xref: /openbmc/qemu/target/arm/cpu.c (revision c0ee4dd1552b73bdde90875ce62e036a3ca8a007)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "accel/tcg/cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/exec-all.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 #endif /* CONFIG_TCG */
125 
126 /*
127  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
128  * IRQ without Superpriority. Moreover, if the GIC is configured so that
129  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
130  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
131  * unconditionally.
132  */
133 static bool arm_cpu_has_work(CPUState *cs)
134 {
135     ARMCPU *cpu = ARM_CPU(cs);
136 
137     return (cpu->power_state != PSCI_OFF)
138         && cs->interrupt_request &
139         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
140          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
141          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
142          | CPU_INTERRUPT_EXITTB);
143 }
144 
145 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
146 {
147     return arm_env_mmu_index(cpu_env(cs));
148 }
149 
150 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
151                                  void *opaque)
152 {
153     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
154 
155     entry->hook = hook;
156     entry->opaque = opaque;
157 
158     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
159 }
160 
161 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
162                                  void *opaque)
163 {
164     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
165 
166     entry->hook = hook;
167     entry->opaque = opaque;
168 
169     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
170 }
171 
172 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
173 {
174     /* Reset a single ARMCPRegInfo register */
175     ARMCPRegInfo *ri = value;
176     ARMCPU *cpu = opaque;
177 
178     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
179         return;
180     }
181 
182     if (ri->resetfn) {
183         ri->resetfn(&cpu->env, ri);
184         return;
185     }
186 
187     /* A zero offset is never possible as it would be regs[0]
188      * so we use it to indicate that reset is being handled elsewhere.
189      * This is basically only used for fields in non-core coprocessors
190      * (like the pxa2xx ones).
191      */
192     if (!ri->fieldoffset) {
193         return;
194     }
195 
196     if (cpreg_field_is_64bit(ri)) {
197         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
198     } else {
199         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
200     }
201 }
202 
203 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
204 {
205     /* Purely an assertion check: we've already done reset once,
206      * so now check that running the reset for the cpreg doesn't
207      * change its value. This traps bugs where two different cpregs
208      * both try to reset the same state field but to different values.
209      */
210     ARMCPRegInfo *ri = value;
211     ARMCPU *cpu = opaque;
212     uint64_t oldvalue, newvalue;
213 
214     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
215         return;
216     }
217 
218     oldvalue = read_raw_cp_reg(&cpu->env, ri);
219     cp_reg_reset(key, value, opaque);
220     newvalue = read_raw_cp_reg(&cpu->env, ri);
221     assert(oldvalue == newvalue);
222 }
223 
224 static void arm_cpu_reset_hold(Object *obj, ResetType type)
225 {
226     CPUState *cs = CPU(obj);
227     ARMCPU *cpu = ARM_CPU(cs);
228     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
229     CPUARMState *env = &cpu->env;
230 
231     if (acc->parent_phases.hold) {
232         acc->parent_phases.hold(obj, type);
233     }
234 
235     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
236 
237     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
238     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
239 
240     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
241     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
242     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
243     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
244 
245     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
246 
247     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
248         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
249     }
250 
251     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
252         /* 64 bit CPUs always start in 64 bit mode */
253         env->aarch64 = true;
254 #if defined(CONFIG_USER_ONLY)
255         env->pstate = PSTATE_MODE_EL0t;
256         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
257         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
258         /* Enable all PAC keys.  */
259         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
260                                   SCTLR_EnDA | SCTLR_EnDB);
261         /* Trap on btype=3 for PACIxSP. */
262         env->cp15.sctlr_el[1] |= SCTLR_BT0;
263         /* Trap on implementation defined registers. */
264         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
265             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
266         }
267         /* and to the FP/Neon instructions */
268         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
269                                          CPACR_EL1, FPEN, 3);
270         /* and to the SVE instructions, with default vector length */
271         if (cpu_isar_feature(aa64_sve, cpu)) {
272             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
273                                              CPACR_EL1, ZEN, 3);
274             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
275         }
276         /* and for SME instructions, with default vector length, and TPIDR2 */
277         if (cpu_isar_feature(aa64_sme, cpu)) {
278             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
279             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
280                                              CPACR_EL1, SMEN, 3);
281             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
282             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
283                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
284                                                  SMCR, FA64, 1);
285             }
286         }
287         /*
288          * Enable 48-bit address space (TODO: take reserved_va into account).
289          * Enable TBI0 but not TBI1.
290          * Note that this must match useronly_clean_ptr.
291          */
292         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
293 
294         /* Enable MTE */
295         if (cpu_isar_feature(aa64_mte, cpu)) {
296             /* Enable tag access, but leave TCF0 as No Effect (0). */
297             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
298             /*
299              * Exclude all tags, so that tag 0 is always used.
300              * This corresponds to Linux current->thread.gcr_incl = 0.
301              *
302              * Set RRND, so that helper_irg() will generate a seed later.
303              * Here in cpu_reset(), the crypto subsystem has not yet been
304              * initialized.
305              */
306             env->cp15.gcr_el1 = 0x1ffff;
307         }
308         /*
309          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
310          * This is not yet exposed from the Linux kernel in any way.
311          */
312         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
313         /* Disable access to Debug Communication Channel (DCC). */
314         env->cp15.mdscr_el1 |= 1 << 12;
315         /* Enable FEAT_MOPS */
316         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
317 #else
318         /* Reset into the highest available EL */
319         if (arm_feature(env, ARM_FEATURE_EL3)) {
320             env->pstate = PSTATE_MODE_EL3h;
321         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
322             env->pstate = PSTATE_MODE_EL2h;
323         } else {
324             env->pstate = PSTATE_MODE_EL1h;
325         }
326 
327         /* Sample rvbar at reset.  */
328         env->cp15.rvbar = cpu->rvbar_prop;
329         env->pc = env->cp15.rvbar;
330 #endif
331     } else {
332 #if defined(CONFIG_USER_ONLY)
333         /* Userspace expects access to cp10 and cp11 for FP/Neon */
334         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
335                                          CPACR, CP10, 3);
336         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
337                                          CPACR, CP11, 3);
338 #endif
339         if (arm_feature(env, ARM_FEATURE_V8)) {
340             env->cp15.rvbar = cpu->rvbar_prop;
341             env->regs[15] = cpu->rvbar_prop;
342         }
343     }
344 
345 #if defined(CONFIG_USER_ONLY)
346     env->uncached_cpsr = ARM_CPU_MODE_USR;
347     /* For user mode we must enable access to coprocessors */
348     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
349     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
350         env->cp15.c15_cpar = 3;
351     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
352         env->cp15.c15_cpar = 1;
353     }
354 #else
355 
356     /*
357      * If the highest available EL is EL2, AArch32 will start in Hyp
358      * mode; otherwise it starts in SVC. Note that if we start in
359      * AArch64 then these values in the uncached_cpsr will be ignored.
360      */
361     if (arm_feature(env, ARM_FEATURE_EL2) &&
362         !arm_feature(env, ARM_FEATURE_EL3)) {
363         env->uncached_cpsr = ARM_CPU_MODE_HYP;
364     } else {
365         env->uncached_cpsr = ARM_CPU_MODE_SVC;
366     }
367     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
368 
369     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
370      * executing as AArch32 then check if highvecs are enabled and
371      * adjust the PC accordingly.
372      */
373     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
374         env->regs[15] = 0xFFFF0000;
375     }
376 
377     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
378 #endif
379 
380     if (arm_feature(env, ARM_FEATURE_M)) {
381 #ifndef CONFIG_USER_ONLY
382         uint32_t initial_msp; /* Loaded from 0x0 */
383         uint32_t initial_pc; /* Loaded from 0x4 */
384         uint8_t *rom;
385         uint32_t vecbase;
386 #endif
387 
388         if (cpu_isar_feature(aa32_lob, cpu)) {
389             /*
390              * LTPSIZE is constant 4 if MVE not implemented, and resets
391              * to an UNKNOWN value if MVE is implemented. We choose to
392              * always reset to 4.
393              */
394             env->v7m.ltpsize = 4;
395             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
396             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
397             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
398         }
399 
400         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
401             env->v7m.secure = true;
402         } else {
403             /* This bit resets to 0 if security is supported, but 1 if
404              * it is not. The bit is not present in v7M, but we set it
405              * here so we can avoid having to make checks on it conditional
406              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
407              */
408             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
409             /*
410              * Set NSACR to indicate "NS access permitted to everything";
411              * this avoids having to have all the tests of it being
412              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
413              * v8.1M the guest-visible value of NSACR in a CPU without the
414              * Security Extension is 0xcff.
415              */
416             env->v7m.nsacr = 0xcff;
417         }
418 
419         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
420          * that it resets to 1, so QEMU always does that rather than making
421          * it dependent on CPU model. In v8M it is RES1.
422          */
423         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
424         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
425         if (arm_feature(env, ARM_FEATURE_V8)) {
426             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
427             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
428             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
429         }
430         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
431             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
432             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
433         }
434 
435         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
436             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
437             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
438                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
439         }
440 
441 #ifndef CONFIG_USER_ONLY
442         /* Unlike A/R profile, M profile defines the reset LR value */
443         env->regs[14] = 0xffffffff;
444 
445         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
446         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
447 
448         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
449         vecbase = env->v7m.vecbase[env->v7m.secure];
450         rom = rom_ptr_for_as(cs->as, vecbase, 8);
451         if (rom) {
452             /* Address zero is covered by ROM which hasn't yet been
453              * copied into physical memory.
454              */
455             initial_msp = ldl_p(rom);
456             initial_pc = ldl_p(rom + 4);
457         } else {
458             /* Address zero not covered by a ROM blob, or the ROM blob
459              * is in non-modifiable memory and this is a second reset after
460              * it got copied into memory. In the latter case, rom_ptr
461              * will return a NULL pointer and we should use ldl_phys instead.
462              */
463             initial_msp = ldl_phys(cs->as, vecbase);
464             initial_pc = ldl_phys(cs->as, vecbase + 4);
465         }
466 
467         qemu_log_mask(CPU_LOG_INT,
468                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
469                       initial_msp, initial_pc);
470 
471         env->regs[13] = initial_msp & 0xFFFFFFFC;
472         env->regs[15] = initial_pc & ~1;
473         env->thumb = initial_pc & 1;
474 #else
475         /*
476          * For user mode we run non-secure and with access to the FPU.
477          * The FPU context is active (ie does not need further setup)
478          * and is owned by non-secure.
479          */
480         env->v7m.secure = false;
481         env->v7m.nsacr = 0xcff;
482         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
483         env->v7m.fpccr[M_REG_S] &=
484             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
485         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
486 #endif
487     }
488 
489     /* M profile requires that reset clears the exclusive monitor;
490      * A profile does not, but clearing it makes more sense than having it
491      * set with an exclusive access on address zero.
492      */
493     arm_clear_exclusive(env);
494 
495     if (arm_feature(env, ARM_FEATURE_PMSA)) {
496         if (cpu->pmsav7_dregion > 0) {
497             if (arm_feature(env, ARM_FEATURE_V8)) {
498                 memset(env->pmsav8.rbar[M_REG_NS], 0,
499                        sizeof(*env->pmsav8.rbar[M_REG_NS])
500                        * cpu->pmsav7_dregion);
501                 memset(env->pmsav8.rlar[M_REG_NS], 0,
502                        sizeof(*env->pmsav8.rlar[M_REG_NS])
503                        * cpu->pmsav7_dregion);
504                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
505                     memset(env->pmsav8.rbar[M_REG_S], 0,
506                            sizeof(*env->pmsav8.rbar[M_REG_S])
507                            * cpu->pmsav7_dregion);
508                     memset(env->pmsav8.rlar[M_REG_S], 0,
509                            sizeof(*env->pmsav8.rlar[M_REG_S])
510                            * cpu->pmsav7_dregion);
511                 }
512             } else if (arm_feature(env, ARM_FEATURE_V7)) {
513                 memset(env->pmsav7.drbar, 0,
514                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
515                 memset(env->pmsav7.drsr, 0,
516                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
517                 memset(env->pmsav7.dracr, 0,
518                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
519             }
520         }
521 
522         if (cpu->pmsav8r_hdregion > 0) {
523             memset(env->pmsav8.hprbar, 0,
524                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
525             memset(env->pmsav8.hprlar, 0,
526                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
527         }
528 
529         env->pmsav7.rnr[M_REG_NS] = 0;
530         env->pmsav7.rnr[M_REG_S] = 0;
531         env->pmsav8.mair0[M_REG_NS] = 0;
532         env->pmsav8.mair0[M_REG_S] = 0;
533         env->pmsav8.mair1[M_REG_NS] = 0;
534         env->pmsav8.mair1[M_REG_S] = 0;
535     }
536 
537     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
538         if (cpu->sau_sregion > 0) {
539             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
540             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
541         }
542         env->sau.rnr = 0;
543         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
544          * the Cortex-M33 does.
545          */
546         env->sau.ctrl = 0;
547     }
548 
549     set_flush_to_zero(1, &env->vfp.fp_status[FPST_STD]);
550     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_STD]);
551     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD]);
552     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD_F16]);
553     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32]);
554     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
555     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD]);
556     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32_F16]);
557     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
558     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD_F16]);
559     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH]);
560     set_flush_to_zero(1, &env->vfp.fp_status[FPST_AH]);
561     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_AH]);
562     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH_F16]);
563 
564 #ifndef CONFIG_USER_ONLY
565     if (kvm_enabled()) {
566         kvm_arm_reset_vcpu(cpu);
567     }
568 #endif
569 
570     if (tcg_enabled()) {
571         hw_breakpoint_update_all(cpu);
572         hw_watchpoint_update_all(cpu);
573 
574         arm_rebuild_hflags(env);
575     }
576 }
577 
578 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
579 {
580     ARMCPU *cpu = ARM_CPU(cpustate);
581     CPUARMState *env = &cpu->env;
582     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
583     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
584 
585     /*
586      * Check we have the EL we're aiming for. If that is the
587      * highest implemented EL, then cpu_reset has already done
588      * all the work.
589      */
590     switch (target_el) {
591     case 3:
592         assert(have_el3);
593         return;
594     case 2:
595         assert(have_el2);
596         if (!have_el3) {
597             return;
598         }
599         break;
600     case 1:
601         if (!have_el3 && !have_el2) {
602             return;
603         }
604         break;
605     default:
606         g_assert_not_reached();
607     }
608 
609     if (have_el3) {
610         /*
611          * Set the EL3 state so code can run at EL2. This should match
612          * the requirements set by Linux in its booting spec.
613          */
614         if (env->aarch64) {
615             env->cp15.scr_el3 |= SCR_RW;
616             if (cpu_isar_feature(aa64_pauth, cpu)) {
617                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
618             }
619             if (cpu_isar_feature(aa64_mte, cpu)) {
620                 env->cp15.scr_el3 |= SCR_ATA;
621             }
622             if (cpu_isar_feature(aa64_sve, cpu)) {
623                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
624                 env->vfp.zcr_el[3] = 0xf;
625             }
626             if (cpu_isar_feature(aa64_sme, cpu)) {
627                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
628                 env->cp15.scr_el3 |= SCR_ENTP2;
629                 env->vfp.smcr_el[3] = 0xf;
630             }
631             if (cpu_isar_feature(aa64_hcx, cpu)) {
632                 env->cp15.scr_el3 |= SCR_HXEN;
633             }
634             if (cpu_isar_feature(aa64_fgt, cpu)) {
635                 env->cp15.scr_el3 |= SCR_FGTEN;
636             }
637         }
638 
639         if (target_el == 2) {
640             /* If the guest is at EL2 then Linux expects the HVC insn to work */
641             env->cp15.scr_el3 |= SCR_HCE;
642         }
643 
644         /* Put CPU into non-secure state */
645         env->cp15.scr_el3 |= SCR_NS;
646         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
647         env->cp15.nsacr |= 3 << 10;
648     }
649 
650     if (have_el2 && target_el < 2) {
651         /* Set EL2 state so code can run at EL1. */
652         if (env->aarch64) {
653             env->cp15.hcr_el2 |= HCR_RW;
654         }
655     }
656 
657     /* Set the CPU to the desired state */
658     if (env->aarch64) {
659         env->pstate = aarch64_pstate_mode(target_el, true);
660     } else {
661         static const uint32_t mode_for_el[] = {
662             0,
663             ARM_CPU_MODE_SVC,
664             ARM_CPU_MODE_HYP,
665             ARM_CPU_MODE_SVC,
666         };
667 
668         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
669     }
670 }
671 
672 
673 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
674 
675 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
676                                      unsigned int target_el,
677                                      unsigned int cur_el, bool secure,
678                                      uint64_t hcr_el2)
679 {
680     CPUARMState *env = cpu_env(cs);
681     bool pstate_unmasked;
682     bool unmasked = false;
683     bool allIntMask = false;
684 
685     /*
686      * Don't take exceptions if they target a lower EL.
687      * This check should catch any exceptions that would not be taken
688      * but left pending.
689      */
690     if (cur_el > target_el) {
691         return false;
692     }
693 
694     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
695         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
696         allIntMask = env->pstate & PSTATE_ALLINT ||
697                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
698                       (env->pstate & PSTATE_SP));
699     }
700 
701     switch (excp_idx) {
702     case EXCP_NMI:
703         pstate_unmasked = !allIntMask;
704         break;
705 
706     case EXCP_VINMI:
707         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
708             /* VINMIs are only taken when hypervized.  */
709             return false;
710         }
711         return !allIntMask;
712     case EXCP_VFNMI:
713         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
714             /* VFNMIs are only taken when hypervized.  */
715             return false;
716         }
717         return !allIntMask;
718     case EXCP_FIQ:
719         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
720         break;
721 
722     case EXCP_IRQ:
723         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
724         break;
725 
726     case EXCP_VFIQ:
727         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
728             /* VFIQs are only taken when hypervized.  */
729             return false;
730         }
731         return !(env->daif & PSTATE_F) && (!allIntMask);
732     case EXCP_VIRQ:
733         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
734             /* VIRQs are only taken when hypervized.  */
735             return false;
736         }
737         return !(env->daif & PSTATE_I) && (!allIntMask);
738     case EXCP_VSERR:
739         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
740             /* VIRQs are only taken when hypervized.  */
741             return false;
742         }
743         return !(env->daif & PSTATE_A);
744     default:
745         g_assert_not_reached();
746     }
747 
748     /*
749      * Use the target EL, current execution state and SCR/HCR settings to
750      * determine whether the corresponding CPSR bit is used to mask the
751      * interrupt.
752      */
753     if ((target_el > cur_el) && (target_el != 1)) {
754         /* Exceptions targeting a higher EL may not be maskable */
755         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
756             switch (target_el) {
757             case 2:
758                 /*
759                  * According to ARM DDI 0487H.a, an interrupt can be masked
760                  * when HCR_E2H and HCR_TGE are both set regardless of the
761                  * current Security state. Note that we need to revisit this
762                  * part again once we need to support NMI.
763                  */
764                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
765                         unmasked = true;
766                 }
767                 break;
768             case 3:
769                 /* Interrupt cannot be masked when the target EL is 3 */
770                 unmasked = true;
771                 break;
772             default:
773                 g_assert_not_reached();
774             }
775         } else {
776             /*
777              * The old 32-bit-only environment has a more complicated
778              * masking setup. HCR and SCR bits not only affect interrupt
779              * routing but also change the behaviour of masking.
780              */
781             bool hcr, scr;
782 
783             switch (excp_idx) {
784             case EXCP_FIQ:
785                 /*
786                  * If FIQs are routed to EL3 or EL2 then there are cases where
787                  * we override the CPSR.F in determining if the exception is
788                  * masked or not. If neither of these are set then we fall back
789                  * to the CPSR.F setting otherwise we further assess the state
790                  * below.
791                  */
792                 hcr = hcr_el2 & HCR_FMO;
793                 scr = (env->cp15.scr_el3 & SCR_FIQ);
794 
795                 /*
796                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
797                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
798                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
799                  * when non-secure but only when FIQs are only routed to EL3.
800                  */
801                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
802                 break;
803             case EXCP_IRQ:
804                 /*
805                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
806                  * we may override the CPSR.I masking when in non-secure state.
807                  * The SCR.IRQ setting has already been taken into consideration
808                  * when setting the target EL, so it does not have a further
809                  * affect here.
810                  */
811                 hcr = hcr_el2 & HCR_IMO;
812                 scr = false;
813                 break;
814             default:
815                 g_assert_not_reached();
816             }
817 
818             if ((scr || hcr) && !secure) {
819                 unmasked = true;
820             }
821         }
822     }
823 
824     /*
825      * The PSTATE bits only mask the interrupt if we have not overridden the
826      * ability above.
827      */
828     return unmasked || pstate_unmasked;
829 }
830 
831 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
832 {
833     CPUARMState *env = cpu_env(cs);
834     uint32_t cur_el = arm_current_el(env);
835     bool secure = arm_is_secure(env);
836     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
837     uint32_t target_el;
838     uint32_t excp_idx;
839 
840     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
841 
842     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
843         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
844         if (interrupt_request & CPU_INTERRUPT_NMI) {
845             excp_idx = EXCP_NMI;
846             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
847             if (arm_excp_unmasked(cs, excp_idx, target_el,
848                                   cur_el, secure, hcr_el2)) {
849                 goto found;
850             }
851         }
852         if (interrupt_request & CPU_INTERRUPT_VINMI) {
853             excp_idx = EXCP_VINMI;
854             target_el = 1;
855             if (arm_excp_unmasked(cs, excp_idx, target_el,
856                                   cur_el, secure, hcr_el2)) {
857                 goto found;
858             }
859         }
860         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
861             excp_idx = EXCP_VFNMI;
862             target_el = 1;
863             if (arm_excp_unmasked(cs, excp_idx, target_el,
864                                   cur_el, secure, hcr_el2)) {
865                 goto found;
866             }
867         }
868     } else {
869         /*
870          * NMI disabled: interrupts with superpriority are handled
871          * as if they didn't have it
872          */
873         if (interrupt_request & CPU_INTERRUPT_NMI) {
874             interrupt_request |= CPU_INTERRUPT_HARD;
875         }
876         if (interrupt_request & CPU_INTERRUPT_VINMI) {
877             interrupt_request |= CPU_INTERRUPT_VIRQ;
878         }
879         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
880             interrupt_request |= CPU_INTERRUPT_VFIQ;
881         }
882     }
883 
884     if (interrupt_request & CPU_INTERRUPT_FIQ) {
885         excp_idx = EXCP_FIQ;
886         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
887         if (arm_excp_unmasked(cs, excp_idx, target_el,
888                               cur_el, secure, hcr_el2)) {
889             goto found;
890         }
891     }
892     if (interrupt_request & CPU_INTERRUPT_HARD) {
893         excp_idx = EXCP_IRQ;
894         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
895         if (arm_excp_unmasked(cs, excp_idx, target_el,
896                               cur_el, secure, hcr_el2)) {
897             goto found;
898         }
899     }
900     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
901         excp_idx = EXCP_VIRQ;
902         target_el = 1;
903         if (arm_excp_unmasked(cs, excp_idx, target_el,
904                               cur_el, secure, hcr_el2)) {
905             goto found;
906         }
907     }
908     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
909         excp_idx = EXCP_VFIQ;
910         target_el = 1;
911         if (arm_excp_unmasked(cs, excp_idx, target_el,
912                               cur_el, secure, hcr_el2)) {
913             goto found;
914         }
915     }
916     if (interrupt_request & CPU_INTERRUPT_VSERR) {
917         excp_idx = EXCP_VSERR;
918         target_el = 1;
919         if (arm_excp_unmasked(cs, excp_idx, target_el,
920                               cur_el, secure, hcr_el2)) {
921             /* Taking a virtual abort clears HCR_EL2.VSE */
922             env->cp15.hcr_el2 &= ~HCR_VSE;
923             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
924             goto found;
925         }
926     }
927     return false;
928 
929  found:
930     cs->exception_index = excp_idx;
931     env->exception.target_el = target_el;
932     cs->cc->tcg_ops->do_interrupt(cs);
933     return true;
934 }
935 
936 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
937 
938 void arm_cpu_update_virq(ARMCPU *cpu)
939 {
940     /*
941      * Update the interrupt level for VIRQ, which is the logical OR of
942      * the HCR_EL2.VI bit and the input line level from the GIC.
943      */
944     CPUARMState *env = &cpu->env;
945     CPUState *cs = CPU(cpu);
946 
947     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
948         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
949         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
950 
951     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
952         if (new_state) {
953             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
954         } else {
955             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
956         }
957     }
958 }
959 
960 void arm_cpu_update_vfiq(ARMCPU *cpu)
961 {
962     /*
963      * Update the interrupt level for VFIQ, which is the logical OR of
964      * the HCR_EL2.VF bit and the input line level from the GIC.
965      */
966     CPUARMState *env = &cpu->env;
967     CPUState *cs = CPU(cpu);
968 
969     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
970         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
971         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
972 
973     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
974         if (new_state) {
975             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
976         } else {
977             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
978         }
979     }
980 }
981 
982 void arm_cpu_update_vinmi(ARMCPU *cpu)
983 {
984     /*
985      * Update the interrupt level for VINMI, which is the logical OR of
986      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
987      */
988     CPUARMState *env = &cpu->env;
989     CPUState *cs = CPU(cpu);
990 
991     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
992                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
993         (env->irq_line_state & CPU_INTERRUPT_VINMI);
994 
995     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
996         if (new_state) {
997             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
998         } else {
999             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1000         }
1001     }
1002 }
1003 
1004 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1005 {
1006     /*
1007      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1008      */
1009     CPUARMState *env = &cpu->env;
1010     CPUState *cs = CPU(cpu);
1011 
1012     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1013                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1014 
1015     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1016         if (new_state) {
1017             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1018         } else {
1019             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1020         }
1021     }
1022 }
1023 
1024 void arm_cpu_update_vserr(ARMCPU *cpu)
1025 {
1026     /*
1027      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1028      */
1029     CPUARMState *env = &cpu->env;
1030     CPUState *cs = CPU(cpu);
1031 
1032     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1033 
1034     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1035         if (new_state) {
1036             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1037         } else {
1038             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1039         }
1040     }
1041 }
1042 
1043 #ifndef CONFIG_USER_ONLY
1044 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1045 {
1046     ARMCPU *cpu = opaque;
1047     CPUARMState *env = &cpu->env;
1048     CPUState *cs = CPU(cpu);
1049     static const int mask[] = {
1050         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1051         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1052         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1053         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1054         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1055         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1056     };
1057 
1058     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1059         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1060         /*
1061          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1062          * have EL2 support we don't care. (Unless the guest is doing something
1063          * silly this will only be calls saying "level is still 0".)
1064          */
1065         return;
1066     }
1067 
1068     if (level) {
1069         env->irq_line_state |= mask[irq];
1070     } else {
1071         env->irq_line_state &= ~mask[irq];
1072     }
1073 
1074     switch (irq) {
1075     case ARM_CPU_VIRQ:
1076         arm_cpu_update_virq(cpu);
1077         break;
1078     case ARM_CPU_VFIQ:
1079         arm_cpu_update_vfiq(cpu);
1080         break;
1081     case ARM_CPU_VINMI:
1082         arm_cpu_update_vinmi(cpu);
1083         break;
1084     case ARM_CPU_IRQ:
1085     case ARM_CPU_FIQ:
1086     case ARM_CPU_NMI:
1087         if (level) {
1088             cpu_interrupt(cs, mask[irq]);
1089         } else {
1090             cpu_reset_interrupt(cs, mask[irq]);
1091         }
1092         break;
1093     default:
1094         g_assert_not_reached();
1095     }
1096 }
1097 
1098 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1099 {
1100 #ifdef CONFIG_KVM
1101     ARMCPU *cpu = opaque;
1102     CPUARMState *env = &cpu->env;
1103     CPUState *cs = CPU(cpu);
1104     uint32_t linestate_bit;
1105     int irq_id;
1106 
1107     switch (irq) {
1108     case ARM_CPU_IRQ:
1109         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1110         linestate_bit = CPU_INTERRUPT_HARD;
1111         break;
1112     case ARM_CPU_FIQ:
1113         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1114         linestate_bit = CPU_INTERRUPT_FIQ;
1115         break;
1116     default:
1117         g_assert_not_reached();
1118     }
1119 
1120     if (level) {
1121         env->irq_line_state |= linestate_bit;
1122     } else {
1123         env->irq_line_state &= ~linestate_bit;
1124     }
1125     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1126 #endif
1127 }
1128 
1129 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1130 {
1131     ARMCPU *cpu = ARM_CPU(cs);
1132     CPUARMState *env = &cpu->env;
1133 
1134     cpu_synchronize_state(cs);
1135     return arm_cpu_data_is_big_endian(env);
1136 }
1137 
1138 #ifdef CONFIG_TCG
1139 bool arm_cpu_exec_halt(CPUState *cs)
1140 {
1141     bool leave_halt = cpu_has_work(cs);
1142 
1143     if (leave_halt) {
1144         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1145         ARMCPU *cpu = ARM_CPU(cs);
1146         if (cpu->wfxt_timer) {
1147             timer_del(cpu->wfxt_timer);
1148         }
1149     }
1150     return leave_halt;
1151 }
1152 #endif
1153 
1154 static void arm_wfxt_timer_cb(void *opaque)
1155 {
1156     ARMCPU *cpu = opaque;
1157     CPUState *cs = CPU(cpu);
1158 
1159     /*
1160      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1161      * to return true (so we will come out of halt even with no other
1162      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1163      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1164      */
1165     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1166 }
1167 #endif
1168 
1169 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1170 {
1171     ARMCPU *ac = ARM_CPU(cpu);
1172     CPUARMState *env = &ac->env;
1173     bool sctlr_b = arm_sctlr_b(env);
1174 
1175     if (is_a64(env)) {
1176         info->cap_arch = CS_ARCH_ARM64;
1177         info->cap_insn_unit = 4;
1178         info->cap_insn_split = 4;
1179     } else {
1180         int cap_mode;
1181         if (env->thumb) {
1182             info->cap_insn_unit = 2;
1183             info->cap_insn_split = 4;
1184             cap_mode = CS_MODE_THUMB;
1185         } else {
1186             info->cap_insn_unit = 4;
1187             info->cap_insn_split = 4;
1188             cap_mode = CS_MODE_ARM;
1189         }
1190         if (arm_feature(env, ARM_FEATURE_V8)) {
1191             cap_mode |= CS_MODE_V8;
1192         }
1193         if (arm_feature(env, ARM_FEATURE_M)) {
1194             cap_mode |= CS_MODE_MCLASS;
1195         }
1196         info->cap_arch = CS_ARCH_ARM;
1197         info->cap_mode = cap_mode;
1198     }
1199 
1200     info->endian = BFD_ENDIAN_LITTLE;
1201     if (bswap_code(sctlr_b)) {
1202         info->endian = TARGET_BIG_ENDIAN ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_BIG;
1203     }
1204     info->flags &= ~INSN_ARM_BE32;
1205 #ifndef CONFIG_USER_ONLY
1206     if (sctlr_b) {
1207         info->flags |= INSN_ARM_BE32;
1208     }
1209 #endif
1210 }
1211 
1212 #ifdef TARGET_AARCH64
1213 
1214 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1215 {
1216     ARMCPU *cpu = ARM_CPU(cs);
1217     CPUARMState *env = &cpu->env;
1218     uint32_t psr = pstate_read(env);
1219     int i, j;
1220     int el = arm_current_el(env);
1221     uint64_t hcr = arm_hcr_el2_eff(env);
1222     const char *ns_status;
1223     bool sve;
1224 
1225     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1226     for (i = 0; i < 32; i++) {
1227         if (i == 31) {
1228             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1229         } else {
1230             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1231                          (i + 2) % 3 ? " " : "\n");
1232         }
1233     }
1234 
1235     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1236         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1237     } else {
1238         ns_status = "";
1239     }
1240     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1241                  psr,
1242                  psr & PSTATE_N ? 'N' : '-',
1243                  psr & PSTATE_Z ? 'Z' : '-',
1244                  psr & PSTATE_C ? 'C' : '-',
1245                  psr & PSTATE_V ? 'V' : '-',
1246                  ns_status,
1247                  el,
1248                  psr & PSTATE_SP ? 'h' : 't');
1249 
1250     if (cpu_isar_feature(aa64_sme, cpu)) {
1251         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1252                      env->svcr,
1253                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1254                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1255     }
1256     if (cpu_isar_feature(aa64_bti, cpu)) {
1257         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1258     }
1259     qemu_fprintf(f, "%s%s%s",
1260                  (hcr & HCR_NV) ? " NV" : "",
1261                  (hcr & HCR_NV1) ? " NV1" : "",
1262                  (hcr & HCR_NV2) ? " NV2" : "");
1263     if (!(flags & CPU_DUMP_FPU)) {
1264         qemu_fprintf(f, "\n");
1265         return;
1266     }
1267     if (fp_exception_el(env, el) != 0) {
1268         qemu_fprintf(f, "    FPU disabled\n");
1269         return;
1270     }
1271     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1272                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1273 
1274     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1275         sve = sme_exception_el(env, el) == 0;
1276     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1277         sve = sve_exception_el(env, el) == 0;
1278     } else {
1279         sve = false;
1280     }
1281 
1282     if (sve) {
1283         int zcr_len = sve_vqm1_for_el(env, el);
1284 
1285         for (i = 0; i <= FFR_PRED_NUM; i++) {
1286             bool eol;
1287             if (i == FFR_PRED_NUM) {
1288                 qemu_fprintf(f, "FFR=");
1289                 /* It's last, so end the line.  */
1290                 eol = true;
1291             } else {
1292                 qemu_fprintf(f, "P%02d=", i);
1293                 switch (zcr_len) {
1294                 case 0:
1295                     eol = i % 8 == 7;
1296                     break;
1297                 case 1:
1298                     eol = i % 6 == 5;
1299                     break;
1300                 case 2:
1301                 case 3:
1302                     eol = i % 3 == 2;
1303                     break;
1304                 default:
1305                     /* More than one quadword per predicate.  */
1306                     eol = true;
1307                     break;
1308                 }
1309             }
1310             for (j = zcr_len / 4; j >= 0; j--) {
1311                 int digits;
1312                 if (j * 4 + 4 <= zcr_len + 1) {
1313                     digits = 16;
1314                 } else {
1315                     digits = (zcr_len % 4 + 1) * 4;
1316                 }
1317                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1318                              env->vfp.pregs[i].p[j],
1319                              j ? ":" : eol ? "\n" : " ");
1320             }
1321         }
1322 
1323         if (zcr_len == 0) {
1324             /*
1325              * With vl=16, there are only 37 columns per register,
1326              * so output two registers per line.
1327              */
1328             for (i = 0; i < 32; i++) {
1329                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1330                              i, env->vfp.zregs[i].d[1],
1331                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1332             }
1333         } else {
1334             for (i = 0; i < 32; i++) {
1335                 qemu_fprintf(f, "Z%02d=", i);
1336                 for (j = zcr_len; j >= 0; j--) {
1337                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1338                                  env->vfp.zregs[i].d[j * 2 + 1],
1339                                  env->vfp.zregs[i].d[j * 2 + 0],
1340                                  j ? ":" : "\n");
1341                 }
1342             }
1343         }
1344     } else {
1345         for (i = 0; i < 32; i++) {
1346             uint64_t *q = aa64_vfp_qreg(env, i);
1347             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1348                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1349         }
1350     }
1351 
1352     if (cpu_isar_feature(aa64_sme, cpu) &&
1353         FIELD_EX64(env->svcr, SVCR, ZA) &&
1354         sme_exception_el(env, el) == 0) {
1355         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1356         int svl = (zcr_len + 1) * 16;
1357         int svl_lg10 = svl < 100 ? 2 : 3;
1358 
1359         for (i = 0; i < svl; i++) {
1360             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1361             for (j = zcr_len; j >= 0; --j) {
1362                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1363                              env->zarray[i].d[2 * j + 1],
1364                              env->zarray[i].d[2 * j],
1365                              j ? ':' : '\n');
1366             }
1367         }
1368     }
1369 }
1370 
1371 #else
1372 
1373 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1374 {
1375     g_assert_not_reached();
1376 }
1377 
1378 #endif
1379 
1380 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1381 {
1382     ARMCPU *cpu = ARM_CPU(cs);
1383     CPUARMState *env = &cpu->env;
1384     int i;
1385 
1386     if (is_a64(env)) {
1387         aarch64_cpu_dump_state(cs, f, flags);
1388         return;
1389     }
1390 
1391     for (i = 0; i < 16; i++) {
1392         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1393         if ((i % 4) == 3) {
1394             qemu_fprintf(f, "\n");
1395         } else {
1396             qemu_fprintf(f, " ");
1397         }
1398     }
1399 
1400     if (arm_feature(env, ARM_FEATURE_M)) {
1401         uint32_t xpsr = xpsr_read(env);
1402         const char *mode;
1403         const char *ns_status = "";
1404 
1405         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1406             ns_status = env->v7m.secure ? "S " : "NS ";
1407         }
1408 
1409         if (xpsr & XPSR_EXCP) {
1410             mode = "handler";
1411         } else {
1412             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1413                 mode = "unpriv-thread";
1414             } else {
1415                 mode = "priv-thread";
1416             }
1417         }
1418 
1419         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1420                      xpsr,
1421                      xpsr & XPSR_N ? 'N' : '-',
1422                      xpsr & XPSR_Z ? 'Z' : '-',
1423                      xpsr & XPSR_C ? 'C' : '-',
1424                      xpsr & XPSR_V ? 'V' : '-',
1425                      xpsr & XPSR_T ? 'T' : 'A',
1426                      ns_status,
1427                      mode);
1428     } else {
1429         uint32_t psr = cpsr_read(env);
1430         const char *ns_status = "";
1431 
1432         if (arm_feature(env, ARM_FEATURE_EL3) &&
1433             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1434             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1435         }
1436 
1437         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1438                      psr,
1439                      psr & CPSR_N ? 'N' : '-',
1440                      psr & CPSR_Z ? 'Z' : '-',
1441                      psr & CPSR_C ? 'C' : '-',
1442                      psr & CPSR_V ? 'V' : '-',
1443                      psr & CPSR_T ? 'T' : 'A',
1444                      ns_status,
1445                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1446     }
1447 
1448     if (flags & CPU_DUMP_FPU) {
1449         int numvfpregs = 0;
1450         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1451             numvfpregs = 32;
1452         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1453             numvfpregs = 16;
1454         }
1455         for (i = 0; i < numvfpregs; i++) {
1456             uint64_t v = *aa32_vfp_dreg(env, i);
1457             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1458                          i * 2, (uint32_t)v,
1459                          i * 2 + 1, (uint32_t)(v >> 32),
1460                          i, v);
1461         }
1462         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1463         if (cpu_isar_feature(aa32_mve, cpu)) {
1464             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1465         }
1466     }
1467 }
1468 
1469 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1470 {
1471     uint32_t Aff1 = idx / clustersz;
1472     uint32_t Aff0 = idx % clustersz;
1473     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1474 }
1475 
1476 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1477 {
1478     return cpu->mp_affinity;
1479 }
1480 
1481 static void arm_cpu_initfn(Object *obj)
1482 {
1483     ARMCPU *cpu = ARM_CPU(obj);
1484 
1485     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1486                                          NULL, g_free);
1487 
1488     QLIST_INIT(&cpu->pre_el_change_hooks);
1489     QLIST_INIT(&cpu->el_change_hooks);
1490 
1491 #ifdef CONFIG_USER_ONLY
1492 # ifdef TARGET_AARCH64
1493     /*
1494      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1495      * These values were chosen to fit within the default signal frame.
1496      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1497      * and our corresponding cpu property.
1498      */
1499     cpu->sve_default_vq = 4;
1500     cpu->sme_default_vq = 2;
1501 # endif
1502 #else
1503     /* Our inbound IRQ and FIQ lines */
1504     if (kvm_enabled()) {
1505         /*
1506          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1507          * them to maintain the same interface as non-KVM CPUs.
1508          */
1509         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1510     } else {
1511         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1512     }
1513 
1514     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1515                        ARRAY_SIZE(cpu->gt_timer_outputs));
1516 
1517     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1518                              "gicv3-maintenance-interrupt", 1);
1519     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1520                              "pmu-interrupt", 1);
1521 #endif
1522 
1523     /* DTB consumers generally don't in fact care what the 'compatible'
1524      * string is, so always provide some string and trust that a hypothetical
1525      * picky DTB consumer will also provide a helpful error message.
1526      */
1527     cpu->dtb_compatible = "qemu,unknown";
1528     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1529     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1530 
1531     if (tcg_enabled() || hvf_enabled()) {
1532         /* TCG and HVF implement PSCI 1.1 */
1533         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1534     }
1535 }
1536 
1537 /*
1538  * 0 means "unset, use the default value". That default might vary depending
1539  * on the CPU type, and is set in the realize fn.
1540  */
1541 static const Property arm_cpu_gt_cntfrq_property =
1542             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1543 
1544 static const Property arm_cpu_reset_cbar_property =
1545             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1546 
1547 static const Property arm_cpu_reset_hivecs_property =
1548             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1549 
1550 #ifndef CONFIG_USER_ONLY
1551 static const Property arm_cpu_has_el2_property =
1552             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1553 
1554 static const Property arm_cpu_has_el3_property =
1555             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1556 #endif
1557 
1558 static const Property arm_cpu_cfgend_property =
1559             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1560 
1561 static const Property arm_cpu_has_vfp_property =
1562             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1563 
1564 static const Property arm_cpu_has_vfp_d32_property =
1565             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1566 
1567 static const Property arm_cpu_has_neon_property =
1568             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1569 
1570 static const Property arm_cpu_has_dsp_property =
1571             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1572 
1573 static const Property arm_cpu_has_mpu_property =
1574             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1575 
1576 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1577  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1578  * the right value for that particular CPU type, and we don't want
1579  * to override that with an incorrect constant value.
1580  */
1581 static const Property arm_cpu_pmsav7_dregion_property =
1582             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1583                                            pmsav7_dregion,
1584                                            qdev_prop_uint32, uint32_t);
1585 
1586 static bool arm_get_pmu(Object *obj, Error **errp)
1587 {
1588     ARMCPU *cpu = ARM_CPU(obj);
1589 
1590     return cpu->has_pmu;
1591 }
1592 
1593 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1594 {
1595     ARMCPU *cpu = ARM_CPU(obj);
1596 
1597     if (value) {
1598         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1599             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1600             return;
1601         }
1602         set_feature(&cpu->env, ARM_FEATURE_PMU);
1603     } else {
1604         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1605     }
1606     cpu->has_pmu = value;
1607 }
1608 
1609 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1610 {
1611     /*
1612      * The exact approach to calculating guest ticks is:
1613      *
1614      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1615      *              NANOSECONDS_PER_SECOND);
1616      *
1617      * We don't do that. Rather we intentionally use integer division
1618      * truncation below and in the caller for the conversion of host monotonic
1619      * time to guest ticks to provide the exact inverse for the semantics of
1620      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1621      * it loses precision when representing frequencies where
1622      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1623      * provide an exact inverse leads to scheduling timers with negative
1624      * periods, which in turn leads to sticky behaviour in the guest.
1625      *
1626      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1627      * cannot become zero.
1628      */
1629     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1630       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1631 }
1632 
1633 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1634 {
1635     CPUARMState *env = &cpu->env;
1636     bool no_aa32 = false;
1637 
1638     /*
1639      * Some features automatically imply others: set the feature
1640      * bits explicitly for these cases.
1641      */
1642 
1643     if (arm_feature(env, ARM_FEATURE_M)) {
1644         set_feature(env, ARM_FEATURE_PMSA);
1645     }
1646 
1647     if (arm_feature(env, ARM_FEATURE_V8)) {
1648         if (arm_feature(env, ARM_FEATURE_M)) {
1649             set_feature(env, ARM_FEATURE_V7);
1650         } else {
1651             set_feature(env, ARM_FEATURE_V7VE);
1652         }
1653     }
1654 
1655     /*
1656      * There exist AArch64 cpus without AArch32 support.  When KVM
1657      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1658      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1659      * As a general principle, we also do not make ID register
1660      * consistency checks anywhere unless using TCG, because only
1661      * for TCG would a consistency-check failure be a QEMU bug.
1662      */
1663     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1664         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1665     }
1666 
1667     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1668         /*
1669          * v7 Virtualization Extensions. In real hardware this implies
1670          * EL2 and also the presence of the Security Extensions.
1671          * For QEMU, for backwards-compatibility we implement some
1672          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1673          * include the various other features that V7VE implies.
1674          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1675          * Security Extensions is ARM_FEATURE_EL3.
1676          */
1677         assert(!tcg_enabled() || no_aa32 ||
1678                cpu_isar_feature(aa32_arm_div, cpu));
1679         set_feature(env, ARM_FEATURE_LPAE);
1680         set_feature(env, ARM_FEATURE_V7);
1681     }
1682     if (arm_feature(env, ARM_FEATURE_V7)) {
1683         set_feature(env, ARM_FEATURE_VAPA);
1684         set_feature(env, ARM_FEATURE_THUMB2);
1685         set_feature(env, ARM_FEATURE_MPIDR);
1686         if (!arm_feature(env, ARM_FEATURE_M)) {
1687             set_feature(env, ARM_FEATURE_V6K);
1688         } else {
1689             set_feature(env, ARM_FEATURE_V6);
1690         }
1691 
1692         /*
1693          * Always define VBAR for V7 CPUs even if it doesn't exist in
1694          * non-EL3 configs. This is needed by some legacy boards.
1695          */
1696         set_feature(env, ARM_FEATURE_VBAR);
1697     }
1698     if (arm_feature(env, ARM_FEATURE_V6K)) {
1699         set_feature(env, ARM_FEATURE_V6);
1700         set_feature(env, ARM_FEATURE_MVFR);
1701     }
1702     if (arm_feature(env, ARM_FEATURE_V6)) {
1703         set_feature(env, ARM_FEATURE_V5);
1704         if (!arm_feature(env, ARM_FEATURE_M)) {
1705             assert(!tcg_enabled() || no_aa32 ||
1706                    cpu_isar_feature(aa32_jazelle, cpu));
1707             set_feature(env, ARM_FEATURE_AUXCR);
1708         }
1709     }
1710     if (arm_feature(env, ARM_FEATURE_V5)) {
1711         set_feature(env, ARM_FEATURE_V4T);
1712     }
1713     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1714         set_feature(env, ARM_FEATURE_V7MP);
1715     }
1716     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1717         set_feature(env, ARM_FEATURE_CBAR);
1718     }
1719     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1720         !arm_feature(env, ARM_FEATURE_M)) {
1721         set_feature(env, ARM_FEATURE_THUMB_DSP);
1722     }
1723 }
1724 
1725 void arm_cpu_post_init(Object *obj)
1726 {
1727     ARMCPU *cpu = ARM_CPU(obj);
1728 
1729     /*
1730      * Some features imply others. Figure this out now, because we
1731      * are going to look at the feature bits in deciding which
1732      * properties to add.
1733      */
1734     arm_cpu_propagate_feature_implications(cpu);
1735 
1736     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1737         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1738         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1739     }
1740 
1741     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1742         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1743     }
1744 
1745     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1746         object_property_add_uint64_ptr(obj, "rvbar",
1747                                        &cpu->rvbar_prop,
1748                                        OBJ_PROP_FLAG_READWRITE);
1749     }
1750 
1751 #ifndef CONFIG_USER_ONLY
1752     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1753         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1754          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1755          */
1756         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1757 
1758         object_property_add_link(obj, "secure-memory",
1759                                  TYPE_MEMORY_REGION,
1760                                  (Object **)&cpu->secure_memory,
1761                                  qdev_prop_allow_set_link_before_realize,
1762                                  OBJ_PROP_LINK_STRONG);
1763     }
1764 
1765     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1766         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1767     }
1768 #endif
1769 
1770     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1771         cpu->has_pmu = true;
1772         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1773     }
1774 
1775     /*
1776      * Allow user to turn off VFP and Neon support, but only for TCG --
1777      * KVM does not currently allow us to lie to the guest about its
1778      * ID/feature registers, so the guest always sees what the host has.
1779      */
1780     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1781         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1782             cpu->has_vfp = true;
1783             cpu->has_vfp_d32 = true;
1784             if (tcg_enabled() || qtest_enabled()) {
1785                 qdev_property_add_static(DEVICE(obj),
1786                                          &arm_cpu_has_vfp_property);
1787             }
1788         }
1789     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1790         cpu->has_vfp = true;
1791         if (tcg_enabled() || qtest_enabled()) {
1792             qdev_property_add_static(DEVICE(obj),
1793                                      &arm_cpu_has_vfp_property);
1794         }
1795         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1796             cpu->has_vfp_d32 = true;
1797             /*
1798              * The permitted values of the SIMDReg bits [3:0] on
1799              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1800              * make sure that has_vfp_d32 can not be set to false.
1801              */
1802             if ((tcg_enabled() || qtest_enabled())
1803                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1804                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1805                 qdev_property_add_static(DEVICE(obj),
1806                                          &arm_cpu_has_vfp_d32_property);
1807             }
1808         }
1809     }
1810 
1811     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1812         cpu->has_neon = true;
1813         if (!kvm_enabled()) {
1814             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1815         }
1816     }
1817 
1818     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1819         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1820         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1821     }
1822 
1823     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1824         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1825         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1826             qdev_property_add_static(DEVICE(obj),
1827                                      &arm_cpu_pmsav7_dregion_property);
1828         }
1829     }
1830 
1831     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1832         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1833                                  qdev_prop_allow_set_link_before_realize,
1834                                  OBJ_PROP_LINK_STRONG);
1835         /*
1836          * M profile: initial value of the Secure VTOR. We can't just use
1837          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1838          * the property to be set after realize.
1839          */
1840         object_property_add_uint32_ptr(obj, "init-svtor",
1841                                        &cpu->init_svtor,
1842                                        OBJ_PROP_FLAG_READWRITE);
1843     }
1844     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1845         /*
1846          * Initial value of the NS VTOR (for cores without the Security
1847          * extension, this is the only VTOR)
1848          */
1849         object_property_add_uint32_ptr(obj, "init-nsvtor",
1850                                        &cpu->init_nsvtor,
1851                                        OBJ_PROP_FLAG_READWRITE);
1852     }
1853 
1854     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1855     object_property_add_uint32_ptr(obj, "psci-conduit",
1856                                    &cpu->psci_conduit,
1857                                    OBJ_PROP_FLAG_READWRITE);
1858 
1859     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1860 
1861     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1862         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1863     }
1864 
1865     if (kvm_enabled()) {
1866         kvm_arm_add_vcpu_properties(cpu);
1867     }
1868 
1869 #ifndef CONFIG_USER_ONLY
1870     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1871         cpu_isar_feature(aa64_mte, cpu)) {
1872         object_property_add_link(obj, "tag-memory",
1873                                  TYPE_MEMORY_REGION,
1874                                  (Object **)&cpu->tag_memory,
1875                                  qdev_prop_allow_set_link_before_realize,
1876                                  OBJ_PROP_LINK_STRONG);
1877 
1878         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1879             object_property_add_link(obj, "secure-tag-memory",
1880                                      TYPE_MEMORY_REGION,
1881                                      (Object **)&cpu->secure_tag_memory,
1882                                      qdev_prop_allow_set_link_before_realize,
1883                                      OBJ_PROP_LINK_STRONG);
1884         }
1885     }
1886 #endif
1887 }
1888 
1889 static void arm_cpu_finalizefn(Object *obj)
1890 {
1891     ARMCPU *cpu = ARM_CPU(obj);
1892     ARMELChangeHook *hook, *next;
1893 
1894     g_hash_table_destroy(cpu->cp_regs);
1895 
1896     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1897         QLIST_REMOVE(hook, node);
1898         g_free(hook);
1899     }
1900     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1901         QLIST_REMOVE(hook, node);
1902         g_free(hook);
1903     }
1904 #ifndef CONFIG_USER_ONLY
1905     if (cpu->pmu_timer) {
1906         timer_free(cpu->pmu_timer);
1907     }
1908     if (cpu->wfxt_timer) {
1909         timer_free(cpu->wfxt_timer);
1910     }
1911 #endif
1912 }
1913 
1914 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1915 {
1916     Error *local_err = NULL;
1917 
1918 #ifdef TARGET_AARCH64
1919     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1920         arm_cpu_sve_finalize(cpu, &local_err);
1921         if (local_err != NULL) {
1922             error_propagate(errp, local_err);
1923             return;
1924         }
1925 
1926         /*
1927          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1928          * FEAT_SME_FA64 is present). However our implementation currently
1929          * assumes it, so if the user asked for sve=off then turn off SME also.
1930          * (KVM doesn't currently support SME at all.)
1931          */
1932         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1933             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1934         }
1935 
1936         arm_cpu_sme_finalize(cpu, &local_err);
1937         if (local_err != NULL) {
1938             error_propagate(errp, local_err);
1939             return;
1940         }
1941 
1942         arm_cpu_pauth_finalize(cpu, &local_err);
1943         if (local_err != NULL) {
1944             error_propagate(errp, local_err);
1945             return;
1946         }
1947 
1948         arm_cpu_lpa2_finalize(cpu, &local_err);
1949         if (local_err != NULL) {
1950             error_propagate(errp, local_err);
1951             return;
1952         }
1953     }
1954 #endif
1955 
1956     if (kvm_enabled()) {
1957         kvm_arm_steal_time_finalize(cpu, &local_err);
1958         if (local_err != NULL) {
1959             error_propagate(errp, local_err);
1960             return;
1961         }
1962     }
1963 }
1964 
1965 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1966 {
1967     CPUState *cs = CPU(dev);
1968     ARMCPU *cpu = ARM_CPU(dev);
1969     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1970     CPUARMState *env = &cpu->env;
1971     Error *local_err = NULL;
1972 
1973 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1974     /* Use pc-relative instructions in system-mode */
1975     tcg_cflags_set(cs, CF_PCREL);
1976 #endif
1977 
1978     /* If we needed to query the host kernel for the CPU features
1979      * then it's possible that might have failed in the initfn, but
1980      * this is the first point where we can report it.
1981      */
1982     if (cpu->host_cpu_probe_failed) {
1983         if (!kvm_enabled() && !hvf_enabled()) {
1984             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1985         } else {
1986             error_setg(errp, "Failed to retrieve host CPU features");
1987         }
1988         return;
1989     }
1990 
1991     if (!cpu->gt_cntfrq_hz) {
1992         /*
1993          * 0 means "the board didn't set a value, use the default". (We also
1994          * get here for the CONFIG_USER_ONLY case.)
1995          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1996          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1997          * which gives a 16ns tick period.
1998          *
1999          * We will use the back-compat value:
2000          *  - for QEMU CPU types added before we standardized on 1GHz
2001          *  - for versioned machine types with a version of 9.0 or earlier
2002          */
2003         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2004             cpu->backcompat_cntfrq) {
2005             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2006         } else {
2007             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2008         }
2009     }
2010 
2011 #ifndef CONFIG_USER_ONLY
2012     /* The NVIC and M-profile CPU are two halves of a single piece of
2013      * hardware; trying to use one without the other is a command line
2014      * error and will result in segfaults if not caught here.
2015      */
2016     if (arm_feature(env, ARM_FEATURE_M)) {
2017         if (!env->nvic) {
2018             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2019             return;
2020         }
2021     } else {
2022         if (env->nvic) {
2023             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2024             return;
2025         }
2026     }
2027 
2028     if (!tcg_enabled() && !qtest_enabled()) {
2029         /*
2030          * We assume that no accelerator except TCG (and the "not really an
2031          * accelerator" qtest) can handle these features, because Arm hardware
2032          * virtualization can't virtualize them.
2033          *
2034          * Catch all the cases which might cause us to create more than one
2035          * address space for the CPU (otherwise we will assert() later in
2036          * cpu_address_space_init()).
2037          */
2038         if (arm_feature(env, ARM_FEATURE_M)) {
2039             error_setg(errp,
2040                        "Cannot enable %s when using an M-profile guest CPU",
2041                        current_accel_name());
2042             return;
2043         }
2044         if (cpu->has_el3) {
2045             error_setg(errp,
2046                        "Cannot enable %s when guest CPU has EL3 enabled",
2047                        current_accel_name());
2048             return;
2049         }
2050         if (cpu->tag_memory) {
2051             error_setg(errp,
2052                        "Cannot enable %s when guest CPUs has MTE enabled",
2053                        current_accel_name());
2054             return;
2055         }
2056     }
2057 
2058     {
2059         uint64_t scale = gt_cntfrq_period_ns(cpu);
2060 
2061         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2062                                                arm_gt_ptimer_cb, cpu);
2063         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2064                                                arm_gt_vtimer_cb, cpu);
2065         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2066                                               arm_gt_htimer_cb, cpu);
2067         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2068                                               arm_gt_stimer_cb, cpu);
2069         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2070                                                   arm_gt_hvtimer_cb, cpu);
2071         cpu->gt_timer[GTIMER_S_EL2_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2072                                                      arm_gt_sel2timer_cb, cpu);
2073         cpu->gt_timer[GTIMER_S_EL2_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2074                                                      arm_gt_sel2vtimer_cb, cpu);
2075     }
2076 #endif
2077 
2078     cpu_exec_realizefn(cs, &local_err);
2079     if (local_err != NULL) {
2080         error_propagate(errp, local_err);
2081         return;
2082     }
2083 
2084     arm_cpu_finalize_features(cpu, &local_err);
2085     if (local_err != NULL) {
2086         error_propagate(errp, local_err);
2087         return;
2088     }
2089 
2090 #ifdef CONFIG_USER_ONLY
2091     /*
2092      * User mode relies on IC IVAU instructions to catch modification of
2093      * dual-mapped code.
2094      *
2095      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2096      * IC IVAU even if the emulated processor does not normally require it.
2097      */
2098     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2099 #endif
2100 
2101     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2102         cpu->has_vfp != cpu->has_neon) {
2103         /*
2104          * This is an architectural requirement for AArch64; AArch32 is
2105          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2106          */
2107         error_setg(errp,
2108                    "AArch64 CPUs must have both VFP and Neon or neither");
2109         return;
2110     }
2111 
2112     if (cpu->has_vfp_d32 != cpu->has_neon) {
2113         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2114         return;
2115     }
2116 
2117    if (!cpu->has_vfp_d32) {
2118         uint32_t u;
2119 
2120         u = cpu->isar.mvfr0;
2121         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2122         cpu->isar.mvfr0 = u;
2123     }
2124 
2125     if (!cpu->has_vfp) {
2126         uint64_t t;
2127         uint32_t u;
2128 
2129         t = cpu->isar.id_aa64isar1;
2130         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2131         cpu->isar.id_aa64isar1 = t;
2132 
2133         t = cpu->isar.id_aa64pfr0;
2134         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2135         cpu->isar.id_aa64pfr0 = t;
2136 
2137         u = cpu->isar.id_isar6;
2138         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2139         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2140         cpu->isar.id_isar6 = u;
2141 
2142         u = cpu->isar.mvfr0;
2143         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2144         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2145         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2146         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2147         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2148         if (!arm_feature(env, ARM_FEATURE_M)) {
2149             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2150             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2151         }
2152         cpu->isar.mvfr0 = u;
2153 
2154         u = cpu->isar.mvfr1;
2155         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2156         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2157         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2158         if (arm_feature(env, ARM_FEATURE_M)) {
2159             u = FIELD_DP32(u, MVFR1, FP16, 0);
2160         }
2161         cpu->isar.mvfr1 = u;
2162 
2163         u = cpu->isar.mvfr2;
2164         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2165         cpu->isar.mvfr2 = u;
2166     }
2167 
2168     if (!cpu->has_neon) {
2169         uint64_t t;
2170         uint32_t u;
2171 
2172         unset_feature(env, ARM_FEATURE_NEON);
2173 
2174         t = cpu->isar.id_aa64isar0;
2175         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2176         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2177         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2178         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2179         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2180         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2181         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2182         cpu->isar.id_aa64isar0 = t;
2183 
2184         t = cpu->isar.id_aa64isar1;
2185         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2186         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2187         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2188         cpu->isar.id_aa64isar1 = t;
2189 
2190         t = cpu->isar.id_aa64pfr0;
2191         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2192         cpu->isar.id_aa64pfr0 = t;
2193 
2194         u = cpu->isar.id_isar5;
2195         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2196         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2197         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2198         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2199         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2200         cpu->isar.id_isar5 = u;
2201 
2202         u = cpu->isar.id_isar6;
2203         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2204         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2205         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2206         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2207         cpu->isar.id_isar6 = u;
2208 
2209         if (!arm_feature(env, ARM_FEATURE_M)) {
2210             u = cpu->isar.mvfr1;
2211             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2212             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2213             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2214             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2215             cpu->isar.mvfr1 = u;
2216 
2217             u = cpu->isar.mvfr2;
2218             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2219             cpu->isar.mvfr2 = u;
2220         }
2221     }
2222 
2223     if (!cpu->has_neon && !cpu->has_vfp) {
2224         uint64_t t;
2225         uint32_t u;
2226 
2227         t = cpu->isar.id_aa64isar0;
2228         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2229         cpu->isar.id_aa64isar0 = t;
2230 
2231         t = cpu->isar.id_aa64isar1;
2232         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2233         cpu->isar.id_aa64isar1 = t;
2234 
2235         u = cpu->isar.mvfr0;
2236         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2237         cpu->isar.mvfr0 = u;
2238 
2239         /* Despite the name, this field covers both VFP and Neon */
2240         u = cpu->isar.mvfr1;
2241         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2242         cpu->isar.mvfr1 = u;
2243     }
2244 
2245     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2246         uint32_t u;
2247 
2248         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2249 
2250         u = cpu->isar.id_isar1;
2251         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2252         cpu->isar.id_isar1 = u;
2253 
2254         u = cpu->isar.id_isar2;
2255         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2256         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2257         cpu->isar.id_isar2 = u;
2258 
2259         u = cpu->isar.id_isar3;
2260         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2261         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2262         cpu->isar.id_isar3 = u;
2263     }
2264 
2265 
2266     /*
2267      * We rely on no XScale CPU having VFP so we can use the same bits in the
2268      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2269      */
2270     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2271            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2272            !arm_feature(env, ARM_FEATURE_XSCALE));
2273 
2274 #ifndef CONFIG_USER_ONLY
2275     {
2276         int pagebits;
2277         if (arm_feature(env, ARM_FEATURE_V7) &&
2278             !arm_feature(env, ARM_FEATURE_M) &&
2279             !arm_feature(env, ARM_FEATURE_PMSA)) {
2280             /*
2281              * v7VMSA drops support for the old ARMv5 tiny pages,
2282              * so we can use 4K pages.
2283              */
2284             pagebits = 12;
2285         } else {
2286             /*
2287              * For CPUs which might have tiny 1K pages, or which have an
2288              * MPU and might have small region sizes, stick with 1K pages.
2289              */
2290             pagebits = 10;
2291         }
2292         if (!set_preferred_target_page_bits(pagebits)) {
2293             /*
2294              * This can only ever happen for hotplugging a CPU, or if
2295              * the board code incorrectly creates a CPU which it has
2296              * promised via minimum_page_size that it will not.
2297              */
2298             error_setg(errp, "This CPU requires a smaller page size "
2299                        "than the system is using");
2300             return;
2301         }
2302     }
2303 #endif
2304 
2305     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2306      * We don't support setting cluster ID ([16..23]) (known as Aff2
2307      * in later ARM ARM versions), or any of the higher affinity level fields,
2308      * so these bits always RAZ.
2309      */
2310     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2311         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2312                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2313     }
2314 
2315     if (cpu->reset_hivecs) {
2316             cpu->reset_sctlr |= (1 << 13);
2317     }
2318 
2319     if (cpu->cfgend) {
2320         if (arm_feature(env, ARM_FEATURE_V7)) {
2321             cpu->reset_sctlr |= SCTLR_EE;
2322         } else {
2323             cpu->reset_sctlr |= SCTLR_B;
2324         }
2325     }
2326 
2327     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2328         /* If the has_el3 CPU property is disabled then we need to disable the
2329          * feature.
2330          */
2331         unset_feature(env, ARM_FEATURE_EL3);
2332 
2333         /*
2334          * Disable the security extension feature bits in the processor
2335          * feature registers as well.
2336          */
2337         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2338         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2339         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2340                                            ID_AA64PFR0, EL3, 0);
2341 
2342         /* Disable the realm management extension, which requires EL3. */
2343         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2344                                            ID_AA64PFR0, RME, 0);
2345     }
2346 
2347     if (!cpu->has_el2) {
2348         unset_feature(env, ARM_FEATURE_EL2);
2349     }
2350 
2351     if (!cpu->has_pmu) {
2352         unset_feature(env, ARM_FEATURE_PMU);
2353     }
2354     if (arm_feature(env, ARM_FEATURE_PMU)) {
2355         pmu_init(cpu);
2356 
2357         if (!kvm_enabled()) {
2358             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2359             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2360         }
2361 
2362 #ifndef CONFIG_USER_ONLY
2363         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2364                 cpu);
2365 #endif
2366     } else {
2367         cpu->isar.id_aa64dfr0 =
2368             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2369         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2370         cpu->pmceid0 = 0;
2371         cpu->pmceid1 = 0;
2372     }
2373 
2374     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2375         /*
2376          * Disable the hypervisor feature bits in the processor feature
2377          * registers if we don't have EL2.
2378          */
2379         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2380                                            ID_AA64PFR0, EL2, 0);
2381         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2382                                        ID_PFR1, VIRTUALIZATION, 0);
2383     }
2384 
2385     if (cpu_isar_feature(aa64_mte, cpu)) {
2386         /*
2387          * The architectural range of GM blocksize is 2-6, however qemu
2388          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2389          */
2390         if (tcg_enabled()) {
2391             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2392         }
2393 
2394 #ifndef CONFIG_USER_ONLY
2395         /*
2396          * If we run with TCG and do not have tag-memory provided by
2397          * the machine, then reduce MTE support to instructions enabled at EL0.
2398          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2399          */
2400         if (tcg_enabled() && cpu->tag_memory == NULL) {
2401             cpu->isar.id_aa64pfr1 =
2402                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2403         }
2404 
2405         /*
2406          * If MTE is supported by the host, however it should not be
2407          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2408          */
2409         if (kvm_enabled() && !cpu->kvm_mte) {
2410                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2411         }
2412 #endif
2413     }
2414 
2415 #ifndef CONFIG_USER_ONLY
2416     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2417         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2418                                        arm_wfxt_timer_cb, cpu);
2419     }
2420 #endif
2421 
2422     if (tcg_enabled()) {
2423         /*
2424          * Don't report some architectural features in the ID registers
2425          * where TCG does not yet implement it (not even a minimal
2426          * stub version). This avoids guests falling over when they
2427          * try to access the non-existent system registers for them.
2428          */
2429         /* FEAT_SPE (Statistical Profiling Extension) */
2430         cpu->isar.id_aa64dfr0 =
2431             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2432         /* FEAT_TRBE (Trace Buffer Extension) */
2433         cpu->isar.id_aa64dfr0 =
2434             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2435         /* FEAT_TRF (Self-hosted Trace Extension) */
2436         cpu->isar.id_aa64dfr0 =
2437             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2438         cpu->isar.id_dfr0 =
2439             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2440         /* Trace Macrocell system register access */
2441         cpu->isar.id_aa64dfr0 =
2442             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2443         cpu->isar.id_dfr0 =
2444             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2445         /* Memory mapped trace */
2446         cpu->isar.id_dfr0 =
2447             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2448         /* FEAT_AMU (Activity Monitors Extension) */
2449         cpu->isar.id_aa64pfr0 =
2450             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2451         cpu->isar.id_pfr0 =
2452             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2453         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2454         cpu->isar.id_aa64pfr0 =
2455             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2456     }
2457 
2458     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2459      * to false or by setting pmsav7-dregion to 0.
2460      */
2461     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2462         cpu->has_mpu = false;
2463         cpu->pmsav7_dregion = 0;
2464         cpu->pmsav8r_hdregion = 0;
2465     }
2466 
2467     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2468         arm_feature(env, ARM_FEATURE_V7)) {
2469         uint32_t nr = cpu->pmsav7_dregion;
2470 
2471         if (nr > 0xff) {
2472             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2473             return;
2474         }
2475 
2476         if (nr) {
2477             if (arm_feature(env, ARM_FEATURE_V8)) {
2478                 /* PMSAv8 */
2479                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2480                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2481                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2482                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2483                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2484                 }
2485             } else {
2486                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2487                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2488                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2489             }
2490         }
2491 
2492         if (cpu->pmsav8r_hdregion > 0xff) {
2493             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2494                               cpu->pmsav8r_hdregion);
2495             return;
2496         }
2497 
2498         if (cpu->pmsav8r_hdregion) {
2499             env->pmsav8.hprbar = g_new0(uint32_t,
2500                                         cpu->pmsav8r_hdregion);
2501             env->pmsav8.hprlar = g_new0(uint32_t,
2502                                         cpu->pmsav8r_hdregion);
2503         }
2504     }
2505 
2506     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2507         uint32_t nr = cpu->sau_sregion;
2508 
2509         if (nr > 0xff) {
2510             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2511             return;
2512         }
2513 
2514         if (nr) {
2515             env->sau.rbar = g_new0(uint32_t, nr);
2516             env->sau.rlar = g_new0(uint32_t, nr);
2517         }
2518     }
2519 
2520     if (arm_feature(env, ARM_FEATURE_EL3)) {
2521         set_feature(env, ARM_FEATURE_VBAR);
2522     }
2523 
2524 #ifndef CONFIG_USER_ONLY
2525     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2526         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2527     }
2528 #endif
2529 
2530     register_cp_regs_for_features(cpu);
2531     arm_cpu_register_gdb_regs_for_features(cpu);
2532     arm_cpu_register_gdb_commands(cpu);
2533 
2534     init_cpreg_list(cpu);
2535 
2536 #ifndef CONFIG_USER_ONLY
2537     MachineState *ms = MACHINE(qdev_get_machine());
2538     unsigned int smp_cpus = ms->smp.cpus;
2539     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2540 
2541     /*
2542      * We must set cs->num_ases to the final value before
2543      * the first call to cpu_address_space_init.
2544      */
2545     if (cpu->tag_memory != NULL) {
2546         cs->num_ases = 3 + has_secure;
2547     } else {
2548         cs->num_ases = 1 + has_secure;
2549     }
2550 
2551     if (has_secure) {
2552         if (!cpu->secure_memory) {
2553             cpu->secure_memory = cs->memory;
2554         }
2555         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2556                                cpu->secure_memory);
2557     }
2558 
2559     if (cpu->tag_memory != NULL) {
2560         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2561                                cpu->tag_memory);
2562         if (has_secure) {
2563             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2564                                    cpu->secure_tag_memory);
2565         }
2566     }
2567 
2568     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2569 
2570     /* No core_count specified, default to smp_cpus. */
2571     if (cpu->core_count == -1) {
2572         cpu->core_count = smp_cpus;
2573     }
2574 #endif
2575 
2576     if (tcg_enabled()) {
2577         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2578 
2579         /*
2580          * We only support DCZ blocklen that fits on one page.
2581          *
2582          * Architectually this is always true.  However TARGET_PAGE_SIZE
2583          * is variable and, for compatibility with -machine virt-2.7,
2584          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2585          * But even then, while the largest architectural DCZ blocklen
2586          * is 2KiB, no cpu actually uses such a large blocklen.
2587          */
2588         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2589 
2590         /*
2591          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2592          * both nibbles of each byte storing tag data may be written at once.
2593          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2594          */
2595         if (cpu_isar_feature(aa64_mte, cpu)) {
2596             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2597         }
2598     }
2599 
2600     qemu_init_vcpu(cs);
2601     cpu_reset(cs);
2602 
2603     acc->parent_realize(dev, errp);
2604 }
2605 
2606 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2607 {
2608     ObjectClass *oc;
2609     char *typename;
2610     char **cpuname;
2611     const char *cpunamestr;
2612 
2613     cpuname = g_strsplit(cpu_model, ",", 1);
2614     cpunamestr = cpuname[0];
2615 #ifdef CONFIG_USER_ONLY
2616     /* For backwards compatibility usermode emulation allows "-cpu any",
2617      * which has the same semantics as "-cpu max".
2618      */
2619     if (!strcmp(cpunamestr, "any")) {
2620         cpunamestr = "max";
2621     }
2622 #endif
2623     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2624     oc = object_class_by_name(typename);
2625     g_strfreev(cpuname);
2626     g_free(typename);
2627 
2628     return oc;
2629 }
2630 
2631 static const Property arm_cpu_properties[] = {
2632     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2633     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2634                         mp_affinity, ARM64_AFFINITY_INVALID),
2635     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2636     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2637     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2638     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2639     DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU,
2640                       backcompat_pauth_default_use_qarma5, false),
2641 };
2642 
2643 static const gchar *arm_gdb_arch_name(CPUState *cs)
2644 {
2645     ARMCPU *cpu = ARM_CPU(cs);
2646     CPUARMState *env = &cpu->env;
2647 
2648     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2649         return "iwmmxt";
2650     }
2651     return "arm";
2652 }
2653 
2654 #ifndef CONFIG_USER_ONLY
2655 #include "hw/core/sysemu-cpu-ops.h"
2656 
2657 static const struct SysemuCPUOps arm_sysemu_ops = {
2658     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2659     .asidx_from_attrs = arm_asidx_from_attrs,
2660     .write_elf32_note = arm_cpu_write_elf32_note,
2661     .write_elf64_note = arm_cpu_write_elf64_note,
2662     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2663     .legacy_vmsd = &vmstate_arm_cpu,
2664 };
2665 #endif
2666 
2667 #ifdef CONFIG_TCG
2668 static const TCGCPUOps arm_tcg_ops = {
2669     .initialize = arm_translate_init,
2670     .translate_code = arm_translate_code,
2671     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2672     .debug_excp_handler = arm_debug_excp_handler,
2673     .restore_state_to_opc = arm_restore_state_to_opc,
2674 
2675 #ifdef CONFIG_USER_ONLY
2676     .record_sigsegv = arm_cpu_record_sigsegv,
2677     .record_sigbus = arm_cpu_record_sigbus,
2678 #else
2679     .tlb_fill_align = arm_cpu_tlb_fill_align,
2680     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2681     .cpu_exec_halt = arm_cpu_exec_halt,
2682     .do_interrupt = arm_cpu_do_interrupt,
2683     .do_transaction_failed = arm_cpu_do_transaction_failed,
2684     .do_unaligned_access = arm_cpu_do_unaligned_access,
2685     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2686     .debug_check_watchpoint = arm_debug_check_watchpoint,
2687     .debug_check_breakpoint = arm_debug_check_breakpoint,
2688 #endif /* !CONFIG_USER_ONLY */
2689 };
2690 #endif /* CONFIG_TCG */
2691 
2692 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2693 {
2694     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2695     CPUClass *cc = CPU_CLASS(acc);
2696     DeviceClass *dc = DEVICE_CLASS(oc);
2697     ResettableClass *rc = RESETTABLE_CLASS(oc);
2698 
2699     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2700                                     &acc->parent_realize);
2701 
2702     device_class_set_props(dc, arm_cpu_properties);
2703 
2704     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2705                                        &acc->parent_phases);
2706 
2707     cc->class_by_name = arm_cpu_class_by_name;
2708     cc->has_work = arm_cpu_has_work;
2709     cc->mmu_index = arm_cpu_mmu_index;
2710     cc->dump_state = arm_cpu_dump_state;
2711     cc->set_pc = arm_cpu_set_pc;
2712     cc->get_pc = arm_cpu_get_pc;
2713     cc->gdb_read_register = arm_cpu_gdb_read_register;
2714     cc->gdb_write_register = arm_cpu_gdb_write_register;
2715 #ifndef CONFIG_USER_ONLY
2716     cc->sysemu_ops = &arm_sysemu_ops;
2717 #endif
2718     cc->gdb_arch_name = arm_gdb_arch_name;
2719     cc->gdb_stop_before_watchpoint = true;
2720     cc->disas_set_info = arm_disas_set_info;
2721 
2722 #ifdef CONFIG_TCG
2723     cc->tcg_ops = &arm_tcg_ops;
2724 #endif /* CONFIG_TCG */
2725 }
2726 
2727 static void arm_cpu_instance_init(Object *obj)
2728 {
2729     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2730 
2731     acc->info->initfn(obj);
2732     arm_cpu_post_init(obj);
2733 }
2734 
2735 static void cpu_register_class_init(ObjectClass *oc, void *data)
2736 {
2737     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2738     CPUClass *cc = CPU_CLASS(acc);
2739 
2740     acc->info = data;
2741     cc->gdb_core_xml_file = "arm-core.xml";
2742     if (acc->info->deprecation_note) {
2743         cc->deprecation_note = acc->info->deprecation_note;
2744     }
2745 }
2746 
2747 void arm_cpu_register(const ARMCPUInfo *info)
2748 {
2749     TypeInfo type_info = {
2750         .parent = TYPE_ARM_CPU,
2751         .instance_init = arm_cpu_instance_init,
2752         .class_init = info->class_init ?: cpu_register_class_init,
2753         .class_data = (void *)info,
2754     };
2755 
2756     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2757     type_register_static(&type_info);
2758     g_free((void *)type_info.name);
2759 }
2760 
2761 static const TypeInfo arm_cpu_type_info = {
2762     .name = TYPE_ARM_CPU,
2763     .parent = TYPE_CPU,
2764     .instance_size = sizeof(ARMCPU),
2765     .instance_align = __alignof__(ARMCPU),
2766     .instance_init = arm_cpu_initfn,
2767     .instance_finalize = arm_cpu_finalizefn,
2768     .abstract = true,
2769     .class_size = sizeof(ARMCPUClass),
2770     .class_init = arm_cpu_class_init,
2771 };
2772 
2773 static void arm_cpu_register_types(void)
2774 {
2775     type_register_static(&arm_cpu_type_info);
2776 }
2777 
2778 type_init(arm_cpu_register_types)
2779