xref: /openbmc/qemu/target/arm/cpu.c (revision bc5c4f21)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return !cpu->powered_off
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->powered_off = cpu->start_powered_off;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         /* For M profile we store FAULTMASK and PRIMASK in the
189          * PSTATE F and I bits; these are both clear at reset.
190          */
191         env->daif &= ~(PSTATE_I | PSTATE_F);
192 
193         /* The reset value of this bit is IMPDEF, but ARM recommends
194          * that it resets to 1, so QEMU always does that rather than making
195          * it dependent on CPU model.
196          */
197         env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
198 
199         /* Unlike A/R profile, M profile defines the reset LR value */
200         env->regs[14] = 0xffffffff;
201 
202         /* Load the initial SP and PC from the vector table at address 0 */
203         rom = rom_ptr(0);
204         if (rom) {
205             /* Address zero is covered by ROM which hasn't yet been
206              * copied into physical memory.
207              */
208             initial_msp = ldl_p(rom);
209             initial_pc = ldl_p(rom + 4);
210         } else {
211             /* Address zero not covered by a ROM blob, or the ROM blob
212              * is in non-modifiable memory and this is a second reset after
213              * it got copied into memory. In the latter case, rom_ptr
214              * will return a NULL pointer and we should use ldl_phys instead.
215              */
216             initial_msp = ldl_phys(s->as, 0);
217             initial_pc = ldl_phys(s->as, 4);
218         }
219 
220         env->regs[13] = initial_msp & 0xFFFFFFFC;
221         env->regs[15] = initial_pc & ~1;
222         env->thumb = initial_pc & 1;
223     }
224 
225     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
226      * executing as AArch32 then check if highvecs are enabled and
227      * adjust the PC accordingly.
228      */
229     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
230         env->regs[15] = 0xFFFF0000;
231     }
232 
233     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
234 #endif
235     set_flush_to_zero(1, &env->vfp.standard_fp_status);
236     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
237     set_default_nan_mode(1, &env->vfp.standard_fp_status);
238     set_float_detect_tininess(float_tininess_before_rounding,
239                               &env->vfp.fp_status);
240     set_float_detect_tininess(float_tininess_before_rounding,
241                               &env->vfp.standard_fp_status);
242 #ifndef CONFIG_USER_ONLY
243     if (kvm_enabled()) {
244         kvm_arm_reset_vcpu(cpu);
245     }
246 #endif
247 
248     hw_breakpoint_update_all(cpu);
249     hw_watchpoint_update_all(cpu);
250 }
251 
252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
253 {
254     CPUClass *cc = CPU_GET_CLASS(cs);
255     CPUARMState *env = cs->env_ptr;
256     uint32_t cur_el = arm_current_el(env);
257     bool secure = arm_is_secure(env);
258     uint32_t target_el;
259     uint32_t excp_idx;
260     bool ret = false;
261 
262     if (interrupt_request & CPU_INTERRUPT_FIQ) {
263         excp_idx = EXCP_FIQ;
264         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
265         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
266             cs->exception_index = excp_idx;
267             env->exception.target_el = target_el;
268             cc->do_interrupt(cs);
269             ret = true;
270         }
271     }
272     if (interrupt_request & CPU_INTERRUPT_HARD) {
273         excp_idx = EXCP_IRQ;
274         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
275         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
276             cs->exception_index = excp_idx;
277             env->exception.target_el = target_el;
278             cc->do_interrupt(cs);
279             ret = true;
280         }
281     }
282     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
283         excp_idx = EXCP_VIRQ;
284         target_el = 1;
285         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
286             cs->exception_index = excp_idx;
287             env->exception.target_el = target_el;
288             cc->do_interrupt(cs);
289             ret = true;
290         }
291     }
292     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
293         excp_idx = EXCP_VFIQ;
294         target_el = 1;
295         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
296             cs->exception_index = excp_idx;
297             env->exception.target_el = target_el;
298             cc->do_interrupt(cs);
299             ret = true;
300         }
301     }
302 
303     return ret;
304 }
305 
306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
307 static void arm_v7m_unassigned_access(CPUState *cpu, hwaddr addr,
308                                       bool is_write, bool is_exec, int opaque,
309                                       unsigned size)
310 {
311     ARMCPU *arm = ARM_CPU(cpu);
312     CPUARMState *env = &arm->env;
313 
314     /* ARMv7-M interrupt return works by loading a magic value into the PC.
315      * On real hardware the load causes the return to occur.  The qemu
316      * implementation performs the jump normally, then does the exception
317      * return by throwing a special exception when when the CPU tries to
318      * execute code at the magic address.
319      */
320     if (env->v7m.exception != 0 && addr >= 0xfffffff0 && is_exec) {
321         cpu->exception_index = EXCP_EXCEPTION_EXIT;
322         cpu_loop_exit(cpu);
323     }
324 
325     /* In real hardware an attempt to access parts of the address space
326      * with nothing there will usually cause an external abort.
327      * However our QEMU board models are often missing device models where
328      * the guest can boot anyway with the default read-as-zero/writes-ignored
329      * behaviour that you get without a QEMU unassigned_access hook.
330      * So just return here to retain that default behaviour.
331      */
332 }
333 
334 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
335 {
336     CPUClass *cc = CPU_GET_CLASS(cs);
337     ARMCPU *cpu = ARM_CPU(cs);
338     CPUARMState *env = &cpu->env;
339     bool ret = false;
340 
341 
342     if (interrupt_request & CPU_INTERRUPT_FIQ
343         && !(env->daif & PSTATE_F)) {
344         cs->exception_index = EXCP_FIQ;
345         cc->do_interrupt(cs);
346         ret = true;
347     }
348     /* ARMv7-M interrupt return works by loading a magic value
349      * into the PC.  On real hardware the load causes the
350      * return to occur.  The qemu implementation performs the
351      * jump normally, then does the exception return when the
352      * CPU tries to execute code at the magic address.
353      * This will cause the magic PC value to be pushed to
354      * the stack if an interrupt occurred at the wrong time.
355      * We avoid this by disabling interrupts when
356      * pc contains a magic address.
357      */
358     if (interrupt_request & CPU_INTERRUPT_HARD
359         && !(env->daif & PSTATE_I)
360         && (env->regs[15] < 0xfffffff0)) {
361         cs->exception_index = EXCP_IRQ;
362         cc->do_interrupt(cs);
363         ret = true;
364     }
365     return ret;
366 }
367 #endif
368 
369 #ifndef CONFIG_USER_ONLY
370 static void arm_cpu_set_irq(void *opaque, int irq, int level)
371 {
372     ARMCPU *cpu = opaque;
373     CPUARMState *env = &cpu->env;
374     CPUState *cs = CPU(cpu);
375     static const int mask[] = {
376         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
377         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
378         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
379         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
380     };
381 
382     switch (irq) {
383     case ARM_CPU_VIRQ:
384     case ARM_CPU_VFIQ:
385         assert(arm_feature(env, ARM_FEATURE_EL2));
386         /* fall through */
387     case ARM_CPU_IRQ:
388     case ARM_CPU_FIQ:
389         if (level) {
390             cpu_interrupt(cs, mask[irq]);
391         } else {
392             cpu_reset_interrupt(cs, mask[irq]);
393         }
394         break;
395     default:
396         g_assert_not_reached();
397     }
398 }
399 
400 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
401 {
402 #ifdef CONFIG_KVM
403     ARMCPU *cpu = opaque;
404     CPUState *cs = CPU(cpu);
405     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
406 
407     switch (irq) {
408     case ARM_CPU_IRQ:
409         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
410         break;
411     case ARM_CPU_FIQ:
412         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
413         break;
414     default:
415         g_assert_not_reached();
416     }
417     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
418     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
419 #endif
420 }
421 
422 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
423 {
424     ARMCPU *cpu = ARM_CPU(cs);
425     CPUARMState *env = &cpu->env;
426 
427     cpu_synchronize_state(cs);
428     return arm_cpu_data_is_big_endian(env);
429 }
430 
431 #endif
432 
433 static inline void set_feature(CPUARMState *env, int feature)
434 {
435     env->features |= 1ULL << feature;
436 }
437 
438 static inline void unset_feature(CPUARMState *env, int feature)
439 {
440     env->features &= ~(1ULL << feature);
441 }
442 
443 static int
444 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
445 {
446   return print_insn_arm(pc | 1, info);
447 }
448 
449 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
450 {
451     ARMCPU *ac = ARM_CPU(cpu);
452     CPUARMState *env = &ac->env;
453 
454     if (is_a64(env)) {
455         /* We might not be compiled with the A64 disassembler
456          * because it needs a C++ compiler. Leave print_insn
457          * unset in this case to use the caller default behaviour.
458          */
459 #if defined(CONFIG_ARM_A64_DIS)
460         info->print_insn = print_insn_arm_a64;
461 #endif
462     } else if (env->thumb) {
463         info->print_insn = print_insn_thumb1;
464     } else {
465         info->print_insn = print_insn_arm;
466     }
467     if (bswap_code(arm_sctlr_b(env))) {
468 #ifdef TARGET_WORDS_BIGENDIAN
469         info->endian = BFD_ENDIAN_LITTLE;
470 #else
471         info->endian = BFD_ENDIAN_BIG;
472 #endif
473     }
474 }
475 
476 static void arm_cpu_initfn(Object *obj)
477 {
478     CPUState *cs = CPU(obj);
479     ARMCPU *cpu = ARM_CPU(obj);
480     static bool inited;
481 
482     cs->env_ptr = &cpu->env;
483     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
484                                          g_free, g_free);
485 
486 #ifndef CONFIG_USER_ONLY
487     /* Our inbound IRQ and FIQ lines */
488     if (kvm_enabled()) {
489         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
490          * the same interface as non-KVM CPUs.
491          */
492         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
493     } else {
494         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
495     }
496 
497     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
498                                                 arm_gt_ptimer_cb, cpu);
499     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
500                                                 arm_gt_vtimer_cb, cpu);
501     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
502                                                 arm_gt_htimer_cb, cpu);
503     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
504                                                 arm_gt_stimer_cb, cpu);
505     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
506                        ARRAY_SIZE(cpu->gt_timer_outputs));
507 
508     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
509                              "gicv3-maintenance-interrupt", 1);
510 #endif
511 
512     /* DTB consumers generally don't in fact care what the 'compatible'
513      * string is, so always provide some string and trust that a hypothetical
514      * picky DTB consumer will also provide a helpful error message.
515      */
516     cpu->dtb_compatible = "qemu,unknown";
517     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
518     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
519 
520     if (tcg_enabled()) {
521         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
522         if (!inited) {
523             inited = true;
524             arm_translate_init();
525         }
526     }
527 }
528 
529 static Property arm_cpu_reset_cbar_property =
530             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
531 
532 static Property arm_cpu_reset_hivecs_property =
533             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
534 
535 static Property arm_cpu_rvbar_property =
536             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
537 
538 static Property arm_cpu_has_el2_property =
539             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
540 
541 static Property arm_cpu_has_el3_property =
542             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
543 
544 /* use property name "pmu" to match other archs and virt tools */
545 static Property arm_cpu_has_pmu_property =
546             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
547 
548 static Property arm_cpu_has_mpu_property =
549             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
550 
551 static Property arm_cpu_pmsav7_dregion_property =
552             DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
553 
554 static void arm_cpu_post_init(Object *obj)
555 {
556     ARMCPU *cpu = ARM_CPU(obj);
557 
558     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
559         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
560         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
561                                  &error_abort);
562     }
563 
564     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
565         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
566                                  &error_abort);
567     }
568 
569     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
570         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
571                                  &error_abort);
572     }
573 
574     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
575         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
576          * prevent "has_el3" from existing on CPUs which cannot support EL3.
577          */
578         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
579                                  &error_abort);
580 
581 #ifndef CONFIG_USER_ONLY
582         object_property_add_link(obj, "secure-memory",
583                                  TYPE_MEMORY_REGION,
584                                  (Object **)&cpu->secure_memory,
585                                  qdev_prop_allow_set_link_before_realize,
586                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
587                                  &error_abort);
588 #endif
589     }
590 
591     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
592         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
593                                  &error_abort);
594     }
595 
596     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
597         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
598                                  &error_abort);
599     }
600 
601     if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
602         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
603                                  &error_abort);
604         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
605             qdev_property_add_static(DEVICE(obj),
606                                      &arm_cpu_pmsav7_dregion_property,
607                                      &error_abort);
608         }
609     }
610 
611 }
612 
613 static void arm_cpu_finalizefn(Object *obj)
614 {
615     ARMCPU *cpu = ARM_CPU(obj);
616     g_hash_table_destroy(cpu->cp_regs);
617 }
618 
619 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
620 {
621     CPUState *cs = CPU(dev);
622     ARMCPU *cpu = ARM_CPU(dev);
623     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
624     CPUARMState *env = &cpu->env;
625     int pagebits;
626     Error *local_err = NULL;
627 
628     cpu_exec_realizefn(cs, &local_err);
629     if (local_err != NULL) {
630         error_propagate(errp, local_err);
631         return;
632     }
633 
634     /* Some features automatically imply others: */
635     if (arm_feature(env, ARM_FEATURE_V8)) {
636         set_feature(env, ARM_FEATURE_V7);
637         set_feature(env, ARM_FEATURE_ARM_DIV);
638         set_feature(env, ARM_FEATURE_LPAE);
639     }
640     if (arm_feature(env, ARM_FEATURE_V7)) {
641         set_feature(env, ARM_FEATURE_VAPA);
642         set_feature(env, ARM_FEATURE_THUMB2);
643         set_feature(env, ARM_FEATURE_MPIDR);
644         if (!arm_feature(env, ARM_FEATURE_M)) {
645             set_feature(env, ARM_FEATURE_V6K);
646         } else {
647             set_feature(env, ARM_FEATURE_V6);
648         }
649 
650         /* Always define VBAR for V7 CPUs even if it doesn't exist in
651          * non-EL3 configs. This is needed by some legacy boards.
652          */
653         set_feature(env, ARM_FEATURE_VBAR);
654     }
655     if (arm_feature(env, ARM_FEATURE_V6K)) {
656         set_feature(env, ARM_FEATURE_V6);
657         set_feature(env, ARM_FEATURE_MVFR);
658     }
659     if (arm_feature(env, ARM_FEATURE_V6)) {
660         set_feature(env, ARM_FEATURE_V5);
661         if (!arm_feature(env, ARM_FEATURE_M)) {
662             set_feature(env, ARM_FEATURE_AUXCR);
663         }
664     }
665     if (arm_feature(env, ARM_FEATURE_V5)) {
666         set_feature(env, ARM_FEATURE_V4T);
667     }
668     if (arm_feature(env, ARM_FEATURE_M)) {
669         set_feature(env, ARM_FEATURE_THUMB_DIV);
670     }
671     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
672         set_feature(env, ARM_FEATURE_THUMB_DIV);
673     }
674     if (arm_feature(env, ARM_FEATURE_VFP4)) {
675         set_feature(env, ARM_FEATURE_VFP3);
676         set_feature(env, ARM_FEATURE_VFP_FP16);
677     }
678     if (arm_feature(env, ARM_FEATURE_VFP3)) {
679         set_feature(env, ARM_FEATURE_VFP);
680     }
681     if (arm_feature(env, ARM_FEATURE_LPAE)) {
682         set_feature(env, ARM_FEATURE_V7MP);
683         set_feature(env, ARM_FEATURE_PXN);
684     }
685     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
686         set_feature(env, ARM_FEATURE_CBAR);
687     }
688     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
689         !arm_feature(env, ARM_FEATURE_M)) {
690         set_feature(env, ARM_FEATURE_THUMB_DSP);
691     }
692 
693     if (arm_feature(env, ARM_FEATURE_V7) &&
694         !arm_feature(env, ARM_FEATURE_M) &&
695         !arm_feature(env, ARM_FEATURE_MPU)) {
696         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
697          * can use 4K pages.
698          */
699         pagebits = 12;
700     } else {
701         /* For CPUs which might have tiny 1K pages, or which have an
702          * MPU and might have small region sizes, stick with 1K pages.
703          */
704         pagebits = 10;
705     }
706     if (!set_preferred_target_page_bits(pagebits)) {
707         /* This can only ever happen for hotplugging a CPU, or if
708          * the board code incorrectly creates a CPU which it has
709          * promised via minimum_page_size that it will not.
710          */
711         error_setg(errp, "This CPU requires a smaller page size than the "
712                    "system is using");
713         return;
714     }
715 
716     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
717      * We don't support setting cluster ID ([16..23]) (known as Aff2
718      * in later ARM ARM versions), or any of the higher affinity level fields,
719      * so these bits always RAZ.
720      */
721     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
722         uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER;
723         uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER;
724         cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
725     }
726 
727     if (cpu->reset_hivecs) {
728             cpu->reset_sctlr |= (1 << 13);
729     }
730 
731     if (!cpu->has_el3) {
732         /* If the has_el3 CPU property is disabled then we need to disable the
733          * feature.
734          */
735         unset_feature(env, ARM_FEATURE_EL3);
736 
737         /* Disable the security extension feature bits in the processor feature
738          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
739          */
740         cpu->id_pfr1 &= ~0xf0;
741         cpu->id_aa64pfr0 &= ~0xf000;
742     }
743 
744     if (!cpu->has_el2) {
745         unset_feature(env, ARM_FEATURE_EL2);
746     }
747 
748     if (!cpu->has_pmu || !kvm_enabled()) {
749         cpu->has_pmu = false;
750         unset_feature(env, ARM_FEATURE_PMU);
751     }
752 
753     if (!arm_feature(env, ARM_FEATURE_EL2)) {
754         /* Disable the hypervisor feature bits in the processor feature
755          * registers if we don't have EL2. These are id_pfr1[15:12] and
756          * id_aa64pfr0_el1[11:8].
757          */
758         cpu->id_aa64pfr0 &= ~0xf00;
759         cpu->id_pfr1 &= ~0xf000;
760     }
761 
762     if (!cpu->has_mpu) {
763         unset_feature(env, ARM_FEATURE_MPU);
764     }
765 
766     if (arm_feature(env, ARM_FEATURE_MPU) &&
767         arm_feature(env, ARM_FEATURE_V7)) {
768         uint32_t nr = cpu->pmsav7_dregion;
769 
770         if (nr > 0xff) {
771             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
772             return;
773         }
774 
775         if (nr) {
776             env->pmsav7.drbar = g_new0(uint32_t, nr);
777             env->pmsav7.drsr = g_new0(uint32_t, nr);
778             env->pmsav7.dracr = g_new0(uint32_t, nr);
779         }
780     }
781 
782     if (arm_feature(env, ARM_FEATURE_EL3)) {
783         set_feature(env, ARM_FEATURE_VBAR);
784     }
785 
786     register_cp_regs_for_features(cpu);
787     arm_cpu_register_gdb_regs_for_features(cpu);
788 
789     init_cpreg_list(cpu);
790 
791 #ifndef CONFIG_USER_ONLY
792     if (cpu->has_el3) {
793         cs->num_ases = 2;
794     } else {
795         cs->num_ases = 1;
796     }
797 
798     if (cpu->has_el3) {
799         AddressSpace *as;
800 
801         if (!cpu->secure_memory) {
802             cpu->secure_memory = cs->memory;
803         }
804         as = address_space_init_shareable(cpu->secure_memory,
805                                           "cpu-secure-memory");
806         cpu_address_space_init(cs, as, ARMASIdx_S);
807     }
808     cpu_address_space_init(cs,
809                            address_space_init_shareable(cs->memory,
810                                                         "cpu-memory"),
811                            ARMASIdx_NS);
812 #endif
813 
814     qemu_init_vcpu(cs);
815     cpu_reset(cs);
816 
817     acc->parent_realize(dev, errp);
818 }
819 
820 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
821 {
822     ObjectClass *oc;
823     char *typename;
824     char **cpuname;
825 
826     if (!cpu_model) {
827         return NULL;
828     }
829 
830     cpuname = g_strsplit(cpu_model, ",", 1);
831     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
832     oc = object_class_by_name(typename);
833     g_strfreev(cpuname);
834     g_free(typename);
835     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
836         object_class_is_abstract(oc)) {
837         return NULL;
838     }
839     return oc;
840 }
841 
842 /* CPU models. These are not needed for the AArch64 linux-user build. */
843 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
844 
845 static void arm926_initfn(Object *obj)
846 {
847     ARMCPU *cpu = ARM_CPU(obj);
848 
849     cpu->dtb_compatible = "arm,arm926";
850     set_feature(&cpu->env, ARM_FEATURE_V5);
851     set_feature(&cpu->env, ARM_FEATURE_VFP);
852     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
853     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
854     cpu->midr = 0x41069265;
855     cpu->reset_fpsid = 0x41011090;
856     cpu->ctr = 0x1dd20d2;
857     cpu->reset_sctlr = 0x00090078;
858 }
859 
860 static void arm946_initfn(Object *obj)
861 {
862     ARMCPU *cpu = ARM_CPU(obj);
863 
864     cpu->dtb_compatible = "arm,arm946";
865     set_feature(&cpu->env, ARM_FEATURE_V5);
866     set_feature(&cpu->env, ARM_FEATURE_MPU);
867     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
868     cpu->midr = 0x41059461;
869     cpu->ctr = 0x0f004006;
870     cpu->reset_sctlr = 0x00000078;
871 }
872 
873 static void arm1026_initfn(Object *obj)
874 {
875     ARMCPU *cpu = ARM_CPU(obj);
876 
877     cpu->dtb_compatible = "arm,arm1026";
878     set_feature(&cpu->env, ARM_FEATURE_V5);
879     set_feature(&cpu->env, ARM_FEATURE_VFP);
880     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
881     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
882     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
883     cpu->midr = 0x4106a262;
884     cpu->reset_fpsid = 0x410110a0;
885     cpu->ctr = 0x1dd20d2;
886     cpu->reset_sctlr = 0x00090078;
887     cpu->reset_auxcr = 1;
888     {
889         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
890         ARMCPRegInfo ifar = {
891             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
892             .access = PL1_RW,
893             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
894             .resetvalue = 0
895         };
896         define_one_arm_cp_reg(cpu, &ifar);
897     }
898 }
899 
900 static void arm1136_r2_initfn(Object *obj)
901 {
902     ARMCPU *cpu = ARM_CPU(obj);
903     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
904      * older core than plain "arm1136". In particular this does not
905      * have the v6K features.
906      * These ID register values are correct for 1136 but may be wrong
907      * for 1136_r2 (in particular r0p2 does not actually implement most
908      * of the ID registers).
909      */
910 
911     cpu->dtb_compatible = "arm,arm1136";
912     set_feature(&cpu->env, ARM_FEATURE_V6);
913     set_feature(&cpu->env, ARM_FEATURE_VFP);
914     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
915     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
916     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
917     cpu->midr = 0x4107b362;
918     cpu->reset_fpsid = 0x410120b4;
919     cpu->mvfr0 = 0x11111111;
920     cpu->mvfr1 = 0x00000000;
921     cpu->ctr = 0x1dd20d2;
922     cpu->reset_sctlr = 0x00050078;
923     cpu->id_pfr0 = 0x111;
924     cpu->id_pfr1 = 0x1;
925     cpu->id_dfr0 = 0x2;
926     cpu->id_afr0 = 0x3;
927     cpu->id_mmfr0 = 0x01130003;
928     cpu->id_mmfr1 = 0x10030302;
929     cpu->id_mmfr2 = 0x01222110;
930     cpu->id_isar0 = 0x00140011;
931     cpu->id_isar1 = 0x12002111;
932     cpu->id_isar2 = 0x11231111;
933     cpu->id_isar3 = 0x01102131;
934     cpu->id_isar4 = 0x141;
935     cpu->reset_auxcr = 7;
936 }
937 
938 static void arm1136_initfn(Object *obj)
939 {
940     ARMCPU *cpu = ARM_CPU(obj);
941 
942     cpu->dtb_compatible = "arm,arm1136";
943     set_feature(&cpu->env, ARM_FEATURE_V6K);
944     set_feature(&cpu->env, ARM_FEATURE_V6);
945     set_feature(&cpu->env, ARM_FEATURE_VFP);
946     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
947     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
948     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
949     cpu->midr = 0x4117b363;
950     cpu->reset_fpsid = 0x410120b4;
951     cpu->mvfr0 = 0x11111111;
952     cpu->mvfr1 = 0x00000000;
953     cpu->ctr = 0x1dd20d2;
954     cpu->reset_sctlr = 0x00050078;
955     cpu->id_pfr0 = 0x111;
956     cpu->id_pfr1 = 0x1;
957     cpu->id_dfr0 = 0x2;
958     cpu->id_afr0 = 0x3;
959     cpu->id_mmfr0 = 0x01130003;
960     cpu->id_mmfr1 = 0x10030302;
961     cpu->id_mmfr2 = 0x01222110;
962     cpu->id_isar0 = 0x00140011;
963     cpu->id_isar1 = 0x12002111;
964     cpu->id_isar2 = 0x11231111;
965     cpu->id_isar3 = 0x01102131;
966     cpu->id_isar4 = 0x141;
967     cpu->reset_auxcr = 7;
968 }
969 
970 static void arm1176_initfn(Object *obj)
971 {
972     ARMCPU *cpu = ARM_CPU(obj);
973 
974     cpu->dtb_compatible = "arm,arm1176";
975     set_feature(&cpu->env, ARM_FEATURE_V6K);
976     set_feature(&cpu->env, ARM_FEATURE_VFP);
977     set_feature(&cpu->env, ARM_FEATURE_VAPA);
978     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
979     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
980     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
981     set_feature(&cpu->env, ARM_FEATURE_EL3);
982     cpu->midr = 0x410fb767;
983     cpu->reset_fpsid = 0x410120b5;
984     cpu->mvfr0 = 0x11111111;
985     cpu->mvfr1 = 0x00000000;
986     cpu->ctr = 0x1dd20d2;
987     cpu->reset_sctlr = 0x00050078;
988     cpu->id_pfr0 = 0x111;
989     cpu->id_pfr1 = 0x11;
990     cpu->id_dfr0 = 0x33;
991     cpu->id_afr0 = 0;
992     cpu->id_mmfr0 = 0x01130003;
993     cpu->id_mmfr1 = 0x10030302;
994     cpu->id_mmfr2 = 0x01222100;
995     cpu->id_isar0 = 0x0140011;
996     cpu->id_isar1 = 0x12002111;
997     cpu->id_isar2 = 0x11231121;
998     cpu->id_isar3 = 0x01102131;
999     cpu->id_isar4 = 0x01141;
1000     cpu->reset_auxcr = 7;
1001 }
1002 
1003 static void arm11mpcore_initfn(Object *obj)
1004 {
1005     ARMCPU *cpu = ARM_CPU(obj);
1006 
1007     cpu->dtb_compatible = "arm,arm11mpcore";
1008     set_feature(&cpu->env, ARM_FEATURE_V6K);
1009     set_feature(&cpu->env, ARM_FEATURE_VFP);
1010     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1011     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1012     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1013     cpu->midr = 0x410fb022;
1014     cpu->reset_fpsid = 0x410120b4;
1015     cpu->mvfr0 = 0x11111111;
1016     cpu->mvfr1 = 0x00000000;
1017     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1018     cpu->id_pfr0 = 0x111;
1019     cpu->id_pfr1 = 0x1;
1020     cpu->id_dfr0 = 0;
1021     cpu->id_afr0 = 0x2;
1022     cpu->id_mmfr0 = 0x01100103;
1023     cpu->id_mmfr1 = 0x10020302;
1024     cpu->id_mmfr2 = 0x01222000;
1025     cpu->id_isar0 = 0x00100011;
1026     cpu->id_isar1 = 0x12002111;
1027     cpu->id_isar2 = 0x11221011;
1028     cpu->id_isar3 = 0x01102131;
1029     cpu->id_isar4 = 0x141;
1030     cpu->reset_auxcr = 1;
1031 }
1032 
1033 static void cortex_m3_initfn(Object *obj)
1034 {
1035     ARMCPU *cpu = ARM_CPU(obj);
1036     set_feature(&cpu->env, ARM_FEATURE_V7);
1037     set_feature(&cpu->env, ARM_FEATURE_M);
1038     cpu->midr = 0x410fc231;
1039 }
1040 
1041 static void cortex_m4_initfn(Object *obj)
1042 {
1043     ARMCPU *cpu = ARM_CPU(obj);
1044 
1045     set_feature(&cpu->env, ARM_FEATURE_V7);
1046     set_feature(&cpu->env, ARM_FEATURE_M);
1047     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1048     cpu->midr = 0x410fc240; /* r0p0 */
1049 }
1050 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1051 {
1052     CPUClass *cc = CPU_CLASS(oc);
1053 
1054 #ifndef CONFIG_USER_ONLY
1055     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1056 #endif
1057 
1058     cc->do_unassigned_access = arm_v7m_unassigned_access;
1059     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1060 }
1061 
1062 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1063     /* Dummy the TCM region regs for the moment */
1064     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1065       .access = PL1_RW, .type = ARM_CP_CONST },
1066     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1067       .access = PL1_RW, .type = ARM_CP_CONST },
1068     REGINFO_SENTINEL
1069 };
1070 
1071 static void cortex_r5_initfn(Object *obj)
1072 {
1073     ARMCPU *cpu = ARM_CPU(obj);
1074 
1075     set_feature(&cpu->env, ARM_FEATURE_V7);
1076     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1077     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1078     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1079     set_feature(&cpu->env, ARM_FEATURE_MPU);
1080     cpu->midr = 0x411fc153; /* r1p3 */
1081     cpu->id_pfr0 = 0x0131;
1082     cpu->id_pfr1 = 0x001;
1083     cpu->id_dfr0 = 0x010400;
1084     cpu->id_afr0 = 0x0;
1085     cpu->id_mmfr0 = 0x0210030;
1086     cpu->id_mmfr1 = 0x00000000;
1087     cpu->id_mmfr2 = 0x01200000;
1088     cpu->id_mmfr3 = 0x0211;
1089     cpu->id_isar0 = 0x2101111;
1090     cpu->id_isar1 = 0x13112111;
1091     cpu->id_isar2 = 0x21232141;
1092     cpu->id_isar3 = 0x01112131;
1093     cpu->id_isar4 = 0x0010142;
1094     cpu->id_isar5 = 0x0;
1095     cpu->mp_is_up = true;
1096     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1097 }
1098 
1099 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1100     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1101       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1102     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1103       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1104     REGINFO_SENTINEL
1105 };
1106 
1107 static void cortex_a8_initfn(Object *obj)
1108 {
1109     ARMCPU *cpu = ARM_CPU(obj);
1110 
1111     cpu->dtb_compatible = "arm,cortex-a8";
1112     set_feature(&cpu->env, ARM_FEATURE_V7);
1113     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1114     set_feature(&cpu->env, ARM_FEATURE_NEON);
1115     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1116     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1117     set_feature(&cpu->env, ARM_FEATURE_EL3);
1118     cpu->midr = 0x410fc080;
1119     cpu->reset_fpsid = 0x410330c0;
1120     cpu->mvfr0 = 0x11110222;
1121     cpu->mvfr1 = 0x00011111;
1122     cpu->ctr = 0x82048004;
1123     cpu->reset_sctlr = 0x00c50078;
1124     cpu->id_pfr0 = 0x1031;
1125     cpu->id_pfr1 = 0x11;
1126     cpu->id_dfr0 = 0x400;
1127     cpu->id_afr0 = 0;
1128     cpu->id_mmfr0 = 0x31100003;
1129     cpu->id_mmfr1 = 0x20000000;
1130     cpu->id_mmfr2 = 0x01202000;
1131     cpu->id_mmfr3 = 0x11;
1132     cpu->id_isar0 = 0x00101111;
1133     cpu->id_isar1 = 0x12112111;
1134     cpu->id_isar2 = 0x21232031;
1135     cpu->id_isar3 = 0x11112131;
1136     cpu->id_isar4 = 0x00111142;
1137     cpu->dbgdidr = 0x15141000;
1138     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1139     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1140     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1141     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1142     cpu->reset_auxcr = 2;
1143     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1144 }
1145 
1146 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1147     /* power_control should be set to maximum latency. Again,
1148      * default to 0 and set by private hook
1149      */
1150     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1151       .access = PL1_RW, .resetvalue = 0,
1152       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1153     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1154       .access = PL1_RW, .resetvalue = 0,
1155       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1156     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1157       .access = PL1_RW, .resetvalue = 0,
1158       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1159     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1160       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1161     /* TLB lockdown control */
1162     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1163       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1164     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1165       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1166     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1167       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1168     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1169       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1170     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1171       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1172     REGINFO_SENTINEL
1173 };
1174 
1175 static void cortex_a9_initfn(Object *obj)
1176 {
1177     ARMCPU *cpu = ARM_CPU(obj);
1178 
1179     cpu->dtb_compatible = "arm,cortex-a9";
1180     set_feature(&cpu->env, ARM_FEATURE_V7);
1181     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1182     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1183     set_feature(&cpu->env, ARM_FEATURE_NEON);
1184     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1185     set_feature(&cpu->env, ARM_FEATURE_EL3);
1186     /* Note that A9 supports the MP extensions even for
1187      * A9UP and single-core A9MP (which are both different
1188      * and valid configurations; we don't model A9UP).
1189      */
1190     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1191     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1192     cpu->midr = 0x410fc090;
1193     cpu->reset_fpsid = 0x41033090;
1194     cpu->mvfr0 = 0x11110222;
1195     cpu->mvfr1 = 0x01111111;
1196     cpu->ctr = 0x80038003;
1197     cpu->reset_sctlr = 0x00c50078;
1198     cpu->id_pfr0 = 0x1031;
1199     cpu->id_pfr1 = 0x11;
1200     cpu->id_dfr0 = 0x000;
1201     cpu->id_afr0 = 0;
1202     cpu->id_mmfr0 = 0x00100103;
1203     cpu->id_mmfr1 = 0x20000000;
1204     cpu->id_mmfr2 = 0x01230000;
1205     cpu->id_mmfr3 = 0x00002111;
1206     cpu->id_isar0 = 0x00101111;
1207     cpu->id_isar1 = 0x13112111;
1208     cpu->id_isar2 = 0x21232041;
1209     cpu->id_isar3 = 0x11112131;
1210     cpu->id_isar4 = 0x00111142;
1211     cpu->dbgdidr = 0x35141000;
1212     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1213     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1214     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1215     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1216 }
1217 
1218 #ifndef CONFIG_USER_ONLY
1219 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1220 {
1221     /* Linux wants the number of processors from here.
1222      * Might as well set the interrupt-controller bit too.
1223      */
1224     return ((smp_cpus - 1) << 24) | (1 << 23);
1225 }
1226 #endif
1227 
1228 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1229 #ifndef CONFIG_USER_ONLY
1230     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1231       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1232       .writefn = arm_cp_write_ignore, },
1233 #endif
1234     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1235       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1236     REGINFO_SENTINEL
1237 };
1238 
1239 static void cortex_a7_initfn(Object *obj)
1240 {
1241     ARMCPU *cpu = ARM_CPU(obj);
1242 
1243     cpu->dtb_compatible = "arm,cortex-a7";
1244     set_feature(&cpu->env, ARM_FEATURE_V7);
1245     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1246     set_feature(&cpu->env, ARM_FEATURE_NEON);
1247     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1248     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1249     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1250     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1251     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1252     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1253     set_feature(&cpu->env, ARM_FEATURE_EL3);
1254     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1255     cpu->midr = 0x410fc075;
1256     cpu->reset_fpsid = 0x41023075;
1257     cpu->mvfr0 = 0x10110222;
1258     cpu->mvfr1 = 0x11111111;
1259     cpu->ctr = 0x84448003;
1260     cpu->reset_sctlr = 0x00c50078;
1261     cpu->id_pfr0 = 0x00001131;
1262     cpu->id_pfr1 = 0x00011011;
1263     cpu->id_dfr0 = 0x02010555;
1264     cpu->pmceid0 = 0x00000000;
1265     cpu->pmceid1 = 0x00000000;
1266     cpu->id_afr0 = 0x00000000;
1267     cpu->id_mmfr0 = 0x10101105;
1268     cpu->id_mmfr1 = 0x40000000;
1269     cpu->id_mmfr2 = 0x01240000;
1270     cpu->id_mmfr3 = 0x02102211;
1271     cpu->id_isar0 = 0x01101110;
1272     cpu->id_isar1 = 0x13112111;
1273     cpu->id_isar2 = 0x21232041;
1274     cpu->id_isar3 = 0x11112131;
1275     cpu->id_isar4 = 0x10011142;
1276     cpu->dbgdidr = 0x3515f005;
1277     cpu->clidr = 0x0a200023;
1278     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1279     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1280     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1281     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1282 }
1283 
1284 static void cortex_a15_initfn(Object *obj)
1285 {
1286     ARMCPU *cpu = ARM_CPU(obj);
1287 
1288     cpu->dtb_compatible = "arm,cortex-a15";
1289     set_feature(&cpu->env, ARM_FEATURE_V7);
1290     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1291     set_feature(&cpu->env, ARM_FEATURE_NEON);
1292     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1293     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1294     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1295     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1296     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1297     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1298     set_feature(&cpu->env, ARM_FEATURE_EL3);
1299     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1300     cpu->midr = 0x412fc0f1;
1301     cpu->reset_fpsid = 0x410430f0;
1302     cpu->mvfr0 = 0x10110222;
1303     cpu->mvfr1 = 0x11111111;
1304     cpu->ctr = 0x8444c004;
1305     cpu->reset_sctlr = 0x00c50078;
1306     cpu->id_pfr0 = 0x00001131;
1307     cpu->id_pfr1 = 0x00011011;
1308     cpu->id_dfr0 = 0x02010555;
1309     cpu->pmceid0 = 0x0000000;
1310     cpu->pmceid1 = 0x00000000;
1311     cpu->id_afr0 = 0x00000000;
1312     cpu->id_mmfr0 = 0x10201105;
1313     cpu->id_mmfr1 = 0x20000000;
1314     cpu->id_mmfr2 = 0x01240000;
1315     cpu->id_mmfr3 = 0x02102211;
1316     cpu->id_isar0 = 0x02101110;
1317     cpu->id_isar1 = 0x13112111;
1318     cpu->id_isar2 = 0x21232041;
1319     cpu->id_isar3 = 0x11112131;
1320     cpu->id_isar4 = 0x10011142;
1321     cpu->dbgdidr = 0x3515f021;
1322     cpu->clidr = 0x0a200023;
1323     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1324     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1325     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1326     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1327 }
1328 
1329 static void ti925t_initfn(Object *obj)
1330 {
1331     ARMCPU *cpu = ARM_CPU(obj);
1332     set_feature(&cpu->env, ARM_FEATURE_V4T);
1333     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1334     cpu->midr = ARM_CPUID_TI925T;
1335     cpu->ctr = 0x5109149;
1336     cpu->reset_sctlr = 0x00000070;
1337 }
1338 
1339 static void sa1100_initfn(Object *obj)
1340 {
1341     ARMCPU *cpu = ARM_CPU(obj);
1342 
1343     cpu->dtb_compatible = "intel,sa1100";
1344     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1345     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1346     cpu->midr = 0x4401A11B;
1347     cpu->reset_sctlr = 0x00000070;
1348 }
1349 
1350 static void sa1110_initfn(Object *obj)
1351 {
1352     ARMCPU *cpu = ARM_CPU(obj);
1353     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1354     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1355     cpu->midr = 0x6901B119;
1356     cpu->reset_sctlr = 0x00000070;
1357 }
1358 
1359 static void pxa250_initfn(Object *obj)
1360 {
1361     ARMCPU *cpu = ARM_CPU(obj);
1362 
1363     cpu->dtb_compatible = "marvell,xscale";
1364     set_feature(&cpu->env, ARM_FEATURE_V5);
1365     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1366     cpu->midr = 0x69052100;
1367     cpu->ctr = 0xd172172;
1368     cpu->reset_sctlr = 0x00000078;
1369 }
1370 
1371 static void pxa255_initfn(Object *obj)
1372 {
1373     ARMCPU *cpu = ARM_CPU(obj);
1374 
1375     cpu->dtb_compatible = "marvell,xscale";
1376     set_feature(&cpu->env, ARM_FEATURE_V5);
1377     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1378     cpu->midr = 0x69052d00;
1379     cpu->ctr = 0xd172172;
1380     cpu->reset_sctlr = 0x00000078;
1381 }
1382 
1383 static void pxa260_initfn(Object *obj)
1384 {
1385     ARMCPU *cpu = ARM_CPU(obj);
1386 
1387     cpu->dtb_compatible = "marvell,xscale";
1388     set_feature(&cpu->env, ARM_FEATURE_V5);
1389     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1390     cpu->midr = 0x69052903;
1391     cpu->ctr = 0xd172172;
1392     cpu->reset_sctlr = 0x00000078;
1393 }
1394 
1395 static void pxa261_initfn(Object *obj)
1396 {
1397     ARMCPU *cpu = ARM_CPU(obj);
1398 
1399     cpu->dtb_compatible = "marvell,xscale";
1400     set_feature(&cpu->env, ARM_FEATURE_V5);
1401     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1402     cpu->midr = 0x69052d05;
1403     cpu->ctr = 0xd172172;
1404     cpu->reset_sctlr = 0x00000078;
1405 }
1406 
1407 static void pxa262_initfn(Object *obj)
1408 {
1409     ARMCPU *cpu = ARM_CPU(obj);
1410 
1411     cpu->dtb_compatible = "marvell,xscale";
1412     set_feature(&cpu->env, ARM_FEATURE_V5);
1413     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1414     cpu->midr = 0x69052d06;
1415     cpu->ctr = 0xd172172;
1416     cpu->reset_sctlr = 0x00000078;
1417 }
1418 
1419 static void pxa270a0_initfn(Object *obj)
1420 {
1421     ARMCPU *cpu = ARM_CPU(obj);
1422 
1423     cpu->dtb_compatible = "marvell,xscale";
1424     set_feature(&cpu->env, ARM_FEATURE_V5);
1425     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1426     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1427     cpu->midr = 0x69054110;
1428     cpu->ctr = 0xd172172;
1429     cpu->reset_sctlr = 0x00000078;
1430 }
1431 
1432 static void pxa270a1_initfn(Object *obj)
1433 {
1434     ARMCPU *cpu = ARM_CPU(obj);
1435 
1436     cpu->dtb_compatible = "marvell,xscale";
1437     set_feature(&cpu->env, ARM_FEATURE_V5);
1438     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1439     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1440     cpu->midr = 0x69054111;
1441     cpu->ctr = 0xd172172;
1442     cpu->reset_sctlr = 0x00000078;
1443 }
1444 
1445 static void pxa270b0_initfn(Object *obj)
1446 {
1447     ARMCPU *cpu = ARM_CPU(obj);
1448 
1449     cpu->dtb_compatible = "marvell,xscale";
1450     set_feature(&cpu->env, ARM_FEATURE_V5);
1451     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1452     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1453     cpu->midr = 0x69054112;
1454     cpu->ctr = 0xd172172;
1455     cpu->reset_sctlr = 0x00000078;
1456 }
1457 
1458 static void pxa270b1_initfn(Object *obj)
1459 {
1460     ARMCPU *cpu = ARM_CPU(obj);
1461 
1462     cpu->dtb_compatible = "marvell,xscale";
1463     set_feature(&cpu->env, ARM_FEATURE_V5);
1464     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1465     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1466     cpu->midr = 0x69054113;
1467     cpu->ctr = 0xd172172;
1468     cpu->reset_sctlr = 0x00000078;
1469 }
1470 
1471 static void pxa270c0_initfn(Object *obj)
1472 {
1473     ARMCPU *cpu = ARM_CPU(obj);
1474 
1475     cpu->dtb_compatible = "marvell,xscale";
1476     set_feature(&cpu->env, ARM_FEATURE_V5);
1477     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1478     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1479     cpu->midr = 0x69054114;
1480     cpu->ctr = 0xd172172;
1481     cpu->reset_sctlr = 0x00000078;
1482 }
1483 
1484 static void pxa270c5_initfn(Object *obj)
1485 {
1486     ARMCPU *cpu = ARM_CPU(obj);
1487 
1488     cpu->dtb_compatible = "marvell,xscale";
1489     set_feature(&cpu->env, ARM_FEATURE_V5);
1490     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1491     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1492     cpu->midr = 0x69054117;
1493     cpu->ctr = 0xd172172;
1494     cpu->reset_sctlr = 0x00000078;
1495 }
1496 
1497 #ifdef CONFIG_USER_ONLY
1498 static void arm_any_initfn(Object *obj)
1499 {
1500     ARMCPU *cpu = ARM_CPU(obj);
1501     set_feature(&cpu->env, ARM_FEATURE_V8);
1502     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1503     set_feature(&cpu->env, ARM_FEATURE_NEON);
1504     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1505     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1506     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1507     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1508     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1509     set_feature(&cpu->env, ARM_FEATURE_CRC);
1510     cpu->midr = 0xffffffff;
1511 }
1512 #endif
1513 
1514 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1515 
1516 typedef struct ARMCPUInfo {
1517     const char *name;
1518     void (*initfn)(Object *obj);
1519     void (*class_init)(ObjectClass *oc, void *data);
1520 } ARMCPUInfo;
1521 
1522 static const ARMCPUInfo arm_cpus[] = {
1523 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1524     { .name = "arm926",      .initfn = arm926_initfn },
1525     { .name = "arm946",      .initfn = arm946_initfn },
1526     { .name = "arm1026",     .initfn = arm1026_initfn },
1527     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1528      * older core than plain "arm1136". In particular this does not
1529      * have the v6K features.
1530      */
1531     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1532     { .name = "arm1136",     .initfn = arm1136_initfn },
1533     { .name = "arm1176",     .initfn = arm1176_initfn },
1534     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1535     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1536                              .class_init = arm_v7m_class_init },
1537     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1538                              .class_init = arm_v7m_class_init },
1539     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1540     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1541     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1542     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1543     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1544     { .name = "ti925t",      .initfn = ti925t_initfn },
1545     { .name = "sa1100",      .initfn = sa1100_initfn },
1546     { .name = "sa1110",      .initfn = sa1110_initfn },
1547     { .name = "pxa250",      .initfn = pxa250_initfn },
1548     { .name = "pxa255",      .initfn = pxa255_initfn },
1549     { .name = "pxa260",      .initfn = pxa260_initfn },
1550     { .name = "pxa261",      .initfn = pxa261_initfn },
1551     { .name = "pxa262",      .initfn = pxa262_initfn },
1552     /* "pxa270" is an alias for "pxa270-a0" */
1553     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1554     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1555     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1556     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1557     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1558     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1559     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1560 #ifdef CONFIG_USER_ONLY
1561     { .name = "any",         .initfn = arm_any_initfn },
1562 #endif
1563 #endif
1564     { .name = NULL }
1565 };
1566 
1567 static Property arm_cpu_properties[] = {
1568     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1569     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1570     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1571     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1572                         mp_affinity, ARM64_AFFINITY_INVALID),
1573     DEFINE_PROP_END_OF_LIST()
1574 };
1575 
1576 #ifdef CONFIG_USER_ONLY
1577 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1578                                     int mmu_idx)
1579 {
1580     ARMCPU *cpu = ARM_CPU(cs);
1581     CPUARMState *env = &cpu->env;
1582 
1583     env->exception.vaddress = address;
1584     if (rw == 2) {
1585         cs->exception_index = EXCP_PREFETCH_ABORT;
1586     } else {
1587         cs->exception_index = EXCP_DATA_ABORT;
1588     }
1589     return 1;
1590 }
1591 #endif
1592 
1593 static gchar *arm_gdb_arch_name(CPUState *cs)
1594 {
1595     ARMCPU *cpu = ARM_CPU(cs);
1596     CPUARMState *env = &cpu->env;
1597 
1598     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1599         return g_strdup("iwmmxt");
1600     }
1601     return g_strdup("arm");
1602 }
1603 
1604 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1605 {
1606     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1607     CPUClass *cc = CPU_CLASS(acc);
1608     DeviceClass *dc = DEVICE_CLASS(oc);
1609 
1610     acc->parent_realize = dc->realize;
1611     dc->realize = arm_cpu_realizefn;
1612     dc->props = arm_cpu_properties;
1613 
1614     acc->parent_reset = cc->reset;
1615     cc->reset = arm_cpu_reset;
1616 
1617     cc->class_by_name = arm_cpu_class_by_name;
1618     cc->has_work = arm_cpu_has_work;
1619     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1620     cc->dump_state = arm_cpu_dump_state;
1621     cc->set_pc = arm_cpu_set_pc;
1622     cc->gdb_read_register = arm_cpu_gdb_read_register;
1623     cc->gdb_write_register = arm_cpu_gdb_write_register;
1624 #ifdef CONFIG_USER_ONLY
1625     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1626 #else
1627     cc->do_interrupt = arm_cpu_do_interrupt;
1628     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1629     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1630     cc->asidx_from_attrs = arm_asidx_from_attrs;
1631     cc->vmsd = &vmstate_arm_cpu;
1632     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1633     cc->write_elf64_note = arm_cpu_write_elf64_note;
1634     cc->write_elf32_note = arm_cpu_write_elf32_note;
1635 #endif
1636     cc->gdb_num_core_regs = 26;
1637     cc->gdb_core_xml_file = "arm-core.xml";
1638     cc->gdb_arch_name = arm_gdb_arch_name;
1639     cc->gdb_stop_before_watchpoint = true;
1640     cc->debug_excp_handler = arm_debug_excp_handler;
1641     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1642 
1643     cc->disas_set_info = arm_disas_set_info;
1644 }
1645 
1646 static void cpu_register(const ARMCPUInfo *info)
1647 {
1648     TypeInfo type_info = {
1649         .parent = TYPE_ARM_CPU,
1650         .instance_size = sizeof(ARMCPU),
1651         .instance_init = info->initfn,
1652         .class_size = sizeof(ARMCPUClass),
1653         .class_init = info->class_init,
1654     };
1655 
1656     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1657     type_register(&type_info);
1658     g_free((void *)type_info.name);
1659 }
1660 
1661 static const TypeInfo arm_cpu_type_info = {
1662     .name = TYPE_ARM_CPU,
1663     .parent = TYPE_CPU,
1664     .instance_size = sizeof(ARMCPU),
1665     .instance_init = arm_cpu_initfn,
1666     .instance_post_init = arm_cpu_post_init,
1667     .instance_finalize = arm_cpu_finalizefn,
1668     .abstract = true,
1669     .class_size = sizeof(ARMCPUClass),
1670     .class_init = arm_cpu_class_init,
1671 };
1672 
1673 static void arm_cpu_register_types(void)
1674 {
1675     const ARMCPUInfo *info = arm_cpus;
1676 
1677     type_register_static(&arm_cpu_type_info);
1678 
1679     while (info->name) {
1680         cpu_register(info);
1681         info++;
1682     }
1683 }
1684 
1685 type_init(arm_cpu_register_types)
1686