xref: /openbmc/qemu/target/arm/cpu.c (revision c39f95dc)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         } else {
191             /* This bit resets to 0 if security is supported, but 1 if
192              * it is not. The bit is not present in v7M, but we set it
193              * here so we can avoid having to make checks on it conditional
194              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
195              */
196             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
197         }
198 
199         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200          * that it resets to 1, so QEMU always does that rather than making
201          * it dependent on CPU model. In v8M it is RES1.
202          */
203         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205         if (arm_feature(env, ARM_FEATURE_V8)) {
206             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209         }
210 
211         /* Unlike A/R profile, M profile defines the reset LR value */
212         env->regs[14] = 0xffffffff;
213 
214         /* Load the initial SP and PC from the vector table at address 0 */
215         rom = rom_ptr(0);
216         if (rom) {
217             /* Address zero is covered by ROM which hasn't yet been
218              * copied into physical memory.
219              */
220             initial_msp = ldl_p(rom);
221             initial_pc = ldl_p(rom + 4);
222         } else {
223             /* Address zero not covered by a ROM blob, or the ROM blob
224              * is in non-modifiable memory and this is a second reset after
225              * it got copied into memory. In the latter case, rom_ptr
226              * will return a NULL pointer and we should use ldl_phys instead.
227              */
228             initial_msp = ldl_phys(s->as, 0);
229             initial_pc = ldl_phys(s->as, 4);
230         }
231 
232         env->regs[13] = initial_msp & 0xFFFFFFFC;
233         env->regs[15] = initial_pc & ~1;
234         env->thumb = initial_pc & 1;
235     }
236 
237     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
238      * executing as AArch32 then check if highvecs are enabled and
239      * adjust the PC accordingly.
240      */
241     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242         env->regs[15] = 0xFFFF0000;
243     }
244 
245     /* M profile requires that reset clears the exclusive monitor;
246      * A profile does not, but clearing it makes more sense than having it
247      * set with an exclusive access on address zero.
248      */
249     arm_clear_exclusive(env);
250 
251     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
253 
254     if (arm_feature(env, ARM_FEATURE_PMSA)) {
255         if (cpu->pmsav7_dregion > 0) {
256             if (arm_feature(env, ARM_FEATURE_V8)) {
257                 memset(env->pmsav8.rbar[M_REG_NS], 0,
258                        sizeof(*env->pmsav8.rbar[M_REG_NS])
259                        * cpu->pmsav7_dregion);
260                 memset(env->pmsav8.rlar[M_REG_NS], 0,
261                        sizeof(*env->pmsav8.rlar[M_REG_NS])
262                        * cpu->pmsav7_dregion);
263                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264                     memset(env->pmsav8.rbar[M_REG_S], 0,
265                            sizeof(*env->pmsav8.rbar[M_REG_S])
266                            * cpu->pmsav7_dregion);
267                     memset(env->pmsav8.rlar[M_REG_S], 0,
268                            sizeof(*env->pmsav8.rlar[M_REG_S])
269                            * cpu->pmsav7_dregion);
270                 }
271             } else if (arm_feature(env, ARM_FEATURE_V7)) {
272                 memset(env->pmsav7.drbar, 0,
273                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274                 memset(env->pmsav7.drsr, 0,
275                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276                 memset(env->pmsav7.dracr, 0,
277                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
278             }
279         }
280         env->pmsav7.rnr[M_REG_NS] = 0;
281         env->pmsav7.rnr[M_REG_S] = 0;
282         env->pmsav8.mair0[M_REG_NS] = 0;
283         env->pmsav8.mair0[M_REG_S] = 0;
284         env->pmsav8.mair1[M_REG_NS] = 0;
285         env->pmsav8.mair1[M_REG_S] = 0;
286     }
287 
288     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
289         if (cpu->sau_sregion > 0) {
290             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
291             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
292         }
293         env->sau.rnr = 0;
294         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
295          * the Cortex-M33 does.
296          */
297         env->sau.ctrl = 0;
298     }
299 
300     set_flush_to_zero(1, &env->vfp.standard_fp_status);
301     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
302     set_default_nan_mode(1, &env->vfp.standard_fp_status);
303     set_float_detect_tininess(float_tininess_before_rounding,
304                               &env->vfp.fp_status);
305     set_float_detect_tininess(float_tininess_before_rounding,
306                               &env->vfp.standard_fp_status);
307 #ifndef CONFIG_USER_ONLY
308     if (kvm_enabled()) {
309         kvm_arm_reset_vcpu(cpu);
310     }
311 #endif
312 
313     hw_breakpoint_update_all(cpu);
314     hw_watchpoint_update_all(cpu);
315 }
316 
317 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
318 {
319     CPUClass *cc = CPU_GET_CLASS(cs);
320     CPUARMState *env = cs->env_ptr;
321     uint32_t cur_el = arm_current_el(env);
322     bool secure = arm_is_secure(env);
323     uint32_t target_el;
324     uint32_t excp_idx;
325     bool ret = false;
326 
327     if (interrupt_request & CPU_INTERRUPT_FIQ) {
328         excp_idx = EXCP_FIQ;
329         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
330         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
331             cs->exception_index = excp_idx;
332             env->exception.target_el = target_el;
333             cc->do_interrupt(cs);
334             ret = true;
335         }
336     }
337     if (interrupt_request & CPU_INTERRUPT_HARD) {
338         excp_idx = EXCP_IRQ;
339         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
340         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
341             cs->exception_index = excp_idx;
342             env->exception.target_el = target_el;
343             cc->do_interrupt(cs);
344             ret = true;
345         }
346     }
347     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
348         excp_idx = EXCP_VIRQ;
349         target_el = 1;
350         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
351             cs->exception_index = excp_idx;
352             env->exception.target_el = target_el;
353             cc->do_interrupt(cs);
354             ret = true;
355         }
356     }
357     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
358         excp_idx = EXCP_VFIQ;
359         target_el = 1;
360         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
361             cs->exception_index = excp_idx;
362             env->exception.target_el = target_el;
363             cc->do_interrupt(cs);
364             ret = true;
365         }
366     }
367 
368     return ret;
369 }
370 
371 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
372 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
373 {
374     CPUClass *cc = CPU_GET_CLASS(cs);
375     ARMCPU *cpu = ARM_CPU(cs);
376     CPUARMState *env = &cpu->env;
377     bool ret = false;
378 
379     /* ARMv7-M interrupt masking works differently than -A or -R.
380      * There is no FIQ/IRQ distinction. Instead of I and F bits
381      * masking FIQ and IRQ interrupts, an exception is taken only
382      * if it is higher priority than the current execution priority
383      * (which depends on state like BASEPRI, FAULTMASK and the
384      * currently active exception).
385      */
386     if (interrupt_request & CPU_INTERRUPT_HARD
387         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
388         cs->exception_index = EXCP_IRQ;
389         cc->do_interrupt(cs);
390         ret = true;
391     }
392     return ret;
393 }
394 #endif
395 
396 #ifndef CONFIG_USER_ONLY
397 static void arm_cpu_set_irq(void *opaque, int irq, int level)
398 {
399     ARMCPU *cpu = opaque;
400     CPUARMState *env = &cpu->env;
401     CPUState *cs = CPU(cpu);
402     static const int mask[] = {
403         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
404         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
405         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
406         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
407     };
408 
409     switch (irq) {
410     case ARM_CPU_VIRQ:
411     case ARM_CPU_VFIQ:
412         assert(arm_feature(env, ARM_FEATURE_EL2));
413         /* fall through */
414     case ARM_CPU_IRQ:
415     case ARM_CPU_FIQ:
416         if (level) {
417             cpu_interrupt(cs, mask[irq]);
418         } else {
419             cpu_reset_interrupt(cs, mask[irq]);
420         }
421         break;
422     default:
423         g_assert_not_reached();
424     }
425 }
426 
427 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
428 {
429 #ifdef CONFIG_KVM
430     ARMCPU *cpu = opaque;
431     CPUState *cs = CPU(cpu);
432     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
433 
434     switch (irq) {
435     case ARM_CPU_IRQ:
436         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
437         break;
438     case ARM_CPU_FIQ:
439         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
440         break;
441     default:
442         g_assert_not_reached();
443     }
444     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
445     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
446 #endif
447 }
448 
449 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
450 {
451     ARMCPU *cpu = ARM_CPU(cs);
452     CPUARMState *env = &cpu->env;
453 
454     cpu_synchronize_state(cs);
455     return arm_cpu_data_is_big_endian(env);
456 }
457 
458 #endif
459 
460 static inline void set_feature(CPUARMState *env, int feature)
461 {
462     env->features |= 1ULL << feature;
463 }
464 
465 static inline void unset_feature(CPUARMState *env, int feature)
466 {
467     env->features &= ~(1ULL << feature);
468 }
469 
470 static int
471 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
472 {
473   return print_insn_arm(pc | 1, info);
474 }
475 
476 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
477                                 int length, struct disassemble_info *info)
478 {
479     assert(info->read_memory_inner_func);
480     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
481 
482     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
483         assert(info->endian == BFD_ENDIAN_LITTLE);
484         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
485                                             info);
486     } else {
487         return info->read_memory_inner_func(memaddr, b, length, info);
488     }
489 }
490 
491 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
492 {
493     ARMCPU *ac = ARM_CPU(cpu);
494     CPUARMState *env = &ac->env;
495 
496     if (is_a64(env)) {
497         /* We might not be compiled with the A64 disassembler
498          * because it needs a C++ compiler. Leave print_insn
499          * unset in this case to use the caller default behaviour.
500          */
501 #if defined(CONFIG_ARM_A64_DIS)
502         info->print_insn = print_insn_arm_a64;
503 #endif
504     } else if (env->thumb) {
505         info->print_insn = print_insn_thumb1;
506     } else {
507         info->print_insn = print_insn_arm;
508     }
509     if (bswap_code(arm_sctlr_b(env))) {
510 #ifdef TARGET_WORDS_BIGENDIAN
511         info->endian = BFD_ENDIAN_LITTLE;
512 #else
513         info->endian = BFD_ENDIAN_BIG;
514 #endif
515     }
516     if (info->read_memory_inner_func == NULL) {
517         info->read_memory_inner_func = info->read_memory_func;
518         info->read_memory_func = arm_read_memory_func;
519     }
520     info->flags &= ~INSN_ARM_BE32;
521     if (arm_sctlr_b(env)) {
522         info->flags |= INSN_ARM_BE32;
523     }
524 }
525 
526 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
527 {
528     uint32_t Aff1 = idx / clustersz;
529     uint32_t Aff0 = idx % clustersz;
530     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
531 }
532 
533 static void arm_cpu_initfn(Object *obj)
534 {
535     CPUState *cs = CPU(obj);
536     ARMCPU *cpu = ARM_CPU(obj);
537     static bool inited;
538 
539     cs->env_ptr = &cpu->env;
540     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
541                                          g_free, g_free);
542 
543 #ifndef CONFIG_USER_ONLY
544     /* Our inbound IRQ and FIQ lines */
545     if (kvm_enabled()) {
546         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
547          * the same interface as non-KVM CPUs.
548          */
549         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
550     } else {
551         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
552     }
553 
554     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
555                                                 arm_gt_ptimer_cb, cpu);
556     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
557                                                 arm_gt_vtimer_cb, cpu);
558     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
559                                                 arm_gt_htimer_cb, cpu);
560     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
561                                                 arm_gt_stimer_cb, cpu);
562     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
563                        ARRAY_SIZE(cpu->gt_timer_outputs));
564 
565     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
566                              "gicv3-maintenance-interrupt", 1);
567     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
568                              "pmu-interrupt", 1);
569 #endif
570 
571     /* DTB consumers generally don't in fact care what the 'compatible'
572      * string is, so always provide some string and trust that a hypothetical
573      * picky DTB consumer will also provide a helpful error message.
574      */
575     cpu->dtb_compatible = "qemu,unknown";
576     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
577     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
578 
579     if (tcg_enabled()) {
580         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
581         if (!inited) {
582             inited = true;
583             arm_translate_init();
584         }
585     }
586 }
587 
588 static Property arm_cpu_reset_cbar_property =
589             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
590 
591 static Property arm_cpu_reset_hivecs_property =
592             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
593 
594 static Property arm_cpu_rvbar_property =
595             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
596 
597 static Property arm_cpu_has_el2_property =
598             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
599 
600 static Property arm_cpu_has_el3_property =
601             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
602 
603 static Property arm_cpu_cfgend_property =
604             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
605 
606 /* use property name "pmu" to match other archs and virt tools */
607 static Property arm_cpu_has_pmu_property =
608             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
609 
610 static Property arm_cpu_has_mpu_property =
611             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
612 
613 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
614  * because the CPU initfn will have already set cpu->pmsav7_dregion to
615  * the right value for that particular CPU type, and we don't want
616  * to override that with an incorrect constant value.
617  */
618 static Property arm_cpu_pmsav7_dregion_property =
619             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
620                                            pmsav7_dregion,
621                                            qdev_prop_uint32, uint32_t);
622 
623 static void arm_cpu_post_init(Object *obj)
624 {
625     ARMCPU *cpu = ARM_CPU(obj);
626 
627     /* M profile implies PMSA. We have to do this here rather than
628      * in realize with the other feature-implication checks because
629      * we look at the PMSA bit to see if we should add some properties.
630      */
631     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
632         set_feature(&cpu->env, ARM_FEATURE_PMSA);
633     }
634 
635     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
636         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
637         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
638                                  &error_abort);
639     }
640 
641     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
642         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
643                                  &error_abort);
644     }
645 
646     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
647         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
648                                  &error_abort);
649     }
650 
651     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
652         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
653          * prevent "has_el3" from existing on CPUs which cannot support EL3.
654          */
655         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
656                                  &error_abort);
657 
658 #ifndef CONFIG_USER_ONLY
659         object_property_add_link(obj, "secure-memory",
660                                  TYPE_MEMORY_REGION,
661                                  (Object **)&cpu->secure_memory,
662                                  qdev_prop_allow_set_link_before_realize,
663                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
664                                  &error_abort);
665 #endif
666     }
667 
668     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
669         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
670                                  &error_abort);
671     }
672 
673     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
674         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
675                                  &error_abort);
676     }
677 
678     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
679         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
680                                  &error_abort);
681         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
682             qdev_property_add_static(DEVICE(obj),
683                                      &arm_cpu_pmsav7_dregion_property,
684                                      &error_abort);
685         }
686     }
687 
688     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
689                              &error_abort);
690 }
691 
692 static void arm_cpu_finalizefn(Object *obj)
693 {
694     ARMCPU *cpu = ARM_CPU(obj);
695     g_hash_table_destroy(cpu->cp_regs);
696 }
697 
698 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
699 {
700     CPUState *cs = CPU(dev);
701     ARMCPU *cpu = ARM_CPU(dev);
702     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
703     CPUARMState *env = &cpu->env;
704     int pagebits;
705     Error *local_err = NULL;
706 #ifndef CONFIG_USER_ONLY
707     AddressSpace *as;
708 #endif
709 
710     cpu_exec_realizefn(cs, &local_err);
711     if (local_err != NULL) {
712         error_propagate(errp, local_err);
713         return;
714     }
715 
716     /* Some features automatically imply others: */
717     if (arm_feature(env, ARM_FEATURE_V8)) {
718         set_feature(env, ARM_FEATURE_V7);
719         set_feature(env, ARM_FEATURE_ARM_DIV);
720         set_feature(env, ARM_FEATURE_LPAE);
721     }
722     if (arm_feature(env, ARM_FEATURE_V7)) {
723         set_feature(env, ARM_FEATURE_VAPA);
724         set_feature(env, ARM_FEATURE_THUMB2);
725         set_feature(env, ARM_FEATURE_MPIDR);
726         if (!arm_feature(env, ARM_FEATURE_M)) {
727             set_feature(env, ARM_FEATURE_V6K);
728         } else {
729             set_feature(env, ARM_FEATURE_V6);
730         }
731 
732         /* Always define VBAR for V7 CPUs even if it doesn't exist in
733          * non-EL3 configs. This is needed by some legacy boards.
734          */
735         set_feature(env, ARM_FEATURE_VBAR);
736     }
737     if (arm_feature(env, ARM_FEATURE_V6K)) {
738         set_feature(env, ARM_FEATURE_V6);
739         set_feature(env, ARM_FEATURE_MVFR);
740     }
741     if (arm_feature(env, ARM_FEATURE_V6)) {
742         set_feature(env, ARM_FEATURE_V5);
743         set_feature(env, ARM_FEATURE_JAZELLE);
744         if (!arm_feature(env, ARM_FEATURE_M)) {
745             set_feature(env, ARM_FEATURE_AUXCR);
746         }
747     }
748     if (arm_feature(env, ARM_FEATURE_V5)) {
749         set_feature(env, ARM_FEATURE_V4T);
750     }
751     if (arm_feature(env, ARM_FEATURE_M)) {
752         set_feature(env, ARM_FEATURE_THUMB_DIV);
753     }
754     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
755         set_feature(env, ARM_FEATURE_THUMB_DIV);
756     }
757     if (arm_feature(env, ARM_FEATURE_VFP4)) {
758         set_feature(env, ARM_FEATURE_VFP3);
759         set_feature(env, ARM_FEATURE_VFP_FP16);
760     }
761     if (arm_feature(env, ARM_FEATURE_VFP3)) {
762         set_feature(env, ARM_FEATURE_VFP);
763     }
764     if (arm_feature(env, ARM_FEATURE_LPAE)) {
765         set_feature(env, ARM_FEATURE_V7MP);
766         set_feature(env, ARM_FEATURE_PXN);
767     }
768     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
769         set_feature(env, ARM_FEATURE_CBAR);
770     }
771     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
772         !arm_feature(env, ARM_FEATURE_M)) {
773         set_feature(env, ARM_FEATURE_THUMB_DSP);
774     }
775 
776     if (arm_feature(env, ARM_FEATURE_V7) &&
777         !arm_feature(env, ARM_FEATURE_M) &&
778         !arm_feature(env, ARM_FEATURE_PMSA)) {
779         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
780          * can use 4K pages.
781          */
782         pagebits = 12;
783     } else {
784         /* For CPUs which might have tiny 1K pages, or which have an
785          * MPU and might have small region sizes, stick with 1K pages.
786          */
787         pagebits = 10;
788     }
789     if (!set_preferred_target_page_bits(pagebits)) {
790         /* This can only ever happen for hotplugging a CPU, or if
791          * the board code incorrectly creates a CPU which it has
792          * promised via minimum_page_size that it will not.
793          */
794         error_setg(errp, "This CPU requires a smaller page size than the "
795                    "system is using");
796         return;
797     }
798 
799     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
800      * We don't support setting cluster ID ([16..23]) (known as Aff2
801      * in later ARM ARM versions), or any of the higher affinity level fields,
802      * so these bits always RAZ.
803      */
804     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
805         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
806                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
807     }
808 
809     if (cpu->reset_hivecs) {
810             cpu->reset_sctlr |= (1 << 13);
811     }
812 
813     if (cpu->cfgend) {
814         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
815             cpu->reset_sctlr |= SCTLR_EE;
816         } else {
817             cpu->reset_sctlr |= SCTLR_B;
818         }
819     }
820 
821     if (!cpu->has_el3) {
822         /* If the has_el3 CPU property is disabled then we need to disable the
823          * feature.
824          */
825         unset_feature(env, ARM_FEATURE_EL3);
826 
827         /* Disable the security extension feature bits in the processor feature
828          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
829          */
830         cpu->id_pfr1 &= ~0xf0;
831         cpu->id_aa64pfr0 &= ~0xf000;
832     }
833 
834     if (!cpu->has_el2) {
835         unset_feature(env, ARM_FEATURE_EL2);
836     }
837 
838     if (!cpu->has_pmu) {
839         unset_feature(env, ARM_FEATURE_PMU);
840         cpu->id_aa64dfr0 &= ~0xf00;
841     }
842 
843     if (!arm_feature(env, ARM_FEATURE_EL2)) {
844         /* Disable the hypervisor feature bits in the processor feature
845          * registers if we don't have EL2. These are id_pfr1[15:12] and
846          * id_aa64pfr0_el1[11:8].
847          */
848         cpu->id_aa64pfr0 &= ~0xf00;
849         cpu->id_pfr1 &= ~0xf000;
850     }
851 
852     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
853      * to false or by setting pmsav7-dregion to 0.
854      */
855     if (!cpu->has_mpu) {
856         cpu->pmsav7_dregion = 0;
857     }
858     if (cpu->pmsav7_dregion == 0) {
859         cpu->has_mpu = false;
860     }
861 
862     if (arm_feature(env, ARM_FEATURE_PMSA) &&
863         arm_feature(env, ARM_FEATURE_V7)) {
864         uint32_t nr = cpu->pmsav7_dregion;
865 
866         if (nr > 0xff) {
867             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
868             return;
869         }
870 
871         if (nr) {
872             if (arm_feature(env, ARM_FEATURE_V8)) {
873                 /* PMSAv8 */
874                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
875                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
876                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
877                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
878                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
879                 }
880             } else {
881                 env->pmsav7.drbar = g_new0(uint32_t, nr);
882                 env->pmsav7.drsr = g_new0(uint32_t, nr);
883                 env->pmsav7.dracr = g_new0(uint32_t, nr);
884             }
885         }
886     }
887 
888     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
889         uint32_t nr = cpu->sau_sregion;
890 
891         if (nr > 0xff) {
892             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
893             return;
894         }
895 
896         if (nr) {
897             env->sau.rbar = g_new0(uint32_t, nr);
898             env->sau.rlar = g_new0(uint32_t, nr);
899         }
900     }
901 
902     if (arm_feature(env, ARM_FEATURE_EL3)) {
903         set_feature(env, ARM_FEATURE_VBAR);
904     }
905 
906     register_cp_regs_for_features(cpu);
907     arm_cpu_register_gdb_regs_for_features(cpu);
908 
909     init_cpreg_list(cpu);
910 
911 #ifndef CONFIG_USER_ONLY
912     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
913         as = g_new0(AddressSpace, 1);
914 
915         cs->num_ases = 2;
916 
917         if (!cpu->secure_memory) {
918             cpu->secure_memory = cs->memory;
919         }
920         address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
921         cpu_address_space_init(cs, as, ARMASIdx_S);
922     } else {
923         cs->num_ases = 1;
924     }
925     as = g_new0(AddressSpace, 1);
926     address_space_init(as, cs->memory, "cpu-memory");
927     cpu_address_space_init(cs, as, ARMASIdx_NS);
928 #endif
929 
930     qemu_init_vcpu(cs);
931     cpu_reset(cs);
932 
933     acc->parent_realize(dev, errp);
934 }
935 
936 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
937 {
938     ObjectClass *oc;
939     char *typename;
940     char **cpuname;
941 
942     cpuname = g_strsplit(cpu_model, ",", 1);
943     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
944     oc = object_class_by_name(typename);
945     g_strfreev(cpuname);
946     g_free(typename);
947     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
948         object_class_is_abstract(oc)) {
949         return NULL;
950     }
951     return oc;
952 }
953 
954 /* CPU models. These are not needed for the AArch64 linux-user build. */
955 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
956 
957 static void arm926_initfn(Object *obj)
958 {
959     ARMCPU *cpu = ARM_CPU(obj);
960 
961     cpu->dtb_compatible = "arm,arm926";
962     set_feature(&cpu->env, ARM_FEATURE_V5);
963     set_feature(&cpu->env, ARM_FEATURE_VFP);
964     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
965     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
966     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
967     cpu->midr = 0x41069265;
968     cpu->reset_fpsid = 0x41011090;
969     cpu->ctr = 0x1dd20d2;
970     cpu->reset_sctlr = 0x00090078;
971 }
972 
973 static void arm946_initfn(Object *obj)
974 {
975     ARMCPU *cpu = ARM_CPU(obj);
976 
977     cpu->dtb_compatible = "arm,arm946";
978     set_feature(&cpu->env, ARM_FEATURE_V5);
979     set_feature(&cpu->env, ARM_FEATURE_PMSA);
980     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
981     cpu->midr = 0x41059461;
982     cpu->ctr = 0x0f004006;
983     cpu->reset_sctlr = 0x00000078;
984 }
985 
986 static void arm1026_initfn(Object *obj)
987 {
988     ARMCPU *cpu = ARM_CPU(obj);
989 
990     cpu->dtb_compatible = "arm,arm1026";
991     set_feature(&cpu->env, ARM_FEATURE_V5);
992     set_feature(&cpu->env, ARM_FEATURE_VFP);
993     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
994     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
995     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
996     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
997     cpu->midr = 0x4106a262;
998     cpu->reset_fpsid = 0x410110a0;
999     cpu->ctr = 0x1dd20d2;
1000     cpu->reset_sctlr = 0x00090078;
1001     cpu->reset_auxcr = 1;
1002     {
1003         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1004         ARMCPRegInfo ifar = {
1005             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1006             .access = PL1_RW,
1007             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1008             .resetvalue = 0
1009         };
1010         define_one_arm_cp_reg(cpu, &ifar);
1011     }
1012 }
1013 
1014 static void arm1136_r2_initfn(Object *obj)
1015 {
1016     ARMCPU *cpu = ARM_CPU(obj);
1017     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1018      * older core than plain "arm1136". In particular this does not
1019      * have the v6K features.
1020      * These ID register values are correct for 1136 but may be wrong
1021      * for 1136_r2 (in particular r0p2 does not actually implement most
1022      * of the ID registers).
1023      */
1024 
1025     cpu->dtb_compatible = "arm,arm1136";
1026     set_feature(&cpu->env, ARM_FEATURE_V6);
1027     set_feature(&cpu->env, ARM_FEATURE_VFP);
1028     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1029     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1030     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1031     cpu->midr = 0x4107b362;
1032     cpu->reset_fpsid = 0x410120b4;
1033     cpu->mvfr0 = 0x11111111;
1034     cpu->mvfr1 = 0x00000000;
1035     cpu->ctr = 0x1dd20d2;
1036     cpu->reset_sctlr = 0x00050078;
1037     cpu->id_pfr0 = 0x111;
1038     cpu->id_pfr1 = 0x1;
1039     cpu->id_dfr0 = 0x2;
1040     cpu->id_afr0 = 0x3;
1041     cpu->id_mmfr0 = 0x01130003;
1042     cpu->id_mmfr1 = 0x10030302;
1043     cpu->id_mmfr2 = 0x01222110;
1044     cpu->id_isar0 = 0x00140011;
1045     cpu->id_isar1 = 0x12002111;
1046     cpu->id_isar2 = 0x11231111;
1047     cpu->id_isar3 = 0x01102131;
1048     cpu->id_isar4 = 0x141;
1049     cpu->reset_auxcr = 7;
1050 }
1051 
1052 static void arm1136_initfn(Object *obj)
1053 {
1054     ARMCPU *cpu = ARM_CPU(obj);
1055 
1056     cpu->dtb_compatible = "arm,arm1136";
1057     set_feature(&cpu->env, ARM_FEATURE_V6K);
1058     set_feature(&cpu->env, ARM_FEATURE_V6);
1059     set_feature(&cpu->env, ARM_FEATURE_VFP);
1060     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1061     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1062     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1063     cpu->midr = 0x4117b363;
1064     cpu->reset_fpsid = 0x410120b4;
1065     cpu->mvfr0 = 0x11111111;
1066     cpu->mvfr1 = 0x00000000;
1067     cpu->ctr = 0x1dd20d2;
1068     cpu->reset_sctlr = 0x00050078;
1069     cpu->id_pfr0 = 0x111;
1070     cpu->id_pfr1 = 0x1;
1071     cpu->id_dfr0 = 0x2;
1072     cpu->id_afr0 = 0x3;
1073     cpu->id_mmfr0 = 0x01130003;
1074     cpu->id_mmfr1 = 0x10030302;
1075     cpu->id_mmfr2 = 0x01222110;
1076     cpu->id_isar0 = 0x00140011;
1077     cpu->id_isar1 = 0x12002111;
1078     cpu->id_isar2 = 0x11231111;
1079     cpu->id_isar3 = 0x01102131;
1080     cpu->id_isar4 = 0x141;
1081     cpu->reset_auxcr = 7;
1082 }
1083 
1084 static void arm1176_initfn(Object *obj)
1085 {
1086     ARMCPU *cpu = ARM_CPU(obj);
1087 
1088     cpu->dtb_compatible = "arm,arm1176";
1089     set_feature(&cpu->env, ARM_FEATURE_V6K);
1090     set_feature(&cpu->env, ARM_FEATURE_VFP);
1091     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1092     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1093     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1094     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1095     set_feature(&cpu->env, ARM_FEATURE_EL3);
1096     cpu->midr = 0x410fb767;
1097     cpu->reset_fpsid = 0x410120b5;
1098     cpu->mvfr0 = 0x11111111;
1099     cpu->mvfr1 = 0x00000000;
1100     cpu->ctr = 0x1dd20d2;
1101     cpu->reset_sctlr = 0x00050078;
1102     cpu->id_pfr0 = 0x111;
1103     cpu->id_pfr1 = 0x11;
1104     cpu->id_dfr0 = 0x33;
1105     cpu->id_afr0 = 0;
1106     cpu->id_mmfr0 = 0x01130003;
1107     cpu->id_mmfr1 = 0x10030302;
1108     cpu->id_mmfr2 = 0x01222100;
1109     cpu->id_isar0 = 0x0140011;
1110     cpu->id_isar1 = 0x12002111;
1111     cpu->id_isar2 = 0x11231121;
1112     cpu->id_isar3 = 0x01102131;
1113     cpu->id_isar4 = 0x01141;
1114     cpu->reset_auxcr = 7;
1115 }
1116 
1117 static void arm11mpcore_initfn(Object *obj)
1118 {
1119     ARMCPU *cpu = ARM_CPU(obj);
1120 
1121     cpu->dtb_compatible = "arm,arm11mpcore";
1122     set_feature(&cpu->env, ARM_FEATURE_V6K);
1123     set_feature(&cpu->env, ARM_FEATURE_VFP);
1124     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1125     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1126     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1127     cpu->midr = 0x410fb022;
1128     cpu->reset_fpsid = 0x410120b4;
1129     cpu->mvfr0 = 0x11111111;
1130     cpu->mvfr1 = 0x00000000;
1131     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1132     cpu->id_pfr0 = 0x111;
1133     cpu->id_pfr1 = 0x1;
1134     cpu->id_dfr0 = 0;
1135     cpu->id_afr0 = 0x2;
1136     cpu->id_mmfr0 = 0x01100103;
1137     cpu->id_mmfr1 = 0x10020302;
1138     cpu->id_mmfr2 = 0x01222000;
1139     cpu->id_isar0 = 0x00100011;
1140     cpu->id_isar1 = 0x12002111;
1141     cpu->id_isar2 = 0x11221011;
1142     cpu->id_isar3 = 0x01102131;
1143     cpu->id_isar4 = 0x141;
1144     cpu->reset_auxcr = 1;
1145 }
1146 
1147 static void cortex_m3_initfn(Object *obj)
1148 {
1149     ARMCPU *cpu = ARM_CPU(obj);
1150     set_feature(&cpu->env, ARM_FEATURE_V7);
1151     set_feature(&cpu->env, ARM_FEATURE_M);
1152     cpu->midr = 0x410fc231;
1153     cpu->pmsav7_dregion = 8;
1154 }
1155 
1156 static void cortex_m4_initfn(Object *obj)
1157 {
1158     ARMCPU *cpu = ARM_CPU(obj);
1159 
1160     set_feature(&cpu->env, ARM_FEATURE_V7);
1161     set_feature(&cpu->env, ARM_FEATURE_M);
1162     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1163     cpu->midr = 0x410fc240; /* r0p0 */
1164     cpu->pmsav7_dregion = 8;
1165 }
1166 
1167 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1168 {
1169     CPUClass *cc = CPU_CLASS(oc);
1170 
1171 #ifndef CONFIG_USER_ONLY
1172     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1173 #endif
1174 
1175     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1176 }
1177 
1178 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1179     /* Dummy the TCM region regs for the moment */
1180     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1181       .access = PL1_RW, .type = ARM_CP_CONST },
1182     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1183       .access = PL1_RW, .type = ARM_CP_CONST },
1184     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1185       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1186     REGINFO_SENTINEL
1187 };
1188 
1189 static void cortex_r5_initfn(Object *obj)
1190 {
1191     ARMCPU *cpu = ARM_CPU(obj);
1192 
1193     set_feature(&cpu->env, ARM_FEATURE_V7);
1194     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1195     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1196     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1197     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1198     cpu->midr = 0x411fc153; /* r1p3 */
1199     cpu->id_pfr0 = 0x0131;
1200     cpu->id_pfr1 = 0x001;
1201     cpu->id_dfr0 = 0x010400;
1202     cpu->id_afr0 = 0x0;
1203     cpu->id_mmfr0 = 0x0210030;
1204     cpu->id_mmfr1 = 0x00000000;
1205     cpu->id_mmfr2 = 0x01200000;
1206     cpu->id_mmfr3 = 0x0211;
1207     cpu->id_isar0 = 0x2101111;
1208     cpu->id_isar1 = 0x13112111;
1209     cpu->id_isar2 = 0x21232141;
1210     cpu->id_isar3 = 0x01112131;
1211     cpu->id_isar4 = 0x0010142;
1212     cpu->id_isar5 = 0x0;
1213     cpu->mp_is_up = true;
1214     cpu->pmsav7_dregion = 16;
1215     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1216 }
1217 
1218 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1219     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1220       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1221     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1222       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1223     REGINFO_SENTINEL
1224 };
1225 
1226 static void cortex_a8_initfn(Object *obj)
1227 {
1228     ARMCPU *cpu = ARM_CPU(obj);
1229 
1230     cpu->dtb_compatible = "arm,cortex-a8";
1231     set_feature(&cpu->env, ARM_FEATURE_V7);
1232     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1233     set_feature(&cpu->env, ARM_FEATURE_NEON);
1234     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1235     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1236     set_feature(&cpu->env, ARM_FEATURE_EL3);
1237     cpu->midr = 0x410fc080;
1238     cpu->reset_fpsid = 0x410330c0;
1239     cpu->mvfr0 = 0x11110222;
1240     cpu->mvfr1 = 0x00011111;
1241     cpu->ctr = 0x82048004;
1242     cpu->reset_sctlr = 0x00c50078;
1243     cpu->id_pfr0 = 0x1031;
1244     cpu->id_pfr1 = 0x11;
1245     cpu->id_dfr0 = 0x400;
1246     cpu->id_afr0 = 0;
1247     cpu->id_mmfr0 = 0x31100003;
1248     cpu->id_mmfr1 = 0x20000000;
1249     cpu->id_mmfr2 = 0x01202000;
1250     cpu->id_mmfr3 = 0x11;
1251     cpu->id_isar0 = 0x00101111;
1252     cpu->id_isar1 = 0x12112111;
1253     cpu->id_isar2 = 0x21232031;
1254     cpu->id_isar3 = 0x11112131;
1255     cpu->id_isar4 = 0x00111142;
1256     cpu->dbgdidr = 0x15141000;
1257     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1258     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1259     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1260     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1261     cpu->reset_auxcr = 2;
1262     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1263 }
1264 
1265 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1266     /* power_control should be set to maximum latency. Again,
1267      * default to 0 and set by private hook
1268      */
1269     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1270       .access = PL1_RW, .resetvalue = 0,
1271       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1272     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1273       .access = PL1_RW, .resetvalue = 0,
1274       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1275     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1276       .access = PL1_RW, .resetvalue = 0,
1277       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1278     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1279       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1280     /* TLB lockdown control */
1281     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1282       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1283     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1284       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1285     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1286       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1287     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1288       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1289     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1290       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1291     REGINFO_SENTINEL
1292 };
1293 
1294 static void cortex_a9_initfn(Object *obj)
1295 {
1296     ARMCPU *cpu = ARM_CPU(obj);
1297 
1298     cpu->dtb_compatible = "arm,cortex-a9";
1299     set_feature(&cpu->env, ARM_FEATURE_V7);
1300     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1301     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1302     set_feature(&cpu->env, ARM_FEATURE_NEON);
1303     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1304     set_feature(&cpu->env, ARM_FEATURE_EL3);
1305     /* Note that A9 supports the MP extensions even for
1306      * A9UP and single-core A9MP (which are both different
1307      * and valid configurations; we don't model A9UP).
1308      */
1309     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1310     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1311     cpu->midr = 0x410fc090;
1312     cpu->reset_fpsid = 0x41033090;
1313     cpu->mvfr0 = 0x11110222;
1314     cpu->mvfr1 = 0x01111111;
1315     cpu->ctr = 0x80038003;
1316     cpu->reset_sctlr = 0x00c50078;
1317     cpu->id_pfr0 = 0x1031;
1318     cpu->id_pfr1 = 0x11;
1319     cpu->id_dfr0 = 0x000;
1320     cpu->id_afr0 = 0;
1321     cpu->id_mmfr0 = 0x00100103;
1322     cpu->id_mmfr1 = 0x20000000;
1323     cpu->id_mmfr2 = 0x01230000;
1324     cpu->id_mmfr3 = 0x00002111;
1325     cpu->id_isar0 = 0x00101111;
1326     cpu->id_isar1 = 0x13112111;
1327     cpu->id_isar2 = 0x21232041;
1328     cpu->id_isar3 = 0x11112131;
1329     cpu->id_isar4 = 0x00111142;
1330     cpu->dbgdidr = 0x35141000;
1331     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1332     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1333     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1334     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1335 }
1336 
1337 #ifndef CONFIG_USER_ONLY
1338 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1339 {
1340     /* Linux wants the number of processors from here.
1341      * Might as well set the interrupt-controller bit too.
1342      */
1343     return ((smp_cpus - 1) << 24) | (1 << 23);
1344 }
1345 #endif
1346 
1347 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1348 #ifndef CONFIG_USER_ONLY
1349     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1350       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1351       .writefn = arm_cp_write_ignore, },
1352 #endif
1353     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1354       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1355     REGINFO_SENTINEL
1356 };
1357 
1358 static void cortex_a7_initfn(Object *obj)
1359 {
1360     ARMCPU *cpu = ARM_CPU(obj);
1361 
1362     cpu->dtb_compatible = "arm,cortex-a7";
1363     set_feature(&cpu->env, ARM_FEATURE_V7);
1364     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1365     set_feature(&cpu->env, ARM_FEATURE_NEON);
1366     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1367     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1368     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1369     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1370     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1371     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1372     set_feature(&cpu->env, ARM_FEATURE_EL3);
1373     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1374     cpu->midr = 0x410fc075;
1375     cpu->reset_fpsid = 0x41023075;
1376     cpu->mvfr0 = 0x10110222;
1377     cpu->mvfr1 = 0x11111111;
1378     cpu->ctr = 0x84448003;
1379     cpu->reset_sctlr = 0x00c50078;
1380     cpu->id_pfr0 = 0x00001131;
1381     cpu->id_pfr1 = 0x00011011;
1382     cpu->id_dfr0 = 0x02010555;
1383     cpu->pmceid0 = 0x00000000;
1384     cpu->pmceid1 = 0x00000000;
1385     cpu->id_afr0 = 0x00000000;
1386     cpu->id_mmfr0 = 0x10101105;
1387     cpu->id_mmfr1 = 0x40000000;
1388     cpu->id_mmfr2 = 0x01240000;
1389     cpu->id_mmfr3 = 0x02102211;
1390     cpu->id_isar0 = 0x01101110;
1391     cpu->id_isar1 = 0x13112111;
1392     cpu->id_isar2 = 0x21232041;
1393     cpu->id_isar3 = 0x11112131;
1394     cpu->id_isar4 = 0x10011142;
1395     cpu->dbgdidr = 0x3515f005;
1396     cpu->clidr = 0x0a200023;
1397     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1398     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1399     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1400     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1401 }
1402 
1403 static void cortex_a15_initfn(Object *obj)
1404 {
1405     ARMCPU *cpu = ARM_CPU(obj);
1406 
1407     cpu->dtb_compatible = "arm,cortex-a15";
1408     set_feature(&cpu->env, ARM_FEATURE_V7);
1409     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1410     set_feature(&cpu->env, ARM_FEATURE_NEON);
1411     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1412     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1413     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1414     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1415     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1416     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1417     set_feature(&cpu->env, ARM_FEATURE_EL3);
1418     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1419     cpu->midr = 0x412fc0f1;
1420     cpu->reset_fpsid = 0x410430f0;
1421     cpu->mvfr0 = 0x10110222;
1422     cpu->mvfr1 = 0x11111111;
1423     cpu->ctr = 0x8444c004;
1424     cpu->reset_sctlr = 0x00c50078;
1425     cpu->id_pfr0 = 0x00001131;
1426     cpu->id_pfr1 = 0x00011011;
1427     cpu->id_dfr0 = 0x02010555;
1428     cpu->pmceid0 = 0x0000000;
1429     cpu->pmceid1 = 0x00000000;
1430     cpu->id_afr0 = 0x00000000;
1431     cpu->id_mmfr0 = 0x10201105;
1432     cpu->id_mmfr1 = 0x20000000;
1433     cpu->id_mmfr2 = 0x01240000;
1434     cpu->id_mmfr3 = 0x02102211;
1435     cpu->id_isar0 = 0x02101110;
1436     cpu->id_isar1 = 0x13112111;
1437     cpu->id_isar2 = 0x21232041;
1438     cpu->id_isar3 = 0x11112131;
1439     cpu->id_isar4 = 0x10011142;
1440     cpu->dbgdidr = 0x3515f021;
1441     cpu->clidr = 0x0a200023;
1442     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1443     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1444     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1445     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1446 }
1447 
1448 static void ti925t_initfn(Object *obj)
1449 {
1450     ARMCPU *cpu = ARM_CPU(obj);
1451     set_feature(&cpu->env, ARM_FEATURE_V4T);
1452     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1453     cpu->midr = ARM_CPUID_TI925T;
1454     cpu->ctr = 0x5109149;
1455     cpu->reset_sctlr = 0x00000070;
1456 }
1457 
1458 static void sa1100_initfn(Object *obj)
1459 {
1460     ARMCPU *cpu = ARM_CPU(obj);
1461 
1462     cpu->dtb_compatible = "intel,sa1100";
1463     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1464     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1465     cpu->midr = 0x4401A11B;
1466     cpu->reset_sctlr = 0x00000070;
1467 }
1468 
1469 static void sa1110_initfn(Object *obj)
1470 {
1471     ARMCPU *cpu = ARM_CPU(obj);
1472     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1473     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1474     cpu->midr = 0x6901B119;
1475     cpu->reset_sctlr = 0x00000070;
1476 }
1477 
1478 static void pxa250_initfn(Object *obj)
1479 {
1480     ARMCPU *cpu = ARM_CPU(obj);
1481 
1482     cpu->dtb_compatible = "marvell,xscale";
1483     set_feature(&cpu->env, ARM_FEATURE_V5);
1484     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1485     cpu->midr = 0x69052100;
1486     cpu->ctr = 0xd172172;
1487     cpu->reset_sctlr = 0x00000078;
1488 }
1489 
1490 static void pxa255_initfn(Object *obj)
1491 {
1492     ARMCPU *cpu = ARM_CPU(obj);
1493 
1494     cpu->dtb_compatible = "marvell,xscale";
1495     set_feature(&cpu->env, ARM_FEATURE_V5);
1496     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1497     cpu->midr = 0x69052d00;
1498     cpu->ctr = 0xd172172;
1499     cpu->reset_sctlr = 0x00000078;
1500 }
1501 
1502 static void pxa260_initfn(Object *obj)
1503 {
1504     ARMCPU *cpu = ARM_CPU(obj);
1505 
1506     cpu->dtb_compatible = "marvell,xscale";
1507     set_feature(&cpu->env, ARM_FEATURE_V5);
1508     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1509     cpu->midr = 0x69052903;
1510     cpu->ctr = 0xd172172;
1511     cpu->reset_sctlr = 0x00000078;
1512 }
1513 
1514 static void pxa261_initfn(Object *obj)
1515 {
1516     ARMCPU *cpu = ARM_CPU(obj);
1517 
1518     cpu->dtb_compatible = "marvell,xscale";
1519     set_feature(&cpu->env, ARM_FEATURE_V5);
1520     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1521     cpu->midr = 0x69052d05;
1522     cpu->ctr = 0xd172172;
1523     cpu->reset_sctlr = 0x00000078;
1524 }
1525 
1526 static void pxa262_initfn(Object *obj)
1527 {
1528     ARMCPU *cpu = ARM_CPU(obj);
1529 
1530     cpu->dtb_compatible = "marvell,xscale";
1531     set_feature(&cpu->env, ARM_FEATURE_V5);
1532     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1533     cpu->midr = 0x69052d06;
1534     cpu->ctr = 0xd172172;
1535     cpu->reset_sctlr = 0x00000078;
1536 }
1537 
1538 static void pxa270a0_initfn(Object *obj)
1539 {
1540     ARMCPU *cpu = ARM_CPU(obj);
1541 
1542     cpu->dtb_compatible = "marvell,xscale";
1543     set_feature(&cpu->env, ARM_FEATURE_V5);
1544     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1545     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1546     cpu->midr = 0x69054110;
1547     cpu->ctr = 0xd172172;
1548     cpu->reset_sctlr = 0x00000078;
1549 }
1550 
1551 static void pxa270a1_initfn(Object *obj)
1552 {
1553     ARMCPU *cpu = ARM_CPU(obj);
1554 
1555     cpu->dtb_compatible = "marvell,xscale";
1556     set_feature(&cpu->env, ARM_FEATURE_V5);
1557     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1558     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1559     cpu->midr = 0x69054111;
1560     cpu->ctr = 0xd172172;
1561     cpu->reset_sctlr = 0x00000078;
1562 }
1563 
1564 static void pxa270b0_initfn(Object *obj)
1565 {
1566     ARMCPU *cpu = ARM_CPU(obj);
1567 
1568     cpu->dtb_compatible = "marvell,xscale";
1569     set_feature(&cpu->env, ARM_FEATURE_V5);
1570     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1571     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1572     cpu->midr = 0x69054112;
1573     cpu->ctr = 0xd172172;
1574     cpu->reset_sctlr = 0x00000078;
1575 }
1576 
1577 static void pxa270b1_initfn(Object *obj)
1578 {
1579     ARMCPU *cpu = ARM_CPU(obj);
1580 
1581     cpu->dtb_compatible = "marvell,xscale";
1582     set_feature(&cpu->env, ARM_FEATURE_V5);
1583     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1584     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1585     cpu->midr = 0x69054113;
1586     cpu->ctr = 0xd172172;
1587     cpu->reset_sctlr = 0x00000078;
1588 }
1589 
1590 static void pxa270c0_initfn(Object *obj)
1591 {
1592     ARMCPU *cpu = ARM_CPU(obj);
1593 
1594     cpu->dtb_compatible = "marvell,xscale";
1595     set_feature(&cpu->env, ARM_FEATURE_V5);
1596     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1597     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1598     cpu->midr = 0x69054114;
1599     cpu->ctr = 0xd172172;
1600     cpu->reset_sctlr = 0x00000078;
1601 }
1602 
1603 static void pxa270c5_initfn(Object *obj)
1604 {
1605     ARMCPU *cpu = ARM_CPU(obj);
1606 
1607     cpu->dtb_compatible = "marvell,xscale";
1608     set_feature(&cpu->env, ARM_FEATURE_V5);
1609     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1610     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1611     cpu->midr = 0x69054117;
1612     cpu->ctr = 0xd172172;
1613     cpu->reset_sctlr = 0x00000078;
1614 }
1615 
1616 #ifdef CONFIG_USER_ONLY
1617 static void arm_any_initfn(Object *obj)
1618 {
1619     ARMCPU *cpu = ARM_CPU(obj);
1620     set_feature(&cpu->env, ARM_FEATURE_V8);
1621     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1622     set_feature(&cpu->env, ARM_FEATURE_NEON);
1623     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1624     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1625     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1626     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1627     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1628     set_feature(&cpu->env, ARM_FEATURE_CRC);
1629     cpu->midr = 0xffffffff;
1630 }
1631 #endif
1632 
1633 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1634 
1635 typedef struct ARMCPUInfo {
1636     const char *name;
1637     void (*initfn)(Object *obj);
1638     void (*class_init)(ObjectClass *oc, void *data);
1639 } ARMCPUInfo;
1640 
1641 static const ARMCPUInfo arm_cpus[] = {
1642 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1643     { .name = "arm926",      .initfn = arm926_initfn },
1644     { .name = "arm946",      .initfn = arm946_initfn },
1645     { .name = "arm1026",     .initfn = arm1026_initfn },
1646     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1647      * older core than plain "arm1136". In particular this does not
1648      * have the v6K features.
1649      */
1650     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1651     { .name = "arm1136",     .initfn = arm1136_initfn },
1652     { .name = "arm1176",     .initfn = arm1176_initfn },
1653     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1654     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1655                              .class_init = arm_v7m_class_init },
1656     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1657                              .class_init = arm_v7m_class_init },
1658     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1659     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1660     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1661     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1662     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1663     { .name = "ti925t",      .initfn = ti925t_initfn },
1664     { .name = "sa1100",      .initfn = sa1100_initfn },
1665     { .name = "sa1110",      .initfn = sa1110_initfn },
1666     { .name = "pxa250",      .initfn = pxa250_initfn },
1667     { .name = "pxa255",      .initfn = pxa255_initfn },
1668     { .name = "pxa260",      .initfn = pxa260_initfn },
1669     { .name = "pxa261",      .initfn = pxa261_initfn },
1670     { .name = "pxa262",      .initfn = pxa262_initfn },
1671     /* "pxa270" is an alias for "pxa270-a0" */
1672     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1673     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1674     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1675     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1676     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1677     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1678     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1679 #ifdef CONFIG_USER_ONLY
1680     { .name = "any",         .initfn = arm_any_initfn },
1681 #endif
1682 #endif
1683     { .name = NULL }
1684 };
1685 
1686 static Property arm_cpu_properties[] = {
1687     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1688     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1689     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1690     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1691                         mp_affinity, ARM64_AFFINITY_INVALID),
1692     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1693     DEFINE_PROP_END_OF_LIST()
1694 };
1695 
1696 #ifdef CONFIG_USER_ONLY
1697 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1698                                     int mmu_idx)
1699 {
1700     ARMCPU *cpu = ARM_CPU(cs);
1701     CPUARMState *env = &cpu->env;
1702 
1703     env->exception.vaddress = address;
1704     if (rw == 2) {
1705         cs->exception_index = EXCP_PREFETCH_ABORT;
1706     } else {
1707         cs->exception_index = EXCP_DATA_ABORT;
1708     }
1709     return 1;
1710 }
1711 #endif
1712 
1713 static gchar *arm_gdb_arch_name(CPUState *cs)
1714 {
1715     ARMCPU *cpu = ARM_CPU(cs);
1716     CPUARMState *env = &cpu->env;
1717 
1718     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1719         return g_strdup("iwmmxt");
1720     }
1721     return g_strdup("arm");
1722 }
1723 
1724 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1725 {
1726     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1727     CPUClass *cc = CPU_CLASS(acc);
1728     DeviceClass *dc = DEVICE_CLASS(oc);
1729 
1730     acc->parent_realize = dc->realize;
1731     dc->realize = arm_cpu_realizefn;
1732     dc->props = arm_cpu_properties;
1733 
1734     acc->parent_reset = cc->reset;
1735     cc->reset = arm_cpu_reset;
1736 
1737     cc->class_by_name = arm_cpu_class_by_name;
1738     cc->has_work = arm_cpu_has_work;
1739     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1740     cc->dump_state = arm_cpu_dump_state;
1741     cc->set_pc = arm_cpu_set_pc;
1742     cc->gdb_read_register = arm_cpu_gdb_read_register;
1743     cc->gdb_write_register = arm_cpu_gdb_write_register;
1744 #ifdef CONFIG_USER_ONLY
1745     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1746 #else
1747     cc->do_interrupt = arm_cpu_do_interrupt;
1748     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1749     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1750     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1751     cc->asidx_from_attrs = arm_asidx_from_attrs;
1752     cc->vmsd = &vmstate_arm_cpu;
1753     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1754     cc->write_elf64_note = arm_cpu_write_elf64_note;
1755     cc->write_elf32_note = arm_cpu_write_elf32_note;
1756 #endif
1757     cc->gdb_num_core_regs = 26;
1758     cc->gdb_core_xml_file = "arm-core.xml";
1759     cc->gdb_arch_name = arm_gdb_arch_name;
1760     cc->gdb_stop_before_watchpoint = true;
1761     cc->debug_excp_handler = arm_debug_excp_handler;
1762     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1763 #if !defined(CONFIG_USER_ONLY)
1764     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1765 #endif
1766 
1767     cc->disas_set_info = arm_disas_set_info;
1768 }
1769 
1770 static void cpu_register(const ARMCPUInfo *info)
1771 {
1772     TypeInfo type_info = {
1773         .parent = TYPE_ARM_CPU,
1774         .instance_size = sizeof(ARMCPU),
1775         .instance_init = info->initfn,
1776         .class_size = sizeof(ARMCPUClass),
1777         .class_init = info->class_init,
1778     };
1779 
1780     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1781     type_register(&type_info);
1782     g_free((void *)type_info.name);
1783 }
1784 
1785 static const TypeInfo arm_cpu_type_info = {
1786     .name = TYPE_ARM_CPU,
1787     .parent = TYPE_CPU,
1788     .instance_size = sizeof(ARMCPU),
1789     .instance_init = arm_cpu_initfn,
1790     .instance_post_init = arm_cpu_post_init,
1791     .instance_finalize = arm_cpu_finalizefn,
1792     .abstract = true,
1793     .class_size = sizeof(ARMCPUClass),
1794     .class_init = arm_cpu_class_init,
1795 };
1796 
1797 static void arm_cpu_register_types(void)
1798 {
1799     const ARMCPUInfo *info = arm_cpus;
1800 
1801     type_register_static(&arm_cpu_type_info);
1802 
1803     while (info->name) {
1804         cpu_register(info);
1805         info++;
1806     }
1807 }
1808 
1809 type_init(arm_cpu_register_types)
1810