xref: /openbmc/qemu/target/arm/cpu.c (revision ca6d63c20ba25e8e931157fbe7f144fb397c0f72)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
44 
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     CPUARMState *env = &cpu->env;
49 
50     if (is_a64(env)) {
51         env->pc = value;
52         env->thumb = 0;
53     } else {
54         env->regs[15] = value & ~1;
55         env->thumb = value & 1;
56     }
57 }
58 
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61                                  const TranslationBlock *tb)
62 {
63     ARMCPU *cpu = ARM_CPU(cs);
64     CPUARMState *env = &cpu->env;
65 
66     /*
67      * It's OK to look at env for the current mode here, because it's
68      * never possible for an AArch64 TB to chain to an AArch32 TB.
69      */
70     if (is_a64(env)) {
71         env->pc = tb->pc;
72     } else {
73         env->regs[15] = tb->pc;
74     }
75 }
76 #endif /* CONFIG_TCG */
77 
78 static bool arm_cpu_has_work(CPUState *cs)
79 {
80     ARMCPU *cpu = ARM_CPU(cs);
81 
82     return (cpu->power_state != PSCI_OFF)
83         && cs->interrupt_request &
84         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86          | CPU_INTERRUPT_EXITTB);
87 }
88 
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90                                  void *opaque)
91 {
92     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
93 
94     entry->hook = hook;
95     entry->opaque = opaque;
96 
97     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
98 }
99 
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101                                  void *opaque)
102 {
103     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
104 
105     entry->hook = hook;
106     entry->opaque = opaque;
107 
108     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
109 }
110 
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
112 {
113     /* Reset a single ARMCPRegInfo register */
114     ARMCPRegInfo *ri = value;
115     ARMCPU *cpu = opaque;
116 
117     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118         return;
119     }
120 
121     if (ri->resetfn) {
122         ri->resetfn(&cpu->env, ri);
123         return;
124     }
125 
126     /* A zero offset is never possible as it would be regs[0]
127      * so we use it to indicate that reset is being handled elsewhere.
128      * This is basically only used for fields in non-core coprocessors
129      * (like the pxa2xx ones).
130      */
131     if (!ri->fieldoffset) {
132         return;
133     }
134 
135     if (cpreg_field_is_64bit(ri)) {
136         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137     } else {
138         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
139     }
140 }
141 
142 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
143 {
144     /* Purely an assertion check: we've already done reset once,
145      * so now check that running the reset for the cpreg doesn't
146      * change its value. This traps bugs where two different cpregs
147      * both try to reset the same state field but to different values.
148      */
149     ARMCPRegInfo *ri = value;
150     ARMCPU *cpu = opaque;
151     uint64_t oldvalue, newvalue;
152 
153     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154         return;
155     }
156 
157     oldvalue = read_raw_cp_reg(&cpu->env, ri);
158     cp_reg_reset(key, value, opaque);
159     newvalue = read_raw_cp_reg(&cpu->env, ri);
160     assert(oldvalue == newvalue);
161 }
162 
163 static void arm_cpu_reset(DeviceState *dev)
164 {
165     CPUState *s = CPU(dev);
166     ARMCPU *cpu = ARM_CPU(s);
167     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168     CPUARMState *env = &cpu->env;
169 
170     acc->parent_reset(dev);
171 
172     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
173 
174     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
176 
177     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
181 
182     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
183 
184     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
186     }
187 
188     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189         /* 64 bit CPUs always start in 64 bit mode */
190         env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192         env->pstate = PSTATE_MODE_EL0t;
193         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195         /* Enable all PAC keys.  */
196         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197                                   SCTLR_EnDA | SCTLR_EnDB);
198         /* and to the FP/Neon instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200         /* and to the SVE instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202         /* with reasonable vector length */
203         if (cpu_isar_feature(aa64_sve, cpu)) {
204             env->vfp.zcr_el[1] =
205                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
206         }
207         /*
208          * Enable TBI0 but not TBI1.
209          * Note that this must match useronly_clean_ptr.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
212 
213         /* Enable MTE */
214         if (cpu_isar_feature(aa64_mte, cpu)) {
215             /* Enable tag access, but leave TCF0 as No Effect (0). */
216             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
217             /*
218              * Exclude all tags, so that tag 0 is always used.
219              * This corresponds to Linux current->thread.gcr_incl = 0.
220              *
221              * Set RRND, so that helper_irg() will generate a seed later.
222              * Here in cpu_reset(), the crypto subsystem has not yet been
223              * initialized.
224              */
225             env->cp15.gcr_el1 = 0x1ffff;
226         }
227 #else
228         /* Reset into the highest available EL */
229         if (arm_feature(env, ARM_FEATURE_EL3)) {
230             env->pstate = PSTATE_MODE_EL3h;
231         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232             env->pstate = PSTATE_MODE_EL2h;
233         } else {
234             env->pstate = PSTATE_MODE_EL1h;
235         }
236         env->pc = cpu->rvbar;
237 #endif
238     } else {
239 #if defined(CONFIG_USER_ONLY)
240         /* Userspace expects access to cp10 and cp11 for FP/Neon */
241         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
243     }
244 
245 #if defined(CONFIG_USER_ONLY)
246     env->uncached_cpsr = ARM_CPU_MODE_USR;
247     /* For user mode we must enable access to coprocessors */
248     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250         env->cp15.c15_cpar = 3;
251     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252         env->cp15.c15_cpar = 1;
253     }
254 #else
255 
256     /*
257      * If the highest available EL is EL2, AArch32 will start in Hyp
258      * mode; otherwise it starts in SVC. Note that if we start in
259      * AArch64 then these values in the uncached_cpsr will be ignored.
260      */
261     if (arm_feature(env, ARM_FEATURE_EL2) &&
262         !arm_feature(env, ARM_FEATURE_EL3)) {
263         env->uncached_cpsr = ARM_CPU_MODE_HYP;
264     } else {
265         env->uncached_cpsr = ARM_CPU_MODE_SVC;
266     }
267     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
268 
269     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
270      * executing as AArch32 then check if highvecs are enabled and
271      * adjust the PC accordingly.
272      */
273     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
274         env->regs[15] = 0xFFFF0000;
275     }
276 
277     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
278 #endif
279 
280     if (arm_feature(env, ARM_FEATURE_M)) {
281 #ifndef CONFIG_USER_ONLY
282         uint32_t initial_msp; /* Loaded from 0x0 */
283         uint32_t initial_pc; /* Loaded from 0x4 */
284         uint8_t *rom;
285         uint32_t vecbase;
286 #endif
287 
288         if (cpu_isar_feature(aa32_lob, cpu)) {
289             /*
290              * LTPSIZE is constant 4 if MVE not implemented, and resets
291              * to an UNKNOWN value if MVE is implemented. We choose to
292              * always reset to 4.
293              */
294             env->v7m.ltpsize = 4;
295             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
296             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
297             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
298         }
299 
300         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
301             env->v7m.secure = true;
302         } else {
303             /* This bit resets to 0 if security is supported, but 1 if
304              * it is not. The bit is not present in v7M, but we set it
305              * here so we can avoid having to make checks on it conditional
306              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
307              */
308             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
309             /*
310              * Set NSACR to indicate "NS access permitted to everything";
311              * this avoids having to have all the tests of it being
312              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
313              * v8.1M the guest-visible value of NSACR in a CPU without the
314              * Security Extension is 0xcff.
315              */
316             env->v7m.nsacr = 0xcff;
317         }
318 
319         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
320          * that it resets to 1, so QEMU always does that rather than making
321          * it dependent on CPU model. In v8M it is RES1.
322          */
323         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
324         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
325         if (arm_feature(env, ARM_FEATURE_V8)) {
326             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
327             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
328             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
329         }
330         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
331             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
332             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
333         }
334 
335         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
336             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
337             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
338                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
339         }
340 
341 #ifndef CONFIG_USER_ONLY
342         /* Unlike A/R profile, M profile defines the reset LR value */
343         env->regs[14] = 0xffffffff;
344 
345         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
346         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
347 
348         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
349         vecbase = env->v7m.vecbase[env->v7m.secure];
350         rom = rom_ptr_for_as(s->as, vecbase, 8);
351         if (rom) {
352             /* Address zero is covered by ROM which hasn't yet been
353              * copied into physical memory.
354              */
355             initial_msp = ldl_p(rom);
356             initial_pc = ldl_p(rom + 4);
357         } else {
358             /* Address zero not covered by a ROM blob, or the ROM blob
359              * is in non-modifiable memory and this is a second reset after
360              * it got copied into memory. In the latter case, rom_ptr
361              * will return a NULL pointer and we should use ldl_phys instead.
362              */
363             initial_msp = ldl_phys(s->as, vecbase);
364             initial_pc = ldl_phys(s->as, vecbase + 4);
365         }
366 
367         env->regs[13] = initial_msp & 0xFFFFFFFC;
368         env->regs[15] = initial_pc & ~1;
369         env->thumb = initial_pc & 1;
370 #else
371         /*
372          * For user mode we run non-secure and with access to the FPU.
373          * The FPU context is active (ie does not need further setup)
374          * and is owned by non-secure.
375          */
376         env->v7m.secure = false;
377         env->v7m.nsacr = 0xcff;
378         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
379         env->v7m.fpccr[M_REG_S] &=
380             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
381         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
382 #endif
383     }
384 
385     /* M profile requires that reset clears the exclusive monitor;
386      * A profile does not, but clearing it makes more sense than having it
387      * set with an exclusive access on address zero.
388      */
389     arm_clear_exclusive(env);
390 
391     if (arm_feature(env, ARM_FEATURE_PMSA)) {
392         if (cpu->pmsav7_dregion > 0) {
393             if (arm_feature(env, ARM_FEATURE_V8)) {
394                 memset(env->pmsav8.rbar[M_REG_NS], 0,
395                        sizeof(*env->pmsav8.rbar[M_REG_NS])
396                        * cpu->pmsav7_dregion);
397                 memset(env->pmsav8.rlar[M_REG_NS], 0,
398                        sizeof(*env->pmsav8.rlar[M_REG_NS])
399                        * cpu->pmsav7_dregion);
400                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
401                     memset(env->pmsav8.rbar[M_REG_S], 0,
402                            sizeof(*env->pmsav8.rbar[M_REG_S])
403                            * cpu->pmsav7_dregion);
404                     memset(env->pmsav8.rlar[M_REG_S], 0,
405                            sizeof(*env->pmsav8.rlar[M_REG_S])
406                            * cpu->pmsav7_dregion);
407                 }
408             } else if (arm_feature(env, ARM_FEATURE_V7)) {
409                 memset(env->pmsav7.drbar, 0,
410                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
411                 memset(env->pmsav7.drsr, 0,
412                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
413                 memset(env->pmsav7.dracr, 0,
414                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
415             }
416         }
417         env->pmsav7.rnr[M_REG_NS] = 0;
418         env->pmsav7.rnr[M_REG_S] = 0;
419         env->pmsav8.mair0[M_REG_NS] = 0;
420         env->pmsav8.mair0[M_REG_S] = 0;
421         env->pmsav8.mair1[M_REG_NS] = 0;
422         env->pmsav8.mair1[M_REG_S] = 0;
423     }
424 
425     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
426         if (cpu->sau_sregion > 0) {
427             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
428             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
429         }
430         env->sau.rnr = 0;
431         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
432          * the Cortex-M33 does.
433          */
434         env->sau.ctrl = 0;
435     }
436 
437     set_flush_to_zero(1, &env->vfp.standard_fp_status);
438     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
439     set_default_nan_mode(1, &env->vfp.standard_fp_status);
440     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
441     set_float_detect_tininess(float_tininess_before_rounding,
442                               &env->vfp.fp_status);
443     set_float_detect_tininess(float_tininess_before_rounding,
444                               &env->vfp.standard_fp_status);
445     set_float_detect_tininess(float_tininess_before_rounding,
446                               &env->vfp.fp_status_f16);
447     set_float_detect_tininess(float_tininess_before_rounding,
448                               &env->vfp.standard_fp_status_f16);
449 #ifndef CONFIG_USER_ONLY
450     if (kvm_enabled()) {
451         kvm_arm_reset_vcpu(cpu);
452     }
453 #endif
454 
455     hw_breakpoint_update_all(cpu);
456     hw_watchpoint_update_all(cpu);
457     arm_rebuild_hflags(env);
458 }
459 
460 #ifndef CONFIG_USER_ONLY
461 
462 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
463                                      unsigned int target_el,
464                                      unsigned int cur_el, bool secure,
465                                      uint64_t hcr_el2)
466 {
467     CPUARMState *env = cs->env_ptr;
468     bool pstate_unmasked;
469     bool unmasked = false;
470 
471     /*
472      * Don't take exceptions if they target a lower EL.
473      * This check should catch any exceptions that would not be taken
474      * but left pending.
475      */
476     if (cur_el > target_el) {
477         return false;
478     }
479 
480     switch (excp_idx) {
481     case EXCP_FIQ:
482         pstate_unmasked = !(env->daif & PSTATE_F);
483         break;
484 
485     case EXCP_IRQ:
486         pstate_unmasked = !(env->daif & PSTATE_I);
487         break;
488 
489     case EXCP_VFIQ:
490         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
491             /* VFIQs are only taken when hypervized.  */
492             return false;
493         }
494         return !(env->daif & PSTATE_F);
495     case EXCP_VIRQ:
496         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
497             /* VIRQs are only taken when hypervized.  */
498             return false;
499         }
500         return !(env->daif & PSTATE_I);
501     default:
502         g_assert_not_reached();
503     }
504 
505     /*
506      * Use the target EL, current execution state and SCR/HCR settings to
507      * determine whether the corresponding CPSR bit is used to mask the
508      * interrupt.
509      */
510     if ((target_el > cur_el) && (target_el != 1)) {
511         /* Exceptions targeting a higher EL may not be maskable */
512         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
513             /*
514              * 64-bit masking rules are simple: exceptions to EL3
515              * can't be masked, and exceptions to EL2 can only be
516              * masked from Secure state. The HCR and SCR settings
517              * don't affect the masking logic, only the interrupt routing.
518              */
519             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
520                 unmasked = true;
521             }
522         } else {
523             /*
524              * The old 32-bit-only environment has a more complicated
525              * masking setup. HCR and SCR bits not only affect interrupt
526              * routing but also change the behaviour of masking.
527              */
528             bool hcr, scr;
529 
530             switch (excp_idx) {
531             case EXCP_FIQ:
532                 /*
533                  * If FIQs are routed to EL3 or EL2 then there are cases where
534                  * we override the CPSR.F in determining if the exception is
535                  * masked or not. If neither of these are set then we fall back
536                  * to the CPSR.F setting otherwise we further assess the state
537                  * below.
538                  */
539                 hcr = hcr_el2 & HCR_FMO;
540                 scr = (env->cp15.scr_el3 & SCR_FIQ);
541 
542                 /*
543                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
544                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
545                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
546                  * when non-secure but only when FIQs are only routed to EL3.
547                  */
548                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
549                 break;
550             case EXCP_IRQ:
551                 /*
552                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
553                  * we may override the CPSR.I masking when in non-secure state.
554                  * The SCR.IRQ setting has already been taken into consideration
555                  * when setting the target EL, so it does not have a further
556                  * affect here.
557                  */
558                 hcr = hcr_el2 & HCR_IMO;
559                 scr = false;
560                 break;
561             default:
562                 g_assert_not_reached();
563             }
564 
565             if ((scr || hcr) && !secure) {
566                 unmasked = true;
567             }
568         }
569     }
570 
571     /*
572      * The PSTATE bits only mask the interrupt if we have not overriden the
573      * ability above.
574      */
575     return unmasked || pstate_unmasked;
576 }
577 
578 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
579 {
580     CPUClass *cc = CPU_GET_CLASS(cs);
581     CPUARMState *env = cs->env_ptr;
582     uint32_t cur_el = arm_current_el(env);
583     bool secure = arm_is_secure(env);
584     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
585     uint32_t target_el;
586     uint32_t excp_idx;
587 
588     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
589 
590     if (interrupt_request & CPU_INTERRUPT_FIQ) {
591         excp_idx = EXCP_FIQ;
592         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
593         if (arm_excp_unmasked(cs, excp_idx, target_el,
594                               cur_el, secure, hcr_el2)) {
595             goto found;
596         }
597     }
598     if (interrupt_request & CPU_INTERRUPT_HARD) {
599         excp_idx = EXCP_IRQ;
600         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
601         if (arm_excp_unmasked(cs, excp_idx, target_el,
602                               cur_el, secure, hcr_el2)) {
603             goto found;
604         }
605     }
606     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
607         excp_idx = EXCP_VIRQ;
608         target_el = 1;
609         if (arm_excp_unmasked(cs, excp_idx, target_el,
610                               cur_el, secure, hcr_el2)) {
611             goto found;
612         }
613     }
614     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
615         excp_idx = EXCP_VFIQ;
616         target_el = 1;
617         if (arm_excp_unmasked(cs, excp_idx, target_el,
618                               cur_el, secure, hcr_el2)) {
619             goto found;
620         }
621     }
622     return false;
623 
624  found:
625     cs->exception_index = excp_idx;
626     env->exception.target_el = target_el;
627     cc->tcg_ops->do_interrupt(cs);
628     return true;
629 }
630 #endif /* !CONFIG_USER_ONLY */
631 
632 void arm_cpu_update_virq(ARMCPU *cpu)
633 {
634     /*
635      * Update the interrupt level for VIRQ, which is the logical OR of
636      * the HCR_EL2.VI bit and the input line level from the GIC.
637      */
638     CPUARMState *env = &cpu->env;
639     CPUState *cs = CPU(cpu);
640 
641     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
642         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
643 
644     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
645         if (new_state) {
646             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
647         } else {
648             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
649         }
650     }
651 }
652 
653 void arm_cpu_update_vfiq(ARMCPU *cpu)
654 {
655     /*
656      * Update the interrupt level for VFIQ, which is the logical OR of
657      * the HCR_EL2.VF bit and the input line level from the GIC.
658      */
659     CPUARMState *env = &cpu->env;
660     CPUState *cs = CPU(cpu);
661 
662     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
663         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
664 
665     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
666         if (new_state) {
667             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
668         } else {
669             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
670         }
671     }
672 }
673 
674 #ifndef CONFIG_USER_ONLY
675 static void arm_cpu_set_irq(void *opaque, int irq, int level)
676 {
677     ARMCPU *cpu = opaque;
678     CPUARMState *env = &cpu->env;
679     CPUState *cs = CPU(cpu);
680     static const int mask[] = {
681         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
682         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
683         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
684         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
685     };
686 
687     if (level) {
688         env->irq_line_state |= mask[irq];
689     } else {
690         env->irq_line_state &= ~mask[irq];
691     }
692 
693     switch (irq) {
694     case ARM_CPU_VIRQ:
695         assert(arm_feature(env, ARM_FEATURE_EL2));
696         arm_cpu_update_virq(cpu);
697         break;
698     case ARM_CPU_VFIQ:
699         assert(arm_feature(env, ARM_FEATURE_EL2));
700         arm_cpu_update_vfiq(cpu);
701         break;
702     case ARM_CPU_IRQ:
703     case ARM_CPU_FIQ:
704         if (level) {
705             cpu_interrupt(cs, mask[irq]);
706         } else {
707             cpu_reset_interrupt(cs, mask[irq]);
708         }
709         break;
710     default:
711         g_assert_not_reached();
712     }
713 }
714 
715 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
716 {
717 #ifdef CONFIG_KVM
718     ARMCPU *cpu = opaque;
719     CPUARMState *env = &cpu->env;
720     CPUState *cs = CPU(cpu);
721     uint32_t linestate_bit;
722     int irq_id;
723 
724     switch (irq) {
725     case ARM_CPU_IRQ:
726         irq_id = KVM_ARM_IRQ_CPU_IRQ;
727         linestate_bit = CPU_INTERRUPT_HARD;
728         break;
729     case ARM_CPU_FIQ:
730         irq_id = KVM_ARM_IRQ_CPU_FIQ;
731         linestate_bit = CPU_INTERRUPT_FIQ;
732         break;
733     default:
734         g_assert_not_reached();
735     }
736 
737     if (level) {
738         env->irq_line_state |= linestate_bit;
739     } else {
740         env->irq_line_state &= ~linestate_bit;
741     }
742     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
743 #endif
744 }
745 
746 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
747 {
748     ARMCPU *cpu = ARM_CPU(cs);
749     CPUARMState *env = &cpu->env;
750 
751     cpu_synchronize_state(cs);
752     return arm_cpu_data_is_big_endian(env);
753 }
754 
755 #endif
756 
757 static int
758 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
759 {
760   return print_insn_arm(pc | 1, info);
761 }
762 
763 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
764 {
765     ARMCPU *ac = ARM_CPU(cpu);
766     CPUARMState *env = &ac->env;
767     bool sctlr_b;
768 
769     if (is_a64(env)) {
770         /* We might not be compiled with the A64 disassembler
771          * because it needs a C++ compiler. Leave print_insn
772          * unset in this case to use the caller default behaviour.
773          */
774 #if defined(CONFIG_ARM_A64_DIS)
775         info->print_insn = print_insn_arm_a64;
776 #endif
777         info->cap_arch = CS_ARCH_ARM64;
778         info->cap_insn_unit = 4;
779         info->cap_insn_split = 4;
780     } else {
781         int cap_mode;
782         if (env->thumb) {
783             info->print_insn = print_insn_thumb1;
784             info->cap_insn_unit = 2;
785             info->cap_insn_split = 4;
786             cap_mode = CS_MODE_THUMB;
787         } else {
788             info->print_insn = print_insn_arm;
789             info->cap_insn_unit = 4;
790             info->cap_insn_split = 4;
791             cap_mode = CS_MODE_ARM;
792         }
793         if (arm_feature(env, ARM_FEATURE_V8)) {
794             cap_mode |= CS_MODE_V8;
795         }
796         if (arm_feature(env, ARM_FEATURE_M)) {
797             cap_mode |= CS_MODE_MCLASS;
798         }
799         info->cap_arch = CS_ARCH_ARM;
800         info->cap_mode = cap_mode;
801     }
802 
803     sctlr_b = arm_sctlr_b(env);
804     if (bswap_code(sctlr_b)) {
805 #ifdef TARGET_WORDS_BIGENDIAN
806         info->endian = BFD_ENDIAN_LITTLE;
807 #else
808         info->endian = BFD_ENDIAN_BIG;
809 #endif
810     }
811     info->flags &= ~INSN_ARM_BE32;
812 #ifndef CONFIG_USER_ONLY
813     if (sctlr_b) {
814         info->flags |= INSN_ARM_BE32;
815     }
816 #endif
817 }
818 
819 #ifdef TARGET_AARCH64
820 
821 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
822 {
823     ARMCPU *cpu = ARM_CPU(cs);
824     CPUARMState *env = &cpu->env;
825     uint32_t psr = pstate_read(env);
826     int i;
827     int el = arm_current_el(env);
828     const char *ns_status;
829 
830     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
831     for (i = 0; i < 32; i++) {
832         if (i == 31) {
833             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
834         } else {
835             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
836                          (i + 2) % 3 ? " " : "\n");
837         }
838     }
839 
840     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
841         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
842     } else {
843         ns_status = "";
844     }
845     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
846                  psr,
847                  psr & PSTATE_N ? 'N' : '-',
848                  psr & PSTATE_Z ? 'Z' : '-',
849                  psr & PSTATE_C ? 'C' : '-',
850                  psr & PSTATE_V ? 'V' : '-',
851                  ns_status,
852                  el,
853                  psr & PSTATE_SP ? 'h' : 't');
854 
855     if (cpu_isar_feature(aa64_bti, cpu)) {
856         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
857     }
858     if (!(flags & CPU_DUMP_FPU)) {
859         qemu_fprintf(f, "\n");
860         return;
861     }
862     if (fp_exception_el(env, el) != 0) {
863         qemu_fprintf(f, "    FPU disabled\n");
864         return;
865     }
866     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
867                  vfp_get_fpcr(env), vfp_get_fpsr(env));
868 
869     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
870         int j, zcr_len = sve_zcr_len_for_el(env, el);
871 
872         for (i = 0; i <= FFR_PRED_NUM; i++) {
873             bool eol;
874             if (i == FFR_PRED_NUM) {
875                 qemu_fprintf(f, "FFR=");
876                 /* It's last, so end the line.  */
877                 eol = true;
878             } else {
879                 qemu_fprintf(f, "P%02d=", i);
880                 switch (zcr_len) {
881                 case 0:
882                     eol = i % 8 == 7;
883                     break;
884                 case 1:
885                     eol = i % 6 == 5;
886                     break;
887                 case 2:
888                 case 3:
889                     eol = i % 3 == 2;
890                     break;
891                 default:
892                     /* More than one quadword per predicate.  */
893                     eol = true;
894                     break;
895                 }
896             }
897             for (j = zcr_len / 4; j >= 0; j--) {
898                 int digits;
899                 if (j * 4 + 4 <= zcr_len + 1) {
900                     digits = 16;
901                 } else {
902                     digits = (zcr_len % 4 + 1) * 4;
903                 }
904                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
905                              env->vfp.pregs[i].p[j],
906                              j ? ":" : eol ? "\n" : " ");
907             }
908         }
909 
910         for (i = 0; i < 32; i++) {
911             if (zcr_len == 0) {
912                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
913                              i, env->vfp.zregs[i].d[1],
914                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
915             } else if (zcr_len == 1) {
916                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
917                              ":%016" PRIx64 ":%016" PRIx64 "\n",
918                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
919                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
920             } else {
921                 for (j = zcr_len; j >= 0; j--) {
922                     bool odd = (zcr_len - j) % 2 != 0;
923                     if (j == zcr_len) {
924                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
925                     } else if (!odd) {
926                         if (j > 0) {
927                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
928                         } else {
929                             qemu_fprintf(f, "     [%x]=", j);
930                         }
931                     }
932                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
933                                  env->vfp.zregs[i].d[j * 2 + 1],
934                                  env->vfp.zregs[i].d[j * 2],
935                                  odd || j == 0 ? "\n" : ":");
936                 }
937             }
938         }
939     } else {
940         for (i = 0; i < 32; i++) {
941             uint64_t *q = aa64_vfp_qreg(env, i);
942             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
943                          i, q[1], q[0], (i & 1 ? "\n" : " "));
944         }
945     }
946 }
947 
948 #else
949 
950 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
951 {
952     g_assert_not_reached();
953 }
954 
955 #endif
956 
957 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
958 {
959     ARMCPU *cpu = ARM_CPU(cs);
960     CPUARMState *env = &cpu->env;
961     int i;
962 
963     if (is_a64(env)) {
964         aarch64_cpu_dump_state(cs, f, flags);
965         return;
966     }
967 
968     for (i = 0; i < 16; i++) {
969         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
970         if ((i % 4) == 3) {
971             qemu_fprintf(f, "\n");
972         } else {
973             qemu_fprintf(f, " ");
974         }
975     }
976 
977     if (arm_feature(env, ARM_FEATURE_M)) {
978         uint32_t xpsr = xpsr_read(env);
979         const char *mode;
980         const char *ns_status = "";
981 
982         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
983             ns_status = env->v7m.secure ? "S " : "NS ";
984         }
985 
986         if (xpsr & XPSR_EXCP) {
987             mode = "handler";
988         } else {
989             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
990                 mode = "unpriv-thread";
991             } else {
992                 mode = "priv-thread";
993             }
994         }
995 
996         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
997                      xpsr,
998                      xpsr & XPSR_N ? 'N' : '-',
999                      xpsr & XPSR_Z ? 'Z' : '-',
1000                      xpsr & XPSR_C ? 'C' : '-',
1001                      xpsr & XPSR_V ? 'V' : '-',
1002                      xpsr & XPSR_T ? 'T' : 'A',
1003                      ns_status,
1004                      mode);
1005     } else {
1006         uint32_t psr = cpsr_read(env);
1007         const char *ns_status = "";
1008 
1009         if (arm_feature(env, ARM_FEATURE_EL3) &&
1010             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1011             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1012         }
1013 
1014         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1015                      psr,
1016                      psr & CPSR_N ? 'N' : '-',
1017                      psr & CPSR_Z ? 'Z' : '-',
1018                      psr & CPSR_C ? 'C' : '-',
1019                      psr & CPSR_V ? 'V' : '-',
1020                      psr & CPSR_T ? 'T' : 'A',
1021                      ns_status,
1022                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1023     }
1024 
1025     if (flags & CPU_DUMP_FPU) {
1026         int numvfpregs = 0;
1027         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1028             numvfpregs = 32;
1029         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1030             numvfpregs = 16;
1031         }
1032         for (i = 0; i < numvfpregs; i++) {
1033             uint64_t v = *aa32_vfp_dreg(env, i);
1034             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1035                          i * 2, (uint32_t)v,
1036                          i * 2 + 1, (uint32_t)(v >> 32),
1037                          i, v);
1038         }
1039         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1040         if (cpu_isar_feature(aa32_mve, cpu)) {
1041             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1042         }
1043     }
1044 }
1045 
1046 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1047 {
1048     uint32_t Aff1 = idx / clustersz;
1049     uint32_t Aff0 = idx % clustersz;
1050     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1051 }
1052 
1053 static void cpreg_hashtable_data_destroy(gpointer data)
1054 {
1055     /*
1056      * Destroy function for cpu->cp_regs hashtable data entries.
1057      * We must free the name string because it was g_strdup()ed in
1058      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1059      * from r->name because we know we definitely allocated it.
1060      */
1061     ARMCPRegInfo *r = data;
1062 
1063     g_free((void *)r->name);
1064     g_free(r);
1065 }
1066 
1067 static void arm_cpu_initfn(Object *obj)
1068 {
1069     ARMCPU *cpu = ARM_CPU(obj);
1070 
1071     cpu_set_cpustate_pointers(cpu);
1072     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1073                                          g_free, cpreg_hashtable_data_destroy);
1074 
1075     QLIST_INIT(&cpu->pre_el_change_hooks);
1076     QLIST_INIT(&cpu->el_change_hooks);
1077 
1078 #ifdef CONFIG_USER_ONLY
1079 # ifdef TARGET_AARCH64
1080     /*
1081      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1082      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1083      * our corresponding sve-default-vector-length cpu property.
1084      */
1085     cpu->sve_default_vq = 4;
1086 # endif
1087 #else
1088     /* Our inbound IRQ and FIQ lines */
1089     if (kvm_enabled()) {
1090         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1091          * the same interface as non-KVM CPUs.
1092          */
1093         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1094     } else {
1095         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1096     }
1097 
1098     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1099                        ARRAY_SIZE(cpu->gt_timer_outputs));
1100 
1101     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1102                              "gicv3-maintenance-interrupt", 1);
1103     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1104                              "pmu-interrupt", 1);
1105 #endif
1106 
1107     /* DTB consumers generally don't in fact care what the 'compatible'
1108      * string is, so always provide some string and trust that a hypothetical
1109      * picky DTB consumer will also provide a helpful error message.
1110      */
1111     cpu->dtb_compatible = "qemu,unknown";
1112     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1113     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1114 
1115     if (tcg_enabled() || hvf_enabled()) {
1116         cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
1117     }
1118 }
1119 
1120 static Property arm_cpu_gt_cntfrq_property =
1121             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1122                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1123 
1124 static Property arm_cpu_reset_cbar_property =
1125             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1126 
1127 static Property arm_cpu_reset_hivecs_property =
1128             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1129 
1130 static Property arm_cpu_rvbar_property =
1131             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1132 
1133 #ifndef CONFIG_USER_ONLY
1134 static Property arm_cpu_has_el2_property =
1135             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1136 
1137 static Property arm_cpu_has_el3_property =
1138             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1139 #endif
1140 
1141 static Property arm_cpu_cfgend_property =
1142             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1143 
1144 static Property arm_cpu_has_vfp_property =
1145             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1146 
1147 static Property arm_cpu_has_neon_property =
1148             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1149 
1150 static Property arm_cpu_has_dsp_property =
1151             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1152 
1153 static Property arm_cpu_has_mpu_property =
1154             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1155 
1156 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1157  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1158  * the right value for that particular CPU type, and we don't want
1159  * to override that with an incorrect constant value.
1160  */
1161 static Property arm_cpu_pmsav7_dregion_property =
1162             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1163                                            pmsav7_dregion,
1164                                            qdev_prop_uint32, uint32_t);
1165 
1166 static bool arm_get_pmu(Object *obj, Error **errp)
1167 {
1168     ARMCPU *cpu = ARM_CPU(obj);
1169 
1170     return cpu->has_pmu;
1171 }
1172 
1173 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1174 {
1175     ARMCPU *cpu = ARM_CPU(obj);
1176 
1177     if (value) {
1178         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1179             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1180             return;
1181         }
1182         set_feature(&cpu->env, ARM_FEATURE_PMU);
1183     } else {
1184         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1185     }
1186     cpu->has_pmu = value;
1187 }
1188 
1189 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1190 {
1191     /*
1192      * The exact approach to calculating guest ticks is:
1193      *
1194      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1195      *              NANOSECONDS_PER_SECOND);
1196      *
1197      * We don't do that. Rather we intentionally use integer division
1198      * truncation below and in the caller for the conversion of host monotonic
1199      * time to guest ticks to provide the exact inverse for the semantics of
1200      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1201      * it loses precision when representing frequencies where
1202      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1203      * provide an exact inverse leads to scheduling timers with negative
1204      * periods, which in turn leads to sticky behaviour in the guest.
1205      *
1206      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1207      * cannot become zero.
1208      */
1209     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1210       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1211 }
1212 
1213 void arm_cpu_post_init(Object *obj)
1214 {
1215     ARMCPU *cpu = ARM_CPU(obj);
1216 
1217     /* M profile implies PMSA. We have to do this here rather than
1218      * in realize with the other feature-implication checks because
1219      * we look at the PMSA bit to see if we should add some properties.
1220      */
1221     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1222         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1223     }
1224 
1225     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1226         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1227         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1228     }
1229 
1230     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1231         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1232     }
1233 
1234     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1235         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1236     }
1237 
1238 #ifndef CONFIG_USER_ONLY
1239     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1240         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1241          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1242          */
1243         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1244 
1245         object_property_add_link(obj, "secure-memory",
1246                                  TYPE_MEMORY_REGION,
1247                                  (Object **)&cpu->secure_memory,
1248                                  qdev_prop_allow_set_link_before_realize,
1249                                  OBJ_PROP_LINK_STRONG);
1250     }
1251 
1252     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1253         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1254     }
1255 #endif
1256 
1257     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1258         cpu->has_pmu = true;
1259         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1260     }
1261 
1262     /*
1263      * Allow user to turn off VFP and Neon support, but only for TCG --
1264      * KVM does not currently allow us to lie to the guest about its
1265      * ID/feature registers, so the guest always sees what the host has.
1266      */
1267     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1268         ? cpu_isar_feature(aa64_fp_simd, cpu)
1269         : cpu_isar_feature(aa32_vfp, cpu)) {
1270         cpu->has_vfp = true;
1271         if (!kvm_enabled()) {
1272             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1273         }
1274     }
1275 
1276     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1277         cpu->has_neon = true;
1278         if (!kvm_enabled()) {
1279             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1280         }
1281     }
1282 
1283     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1284         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1285         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1286     }
1287 
1288     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1289         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1290         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1291             qdev_property_add_static(DEVICE(obj),
1292                                      &arm_cpu_pmsav7_dregion_property);
1293         }
1294     }
1295 
1296     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1297         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1298                                  qdev_prop_allow_set_link_before_realize,
1299                                  OBJ_PROP_LINK_STRONG);
1300         /*
1301          * M profile: initial value of the Secure VTOR. We can't just use
1302          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1303          * the property to be set after realize.
1304          */
1305         object_property_add_uint32_ptr(obj, "init-svtor",
1306                                        &cpu->init_svtor,
1307                                        OBJ_PROP_FLAG_READWRITE);
1308     }
1309     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1310         /*
1311          * Initial value of the NS VTOR (for cores without the Security
1312          * extension, this is the only VTOR)
1313          */
1314         object_property_add_uint32_ptr(obj, "init-nsvtor",
1315                                        &cpu->init_nsvtor,
1316                                        OBJ_PROP_FLAG_READWRITE);
1317     }
1318 
1319     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1320     object_property_add_uint32_ptr(obj, "psci-conduit",
1321                                    &cpu->psci_conduit,
1322                                    OBJ_PROP_FLAG_READWRITE);
1323 
1324     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1325 
1326     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1327         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1328     }
1329 
1330     if (kvm_enabled()) {
1331         kvm_arm_add_vcpu_properties(obj);
1332     }
1333 
1334 #ifndef CONFIG_USER_ONLY
1335     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1336         cpu_isar_feature(aa64_mte, cpu)) {
1337         object_property_add_link(obj, "tag-memory",
1338                                  TYPE_MEMORY_REGION,
1339                                  (Object **)&cpu->tag_memory,
1340                                  qdev_prop_allow_set_link_before_realize,
1341                                  OBJ_PROP_LINK_STRONG);
1342 
1343         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1344             object_property_add_link(obj, "secure-tag-memory",
1345                                      TYPE_MEMORY_REGION,
1346                                      (Object **)&cpu->secure_tag_memory,
1347                                      qdev_prop_allow_set_link_before_realize,
1348                                      OBJ_PROP_LINK_STRONG);
1349         }
1350     }
1351 #endif
1352 }
1353 
1354 static void arm_cpu_finalizefn(Object *obj)
1355 {
1356     ARMCPU *cpu = ARM_CPU(obj);
1357     ARMELChangeHook *hook, *next;
1358 
1359     g_hash_table_destroy(cpu->cp_regs);
1360 
1361     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1362         QLIST_REMOVE(hook, node);
1363         g_free(hook);
1364     }
1365     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1366         QLIST_REMOVE(hook, node);
1367         g_free(hook);
1368     }
1369 #ifndef CONFIG_USER_ONLY
1370     if (cpu->pmu_timer) {
1371         timer_free(cpu->pmu_timer);
1372     }
1373 #endif
1374 }
1375 
1376 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1377 {
1378     Error *local_err = NULL;
1379 
1380     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1381         arm_cpu_sve_finalize(cpu, &local_err);
1382         if (local_err != NULL) {
1383             error_propagate(errp, local_err);
1384             return;
1385         }
1386 
1387         arm_cpu_pauth_finalize(cpu, &local_err);
1388         if (local_err != NULL) {
1389             error_propagate(errp, local_err);
1390             return;
1391         }
1392     }
1393 
1394     if (kvm_enabled()) {
1395         kvm_arm_steal_time_finalize(cpu, &local_err);
1396         if (local_err != NULL) {
1397             error_propagate(errp, local_err);
1398             return;
1399         }
1400     }
1401 }
1402 
1403 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1404 {
1405     CPUState *cs = CPU(dev);
1406     ARMCPU *cpu = ARM_CPU(dev);
1407     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1408     CPUARMState *env = &cpu->env;
1409     int pagebits;
1410     Error *local_err = NULL;
1411     bool no_aa32 = false;
1412 
1413     /* If we needed to query the host kernel for the CPU features
1414      * then it's possible that might have failed in the initfn, but
1415      * this is the first point where we can report it.
1416      */
1417     if (cpu->host_cpu_probe_failed) {
1418         if (!kvm_enabled() && !hvf_enabled()) {
1419             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1420         } else {
1421             error_setg(errp, "Failed to retrieve host CPU features");
1422         }
1423         return;
1424     }
1425 
1426 #ifndef CONFIG_USER_ONLY
1427     /* The NVIC and M-profile CPU are two halves of a single piece of
1428      * hardware; trying to use one without the other is a command line
1429      * error and will result in segfaults if not caught here.
1430      */
1431     if (arm_feature(env, ARM_FEATURE_M)) {
1432         if (!env->nvic) {
1433             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1434             return;
1435         }
1436     } else {
1437         if (env->nvic) {
1438             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1439             return;
1440         }
1441     }
1442 
1443     if (kvm_enabled()) {
1444         /*
1445          * Catch all the cases which might cause us to create more than one
1446          * address space for the CPU (otherwise we will assert() later in
1447          * cpu_address_space_init()).
1448          */
1449         if (arm_feature(env, ARM_FEATURE_M)) {
1450             error_setg(errp,
1451                        "Cannot enable KVM when using an M-profile guest CPU");
1452             return;
1453         }
1454         if (cpu->has_el3) {
1455             error_setg(errp,
1456                        "Cannot enable KVM when guest CPU has EL3 enabled");
1457             return;
1458         }
1459         if (cpu->tag_memory) {
1460             error_setg(errp,
1461                        "Cannot enable KVM when guest CPUs has MTE enabled");
1462             return;
1463         }
1464     }
1465 
1466     {
1467         uint64_t scale;
1468 
1469         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1470             if (!cpu->gt_cntfrq_hz) {
1471                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1472                            cpu->gt_cntfrq_hz);
1473                 return;
1474             }
1475             scale = gt_cntfrq_period_ns(cpu);
1476         } else {
1477             scale = GTIMER_SCALE;
1478         }
1479 
1480         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1481                                                arm_gt_ptimer_cb, cpu);
1482         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1483                                                arm_gt_vtimer_cb, cpu);
1484         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1485                                               arm_gt_htimer_cb, cpu);
1486         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1487                                               arm_gt_stimer_cb, cpu);
1488         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1489                                                   arm_gt_hvtimer_cb, cpu);
1490     }
1491 #endif
1492 
1493     cpu_exec_realizefn(cs, &local_err);
1494     if (local_err != NULL) {
1495         error_propagate(errp, local_err);
1496         return;
1497     }
1498 
1499     arm_cpu_finalize_features(cpu, &local_err);
1500     if (local_err != NULL) {
1501         error_propagate(errp, local_err);
1502         return;
1503     }
1504 
1505     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1506         cpu->has_vfp != cpu->has_neon) {
1507         /*
1508          * This is an architectural requirement for AArch64; AArch32 is
1509          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1510          */
1511         error_setg(errp,
1512                    "AArch64 CPUs must have both VFP and Neon or neither");
1513         return;
1514     }
1515 
1516     if (!cpu->has_vfp) {
1517         uint64_t t;
1518         uint32_t u;
1519 
1520         t = cpu->isar.id_aa64isar1;
1521         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1522         cpu->isar.id_aa64isar1 = t;
1523 
1524         t = cpu->isar.id_aa64pfr0;
1525         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1526         cpu->isar.id_aa64pfr0 = t;
1527 
1528         u = cpu->isar.id_isar6;
1529         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1530         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1531         cpu->isar.id_isar6 = u;
1532 
1533         u = cpu->isar.mvfr0;
1534         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1535         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1536         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1537         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1538         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1539         if (!arm_feature(env, ARM_FEATURE_M)) {
1540             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1541             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1542         }
1543         cpu->isar.mvfr0 = u;
1544 
1545         u = cpu->isar.mvfr1;
1546         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1547         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1548         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1549         if (arm_feature(env, ARM_FEATURE_M)) {
1550             u = FIELD_DP32(u, MVFR1, FP16, 0);
1551         }
1552         cpu->isar.mvfr1 = u;
1553 
1554         u = cpu->isar.mvfr2;
1555         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1556         cpu->isar.mvfr2 = u;
1557     }
1558 
1559     if (!cpu->has_neon) {
1560         uint64_t t;
1561         uint32_t u;
1562 
1563         unset_feature(env, ARM_FEATURE_NEON);
1564 
1565         t = cpu->isar.id_aa64isar0;
1566         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1567         cpu->isar.id_aa64isar0 = t;
1568 
1569         t = cpu->isar.id_aa64isar1;
1570         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1571         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1572         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1573         cpu->isar.id_aa64isar1 = t;
1574 
1575         t = cpu->isar.id_aa64pfr0;
1576         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1577         cpu->isar.id_aa64pfr0 = t;
1578 
1579         u = cpu->isar.id_isar5;
1580         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1581         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1582         cpu->isar.id_isar5 = u;
1583 
1584         u = cpu->isar.id_isar6;
1585         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1586         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1587         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1588         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1589         cpu->isar.id_isar6 = u;
1590 
1591         if (!arm_feature(env, ARM_FEATURE_M)) {
1592             u = cpu->isar.mvfr1;
1593             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1594             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1595             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1596             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1597             cpu->isar.mvfr1 = u;
1598 
1599             u = cpu->isar.mvfr2;
1600             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1601             cpu->isar.mvfr2 = u;
1602         }
1603     }
1604 
1605     if (!cpu->has_neon && !cpu->has_vfp) {
1606         uint64_t t;
1607         uint32_t u;
1608 
1609         t = cpu->isar.id_aa64isar0;
1610         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1611         cpu->isar.id_aa64isar0 = t;
1612 
1613         t = cpu->isar.id_aa64isar1;
1614         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1615         cpu->isar.id_aa64isar1 = t;
1616 
1617         u = cpu->isar.mvfr0;
1618         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1619         cpu->isar.mvfr0 = u;
1620 
1621         /* Despite the name, this field covers both VFP and Neon */
1622         u = cpu->isar.mvfr1;
1623         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1624         cpu->isar.mvfr1 = u;
1625     }
1626 
1627     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1628         uint32_t u;
1629 
1630         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1631 
1632         u = cpu->isar.id_isar1;
1633         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1634         cpu->isar.id_isar1 = u;
1635 
1636         u = cpu->isar.id_isar2;
1637         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1638         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1639         cpu->isar.id_isar2 = u;
1640 
1641         u = cpu->isar.id_isar3;
1642         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1643         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1644         cpu->isar.id_isar3 = u;
1645     }
1646 
1647     /* Some features automatically imply others: */
1648     if (arm_feature(env, ARM_FEATURE_V8)) {
1649         if (arm_feature(env, ARM_FEATURE_M)) {
1650             set_feature(env, ARM_FEATURE_V7);
1651         } else {
1652             set_feature(env, ARM_FEATURE_V7VE);
1653         }
1654     }
1655 
1656     /*
1657      * There exist AArch64 cpus without AArch32 support.  When KVM
1658      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1659      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1660      * As a general principle, we also do not make ID register
1661      * consistency checks anywhere unless using TCG, because only
1662      * for TCG would a consistency-check failure be a QEMU bug.
1663      */
1664     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1665         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1666     }
1667 
1668     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1669         /* v7 Virtualization Extensions. In real hardware this implies
1670          * EL2 and also the presence of the Security Extensions.
1671          * For QEMU, for backwards-compatibility we implement some
1672          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1673          * include the various other features that V7VE implies.
1674          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1675          * Security Extensions is ARM_FEATURE_EL3.
1676          */
1677         assert(!tcg_enabled() || no_aa32 ||
1678                cpu_isar_feature(aa32_arm_div, cpu));
1679         set_feature(env, ARM_FEATURE_LPAE);
1680         set_feature(env, ARM_FEATURE_V7);
1681     }
1682     if (arm_feature(env, ARM_FEATURE_V7)) {
1683         set_feature(env, ARM_FEATURE_VAPA);
1684         set_feature(env, ARM_FEATURE_THUMB2);
1685         set_feature(env, ARM_FEATURE_MPIDR);
1686         if (!arm_feature(env, ARM_FEATURE_M)) {
1687             set_feature(env, ARM_FEATURE_V6K);
1688         } else {
1689             set_feature(env, ARM_FEATURE_V6);
1690         }
1691 
1692         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1693          * non-EL3 configs. This is needed by some legacy boards.
1694          */
1695         set_feature(env, ARM_FEATURE_VBAR);
1696     }
1697     if (arm_feature(env, ARM_FEATURE_V6K)) {
1698         set_feature(env, ARM_FEATURE_V6);
1699         set_feature(env, ARM_FEATURE_MVFR);
1700     }
1701     if (arm_feature(env, ARM_FEATURE_V6)) {
1702         set_feature(env, ARM_FEATURE_V5);
1703         if (!arm_feature(env, ARM_FEATURE_M)) {
1704             assert(!tcg_enabled() || no_aa32 ||
1705                    cpu_isar_feature(aa32_jazelle, cpu));
1706             set_feature(env, ARM_FEATURE_AUXCR);
1707         }
1708     }
1709     if (arm_feature(env, ARM_FEATURE_V5)) {
1710         set_feature(env, ARM_FEATURE_V4T);
1711     }
1712     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1713         set_feature(env, ARM_FEATURE_V7MP);
1714     }
1715     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1716         set_feature(env, ARM_FEATURE_CBAR);
1717     }
1718     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1719         !arm_feature(env, ARM_FEATURE_M)) {
1720         set_feature(env, ARM_FEATURE_THUMB_DSP);
1721     }
1722 
1723     /*
1724      * We rely on no XScale CPU having VFP so we can use the same bits in the
1725      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1726      */
1727     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1728            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1729            !arm_feature(env, ARM_FEATURE_XSCALE));
1730 
1731     if (arm_feature(env, ARM_FEATURE_V7) &&
1732         !arm_feature(env, ARM_FEATURE_M) &&
1733         !arm_feature(env, ARM_FEATURE_PMSA)) {
1734         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1735          * can use 4K pages.
1736          */
1737         pagebits = 12;
1738     } else {
1739         /* For CPUs which might have tiny 1K pages, or which have an
1740          * MPU and might have small region sizes, stick with 1K pages.
1741          */
1742         pagebits = 10;
1743     }
1744     if (!set_preferred_target_page_bits(pagebits)) {
1745         /* This can only ever happen for hotplugging a CPU, or if
1746          * the board code incorrectly creates a CPU which it has
1747          * promised via minimum_page_size that it will not.
1748          */
1749         error_setg(errp, "This CPU requires a smaller page size than the "
1750                    "system is using");
1751         return;
1752     }
1753 
1754     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1755      * We don't support setting cluster ID ([16..23]) (known as Aff2
1756      * in later ARM ARM versions), or any of the higher affinity level fields,
1757      * so these bits always RAZ.
1758      */
1759     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1760         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1761                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1762     }
1763 
1764     if (cpu->reset_hivecs) {
1765             cpu->reset_sctlr |= (1 << 13);
1766     }
1767 
1768     if (cpu->cfgend) {
1769         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1770             cpu->reset_sctlr |= SCTLR_EE;
1771         } else {
1772             cpu->reset_sctlr |= SCTLR_B;
1773         }
1774     }
1775 
1776     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1777         /* If the has_el3 CPU property is disabled then we need to disable the
1778          * feature.
1779          */
1780         unset_feature(env, ARM_FEATURE_EL3);
1781 
1782         /* Disable the security extension feature bits in the processor feature
1783          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1784          */
1785         cpu->isar.id_pfr1 &= ~0xf0;
1786         cpu->isar.id_aa64pfr0 &= ~0xf000;
1787     }
1788 
1789     if (!cpu->has_el2) {
1790         unset_feature(env, ARM_FEATURE_EL2);
1791     }
1792 
1793     if (!cpu->has_pmu) {
1794         unset_feature(env, ARM_FEATURE_PMU);
1795     }
1796     if (arm_feature(env, ARM_FEATURE_PMU)) {
1797         pmu_init(cpu);
1798 
1799         if (!kvm_enabled()) {
1800             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1801             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1802         }
1803 
1804 #ifndef CONFIG_USER_ONLY
1805         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1806                 cpu);
1807 #endif
1808     } else {
1809         cpu->isar.id_aa64dfr0 =
1810             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1811         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1812         cpu->pmceid0 = 0;
1813         cpu->pmceid1 = 0;
1814     }
1815 
1816     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1817         /* Disable the hypervisor feature bits in the processor feature
1818          * registers if we don't have EL2. These are id_pfr1[15:12] and
1819          * id_aa64pfr0_el1[11:8].
1820          */
1821         cpu->isar.id_aa64pfr0 &= ~0xf00;
1822         cpu->isar.id_pfr1 &= ~0xf000;
1823     }
1824 
1825 #ifndef CONFIG_USER_ONLY
1826     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1827         /*
1828          * Disable the MTE feature bits if we do not have tag-memory
1829          * provided by the machine.
1830          */
1831         cpu->isar.id_aa64pfr1 =
1832             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1833     }
1834 #endif
1835 
1836     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1837      * to false or by setting pmsav7-dregion to 0.
1838      */
1839     if (!cpu->has_mpu) {
1840         cpu->pmsav7_dregion = 0;
1841     }
1842     if (cpu->pmsav7_dregion == 0) {
1843         cpu->has_mpu = false;
1844     }
1845 
1846     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1847         arm_feature(env, ARM_FEATURE_V7)) {
1848         uint32_t nr = cpu->pmsav7_dregion;
1849 
1850         if (nr > 0xff) {
1851             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1852             return;
1853         }
1854 
1855         if (nr) {
1856             if (arm_feature(env, ARM_FEATURE_V8)) {
1857                 /* PMSAv8 */
1858                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1859                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1860                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1861                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1862                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1863                 }
1864             } else {
1865                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1866                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1867                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1868             }
1869         }
1870     }
1871 
1872     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1873         uint32_t nr = cpu->sau_sregion;
1874 
1875         if (nr > 0xff) {
1876             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1877             return;
1878         }
1879 
1880         if (nr) {
1881             env->sau.rbar = g_new0(uint32_t, nr);
1882             env->sau.rlar = g_new0(uint32_t, nr);
1883         }
1884     }
1885 
1886     if (arm_feature(env, ARM_FEATURE_EL3)) {
1887         set_feature(env, ARM_FEATURE_VBAR);
1888     }
1889 
1890     register_cp_regs_for_features(cpu);
1891     arm_cpu_register_gdb_regs_for_features(cpu);
1892 
1893     init_cpreg_list(cpu);
1894 
1895 #ifndef CONFIG_USER_ONLY
1896     MachineState *ms = MACHINE(qdev_get_machine());
1897     unsigned int smp_cpus = ms->smp.cpus;
1898     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1899 
1900     /*
1901      * We must set cs->num_ases to the final value before
1902      * the first call to cpu_address_space_init.
1903      */
1904     if (cpu->tag_memory != NULL) {
1905         cs->num_ases = 3 + has_secure;
1906     } else {
1907         cs->num_ases = 1 + has_secure;
1908     }
1909 
1910     if (has_secure) {
1911         if (!cpu->secure_memory) {
1912             cpu->secure_memory = cs->memory;
1913         }
1914         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1915                                cpu->secure_memory);
1916     }
1917 
1918     if (cpu->tag_memory != NULL) {
1919         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1920                                cpu->tag_memory);
1921         if (has_secure) {
1922             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1923                                    cpu->secure_tag_memory);
1924         }
1925     }
1926 
1927     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1928 
1929     /* No core_count specified, default to smp_cpus. */
1930     if (cpu->core_count == -1) {
1931         cpu->core_count = smp_cpus;
1932     }
1933 #endif
1934 
1935     if (tcg_enabled()) {
1936         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1937 
1938         /*
1939          * We only support DCZ blocklen that fits on one page.
1940          *
1941          * Architectually this is always true.  However TARGET_PAGE_SIZE
1942          * is variable and, for compatibility with -machine virt-2.7,
1943          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1944          * But even then, while the largest architectural DCZ blocklen
1945          * is 2KiB, no cpu actually uses such a large blocklen.
1946          */
1947         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1948 
1949         /*
1950          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1951          * both nibbles of each byte storing tag data may be written at once.
1952          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1953          */
1954         if (cpu_isar_feature(aa64_mte, cpu)) {
1955             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1956         }
1957     }
1958 
1959     qemu_init_vcpu(cs);
1960     cpu_reset(cs);
1961 
1962     acc->parent_realize(dev, errp);
1963 }
1964 
1965 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1966 {
1967     ObjectClass *oc;
1968     char *typename;
1969     char **cpuname;
1970     const char *cpunamestr;
1971 
1972     cpuname = g_strsplit(cpu_model, ",", 1);
1973     cpunamestr = cpuname[0];
1974 #ifdef CONFIG_USER_ONLY
1975     /* For backwards compatibility usermode emulation allows "-cpu any",
1976      * which has the same semantics as "-cpu max".
1977      */
1978     if (!strcmp(cpunamestr, "any")) {
1979         cpunamestr = "max";
1980     }
1981 #endif
1982     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1983     oc = object_class_by_name(typename);
1984     g_strfreev(cpuname);
1985     g_free(typename);
1986     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1987         object_class_is_abstract(oc)) {
1988         return NULL;
1989     }
1990     return oc;
1991 }
1992 
1993 static Property arm_cpu_properties[] = {
1994     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1995     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1996                         mp_affinity, ARM64_AFFINITY_INVALID),
1997     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1998     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1999     DEFINE_PROP_END_OF_LIST()
2000 };
2001 
2002 static gchar *arm_gdb_arch_name(CPUState *cs)
2003 {
2004     ARMCPU *cpu = ARM_CPU(cs);
2005     CPUARMState *env = &cpu->env;
2006 
2007     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2008         return g_strdup("iwmmxt");
2009     }
2010     return g_strdup("arm");
2011 }
2012 
2013 #ifndef CONFIG_USER_ONLY
2014 #include "hw/core/sysemu-cpu-ops.h"
2015 
2016 static const struct SysemuCPUOps arm_sysemu_ops = {
2017     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2018     .asidx_from_attrs = arm_asidx_from_attrs,
2019     .write_elf32_note = arm_cpu_write_elf32_note,
2020     .write_elf64_note = arm_cpu_write_elf64_note,
2021     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2022     .legacy_vmsd = &vmstate_arm_cpu,
2023 };
2024 #endif
2025 
2026 #ifdef CONFIG_TCG
2027 static const struct TCGCPUOps arm_tcg_ops = {
2028     .initialize = arm_translate_init,
2029     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2030     .debug_excp_handler = arm_debug_excp_handler,
2031 
2032 #ifdef CONFIG_USER_ONLY
2033     .record_sigsegv = arm_cpu_record_sigsegv,
2034     .record_sigbus = arm_cpu_record_sigbus,
2035 #else
2036     .tlb_fill = arm_cpu_tlb_fill,
2037     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2038     .do_interrupt = arm_cpu_do_interrupt,
2039     .do_transaction_failed = arm_cpu_do_transaction_failed,
2040     .do_unaligned_access = arm_cpu_do_unaligned_access,
2041     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2042     .debug_check_watchpoint = arm_debug_check_watchpoint,
2043     .debug_check_breakpoint = arm_debug_check_breakpoint,
2044 #endif /* !CONFIG_USER_ONLY */
2045 };
2046 #endif /* CONFIG_TCG */
2047 
2048 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2049 {
2050     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2051     CPUClass *cc = CPU_CLASS(acc);
2052     DeviceClass *dc = DEVICE_CLASS(oc);
2053 
2054     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2055                                     &acc->parent_realize);
2056 
2057     device_class_set_props(dc, arm_cpu_properties);
2058     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2059 
2060     cc->class_by_name = arm_cpu_class_by_name;
2061     cc->has_work = arm_cpu_has_work;
2062     cc->dump_state = arm_cpu_dump_state;
2063     cc->set_pc = arm_cpu_set_pc;
2064     cc->gdb_read_register = arm_cpu_gdb_read_register;
2065     cc->gdb_write_register = arm_cpu_gdb_write_register;
2066 #ifndef CONFIG_USER_ONLY
2067     cc->sysemu_ops = &arm_sysemu_ops;
2068 #endif
2069     cc->gdb_num_core_regs = 26;
2070     cc->gdb_core_xml_file = "arm-core.xml";
2071     cc->gdb_arch_name = arm_gdb_arch_name;
2072     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2073     cc->gdb_stop_before_watchpoint = true;
2074     cc->disas_set_info = arm_disas_set_info;
2075 
2076 #ifdef CONFIG_TCG
2077     cc->tcg_ops = &arm_tcg_ops;
2078 #endif /* CONFIG_TCG */
2079 }
2080 
2081 static void arm_cpu_instance_init(Object *obj)
2082 {
2083     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2084 
2085     acc->info->initfn(obj);
2086     arm_cpu_post_init(obj);
2087 }
2088 
2089 static void cpu_register_class_init(ObjectClass *oc, void *data)
2090 {
2091     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2092 
2093     acc->info = data;
2094 }
2095 
2096 void arm_cpu_register(const ARMCPUInfo *info)
2097 {
2098     TypeInfo type_info = {
2099         .parent = TYPE_ARM_CPU,
2100         .instance_size = sizeof(ARMCPU),
2101         .instance_align = __alignof__(ARMCPU),
2102         .instance_init = arm_cpu_instance_init,
2103         .class_size = sizeof(ARMCPUClass),
2104         .class_init = info->class_init ?: cpu_register_class_init,
2105         .class_data = (void *)info,
2106     };
2107 
2108     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2109     type_register(&type_info);
2110     g_free((void *)type_info.name);
2111 }
2112 
2113 static const TypeInfo arm_cpu_type_info = {
2114     .name = TYPE_ARM_CPU,
2115     .parent = TYPE_CPU,
2116     .instance_size = sizeof(ARMCPU),
2117     .instance_align = __alignof__(ARMCPU),
2118     .instance_init = arm_cpu_initfn,
2119     .instance_finalize = arm_cpu_finalizefn,
2120     .abstract = true,
2121     .class_size = sizeof(ARMCPUClass),
2122     .class_init = arm_cpu_class_init,
2123 };
2124 
2125 static void arm_cpu_register_types(void)
2126 {
2127     type_register_static(&arm_cpu_type_info);
2128 }
2129 
2130 type_init(arm_cpu_register_types)
2131