if (is_a64(env)) { 929 aarch64_cpu_dump_state(cs, f, flags); 930 return; 931 } 932 933 for (i = 0; i < 16; i++) { 934 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 935 if ((i % 4) == 3) { 936 qemu_fprintf(f, "\n"); 937 } else { 938 qemu_fprintf(f, " "); 939 } 940 } 941 942 if (arm_feature(env, ARM_FEATURE_M)) { 943 uint32_t xpsr = xpsr_read(env); 944 const char *mode; 945 const char *ns_status = ""; 946 947 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 948 ns_status = env->v7m.secure ? "S " : "NS "; 949 } 950 951 if (xpsr & XPSR_EXCP) { 952 mode = "handler"; 953 } else { 954 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 955 mode = "unpriv-thread"; 956 } else { 957 mode = "priv-thread"; 958 } 959 } 960 961 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 962 xpsr, 963 xpsr & XPSR_N ? 'N' : '-', 964 xpsr & XPSR_Z ? 'Z' : '-', 965 xpsr & XPSR_C ? 'C' : '-', 966 xpsr & XPSR_V ? 'V' : '-', 967 xpsr & XPSR_T ? 'T' : 'A', 968 ns_status, 969 mode); 970 } else { 971 uint32_t psr = cpsr_read(env); 972 const char *ns_status = ""; 973 974 if (arm_feature(env, ARM_FEATURE_EL3) && 975 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 976 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 977 } 978 979 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 980 psr, 981 psr & CPSR_N ? 'N' : '-', 982 psr & CPSR_Z ? 'Z' : '-', 983 psr & CPSR_C ? 'C' : '-', 984 psr & CPSR_V ? 'V' : '-', 985 psr & CPSR_T ? 'T' : 'A', 986 ns_status, 987 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 988 } 989 990 if (flags & CPU_DUMP_FPU) { 991 int numvfpregs = 0; 992 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 993 numvfpregs = 32; 994 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 995 numvfpregs = 16; 996 } 997 for (i = 0; i < numvfpregs; i++) { 998 uint64_t v = *aa32_vfp_dreg(env, i); 999 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1000 i * 2, (uint32_t)v, 1001 i * 2 + 1, (uint32_t)(v >> 32), 1002 i, v); 1003 } 1004 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1005 } 1006 } 1007 1008 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 1009 { 1010 uint32_t Aff1 = idx / clustersz; 1011 uint32_t Aff0 = idx % clustersz; 1012 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1013 } 1014 1015 static void cpreg_hashtable_data_destroy(gpointer data) 1016 { 1017 /* 1018 * Destroy function for cpu->cp_regs hashtable data entries. 1019 * We must free the name string because it was g_strdup()ed in 1020 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 1021 * from r->name because we know we definitely allocated it. 1022 */ 1023 ARMCPRegInfo *r = data; 1024 1025 g_free((void *)r->name); 1026 g_free(r); 1027 } 1028 1029 static void arm_cpu_initfn(Object *obj) 1030 { 1031 ARMCPU *cpu = ARM_CPU(obj); 1032 1033 cpu_set_cpustate_pointers(cpu); 1034 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 1035 g_free, cpreg_hashtable_data_destroy); 1036 1037 QLIST_INIT(&cpu->pre_el_change_hooks); 1038 QLIST_INIT(&cpu->el_change_hooks); 1039 1040 #ifndef CONFIG_USER_ONLY 1041 /* Our inbound IRQ and FIQ lines */ 1042 if (kvm_enabled()) { 1043 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1044 * the same interface as non-KVM CPUs. 1045 */ 1046 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1047 } else { 1048 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1049 } 1050 1051 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1052 ARRAY_SIZE(cpu->gt_timer_outputs)); 1053 1054 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1055 "gicv3-maintenance-interrupt", 1); 1056 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1057 "pmu-interrupt", 1); 1058 #endif 1059 1060 /* DTB consumers generally don't in fact care what the 'compatible' 1061 * string is, so always provide some string and trust that a hypothetical 1062 * picky DTB consumer will also provide a helpful error message. 1063 */ 1064 cpu->dtb_compatible = "qemu,unknown"; 1065 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 1066 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1067 1068 if (tcg_enabled()) { 1069 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 1070 } 1071 } 1072 1073 static Property arm_cpu_gt_cntfrq_property = 1074 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1075 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1076 1077 static Property arm_cpu_reset_cbar_property = 1078 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1079 1080 static Property arm_cpu_reset_hivecs_property = 1081 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1082 1083 static Property arm_cpu_rvbar_property = 1084 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 1085 1086 #ifndef CONFIG_USER_ONLY 1087 static Property arm_cpu_has_el2_property = 1088 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1089 1090 static Property arm_cpu_has_el3_property = 1091 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1092 #endif 1093 1094 static Property arm_cpu_cfgend_property = 1095 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1096 1097 static Property arm_cpu_has_vfp_property = 1098 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1099 1100 static Property arm_cpu_has_neon_property = 1101 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1102 1103 static Property arm_cpu_has_dsp_property = 1104 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1105 1106 static Property arm_cpu_has_mpu_property = 1107 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1108 1109 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1110 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1111 * the right value for that particular CPU type, and we don't want 1112 * to override that with an incorrect constant value. 1113 */ 1114 static Property arm_cpu_pmsav7_dregion_property = 1115 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1116 pmsav7_dregion, 1117 qdev_prop_uint32, uint32_t); 1118 1119 static bool arm_get_pmu(Object *obj, Error **errp) 1120 { 1121 ARMCPU *cpu = ARM_CPU(obj); 1122 1123 return cpu->has_pmu; 1124 } 1125 1126 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1127 { 1128 ARMCPU *cpu = ARM_CPU(obj); 1129 1130 if (value) { 1131 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1132 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1133 return; 1134 } 1135 set_feature(&cpu->env, ARM_FEATURE_PMU); 1136 } else { 1137 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1138 } 1139 cpu->has_pmu = value; 1140 } 1141 1142 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1143 { 1144 /* 1145 * The exact approach to calculating guest ticks is: 1146 * 1147 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1148 * NANOSECONDS_PER_SECOND); 1149 * 1150 * We don't do that. Rather we intentionally use integer division 1151 * truncation below and in the caller for the conversion of host monotonic 1152 * time to guest ticks to provide the exact inverse for the semantics of 1153 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1154 * it loses precision when representing frequencies where 1155 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1156 * provide an exact inverse leads to scheduling timers with negative 1157 * periods, which in turn leads to sticky behaviour in the guest. 1158 * 1159 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1160 * cannot become zero. 1161 */ 1162 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1163 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1164 } 1165 1166 void arm_cpu_post_init(Object *obj) 1167 { 1168 ARMCPU *cpu = ARM_CPU(obj); 1169 1170 /* M profile implies PMSA. We have to do this here rather than 1171 * in realize with the other feature-implication checks because 1172 * we look at the PMSA bit to see if we should add some properties. 1173 */ 1174 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1175 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1176 } 1177 1178 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1179 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1180 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1181 } 1182 1183 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1184 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1185 } 1186 1187 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1188 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property); 1189 } 1190 1191 #ifndef CONFIG_USER_ONLY 1192 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1193 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1194 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1195 */ 1196 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1197 1198 object_property_add_link(obj, "secure-memory", 1199 TYPE_MEMORY_REGION, 1200 (Object **)&cpu->secure_memory, 1201 qdev_prop_allow_set_link_before_realize, 1202 OBJ_PROP_LINK_STRONG); 1203 } 1204 1205 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1206 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1207 } 1208 #endif 1209 1210 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1211 cpu->has_pmu = true; 1212 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1213 } 1214 1215 /* 1216 * Allow user to turn off VFP and Neon support, but only for TCG -- 1217 * KVM does not currently allow us to lie to the guest about its 1218 * ID/feature registers, so the guest always sees what the host has. 1219 */ 1220 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 1221 ? cpu_isar_feature(aa64_fp_simd, cpu) 1222 : cpu_isar_feature(aa32_vfp, cpu)) { 1223 cpu->has_vfp = true; 1224 if (!kvm_enabled()) { 1225 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1226 } 1227 } 1228 1229 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1230 cpu->has_neon = true; 1231 if (!kvm_enabled()) { 1232 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1233 } 1234 } 1235 1236 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1237 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1238 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1239 } 1240 1241 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1242 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1243 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1244 qdev_property_add_static(DEVICE(obj), 1245 &arm_cpu_pmsav7_dregion_property); 1246 } 1247 } 1248 1249 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1250 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1251 qdev_prop_allow_set_link_before_realize, 1252 OBJ_PROP_LINK_STRONG); 1253 /* 1254 * M profile: initial value of the Secure VTOR. We can't just use 1255 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1256 * the property to be set after realize. 1257 */ 1258 object_property_add_uint32_ptr(obj, "init-svtor", 1259 &cpu->init_svtor, 1260 OBJ_PROP_FLAG_READWRITE); 1261 } 1262 1263 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1264 1265 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1266 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1267 } 1268 1269 if (kvm_enabled()) { 1270 kvm_arm_add_vcpu_properties(obj); 1271 } 1272 1273 #ifndef CONFIG_USER_ONLY 1274 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1275 cpu_isar_feature(aa64_mte, cpu)) { 1276 object_property_add_link(obj, "tag-memory", 1277 TYPE_MEMORY_REGION, 1278 (Object **)&cpu->tag_memory, 1279 qdev_prop_allow_set_link_before_realize, 1280 OBJ_PROP_LINK_STRONG); 1281 1282 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1283 object_property_add_link(obj, "secure-tag-memory", 1284 TYPE_MEMORY_REGION, 1285 (Object **)&cpu->secure_tag_memory, 1286 qdev_prop_allow_set_link_before_realize, 1287 OBJ_PROP_LINK_STRONG); 1288 } 1289 } 1290 #endif 1291 } 1292 1293 static void arm_cpu_finalizefn(Object *obj) 1294 { 1295 ARMCPU *cpu = ARM_CPU(obj); 1296 ARMELChangeHook *hook, *next; 1297 1298 g_hash_table_destroy(cpu->cp_regs); 1299 1300 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1301 QLIST_REMOVE(hook, node); 1302 g_free(hook); 1303 } 1304 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1305 QLIST_REMOVE(hook, node); 1306 g_free(hook); 1307 } 1308 #ifndef CONFIG_USER_ONLY 1309 if (cpu->pmu_timer) { 1310 timer_free(cpu->pmu_timer); 1311 } 1312 #endif 1313 } 1314 1315 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1316 { 1317 Error *local_err = NULL; 1318 1319 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1320 arm_cpu_sve_finalize(cpu, &local_err); 1321 if (local_err != NULL) { 1322 error_propagate(errp, local_err); 1323 return; 1324 } 1325 1326 /* 1327 * KVM does not support modifications to this feature. 1328 * We have not registered the cpu properties when KVM 1329 * is in use, so the user will not be able to set them. 1330 */ 1331 if (!kvm_enabled()) { 1332 arm_cpu_pauth_finalize(cpu, &local_err); 1333 if (local_err != NULL) { 1334 error_propagate(errp, local_err); 1335 return; 1336 } 1337 } 1338 } 1339 1340 if (kvm_enabled()) { 1341 kvm_arm_steal_time_finalize(cpu, &local_err); 1342 if (local_err != NULL) { 1343 error_propagate(errp, local_err); 1344 return; 1345 } 1346 } 1347 } 1348 1349 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1350 { 1351 CPUState *cs = CPU(dev); 1352 ARMCPU *cpu = ARM_CPU(dev); 1353 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1354 CPUARMState *env = &cpu->env; 1355 int pagebits; 1356 Error *local_err = NULL; 1357 bool no_aa32 = false; 1358 1359 /* If we needed to query the host kernel for the CPU features 1360 * then it's possible that might have failed in the initfn, but 1361 * this is the first point where we can report it. 1362 */ 1363 if (cpu->host_cpu_probe_failed) { 1364 if (!kvm_enabled()) { 1365 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 1366 } else { 1367 error_setg(errp, "Failed to retrieve host CPU features"); 1368 } 1369 return; 1370 } 1371 1372 #ifndef CONFIG_USER_ONLY 1373 /* The NVIC and M-profile CPU are two halves of a single piece of 1374 * hardware; trying to use one without the other is a command line 1375 * error and will result in segfaults if not caught here. 1376 */ 1377 if (arm_feature(env, ARM_FEATURE_M)) { 1378 if (!env->nvic) { 1379 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1380 return; 1381 } 1382 } else { 1383 if (env->nvic) { 1384 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1385 return; 1386 } 1387 } 1388 1389 { 1390 uint64_t scale; 1391 1392 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1393 if (!cpu->gt_cntfrq_hz) { 1394 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1395 cpu->gt_cntfrq_hz); 1396 return; 1397 } 1398 scale = gt_cntfrq_period_ns(cpu); 1399 } else { 1400 scale = GTIMER_SCALE; 1401 } 1402 1403 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1404 arm_gt_ptimer_cb, cpu); 1405 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1406 arm_gt_vtimer_cb, cpu); 1407 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1408 arm_gt_htimer_cb, cpu); 1409 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1410 arm_gt_stimer_cb, cpu); 1411 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1412 arm_gt_hvtimer_cb, cpu); 1413 } 1414 #endif 1415 1416 cpu_exec_realizefn(cs, &local_err); 1417 if (local_err != NULL) { 1418 error_propagate(errp, local_err); 1419 return; 1420 } 1421 1422 arm_cpu_finalize_features(cpu, &local_err); 1423 if (local_err != NULL) { 1424 error_propagate(errp, local_err); 1425 return; 1426 } 1427 1428 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1429 cpu->has_vfp != cpu->has_neon) { 1430 /* 1431 * This is an architectural requirement for AArch64; AArch32 is 1432 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1433 */ 1434 error_setg(errp, 1435 "AArch64 CPUs must have both VFP and Neon or neither"); 1436 return; 1437 } 1438 1439 if (!cpu->has_vfp) { 1440 uint64_t t; 1441 uint32_t u; 1442 1443 t = cpu->isar.id_aa64isar1; 1444 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1445 cpu->isar.id_aa64isar1 = t; 1446 1447 t = cpu->isar.id_aa64pfr0; 1448 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1449 cpu->isar.id_aa64pfr0 = t; 1450 1451 u = cpu->isar.id_isar6; 1452 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1453 cpu->isar.id_isar6 = u; 1454 1455 u = cpu->isar.mvfr0; 1456 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1457 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1458 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1459 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1460 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1461 if (!arm_feature(env, ARM_FEATURE_M)) { 1462 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1463 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1464 } 1465 cpu->isar.mvfr0 = u; 1466 1467 u = cpu->isar.mvfr1; 1468 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1469 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1470 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1471 if (arm_feature(env, ARM_FEATURE_M)) { 1472 u = FIELD_DP32(u, MVFR1, FP16, 0); 1473 } 1474 cpu->isar.mvfr1 = u; 1475 1476 u = cpu->isar.mvfr2; 1477 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1478 cpu->isar.mvfr2 = u; 1479 } 1480 1481 if (!cpu->has_neon) { 1482 uint64_t t; 1483 uint32_t u; 1484 1485 unset_feature(env, ARM_FEATURE_NEON); 1486 1487 t = cpu->isar.id_aa64isar0; 1488 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1489 cpu->isar.id_aa64isar0 = t; 1490 1491 t = cpu->isar.id_aa64isar1; 1492 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1493 cpu->isar.id_aa64isar1 = t; 1494 1495 t = cpu->isar.id_aa64pfr0; 1496 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1497 cpu->isar.id_aa64pfr0 = t; 1498 1499 u = cpu->isar.id_isar5; 1500 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1501 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1502 cpu->isar.id_isar5 = u; 1503 1504 u = cpu->isar.id_isar6; 1505 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1506 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1507 cpu->isar.id_isar6 = u; 1508 1509 if (!arm_feature(env, ARM_FEATURE_M)) { 1510 u = cpu->isar.mvfr1; 1511 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1512 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1513 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1514 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1515 cpu->isar.mvfr1 = u; 1516 1517 u = cpu->isar.mvfr2; 1518 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1519 cpu->isar.mvfr2 = u; 1520 } 1521 } 1522 1523 if (!cpu->has_neon && !cpu->has_vfp) { 1524 uint64_t t; 1525 uint32_t u; 1526 1527 t = cpu->isar.id_aa64isar0; 1528 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1529 cpu->isar.id_aa64isar0 = t; 1530 1531 t = cpu->isar.id_aa64isar1; 1532 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1533 cpu->isar.id_aa64isar1 = t; 1534 1535 u = cpu->isar.mvfr0; 1536 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1537 cpu->isar.mvfr0 = u; 1538 1539 /* Despite the name, this field covers both VFP and Neon */ 1540 u = cpu->isar.mvfr1; 1541 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1542 cpu->isar.mvfr1 = u; 1543 } 1544 1545 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1546 uint32_t u; 1547 1548 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1549 1550 u = cpu->isar.id_isar1; 1551 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1552 cpu->isar.id_isar1 = u; 1553 1554 u = cpu->isar.id_isar2; 1555 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1556 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1557 cpu->isar.id_isar2 = u; 1558 1559 u = cpu->isar.id_isar3; 1560 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1561 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1562 cpu->isar.id_isar3 = u; 1563 } 1564 1565 /* Some features automatically imply others: */ 1566 if (arm_feature(env, ARM_FEATURE_V8)) { 1567 if (arm_feature(env, ARM_FEATURE_M)) { 1568 set_feature(env, ARM_FEATURE_V7); 1569 } else { 1570 set_feature(env, ARM_FEATURE_V7VE); 1571 } 1572 } 1573 1574 /* 1575 * There exist AArch64 cpus without AArch32 support. When KVM 1576 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1577 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1578 * As a general principle, we also do not make ID register 1579 * consistency checks anywhere unless using TCG, because only 1580 * for TCG would a consistency-check failure be a QEMU bug. 1581 */ 1582 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1583 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1584 } 1585 1586 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1587 /* v7 Virtualization Extensions. In real hardware this implies 1588 * EL2 and also the presence of the Security Extensions. 1589 * For QEMU, for backwards-compatibility we implement some 1590 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1591 * include the various other features that V7VE implies. 1592 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1593 * Security Extensions is ARM_FEATURE_EL3. 1594 */ 1595 assert(!tcg_enabled() || no_aa32 || 1596 cpu_isar_feature(aa32_arm_div, cpu)); 1597 set_feature(env, ARM_FEATURE_LPAE); 1598 set_feature(env, ARM_FEATURE_V7); 1599 } 1600 if (arm_feature(env, ARM_FEATURE_V7)) { 1601 set_feature(env, ARM_FEATURE_VAPA); 1602 set_feature(env, ARM_FEATURE_THUMB2); 1603 set_feature(env, ARM_FEATURE_MPIDR); 1604 if (!arm_feature(env, ARM_FEATURE_M)) { 1605 set_feature(env, ARM_FEATURE_V6K); 1606 } else { 1607 set_feature(env, ARM_FEATURE_V6); 1608 } 1609 1610 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1611 * non-EL3 configs. This is needed by some legacy boards. 1612 */ 1613 set_feature(env, ARM_FEATURE_VBAR); 1614 } 1615 if (arm_feature(env, ARM_FEATURE_V6K)) { 1616 set_feature(env, ARM_FEATURE_V6); 1617 set_feature(env, ARM_FEATURE_MVFR); 1618 } 1619 if (arm_feature(env, ARM_FEATURE_V6)) { 1620 set_feature(env, ARM_FEATURE_V5); 1621 if (!arm_feature(env, ARM_FEATURE_M)) { 1622 assert(!tcg_enabled() || no_aa32 || 1623 cpu_isar_feature(aa32_jazelle, cpu)); 1624 set_feature(env, ARM_FEATURE_AUXCR); 1625 } 1626 } 1627 if (arm_feature(env, ARM_FEATURE_V5)) { 1628 set_feature(env, ARM_FEATURE_V4T); 1629 } 1630 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1631 set_feature(env, ARM_FEATURE_V7MP); 1632 } 1633 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1634 set_feature(env, ARM_FEATURE_CBAR); 1635 } 1636 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1637 !arm_feature(env, ARM_FEATURE_M)) { 1638 set_feature(env, ARM_FEATURE_THUMB_DSP); 1639 } 1640 1641 /* 1642 * We rely on no XScale CPU having VFP so we can use the same bits in the 1643 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1644 */ 1645 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 1646 !cpu_isar_feature(aa32_vfp_simd, cpu) || 1647 !arm_feature(env, ARM_FEATURE_XSCALE)); 1648 1649 if (arm_feature(env, ARM_FEATURE_V7) && 1650 !arm_feature(env, ARM_FEATURE_M) && 1651 !arm_feature(env, ARM_FEATURE_PMSA)) { 1652 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1653 * can use 4K pages. 1654 */ 1655 pagebits = 12; 1656 } else { 1657 /* For CPUs which might have tiny 1K pages, or which have an 1658 * MPU and might have small region sizes, stick with 1K pages. 1659 */ 1660 pagebits = 10; 1661 } 1662 if (!set_preferred_target_page_bits(pagebits)) { 1663 /* This can only ever happen for hotplugging a CPU, or if 1664 * the board code incorrectly creates a CPU which it has 1665 * promised via minimum_page_size that it will not. 1666 */ 1667 error_setg(errp, "This CPU requires a smaller page size than the " 1668 "system is using"); 1669 return; 1670 } 1671 1672 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1673 * We don't support setting cluster ID ([16..23]) (known as Aff2 1674 * in later ARM ARM versions), or any of the higher affinity level fields, 1675 * so these bits always RAZ. 1676 */ 1677 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1678 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1679 ARM_DEFAULT_CPUS_PER_CLUSTER); 1680 } 1681 1682 if (cpu->reset_hivecs) { 1683 cpu->reset_sctlr |= (1 << 13); 1684 } 1685 1686 if (cpu->cfgend) { 1687 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1688 cpu->reset_sctlr |= SCTLR_EE; 1689 } else { 1690 cpu->reset_sctlr |= SCTLR_B; 1691 } 1692 } 1693 1694 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 1695 /* If the has_el3 CPU property is disabled then we need to disable the 1696 * feature. 1697 */ 1698 unset_feature(env, ARM_FEATURE_EL3); 1699 1700 /* Disable the security extension feature bits in the processor feature 1701 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1702 */ 1703 cpu->isar.id_pfr1 &= ~0xf0; 1704 cpu->isar.id_aa64pfr0 &= ~0xf000; 1705 } 1706 1707 if (!cpu->has_el2) { 1708 unset_feature(env, ARM_FEATURE_EL2); 1709 } 1710 1711 if (!cpu->has_pmu) { 1712 unset_feature(env, ARM_FEATURE_PMU); 1713 } 1714 if (arm_feature(env, ARM_FEATURE_PMU)) { 1715 pmu_init(cpu); 1716 1717 if (!kvm_enabled()) { 1718 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1719 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1720 } 1721 1722 #ifndef CONFIG_USER_ONLY 1723 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1724 cpu); 1725 #endif 1726 } else { 1727 cpu->isar.id_aa64dfr0 = 1728 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 1729 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 1730 cpu->pmceid0 = 0; 1731 cpu->pmceid1 = 0; 1732 } 1733 1734 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1735 /* Disable the hypervisor feature bits in the processor feature 1736 * registers if we don't have EL2. These are id_pfr1[15:12] and 1737 * id_aa64pfr0_el1[11:8]. 1738 */ 1739 cpu->isar.id_aa64pfr0 &= ~0xf00; 1740 cpu->isar.id_pfr1 &= ~0xf000; 1741 } 1742 1743 #ifndef CONFIG_USER_ONLY 1744 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { 1745 /* 1746 * Disable the MTE feature bits if we do not have tag-memory 1747 * provided by the machine. 1748 */ 1749 cpu->isar.id_aa64pfr1 = 1750 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 1751 } 1752 #endif 1753 1754 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1755 * to false or by setting pmsav7-dregion to 0. 1756 */ 1757 if (!cpu->has_mpu) { 1758 cpu->pmsav7_dregion = 0; 1759 } 1760 if (cpu->pmsav7_dregion == 0) { 1761 cpu->has_mpu = false; 1762 } 1763 1764 if (arm_feature(env, ARM_FEATURE_PMSA) && 1765 arm_feature(env, ARM_FEATURE_V7)) { 1766 uint32_t nr = cpu->pmsav7_dregion; 1767 1768 if (nr > 0xff) { 1769 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1770 return; 1771 } 1772 1773 if (nr) { 1774 if (arm_feature(env, ARM_FEATURE_V8)) { 1775 /* PMSAv8 */ 1776 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1777 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1778 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1779 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1780 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1781 } 1782 } else { 1783 env->pmsav7.drbar = g_new0(uint32_t, nr); 1784 env->pmsav7.drsr = g_new0(uint32_t, nr); 1785 env->pmsav7.dracr = g_new0(uint32_t, nr); 1786 } 1787 } 1788 } 1789 1790 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1791 uint32_t nr = cpu->sau_sregion; 1792 1793 if (nr > 0xff) { 1794 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1795 return; 1796 } 1797 1798 if (nr) { 1799 env->sau.rbar = g_new0(uint32_t, nr); 1800 env->sau.rlar = g_new0(uint32_t, nr); 1801 } 1802 } 1803 1804 if (arm_feature(env, ARM_FEATURE_EL3)) { 1805 set_feature(env, ARM_FEATURE_VBAR); 1806 } 1807 1808 register_cp_regs_for_features(cpu); 1809 arm_cpu_register_gdb_regs_for_features(cpu); 1810 1811 init_cpreg_list(cpu); 1812 1813 #ifndef CONFIG_USER_ONLY 1814 MachineState *ms = MACHINE(qdev_get_machine()); 1815 unsigned int smp_cpus = ms->smp.cpus; 1816 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 1817 1818 /* 1819 * We must set cs->num_ases to the final value before 1820 * the first call to cpu_address_space_init. 1821 */ 1822 if (cpu->tag_memory != NULL) { 1823 cs->num_ases = 3 + has_secure; 1824 } else { 1825 cs->num_ases = 1 + has_secure; 1826 } 1827 1828 if (has_secure) { 1829 if (!cpu->secure_memory) { 1830 cpu->secure_memory = cs->memory; 1831 } 1832 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1833 cpu->secure_memory); 1834 } 1835 1836 if (cpu->tag_memory != NULL) { 1837 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 1838 cpu->tag_memory); 1839 if (has_secure) { 1840 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 1841 cpu->secure_tag_memory); 1842 } 1843 } 1844 1845 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1846 1847 /* No core_count specified, default to smp_cpus. */ 1848 if (cpu->core_count == -1) { 1849 cpu->core_count = smp_cpus; 1850 } 1851 #endif 1852 1853 if (tcg_enabled()) { 1854 int dcz_blocklen = 4 << cpu->dcz_blocksize; 1855 1856 /* 1857 * We only support DCZ blocklen that fits on one page. 1858 * 1859 * Architectually this is always true. However TARGET_PAGE_SIZE 1860 * is variable and, for compatibility with -machine virt-2.7, 1861 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 1862 * But even then, while the largest architectural DCZ blocklen 1863 * is 2KiB, no cpu actually uses such a large blocklen. 1864 */ 1865 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 1866 1867 /* 1868 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 1869 * both nibbles of each byte storing tag data may be written at once. 1870 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 1871 */ 1872 if (cpu_isar_feature(aa64_mte, cpu)) { 1873 assert(dcz_blocklen >= 2 * TAG_GRANULE); 1874 } 1875 } 1876 1877 qemu_init_vcpu(cs); 1878 cpu_reset(cs); 1879 1880 acc->parent_realize(dev, errp); 1881 } 1882 1883 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1884 { 1885 ObjectClass *oc; 1886 char *typename; 1887 char **cpuname; 1888 const char *cpunamestr; 1889 1890 cpuname = g_strsplit(cpu_model, ",", 1); 1891 cpunamestr = cpuname[0]; 1892 #ifdef CONFIG_USER_ONLY 1893 /* For backwards compatibility usermode emulation allows "-cpu any", 1894 * which has the same semantics as "-cpu max". 1895 */ 1896 if (!strcmp(cpunamestr, "any")) { 1897 cpunamestr = "max"; 1898 } 1899 #endif 1900 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1901 oc = object_class_by_name(typename); 1902 g_strfreev(cpuname); 1903 g_free(typename); 1904 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1905 object_class_is_abstract(oc)) { 1906 return NULL; 1907 } 1908 return oc; 1909 } 1910 1911 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1912 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1913 1914 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1915 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1916 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1917 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1918 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1919 REGINFO_SENTINEL 1920 }; 1921 1922 static void cortex_a8_initfn(Object *obj) 1923 { 1924 ARMCPU *cpu = ARM_CPU(obj); 1925 1926 cpu->dtb_compatible = "arm,cortex-a8"; 1927 set_feature(&cpu->env, ARM_FEATURE_V7); 1928 set_feature(&cpu->env, ARM_FEATURE_NEON); 1929 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1930 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1931 set_feature(&cpu->env, ARM_FEATURE_EL3); 1932 cpu->midr = 0x410fc080; 1933 cpu->reset_fpsid = 0x410330c0; 1934 cpu->isar.mvfr0 = 0x11110222; 1935 cpu->isar.mvfr1 = 0x00011111; 1936 cpu->ctr = 0x82048004; 1937 cpu->reset_sctlr = 0x00c50078; 1938 cpu->isar.id_pfr0 = 0x1031; 1939 cpu->isar.id_pfr1 = 0x11; 1940 cpu->isar.id_dfr0 = 0x400; 1941 cpu->id_afr0 = 0; 1942 cpu->isar.id_mmfr0 = 0x31100003; 1943 cpu->isar.id_mmfr1 = 0x20000000; 1944 cpu->isar.id_mmfr2 = 0x01202000; 1945 cpu->isar.id_mmfr3 = 0x11; 1946 cpu->isar.id_isar0 = 0x00101111; 1947 cpu->isar.id_isar1 = 0x12112111; 1948 cpu->isar.id_isar2 = 0x21232031; 1949 cpu->isar.id_isar3 = 0x11112131; 1950 cpu->isar.id_isar4 = 0x00111142; 1951 cpu->isar.dbgdidr = 0x15141000; 1952 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1953 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1954 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1955 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1956 cpu->reset_auxcr = 2; 1957 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1958 } 1959 1960 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1961 /* power_control should be set to maximum latency. Again, 1962 * default to 0 and set by private hook 1963 */ 1964 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1965 .access = PL1_RW, .resetvalue = 0, 1966 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1967 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1968 .access = PL1_RW, .resetvalue = 0, 1969 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1970 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1971 .access = PL1_RW, .resetvalue = 0, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1973 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1974 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1975 /* TLB lockdown control */ 1976 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1977 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1978 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1979 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1980 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1981 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1982 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1983 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1984 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1985 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1986 REGINFO_SENTINEL 1987 }; 1988 1989 static void cortex_a9_initfn(Object *obj) 1990 { 1991 ARMCPU *cpu = ARM_CPU(obj); 1992 1993 cpu->dtb_compatible = "arm,cortex-a9"; 1994 set_feature(&cpu->env, ARM_FEATURE_V7); 1995 set_feature(&cpu->env, ARM_FEATURE_NEON); 1996 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1997 set_feature(&cpu->env, ARM_FEATURE_EL3); 1998 /* Note that A9 supports the MP extensions even for 1999 * A9UP and single-core A9MP (which are both different 2000 * and valid configurations; we don't model A9UP). 2001 */ 2002 set_feature(&cpu->env, ARM_FEATURE_V7MP); 2003 set_feature(&cpu->env, ARM_FEATURE_CBAR); 2004 cpu->midr = 0x410fc090; 2005 cpu->reset_fpsid = 0x41033090; 2006 cpu->isar.mvfr0 = 0x11110222; 2007 cpu->isar.mvfr1 = 0x01111111; 2008 cpu->ctr = 0x80038003; 2009 cpu->reset_sctlr = 0x00c50078; 2010 cpu->isar.id_pfr0 = 0x1031; 2011 cpu->isar.id_pfr1 = 0x11; 2012 cpu->isar.id_dfr0 = 0x000; 2013 cpu->id_afr0 = 0; 2014 cpu->isar.id_mmfr0 = 0x00100103; 2015 cpu->isar.id_mmfr1 = 0x20000000; 2016 cpu->isar.id_mmfr2 = 0x01230000; 2017 cpu->isar.id_mmfr3 = 0x00002111; 2018 cpu->isar.id_isar0 = 0x00101111; 2019 cpu->isar.id_isar1 = 0x13112111; 2020 cpu->isar.id_isar2 = 0x21232041; 2021 cpu->isar.id_isar3 = 0x11112131; 2022 cpu->isar.id_isar4 = 0x00111142; 2023 cpu->isar.dbgdidr = 0x35141000; 2024 cpu->clidr = (1 << 27) | (1 << 24) | 3; 2025 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 2026 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 2027 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 2028 } 2029 2030 #ifndef CONFIG_USER_ONLY 2031 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2032 { 2033 MachineState *ms = MACHINE(qdev_get_machine()); 2034 2035 /* Linux wants the number of processors from here. 2036 * Might as well set the interrupt-controller bit too. 2037 */ 2038 return ((ms->smp.cpus - 1) << 24) | (1 << 23); 2039 } 2040 #endif 2041 2042 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 2043 #ifndef CONFIG_USER_ONLY 2044 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2045 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 2046 .writefn = arm_cp_write_ignore, }, 2047 #endif 2048 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 2049 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2050 REGINFO_SENTINEL 2051 }; 2052 2053 static void cortex_a7_initfn(Object *obj) 2054 { 2055 ARMCPU *cpu = ARM_CPU(obj); 2056 2057 cpu->dtb_compatible = "arm,cortex-a7"; 2058 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2059 set_feature(&cpu->env, ARM_FEATURE_NEON); 2060 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2061 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2062 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2063 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2064 set_feature(&cpu->env, ARM_FEATURE_EL2); 2065 set_feature(&cpu->env, ARM_FEATURE_EL3); 2066 set_feature(&cpu->env, ARM_FEATURE_PMU); 2067 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 2068 cpu->midr = 0x410fc075; 2069 cpu->reset_fpsid = 0x41023075; 2070 cpu->isar.mvfr0 = 0x10110222; 2071 cpu->isar.mvfr1 = 0x11111111; 2072 cpu->ctr = 0x84448003; 2073 cpu->reset_sctlr = 0x00c50078; 2074 cpu->isar.id_pfr0 = 0x00001131; 2075 cpu->isar.id_pfr1 = 0x00011011; 2076 cpu->isar.id_dfr0 = 0x02010555; 2077 cpu->id_afr0 = 0x00000000; 2078 cpu->isar.id_mmfr0 = 0x10101105; 2079 cpu->isar.id_mmfr1 = 0x40000000; 2080 cpu->isar.id_mmfr2 = 0x01240000; 2081 cpu->isar.id_mmfr3 = 0x02102211; 2082 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 2083 * table 4-41 gives 0x02101110, which includes the arm div insns. 2084 */ 2085 cpu->isar.id_isar0 = 0x02101110; 2086 cpu->isar.id_isar1 = 0x13112111; 2087 cpu->isar.id_isar2 = 0x21232041; 2088 cpu->isar.id_isar3 = 0x11112131; 2089 cpu->isar.id_isar4 = 0x10011142; 2090 cpu->isar.dbgdidr = 0x3515f005; 2091 cpu->clidr = 0x0a200023; 2092 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2093 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2094 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2095 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 2096 } 2097 2098 static void cortex_a15_initfn(Object *obj) 2099 { 2100 ARMCPU *cpu = ARM_CPU(obj); 2101 2102 cpu->dtb_compatible = "arm,cortex-a15"; 2103 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2104 set_feature(&cpu->env, ARM_FEATURE_NEON); 2105 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2106 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2107 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2108 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2109 set_feature(&cpu->env, ARM_FEATURE_EL2); 2110 set_feature(&cpu->env, ARM_FEATURE_EL3); 2111 set_feature(&cpu->env, ARM_FEATURE_PMU); 2112 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 2113 cpu->midr = 0x412fc0f1; 2114 cpu->reset_fpsid = 0x410430f0; 2115 cpu->isar.mvfr0 = 0x10110222; 2116 cpu->isar.mvfr1 = 0x11111111; 2117 cpu->ctr = 0x8444c004; 2118 cpu->reset_sctlr = 0x00c50078; 2119 cpu->isar.id_pfr0 = 0x00001131; 2120 cpu->isar.id_pfr1 = 0x00011011; 2121 cpu->isar.id_dfr0 = 0x02010555; 2122 cpu->id_afr0 = 0x00000000; 2123 cpu->isar.id_mmfr0 = 0x10201105; 2124 cpu->isar.id_mmfr1 = 0x20000000; 2125 cpu->isar.id_mmfr2 = 0x01240000; 2126 cpu->isar.id_mmfr3 = 0x02102211; 2127 cpu->isar.id_isar0 = 0x02101110; 2128 cpu->isar.id_isar1 = 0x13112111; 2129 cpu->isar.id_isar2 = 0x21232041; 2130 cpu->isar.id_isar3 = 0x11112131; 2131 cpu->isar.id_isar4 = 0x10011142; 2132 cpu->isar.dbgdidr = 0x3515f021; 2133 cpu->clidr = 0x0a200023; 2134 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2135 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2136 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2137 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 2138 } 2139 2140 #ifndef TARGET_AARCH64 2141 /* 2142 * -cpu max: a CPU with as many features enabled as our emulation supports. 2143 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 2144 * this only needs to handle 32 bits, and need not care about KVM. 2145 */ 2146 static void arm_max_initfn(Object *obj) 2147 { 2148 ARMCPU *cpu = ARM_CPU(obj); 2149 2150 cortex_a15_initfn(obj); 2151 2152 /* old-style VFP short-vector support */ 2153 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 2154 2155 #ifdef CONFIG_USER_ONLY 2156 /* 2157 * We don't set these in system emulation mode for the moment, 2158 * since we don't correctly set (all of) the ID registers to 2159 * advertise them. 2160 */ 2161 set_feature(&cpu->env, ARM_FEATURE_V8); 2162 { 2163 uint32_t t; 2164 2165 t = cpu->isar.id_isar5; 2166 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2167 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2168 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2169 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2170 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2171 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2172 cpu->isar.id_isar5 = t; 2173 2174 t = cpu->isar.id_isar6; 2175 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2176 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2177 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2178 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2179 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2180 cpu->isar.id_isar6 = t; 2181 2182 t = cpu->isar.mvfr1; 2183 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */ 2184 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ 2185 cpu->isar.mvfr1 = t; 2186 2187 t = cpu->isar.mvfr2; 2188 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */ 2189 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */ 2190 cpu->isar.mvfr2 = t; 2191 2192 t = cpu->isar.id_mmfr3; 2193 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */ 2194 cpu->isar.id_mmfr3 = t; 2195 2196 t = cpu->isar.id_mmfr4; 2197 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2198 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ 2199 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */ 2200 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */ 2201 cpu->isar.id_mmfr4 = t; 2202 } 2203 #endif 2204 } 2205 #endif 2206 2207 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2208 2209 static const ARMCPUInfo arm_cpus[] = { 2210 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2211 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2212 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2213 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2214 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2215 #ifndef TARGET_AARCH64 2216 { .name = "max", .initfn = arm_max_initfn }, 2217 #endif 2218 #ifdef CONFIG_USER_ONLY 2219 { .name = "any", .initfn = arm_max_initfn }, 2220 #endif 2221 #endif 2222 }; 2223 2224 static Property arm_cpu_properties[] = { 2225 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2226 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2227 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2228 mp_affinity, ARM64_AFFINITY_INVALID), 2229 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2230 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2231 DEFINE_PROP_END_OF_LIST() 2232 }; 2233 2234 static gchar *arm_gdb_arch_name(CPUState *cs) 2235 { 2236 ARMCPU *cpu = ARM_CPU(cs); 2237 CPUARMState *env = &cpu->env; 2238 2239 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2240 return g_strdup("iwmmxt"); 2241 } 2242 return g_strdup("arm"); 2243 } 2244 2245 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2246 { 2247 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2248 CPUClass *cc = CPU_CLASS(acc); 2249 DeviceClass *dc = DEVICE_CLASS(oc); 2250 2251 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2252 &acc->parent_realize); 2253 2254 device_class_set_props(dc, arm_cpu_properties); 2255 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); 2256 2257 cc->class_by_name = arm_cpu_class_by_name; 2258 cc->has_work = arm_cpu_has_work; 2259 cc->dump_state = arm_cpu_dump_state; 2260 cc->set_pc = arm_cpu_set_pc; 2261 cc->gdb_read_register = arm_cpu_gdb_read_register; 2262 cc->gdb_write_register = arm_cpu_gdb_write_register; 2263 #ifndef CONFIG_USER_ONLY 2264 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2265 cc->asidx_from_attrs = arm_asidx_from_attrs; 2266 cc->vmsd = &vmstate_arm_cpu; 2267 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2268 cc->write_elf64_note = arm_cpu_write_elf64_note; 2269 cc->write_elf32_note = arm_cpu_write_elf32_note; 2270 #endif 2271 cc->gdb_num_core_regs = 26; 2272 cc->gdb_core_xml_file = "arm-core.xml"; 2273 cc->gdb_arch_name = arm_gdb_arch_name; 2274 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2275 cc->gdb_stop_before_watchpoint = true; 2276 cc->disas_set_info = arm_disas_set_info; 2277 #ifdef CONFIG_TCG 2278 cc->tcg_ops.initialize = arm_translate_init; 2279 cc->tcg_ops.cpu_exec_interrupt = arm_cpu_exec_interrupt; 2280 cc->tcg_ops.synchronize_from_tb = arm_cpu_synchronize_from_tb; 2281 cc->tcg_ops.tlb_fill = arm_cpu_tlb_fill; 2282 cc->tcg_ops.debug_excp_handler = arm_debug_excp_handler; 2283 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2284 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2285 #if !defined(CONFIG_USER_ONLY) 2286 cc->tcg_ops.do_transaction_failed = arm_cpu_do_transaction_failed; 2287 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2288 cc->tcg_ops.do_interrupt = arm_cpu_do_interrupt; 2289 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 2290 #endif /* CONFIG_TCG */ 2291 } 2292 2293 #ifdef CONFIG_KVM 2294 static void arm_host_initfn(Object *obj) 2295 { 2296 ARMCPU *cpu = ARM_CPU(obj); 2297 2298 kvm_arm_set_cpu_features_from_host(cpu); 2299 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 2300 aarch64_add_sve_properties(obj); 2301 } 2302 arm_cpu_post_init(obj); 2303 } 2304 2305 static const TypeInfo host_arm_cpu_type_info = { 2306 .name = TYPE_ARM_HOST_CPU, 2307 .parent = TYPE_AARCH64_CPU, 2308 .instance_init = arm_host_initfn, 2309 }; 2310 2311 #endif 2312 2313 static void arm_cpu_instance_init(Object *obj) 2314 { 2315 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2316 2317 acc->info->initfn(obj); 2318 arm_cpu_post_init(obj); 2319 } 2320 2321 static void cpu_register_class_init(ObjectClass *oc, void *data) 2322 { 2323 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2324 2325 acc->info = data; 2326 } 2327 2328 void arm_cpu_register(const ARMCPUInfo *info) 2329 { 2330 TypeInfo type_info = { 2331 .parent = TYPE_ARM_CPU, 2332 .instance_size = sizeof(ARMCPU), 2333 .instance_align = __alignof__(ARMCPU), 2334 .instance_init = arm_cpu_instance_init, 2335 .class_size = sizeof(ARMCPUClass), 2336 .class_init = info->class_init ?: cpu_register_class_init, 2337 .class_data = (void *)info, 2338 }; 2339 2340 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2341 type_register(&type_info); 2342 g_free((void *)type_info.name); 2343 } 2344 2345 static const TypeInfo arm_cpu_type_info = { 2346 .name = TYPE_ARM_CPU, 2347 .parent = TYPE_CPU, 2348 .instance_size = sizeof(ARMCPU), 2349 .instance_align = __alignof__(ARMCPU), 2350 .instance_init = arm_cpu_initfn, 2351 .instance_finalize = arm_cpu_finalizefn, 2352 .abstract = true, 2353 .class_size = sizeof(ARMCPUClass), 2354 .class_init = arm_cpu_class_init, 2355 }; 2356 2357 static const TypeInfo idau_interface_type_info = { 2358 .name = TYPE_IDAU_INTERFACE, 2359 .parent = TYPE_INTERFACE, 2360 .class_size = sizeof(IDAUInterfaceClass), 2361 }; 2362 2363 static void arm_cpu_register_types(void) 2364 { 2365 const size_t cpu_count = ARRAY_SIZE(arm_cpus); 2366 2367 type_register_static(&arm_cpu_type_info); 2368 2369 #ifdef CONFIG_KVM 2370 type_register_static(&host_arm_cpu_type_info); 2371 #endif 2372 2373 if (cpu_count) { 2374 size_t i; 2375 2376 type_register_static(&idau_interface_type_info); 2377 for (i = 0; i < cpu_count; ++i) { 2378 arm_cpu_register(&arm_cpus[i]); 2379 } 2380 } 2381 } 2382 2383 type_init(arm_cpu_register_types) 2384