xref: /openbmc/qemu/target/arm/cpu.c (revision b8012ecf)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu-common.h"
25 #include "target/arm/idau.h"
26 #include "qemu/module.h"
27 #include "qapi/error.h"
28 #include "qapi/visitor.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #endif
40 #include "sysemu/tcg.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_arm.h"
43 #include "hvf_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 
47 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50     CPUARMState *env = &cpu->env;
51 
52     if (is_a64(env)) {
53         env->pc = value;
54         env->thumb = 0;
55     } else {
56         env->regs[15] = value & ~1;
57         env->thumb = value & 1;
58     }
59 }
60 
61 #ifdef CONFIG_TCG
62 void arm_cpu_synchronize_from_tb(CPUState *cs,
63                                  const TranslationBlock *tb)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     /*
69      * It's OK to look at env for the current mode here, because it's
70      * never possible for an AArch64 TB to chain to an AArch32 TB.
71      */
72     if (is_a64(env)) {
73         env->pc = tb->pc;
74     } else {
75         env->regs[15] = tb->pc;
76     }
77 }
78 #endif /* CONFIG_TCG */
79 
80 static bool arm_cpu_has_work(CPUState *cs)
81 {
82     ARMCPU *cpu = ARM_CPU(cs);
83 
84     return (cpu->power_state != PSCI_OFF)
85         && cs->interrupt_request &
86         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
87          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
88          | CPU_INTERRUPT_EXITTB);
89 }
90 
91 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92                                  void *opaque)
93 {
94     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
95 
96     entry->hook = hook;
97     entry->opaque = opaque;
98 
99     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
100 }
101 
102 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
103                                  void *opaque)
104 {
105     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
106 
107     entry->hook = hook;
108     entry->opaque = opaque;
109 
110     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
111 }
112 
113 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
114 {
115     /* Reset a single ARMCPRegInfo register */
116     ARMCPRegInfo *ri = value;
117     ARMCPU *cpu = opaque;
118 
119     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
120         return;
121     }
122 
123     if (ri->resetfn) {
124         ri->resetfn(&cpu->env, ri);
125         return;
126     }
127 
128     /* A zero offset is never possible as it would be regs[0]
129      * so we use it to indicate that reset is being handled elsewhere.
130      * This is basically only used for fields in non-core coprocessors
131      * (like the pxa2xx ones).
132      */
133     if (!ri->fieldoffset) {
134         return;
135     }
136 
137     if (cpreg_field_is_64bit(ri)) {
138         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
139     } else {
140         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
141     }
142 }
143 
144 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
145 {
146     /* Purely an assertion check: we've already done reset once,
147      * so now check that running the reset for the cpreg doesn't
148      * change its value. This traps bugs where two different cpregs
149      * both try to reset the same state field but to different values.
150      */
151     ARMCPRegInfo *ri = value;
152     ARMCPU *cpu = opaque;
153     uint64_t oldvalue, newvalue;
154 
155     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
156         return;
157     }
158 
159     oldvalue = read_raw_cp_reg(&cpu->env, ri);
160     cp_reg_reset(key, value, opaque);
161     newvalue = read_raw_cp_reg(&cpu->env, ri);
162     assert(oldvalue == newvalue);
163 }
164 
165 static void arm_cpu_reset(DeviceState *dev)
166 {
167     CPUState *s = CPU(dev);
168     ARMCPU *cpu = ARM_CPU(s);
169     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
170     CPUARMState *env = &cpu->env;
171 
172     acc->parent_reset(dev);
173 
174     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
175 
176     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
178 
179     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
180     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
181     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
182     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
183 
184     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
185 
186     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
187         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
188     }
189 
190     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
191         /* 64 bit CPUs always start in 64 bit mode */
192         env->aarch64 = 1;
193 #if defined(CONFIG_USER_ONLY)
194         env->pstate = PSTATE_MODE_EL0t;
195         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
196         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
197         /* Enable all PAC keys.  */
198         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
199                                   SCTLR_EnDA | SCTLR_EnDB);
200         /* and to the FP/Neon instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
202         /* and to the SVE instructions */
203         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
204         /* with reasonable vector length */
205         if (cpu_isar_feature(aa64_sve, cpu)) {
206             env->vfp.zcr_el[1] =
207                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
208         }
209         /*
210          * Enable TBI0 but not TBI1.
211          * Note that this must match useronly_clean_ptr.
212          */
213         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
214 
215         /* Enable MTE */
216         if (cpu_isar_feature(aa64_mte, cpu)) {
217             /* Enable tag access, but leave TCF0 as No Effect (0). */
218             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
219             /*
220              * Exclude all tags, so that tag 0 is always used.
221              * This corresponds to Linux current->thread.gcr_incl = 0.
222              *
223              * Set RRND, so that helper_irg() will generate a seed later.
224              * Here in cpu_reset(), the crypto subsystem has not yet been
225              * initialized.
226              */
227             env->cp15.gcr_el1 = 0x1ffff;
228         }
229 #else
230         /* Reset into the highest available EL */
231         if (arm_feature(env, ARM_FEATURE_EL3)) {
232             env->pstate = PSTATE_MODE_EL3h;
233         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
234             env->pstate = PSTATE_MODE_EL2h;
235         } else {
236             env->pstate = PSTATE_MODE_EL1h;
237         }
238         env->pc = cpu->rvbar;
239 #endif
240     } else {
241 #if defined(CONFIG_USER_ONLY)
242         /* Userspace expects access to cp10 and cp11 for FP/Neon */
243         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
244 #endif
245     }
246 
247 #if defined(CONFIG_USER_ONLY)
248     env->uncached_cpsr = ARM_CPU_MODE_USR;
249     /* For user mode we must enable access to coprocessors */
250     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
251     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
252         env->cp15.c15_cpar = 3;
253     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
254         env->cp15.c15_cpar = 1;
255     }
256 #else
257 
258     /*
259      * If the highest available EL is EL2, AArch32 will start in Hyp
260      * mode; otherwise it starts in SVC. Note that if we start in
261      * AArch64 then these values in the uncached_cpsr will be ignored.
262      */
263     if (arm_feature(env, ARM_FEATURE_EL2) &&
264         !arm_feature(env, ARM_FEATURE_EL3)) {
265         env->uncached_cpsr = ARM_CPU_MODE_HYP;
266     } else {
267         env->uncached_cpsr = ARM_CPU_MODE_SVC;
268     }
269     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
270 
271     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
272      * executing as AArch32 then check if highvecs are enabled and
273      * adjust the PC accordingly.
274      */
275     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
276         env->regs[15] = 0xFFFF0000;
277     }
278 
279     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
280 #endif
281 
282     if (arm_feature(env, ARM_FEATURE_M)) {
283 #ifndef CONFIG_USER_ONLY
284         uint32_t initial_msp; /* Loaded from 0x0 */
285         uint32_t initial_pc; /* Loaded from 0x4 */
286         uint8_t *rom;
287         uint32_t vecbase;
288 #endif
289 
290         if (cpu_isar_feature(aa32_lob, cpu)) {
291             /*
292              * LTPSIZE is constant 4 if MVE not implemented, and resets
293              * to an UNKNOWN value if MVE is implemented. We choose to
294              * always reset to 4.
295              */
296             env->v7m.ltpsize = 4;
297             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
298             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
299             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
300         }
301 
302         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
303             env->v7m.secure = true;
304         } else {
305             /* This bit resets to 0 if security is supported, but 1 if
306              * it is not. The bit is not present in v7M, but we set it
307              * here so we can avoid having to make checks on it conditional
308              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
309              */
310             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
311             /*
312              * Set NSACR to indicate "NS access permitted to everything";
313              * this avoids having to have all the tests of it being
314              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
315              * v8.1M the guest-visible value of NSACR in a CPU without the
316              * Security Extension is 0xcff.
317              */
318             env->v7m.nsacr = 0xcff;
319         }
320 
321         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
322          * that it resets to 1, so QEMU always does that rather than making
323          * it dependent on CPU model. In v8M it is RES1.
324          */
325         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
326         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
327         if (arm_feature(env, ARM_FEATURE_V8)) {
328             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
329             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
330             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
331         }
332         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
333             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
334             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
335         }
336 
337         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
338             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
339             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
340                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
341         }
342 
343 #ifndef CONFIG_USER_ONLY
344         /* Unlike A/R profile, M profile defines the reset LR value */
345         env->regs[14] = 0xffffffff;
346 
347         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
348         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
349 
350         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
351         vecbase = env->v7m.vecbase[env->v7m.secure];
352         rom = rom_ptr_for_as(s->as, vecbase, 8);
353         if (rom) {
354             /* Address zero is covered by ROM which hasn't yet been
355              * copied into physical memory.
356              */
357             initial_msp = ldl_p(rom);
358             initial_pc = ldl_p(rom + 4);
359         } else {
360             /* Address zero not covered by a ROM blob, or the ROM blob
361              * is in non-modifiable memory and this is a second reset after
362              * it got copied into memory. In the latter case, rom_ptr
363              * will return a NULL pointer and we should use ldl_phys instead.
364              */
365             initial_msp = ldl_phys(s->as, vecbase);
366             initial_pc = ldl_phys(s->as, vecbase + 4);
367         }
368 
369         env->regs[13] = initial_msp & 0xFFFFFFFC;
370         env->regs[15] = initial_pc & ~1;
371         env->thumb = initial_pc & 1;
372 #else
373         /*
374          * For user mode we run non-secure and with access to the FPU.
375          * The FPU context is active (ie does not need further setup)
376          * and is owned by non-secure.
377          */
378         env->v7m.secure = false;
379         env->v7m.nsacr = 0xcff;
380         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
381         env->v7m.fpccr[M_REG_S] &=
382             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
383         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
384 #endif
385     }
386 
387     /* M profile requires that reset clears the exclusive monitor;
388      * A profile does not, but clearing it makes more sense than having it
389      * set with an exclusive access on address zero.
390      */
391     arm_clear_exclusive(env);
392 
393     if (arm_feature(env, ARM_FEATURE_PMSA)) {
394         if (cpu->pmsav7_dregion > 0) {
395             if (arm_feature(env, ARM_FEATURE_V8)) {
396                 memset(env->pmsav8.rbar[M_REG_NS], 0,
397                        sizeof(*env->pmsav8.rbar[M_REG_NS])
398                        * cpu->pmsav7_dregion);
399                 memset(env->pmsav8.rlar[M_REG_NS], 0,
400                        sizeof(*env->pmsav8.rlar[M_REG_NS])
401                        * cpu->pmsav7_dregion);
402                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
403                     memset(env->pmsav8.rbar[M_REG_S], 0,
404                            sizeof(*env->pmsav8.rbar[M_REG_S])
405                            * cpu->pmsav7_dregion);
406                     memset(env->pmsav8.rlar[M_REG_S], 0,
407                            sizeof(*env->pmsav8.rlar[M_REG_S])
408                            * cpu->pmsav7_dregion);
409                 }
410             } else if (arm_feature(env, ARM_FEATURE_V7)) {
411                 memset(env->pmsav7.drbar, 0,
412                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
413                 memset(env->pmsav7.drsr, 0,
414                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
415                 memset(env->pmsav7.dracr, 0,
416                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
417             }
418         }
419         env->pmsav7.rnr[M_REG_NS] = 0;
420         env->pmsav7.rnr[M_REG_S] = 0;
421         env->pmsav8.mair0[M_REG_NS] = 0;
422         env->pmsav8.mair0[M_REG_S] = 0;
423         env->pmsav8.mair1[M_REG_NS] = 0;
424         env->pmsav8.mair1[M_REG_S] = 0;
425     }
426 
427     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
428         if (cpu->sau_sregion > 0) {
429             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
430             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
431         }
432         env->sau.rnr = 0;
433         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
434          * the Cortex-M33 does.
435          */
436         env->sau.ctrl = 0;
437     }
438 
439     set_flush_to_zero(1, &env->vfp.standard_fp_status);
440     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
441     set_default_nan_mode(1, &env->vfp.standard_fp_status);
442     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
443     set_float_detect_tininess(float_tininess_before_rounding,
444                               &env->vfp.fp_status);
445     set_float_detect_tininess(float_tininess_before_rounding,
446                               &env->vfp.standard_fp_status);
447     set_float_detect_tininess(float_tininess_before_rounding,
448                               &env->vfp.fp_status_f16);
449     set_float_detect_tininess(float_tininess_before_rounding,
450                               &env->vfp.standard_fp_status_f16);
451 #ifndef CONFIG_USER_ONLY
452     if (kvm_enabled()) {
453         kvm_arm_reset_vcpu(cpu);
454     }
455 #endif
456 
457     hw_breakpoint_update_all(cpu);
458     hw_watchpoint_update_all(cpu);
459     arm_rebuild_hflags(env);
460 }
461 
462 #ifndef CONFIG_USER_ONLY
463 
464 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
465                                      unsigned int target_el,
466                                      unsigned int cur_el, bool secure,
467                                      uint64_t hcr_el2)
468 {
469     CPUARMState *env = cs->env_ptr;
470     bool pstate_unmasked;
471     bool unmasked = false;
472 
473     /*
474      * Don't take exceptions if they target a lower EL.
475      * This check should catch any exceptions that would not be taken
476      * but left pending.
477      */
478     if (cur_el > target_el) {
479         return false;
480     }
481 
482     switch (excp_idx) {
483     case EXCP_FIQ:
484         pstate_unmasked = !(env->daif & PSTATE_F);
485         break;
486 
487     case EXCP_IRQ:
488         pstate_unmasked = !(env->daif & PSTATE_I);
489         break;
490 
491     case EXCP_VFIQ:
492         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
493             /* VFIQs are only taken when hypervized.  */
494             return false;
495         }
496         return !(env->daif & PSTATE_F);
497     case EXCP_VIRQ:
498         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
499             /* VIRQs are only taken when hypervized.  */
500             return false;
501         }
502         return !(env->daif & PSTATE_I);
503     default:
504         g_assert_not_reached();
505     }
506 
507     /*
508      * Use the target EL, current execution state and SCR/HCR settings to
509      * determine whether the corresponding CPSR bit is used to mask the
510      * interrupt.
511      */
512     if ((target_el > cur_el) && (target_el != 1)) {
513         /* Exceptions targeting a higher EL may not be maskable */
514         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
515             /*
516              * 64-bit masking rules are simple: exceptions to EL3
517              * can't be masked, and exceptions to EL2 can only be
518              * masked from Secure state. The HCR and SCR settings
519              * don't affect the masking logic, only the interrupt routing.
520              */
521             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
522                 unmasked = true;
523             }
524         } else {
525             /*
526              * The old 32-bit-only environment has a more complicated
527              * masking setup. HCR and SCR bits not only affect interrupt
528              * routing but also change the behaviour of masking.
529              */
530             bool hcr, scr;
531 
532             switch (excp_idx) {
533             case EXCP_FIQ:
534                 /*
535                  * If FIQs are routed to EL3 or EL2 then there are cases where
536                  * we override the CPSR.F in determining if the exception is
537                  * masked or not. If neither of these are set then we fall back
538                  * to the CPSR.F setting otherwise we further assess the state
539                  * below.
540                  */
541                 hcr = hcr_el2 & HCR_FMO;
542                 scr = (env->cp15.scr_el3 & SCR_FIQ);
543 
544                 /*
545                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
546                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
547                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
548                  * when non-secure but only when FIQs are only routed to EL3.
549                  */
550                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
551                 break;
552             case EXCP_IRQ:
553                 /*
554                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
555                  * we may override the CPSR.I masking when in non-secure state.
556                  * The SCR.IRQ setting has already been taken into consideration
557                  * when setting the target EL, so it does not have a further
558                  * affect here.
559                  */
560                 hcr = hcr_el2 & HCR_IMO;
561                 scr = false;
562                 break;
563             default:
564                 g_assert_not_reached();
565             }
566 
567             if ((scr || hcr) && !secure) {
568                 unmasked = true;
569             }
570         }
571     }
572 
573     /*
574      * The PSTATE bits only mask the interrupt if we have not overriden the
575      * ability above.
576      */
577     return unmasked || pstate_unmasked;
578 }
579 
580 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
581 {
582     CPUClass *cc = CPU_GET_CLASS(cs);
583     CPUARMState *env = cs->env_ptr;
584     uint32_t cur_el = arm_current_el(env);
585     bool secure = arm_is_secure(env);
586     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
587     uint32_t target_el;
588     uint32_t excp_idx;
589 
590     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
591 
592     if (interrupt_request & CPU_INTERRUPT_FIQ) {
593         excp_idx = EXCP_FIQ;
594         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
595         if (arm_excp_unmasked(cs, excp_idx, target_el,
596                               cur_el, secure, hcr_el2)) {
597             goto found;
598         }
599     }
600     if (interrupt_request & CPU_INTERRUPT_HARD) {
601         excp_idx = EXCP_IRQ;
602         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
603         if (arm_excp_unmasked(cs, excp_idx, target_el,
604                               cur_el, secure, hcr_el2)) {
605             goto found;
606         }
607     }
608     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
609         excp_idx = EXCP_VIRQ;
610         target_el = 1;
611         if (arm_excp_unmasked(cs, excp_idx, target_el,
612                               cur_el, secure, hcr_el2)) {
613             goto found;
614         }
615     }
616     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
617         excp_idx = EXCP_VFIQ;
618         target_el = 1;
619         if (arm_excp_unmasked(cs, excp_idx, target_el,
620                               cur_el, secure, hcr_el2)) {
621             goto found;
622         }
623     }
624     return false;
625 
626  found:
627     cs->exception_index = excp_idx;
628     env->exception.target_el = target_el;
629     cc->tcg_ops->do_interrupt(cs);
630     return true;
631 }
632 #endif /* !CONFIG_USER_ONLY */
633 
634 void arm_cpu_update_virq(ARMCPU *cpu)
635 {
636     /*
637      * Update the interrupt level for VIRQ, which is the logical OR of
638      * the HCR_EL2.VI bit and the input line level from the GIC.
639      */
640     CPUARMState *env = &cpu->env;
641     CPUState *cs = CPU(cpu);
642 
643     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
644         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
645 
646     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
647         if (new_state) {
648             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
649         } else {
650             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
651         }
652     }
653 }
654 
655 void arm_cpu_update_vfiq(ARMCPU *cpu)
656 {
657     /*
658      * Update the interrupt level for VFIQ, which is the logical OR of
659      * the HCR_EL2.VF bit and the input line level from the GIC.
660      */
661     CPUARMState *env = &cpu->env;
662     CPUState *cs = CPU(cpu);
663 
664     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
665         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
666 
667     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
668         if (new_state) {
669             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
670         } else {
671             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
672         }
673     }
674 }
675 
676 #ifndef CONFIG_USER_ONLY
677 static void arm_cpu_set_irq(void *opaque, int irq, int level)
678 {
679     ARMCPU *cpu = opaque;
680     CPUARMState *env = &cpu->env;
681     CPUState *cs = CPU(cpu);
682     static const int mask[] = {
683         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
684         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
685         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
686         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
687     };
688 
689     if (level) {
690         env->irq_line_state |= mask[irq];
691     } else {
692         env->irq_line_state &= ~mask[irq];
693     }
694 
695     switch (irq) {
696     case ARM_CPU_VIRQ:
697         assert(arm_feature(env, ARM_FEATURE_EL2));
698         arm_cpu_update_virq(cpu);
699         break;
700     case ARM_CPU_VFIQ:
701         assert(arm_feature(env, ARM_FEATURE_EL2));
702         arm_cpu_update_vfiq(cpu);
703         break;
704     case ARM_CPU_IRQ:
705     case ARM_CPU_FIQ:
706         if (level) {
707             cpu_interrupt(cs, mask[irq]);
708         } else {
709             cpu_reset_interrupt(cs, mask[irq]);
710         }
711         break;
712     default:
713         g_assert_not_reached();
714     }
715 }
716 
717 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
718 {
719 #ifdef CONFIG_KVM
720     ARMCPU *cpu = opaque;
721     CPUARMState *env = &cpu->env;
722     CPUState *cs = CPU(cpu);
723     uint32_t linestate_bit;
724     int irq_id;
725 
726     switch (irq) {
727     case ARM_CPU_IRQ:
728         irq_id = KVM_ARM_IRQ_CPU_IRQ;
729         linestate_bit = CPU_INTERRUPT_HARD;
730         break;
731     case ARM_CPU_FIQ:
732         irq_id = KVM_ARM_IRQ_CPU_FIQ;
733         linestate_bit = CPU_INTERRUPT_FIQ;
734         break;
735     default:
736         g_assert_not_reached();
737     }
738 
739     if (level) {
740         env->irq_line_state |= linestate_bit;
741     } else {
742         env->irq_line_state &= ~linestate_bit;
743     }
744     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
745 #endif
746 }
747 
748 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
749 {
750     ARMCPU *cpu = ARM_CPU(cs);
751     CPUARMState *env = &cpu->env;
752 
753     cpu_synchronize_state(cs);
754     return arm_cpu_data_is_big_endian(env);
755 }
756 
757 #endif
758 
759 static int
760 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
761 {
762   return print_insn_arm(pc | 1, info);
763 }
764 
765 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
766 {
767     ARMCPU *ac = ARM_CPU(cpu);
768     CPUARMState *env = &ac->env;
769     bool sctlr_b;
770 
771     if (is_a64(env)) {
772         /* We might not be compiled with the A64 disassembler
773          * because it needs a C++ compiler. Leave print_insn
774          * unset in this case to use the caller default behaviour.
775          */
776 #if defined(CONFIG_ARM_A64_DIS)
777         info->print_insn = print_insn_arm_a64;
778 #endif
779         info->cap_arch = CS_ARCH_ARM64;
780         info->cap_insn_unit = 4;
781         info->cap_insn_split = 4;
782     } else {
783         int cap_mode;
784         if (env->thumb) {
785             info->print_insn = print_insn_thumb1;
786             info->cap_insn_unit = 2;
787             info->cap_insn_split = 4;
788             cap_mode = CS_MODE_THUMB;
789         } else {
790             info->print_insn = print_insn_arm;
791             info->cap_insn_unit = 4;
792             info->cap_insn_split = 4;
793             cap_mode = CS_MODE_ARM;
794         }
795         if (arm_feature(env, ARM_FEATURE_V8)) {
796             cap_mode |= CS_MODE_V8;
797         }
798         if (arm_feature(env, ARM_FEATURE_M)) {
799             cap_mode |= CS_MODE_MCLASS;
800         }
801         info->cap_arch = CS_ARCH_ARM;
802         info->cap_mode = cap_mode;
803     }
804 
805     sctlr_b = arm_sctlr_b(env);
806     if (bswap_code(sctlr_b)) {
807 #ifdef TARGET_WORDS_BIGENDIAN
808         info->endian = BFD_ENDIAN_LITTLE;
809 #else
810         info->endian = BFD_ENDIAN_BIG;
811 #endif
812     }
813     info->flags &= ~INSN_ARM_BE32;
814 #ifndef CONFIG_USER_ONLY
815     if (sctlr_b) {
816         info->flags |= INSN_ARM_BE32;
817     }
818 #endif
819 }
820 
821 #ifdef TARGET_AARCH64
822 
823 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
824 {
825     ARMCPU *cpu = ARM_CPU(cs);
826     CPUARMState *env = &cpu->env;
827     uint32_t psr = pstate_read(env);
828     int i;
829     int el = arm_current_el(env);
830     const char *ns_status;
831 
832     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
833     for (i = 0; i < 32; i++) {
834         if (i == 31) {
835             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
836         } else {
837             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
838                          (i + 2) % 3 ? " " : "\n");
839         }
840     }
841 
842     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
843         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
844     } else {
845         ns_status = "";
846     }
847     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
848                  psr,
849                  psr & PSTATE_N ? 'N' : '-',
850                  psr & PSTATE_Z ? 'Z' : '-',
851                  psr & PSTATE_C ? 'C' : '-',
852                  psr & PSTATE_V ? 'V' : '-',
853                  ns_status,
854                  el,
855                  psr & PSTATE_SP ? 'h' : 't');
856 
857     if (cpu_isar_feature(aa64_bti, cpu)) {
858         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
859     }
860     if (!(flags & CPU_DUMP_FPU)) {
861         qemu_fprintf(f, "\n");
862         return;
863     }
864     if (fp_exception_el(env, el) != 0) {
865         qemu_fprintf(f, "    FPU disabled\n");
866         return;
867     }
868     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
869                  vfp_get_fpcr(env), vfp_get_fpsr(env));
870 
871     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
872         int j, zcr_len = sve_zcr_len_for_el(env, el);
873 
874         for (i = 0; i <= FFR_PRED_NUM; i++) {
875             bool eol;
876             if (i == FFR_PRED_NUM) {
877                 qemu_fprintf(f, "FFR=");
878                 /* It's last, so end the line.  */
879                 eol = true;
880             } else {
881                 qemu_fprintf(f, "P%02d=", i);
882                 switch (zcr_len) {
883                 case 0:
884                     eol = i % 8 == 7;
885                     break;
886                 case 1:
887                     eol = i % 6 == 5;
888                     break;
889                 case 2:
890                 case 3:
891                     eol = i % 3 == 2;
892                     break;
893                 default:
894                     /* More than one quadword per predicate.  */
895                     eol = true;
896                     break;
897                 }
898             }
899             for (j = zcr_len / 4; j >= 0; j--) {
900                 int digits;
901                 if (j * 4 + 4 <= zcr_len + 1) {
902                     digits = 16;
903                 } else {
904                     digits = (zcr_len % 4 + 1) * 4;
905                 }
906                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
907                              env->vfp.pregs[i].p[j],
908                              j ? ":" : eol ? "\n" : " ");
909             }
910         }
911 
912         for (i = 0; i < 32; i++) {
913             if (zcr_len == 0) {
914                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
915                              i, env->vfp.zregs[i].d[1],
916                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
917             } else if (zcr_len == 1) {
918                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
919                              ":%016" PRIx64 ":%016" PRIx64 "\n",
920                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
921                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
922             } else {
923                 for (j = zcr_len; j >= 0; j--) {
924                     bool odd = (zcr_len - j) % 2 != 0;
925                     if (j == zcr_len) {
926                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
927                     } else if (!odd) {
928                         if (j > 0) {
929                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
930                         } else {
931                             qemu_fprintf(f, "     [%x]=", j);
932                         }
933                     }
934                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
935                                  env->vfp.zregs[i].d[j * 2 + 1],
936                                  env->vfp.zregs[i].d[j * 2],
937                                  odd || j == 0 ? "\n" : ":");
938                 }
939             }
940         }
941     } else {
942         for (i = 0; i < 32; i++) {
943             uint64_t *q = aa64_vfp_qreg(env, i);
944             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
945                          i, q[1], q[0], (i & 1 ? "\n" : " "));
946         }
947     }
948 }
949 
950 #else
951 
952 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
953 {
954     g_assert_not_reached();
955 }
956 
957 #endif
958 
959 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
960 {
961     ARMCPU *cpu = ARM_CPU(cs);
962     CPUARMState *env = &cpu->env;
963     int i;
964 
965     if (is_a64(env)) {
966         aarch64_cpu_dump_state(cs, f, flags);
967         return;
968     }
969 
970     for (i = 0; i < 16; i++) {
971         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
972         if ((i % 4) == 3) {
973             qemu_fprintf(f, "\n");
974         } else {
975             qemu_fprintf(f, " ");
976         }
977     }
978 
979     if (arm_feature(env, ARM_FEATURE_M)) {
980         uint32_t xpsr = xpsr_read(env);
981         const char *mode;
982         const char *ns_status = "";
983 
984         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
985             ns_status = env->v7m.secure ? "S " : "NS ";
986         }
987 
988         if (xpsr & XPSR_EXCP) {
989             mode = "handler";
990         } else {
991             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
992                 mode = "unpriv-thread";
993             } else {
994                 mode = "priv-thread";
995             }
996         }
997 
998         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
999                      xpsr,
1000                      xpsr & XPSR_N ? 'N' : '-',
1001                      xpsr & XPSR_Z ? 'Z' : '-',
1002                      xpsr & XPSR_C ? 'C' : '-',
1003                      xpsr & XPSR_V ? 'V' : '-',
1004                      xpsr & XPSR_T ? 'T' : 'A',
1005                      ns_status,
1006                      mode);
1007     } else {
1008         uint32_t psr = cpsr_read(env);
1009         const char *ns_status = "";
1010 
1011         if (arm_feature(env, ARM_FEATURE_EL3) &&
1012             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1013             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1014         }
1015 
1016         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1017                      psr,
1018                      psr & CPSR_N ? 'N' : '-',
1019                      psr & CPSR_Z ? 'Z' : '-',
1020                      psr & CPSR_C ? 'C' : '-',
1021                      psr & CPSR_V ? 'V' : '-',
1022                      psr & CPSR_T ? 'T' : 'A',
1023                      ns_status,
1024                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1025     }
1026 
1027     if (flags & CPU_DUMP_FPU) {
1028         int numvfpregs = 0;
1029         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1030             numvfpregs = 32;
1031         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1032             numvfpregs = 16;
1033         }
1034         for (i = 0; i < numvfpregs; i++) {
1035             uint64_t v = *aa32_vfp_dreg(env, i);
1036             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1037                          i * 2, (uint32_t)v,
1038                          i * 2 + 1, (uint32_t)(v >> 32),
1039                          i, v);
1040         }
1041         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1042         if (cpu_isar_feature(aa32_mve, cpu)) {
1043             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1044         }
1045     }
1046 }
1047 
1048 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1049 {
1050     uint32_t Aff1 = idx / clustersz;
1051     uint32_t Aff0 = idx % clustersz;
1052     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1053 }
1054 
1055 static void cpreg_hashtable_data_destroy(gpointer data)
1056 {
1057     /*
1058      * Destroy function for cpu->cp_regs hashtable data entries.
1059      * We must free the name string because it was g_strdup()ed in
1060      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1061      * from r->name because we know we definitely allocated it.
1062      */
1063     ARMCPRegInfo *r = data;
1064 
1065     g_free((void *)r->name);
1066     g_free(r);
1067 }
1068 
1069 static void arm_cpu_initfn(Object *obj)
1070 {
1071     ARMCPU *cpu = ARM_CPU(obj);
1072 
1073     cpu_set_cpustate_pointers(cpu);
1074     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1075                                          g_free, cpreg_hashtable_data_destroy);
1076 
1077     QLIST_INIT(&cpu->pre_el_change_hooks);
1078     QLIST_INIT(&cpu->el_change_hooks);
1079 
1080 #ifdef CONFIG_USER_ONLY
1081 # ifdef TARGET_AARCH64
1082     /*
1083      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1084      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1085      * our corresponding sve-default-vector-length cpu property.
1086      */
1087     cpu->sve_default_vq = 4;
1088 # endif
1089 #else
1090     /* Our inbound IRQ and FIQ lines */
1091     if (kvm_enabled()) {
1092         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1093          * the same interface as non-KVM CPUs.
1094          */
1095         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1096     } else {
1097         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1098     }
1099 
1100     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1101                        ARRAY_SIZE(cpu->gt_timer_outputs));
1102 
1103     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1104                              "gicv3-maintenance-interrupt", 1);
1105     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1106                              "pmu-interrupt", 1);
1107 #endif
1108 
1109     /* DTB consumers generally don't in fact care what the 'compatible'
1110      * string is, so always provide some string and trust that a hypothetical
1111      * picky DTB consumer will also provide a helpful error message.
1112      */
1113     cpu->dtb_compatible = "qemu,unknown";
1114     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1115     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1116 
1117     if (tcg_enabled() || hvf_enabled()) {
1118         cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
1119     }
1120 }
1121 
1122 static Property arm_cpu_gt_cntfrq_property =
1123             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1124                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1125 
1126 static Property arm_cpu_reset_cbar_property =
1127             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1128 
1129 static Property arm_cpu_reset_hivecs_property =
1130             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1131 
1132 static Property arm_cpu_rvbar_property =
1133             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1134 
1135 #ifndef CONFIG_USER_ONLY
1136 static Property arm_cpu_has_el2_property =
1137             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1138 
1139 static Property arm_cpu_has_el3_property =
1140             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1141 #endif
1142 
1143 static Property arm_cpu_cfgend_property =
1144             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1145 
1146 static Property arm_cpu_has_vfp_property =
1147             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1148 
1149 static Property arm_cpu_has_neon_property =
1150             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1151 
1152 static Property arm_cpu_has_dsp_property =
1153             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1154 
1155 static Property arm_cpu_has_mpu_property =
1156             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1157 
1158 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1159  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1160  * the right value for that particular CPU type, and we don't want
1161  * to override that with an incorrect constant value.
1162  */
1163 static Property arm_cpu_pmsav7_dregion_property =
1164             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1165                                            pmsav7_dregion,
1166                                            qdev_prop_uint32, uint32_t);
1167 
1168 static bool arm_get_pmu(Object *obj, Error **errp)
1169 {
1170     ARMCPU *cpu = ARM_CPU(obj);
1171 
1172     return cpu->has_pmu;
1173 }
1174 
1175 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1176 {
1177     ARMCPU *cpu = ARM_CPU(obj);
1178 
1179     if (value) {
1180         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1181             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1182             return;
1183         }
1184         set_feature(&cpu->env, ARM_FEATURE_PMU);
1185     } else {
1186         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1187     }
1188     cpu->has_pmu = value;
1189 }
1190 
1191 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1192 {
1193     /*
1194      * The exact approach to calculating guest ticks is:
1195      *
1196      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1197      *              NANOSECONDS_PER_SECOND);
1198      *
1199      * We don't do that. Rather we intentionally use integer division
1200      * truncation below and in the caller for the conversion of host monotonic
1201      * time to guest ticks to provide the exact inverse for the semantics of
1202      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1203      * it loses precision when representing frequencies where
1204      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1205      * provide an exact inverse leads to scheduling timers with negative
1206      * periods, which in turn leads to sticky behaviour in the guest.
1207      *
1208      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1209      * cannot become zero.
1210      */
1211     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1212       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1213 }
1214 
1215 void arm_cpu_post_init(Object *obj)
1216 {
1217     ARMCPU *cpu = ARM_CPU(obj);
1218 
1219     /* M profile implies PMSA. We have to do this here rather than
1220      * in realize with the other feature-implication checks because
1221      * we look at the PMSA bit to see if we should add some properties.
1222      */
1223     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1224         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1225     }
1226 
1227     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1228         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1229         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1230     }
1231 
1232     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1233         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1234     }
1235 
1236     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1237         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1238     }
1239 
1240 #ifndef CONFIG_USER_ONLY
1241     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1242         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1243          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1244          */
1245         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1246 
1247         object_property_add_link(obj, "secure-memory",
1248                                  TYPE_MEMORY_REGION,
1249                                  (Object **)&cpu->secure_memory,
1250                                  qdev_prop_allow_set_link_before_realize,
1251                                  OBJ_PROP_LINK_STRONG);
1252     }
1253 
1254     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1255         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1256     }
1257 #endif
1258 
1259     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1260         cpu->has_pmu = true;
1261         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1262     }
1263 
1264     /*
1265      * Allow user to turn off VFP and Neon support, but only for TCG --
1266      * KVM does not currently allow us to lie to the guest about its
1267      * ID/feature registers, so the guest always sees what the host has.
1268      */
1269     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1270         ? cpu_isar_feature(aa64_fp_simd, cpu)
1271         : cpu_isar_feature(aa32_vfp, cpu)) {
1272         cpu->has_vfp = true;
1273         if (!kvm_enabled()) {
1274             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1275         }
1276     }
1277 
1278     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1279         cpu->has_neon = true;
1280         if (!kvm_enabled()) {
1281             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1282         }
1283     }
1284 
1285     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1286         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1287         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1288     }
1289 
1290     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1291         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1292         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1293             qdev_property_add_static(DEVICE(obj),
1294                                      &arm_cpu_pmsav7_dregion_property);
1295         }
1296     }
1297 
1298     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1299         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1300                                  qdev_prop_allow_set_link_before_realize,
1301                                  OBJ_PROP_LINK_STRONG);
1302         /*
1303          * M profile: initial value of the Secure VTOR. We can't just use
1304          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1305          * the property to be set after realize.
1306          */
1307         object_property_add_uint32_ptr(obj, "init-svtor",
1308                                        &cpu->init_svtor,
1309                                        OBJ_PROP_FLAG_READWRITE);
1310     }
1311     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1312         /*
1313          * Initial value of the NS VTOR (for cores without the Security
1314          * extension, this is the only VTOR)
1315          */
1316         object_property_add_uint32_ptr(obj, "init-nsvtor",
1317                                        &cpu->init_nsvtor,
1318                                        OBJ_PROP_FLAG_READWRITE);
1319     }
1320 
1321     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1322     object_property_add_uint32_ptr(obj, "psci-conduit",
1323                                    &cpu->psci_conduit,
1324                                    OBJ_PROP_FLAG_READWRITE);
1325 
1326     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1327 
1328     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1329         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1330     }
1331 
1332     if (kvm_enabled()) {
1333         kvm_arm_add_vcpu_properties(obj);
1334     }
1335 
1336 #ifndef CONFIG_USER_ONLY
1337     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1338         cpu_isar_feature(aa64_mte, cpu)) {
1339         object_property_add_link(obj, "tag-memory",
1340                                  TYPE_MEMORY_REGION,
1341                                  (Object **)&cpu->tag_memory,
1342                                  qdev_prop_allow_set_link_before_realize,
1343                                  OBJ_PROP_LINK_STRONG);
1344 
1345         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1346             object_property_add_link(obj, "secure-tag-memory",
1347                                      TYPE_MEMORY_REGION,
1348                                      (Object **)&cpu->secure_tag_memory,
1349                                      qdev_prop_allow_set_link_before_realize,
1350                                      OBJ_PROP_LINK_STRONG);
1351         }
1352     }
1353 #endif
1354 }
1355 
1356 static void arm_cpu_finalizefn(Object *obj)
1357 {
1358     ARMCPU *cpu = ARM_CPU(obj);
1359     ARMELChangeHook *hook, *next;
1360 
1361     g_hash_table_destroy(cpu->cp_regs);
1362 
1363     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1364         QLIST_REMOVE(hook, node);
1365         g_free(hook);
1366     }
1367     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1368         QLIST_REMOVE(hook, node);
1369         g_free(hook);
1370     }
1371 #ifndef CONFIG_USER_ONLY
1372     if (cpu->pmu_timer) {
1373         timer_free(cpu->pmu_timer);
1374     }
1375 #endif
1376 }
1377 
1378 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1379 {
1380     Error *local_err = NULL;
1381 
1382     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1383         arm_cpu_sve_finalize(cpu, &local_err);
1384         if (local_err != NULL) {
1385             error_propagate(errp, local_err);
1386             return;
1387         }
1388 
1389         arm_cpu_pauth_finalize(cpu, &local_err);
1390         if (local_err != NULL) {
1391             error_propagate(errp, local_err);
1392             return;
1393         }
1394     }
1395 
1396     if (kvm_enabled()) {
1397         kvm_arm_steal_time_finalize(cpu, &local_err);
1398         if (local_err != NULL) {
1399             error_propagate(errp, local_err);
1400             return;
1401         }
1402     }
1403 }
1404 
1405 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1406 {
1407     CPUState *cs = CPU(dev);
1408     ARMCPU *cpu = ARM_CPU(dev);
1409     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1410     CPUARMState *env = &cpu->env;
1411     int pagebits;
1412     Error *local_err = NULL;
1413     bool no_aa32 = false;
1414 
1415     /* If we needed to query the host kernel for the CPU features
1416      * then it's possible that might have failed in the initfn, but
1417      * this is the first point where we can report it.
1418      */
1419     if (cpu->host_cpu_probe_failed) {
1420         if (!kvm_enabled() && !hvf_enabled()) {
1421             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1422         } else {
1423             error_setg(errp, "Failed to retrieve host CPU features");
1424         }
1425         return;
1426     }
1427 
1428 #ifndef CONFIG_USER_ONLY
1429     /* The NVIC and M-profile CPU are two halves of a single piece of
1430      * hardware; trying to use one without the other is a command line
1431      * error and will result in segfaults if not caught here.
1432      */
1433     if (arm_feature(env, ARM_FEATURE_M)) {
1434         if (!env->nvic) {
1435             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1436             return;
1437         }
1438     } else {
1439         if (env->nvic) {
1440             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1441             return;
1442         }
1443     }
1444 
1445     if (kvm_enabled()) {
1446         /*
1447          * Catch all the cases which might cause us to create more than one
1448          * address space for the CPU (otherwise we will assert() later in
1449          * cpu_address_space_init()).
1450          */
1451         if (arm_feature(env, ARM_FEATURE_M)) {
1452             error_setg(errp,
1453                        "Cannot enable KVM when using an M-profile guest CPU");
1454             return;
1455         }
1456         if (cpu->has_el3) {
1457             error_setg(errp,
1458                        "Cannot enable KVM when guest CPU has EL3 enabled");
1459             return;
1460         }
1461         if (cpu->tag_memory) {
1462             error_setg(errp,
1463                        "Cannot enable KVM when guest CPUs has MTE enabled");
1464             return;
1465         }
1466     }
1467 
1468     {
1469         uint64_t scale;
1470 
1471         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1472             if (!cpu->gt_cntfrq_hz) {
1473                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1474                            cpu->gt_cntfrq_hz);
1475                 return;
1476             }
1477             scale = gt_cntfrq_period_ns(cpu);
1478         } else {
1479             scale = GTIMER_SCALE;
1480         }
1481 
1482         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1483                                                arm_gt_ptimer_cb, cpu);
1484         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1485                                                arm_gt_vtimer_cb, cpu);
1486         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1487                                               arm_gt_htimer_cb, cpu);
1488         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1489                                               arm_gt_stimer_cb, cpu);
1490         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1491                                                   arm_gt_hvtimer_cb, cpu);
1492     }
1493 #endif
1494 
1495     cpu_exec_realizefn(cs, &local_err);
1496     if (local_err != NULL) {
1497         error_propagate(errp, local_err);
1498         return;
1499     }
1500 
1501     arm_cpu_finalize_features(cpu, &local_err);
1502     if (local_err != NULL) {
1503         error_propagate(errp, local_err);
1504         return;
1505     }
1506 
1507     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1508         cpu->has_vfp != cpu->has_neon) {
1509         /*
1510          * This is an architectural requirement for AArch64; AArch32 is
1511          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1512          */
1513         error_setg(errp,
1514                    "AArch64 CPUs must have both VFP and Neon or neither");
1515         return;
1516     }
1517 
1518     if (!cpu->has_vfp) {
1519         uint64_t t;
1520         uint32_t u;
1521 
1522         t = cpu->isar.id_aa64isar1;
1523         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1524         cpu->isar.id_aa64isar1 = t;
1525 
1526         t = cpu->isar.id_aa64pfr0;
1527         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1528         cpu->isar.id_aa64pfr0 = t;
1529 
1530         u = cpu->isar.id_isar6;
1531         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1532         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1533         cpu->isar.id_isar6 = u;
1534 
1535         u = cpu->isar.mvfr0;
1536         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1537         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1538         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1539         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1540         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1541         if (!arm_feature(env, ARM_FEATURE_M)) {
1542             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1543             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1544         }
1545         cpu->isar.mvfr0 = u;
1546 
1547         u = cpu->isar.mvfr1;
1548         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1549         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1550         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1551         if (arm_feature(env, ARM_FEATURE_M)) {
1552             u = FIELD_DP32(u, MVFR1, FP16, 0);
1553         }
1554         cpu->isar.mvfr1 = u;
1555 
1556         u = cpu->isar.mvfr2;
1557         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1558         cpu->isar.mvfr2 = u;
1559     }
1560 
1561     if (!cpu->has_neon) {
1562         uint64_t t;
1563         uint32_t u;
1564 
1565         unset_feature(env, ARM_FEATURE_NEON);
1566 
1567         t = cpu->isar.id_aa64isar0;
1568         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1569         cpu->isar.id_aa64isar0 = t;
1570 
1571         t = cpu->isar.id_aa64isar1;
1572         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1573         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1574         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1575         cpu->isar.id_aa64isar1 = t;
1576 
1577         t = cpu->isar.id_aa64pfr0;
1578         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1579         cpu->isar.id_aa64pfr0 = t;
1580 
1581         u = cpu->isar.id_isar5;
1582         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1583         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1584         cpu->isar.id_isar5 = u;
1585 
1586         u = cpu->isar.id_isar6;
1587         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1588         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1589         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1590         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1591         cpu->isar.id_isar6 = u;
1592 
1593         if (!arm_feature(env, ARM_FEATURE_M)) {
1594             u = cpu->isar.mvfr1;
1595             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1596             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1597             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1598             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1599             cpu->isar.mvfr1 = u;
1600 
1601             u = cpu->isar.mvfr2;
1602             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1603             cpu->isar.mvfr2 = u;
1604         }
1605     }
1606 
1607     if (!cpu->has_neon && !cpu->has_vfp) {
1608         uint64_t t;
1609         uint32_t u;
1610 
1611         t = cpu->isar.id_aa64isar0;
1612         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1613         cpu->isar.id_aa64isar0 = t;
1614 
1615         t = cpu->isar.id_aa64isar1;
1616         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1617         cpu->isar.id_aa64isar1 = t;
1618 
1619         u = cpu->isar.mvfr0;
1620         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1621         cpu->isar.mvfr0 = u;
1622 
1623         /* Despite the name, this field covers both VFP and Neon */
1624         u = cpu->isar.mvfr1;
1625         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1626         cpu->isar.mvfr1 = u;
1627     }
1628 
1629     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1630         uint32_t u;
1631 
1632         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1633 
1634         u = cpu->isar.id_isar1;
1635         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1636         cpu->isar.id_isar1 = u;
1637 
1638         u = cpu->isar.id_isar2;
1639         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1640         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1641         cpu->isar.id_isar2 = u;
1642 
1643         u = cpu->isar.id_isar3;
1644         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1645         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1646         cpu->isar.id_isar3 = u;
1647     }
1648 
1649     /* Some features automatically imply others: */
1650     if (arm_feature(env, ARM_FEATURE_V8)) {
1651         if (arm_feature(env, ARM_FEATURE_M)) {
1652             set_feature(env, ARM_FEATURE_V7);
1653         } else {
1654             set_feature(env, ARM_FEATURE_V7VE);
1655         }
1656     }
1657 
1658     /*
1659      * There exist AArch64 cpus without AArch32 support.  When KVM
1660      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1661      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1662      * As a general principle, we also do not make ID register
1663      * consistency checks anywhere unless using TCG, because only
1664      * for TCG would a consistency-check failure be a QEMU bug.
1665      */
1666     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1667         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1668     }
1669 
1670     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1671         /* v7 Virtualization Extensions. In real hardware this implies
1672          * EL2 and also the presence of the Security Extensions.
1673          * For QEMU, for backwards-compatibility we implement some
1674          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1675          * include the various other features that V7VE implies.
1676          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1677          * Security Extensions is ARM_FEATURE_EL3.
1678          */
1679         assert(!tcg_enabled() || no_aa32 ||
1680                cpu_isar_feature(aa32_arm_div, cpu));
1681         set_feature(env, ARM_FEATURE_LPAE);
1682         set_feature(env, ARM_FEATURE_V7);
1683     }
1684     if (arm_feature(env, ARM_FEATURE_V7)) {
1685         set_feature(env, ARM_FEATURE_VAPA);
1686         set_feature(env, ARM_FEATURE_THUMB2);
1687         set_feature(env, ARM_FEATURE_MPIDR);
1688         if (!arm_feature(env, ARM_FEATURE_M)) {
1689             set_feature(env, ARM_FEATURE_V6K);
1690         } else {
1691             set_feature(env, ARM_FEATURE_V6);
1692         }
1693 
1694         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1695          * non-EL3 configs. This is needed by some legacy boards.
1696          */
1697         set_feature(env, ARM_FEATURE_VBAR);
1698     }
1699     if (arm_feature(env, ARM_FEATURE_V6K)) {
1700         set_feature(env, ARM_FEATURE_V6);
1701         set_feature(env, ARM_FEATURE_MVFR);
1702     }
1703     if (arm_feature(env, ARM_FEATURE_V6)) {
1704         set_feature(env, ARM_FEATURE_V5);
1705         if (!arm_feature(env, ARM_FEATURE_M)) {
1706             assert(!tcg_enabled() || no_aa32 ||
1707                    cpu_isar_feature(aa32_jazelle, cpu));
1708             set_feature(env, ARM_FEATURE_AUXCR);
1709         }
1710     }
1711     if (arm_feature(env, ARM_FEATURE_V5)) {
1712         set_feature(env, ARM_FEATURE_V4T);
1713     }
1714     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1715         set_feature(env, ARM_FEATURE_V7MP);
1716     }
1717     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1718         set_feature(env, ARM_FEATURE_CBAR);
1719     }
1720     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1721         !arm_feature(env, ARM_FEATURE_M)) {
1722         set_feature(env, ARM_FEATURE_THUMB_DSP);
1723     }
1724 
1725     /*
1726      * We rely on no XScale CPU having VFP so we can use the same bits in the
1727      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1728      */
1729     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1730            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1731            !arm_feature(env, ARM_FEATURE_XSCALE));
1732 
1733     if (arm_feature(env, ARM_FEATURE_V7) &&
1734         !arm_feature(env, ARM_FEATURE_M) &&
1735         !arm_feature(env, ARM_FEATURE_PMSA)) {
1736         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1737          * can use 4K pages.
1738          */
1739         pagebits = 12;
1740     } else {
1741         /* For CPUs which might have tiny 1K pages, or which have an
1742          * MPU and might have small region sizes, stick with 1K pages.
1743          */
1744         pagebits = 10;
1745     }
1746     if (!set_preferred_target_page_bits(pagebits)) {
1747         /* This can only ever happen for hotplugging a CPU, or if
1748          * the board code incorrectly creates a CPU which it has
1749          * promised via minimum_page_size that it will not.
1750          */
1751         error_setg(errp, "This CPU requires a smaller page size than the "
1752                    "system is using");
1753         return;
1754     }
1755 
1756     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1757      * We don't support setting cluster ID ([16..23]) (known as Aff2
1758      * in later ARM ARM versions), or any of the higher affinity level fields,
1759      * so these bits always RAZ.
1760      */
1761     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1762         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1763                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1764     }
1765 
1766     if (cpu->reset_hivecs) {
1767             cpu->reset_sctlr |= (1 << 13);
1768     }
1769 
1770     if (cpu->cfgend) {
1771         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1772             cpu->reset_sctlr |= SCTLR_EE;
1773         } else {
1774             cpu->reset_sctlr |= SCTLR_B;
1775         }
1776     }
1777 
1778     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1779         /* If the has_el3 CPU property is disabled then we need to disable the
1780          * feature.
1781          */
1782         unset_feature(env, ARM_FEATURE_EL3);
1783 
1784         /* Disable the security extension feature bits in the processor feature
1785          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1786          */
1787         cpu->isar.id_pfr1 &= ~0xf0;
1788         cpu->isar.id_aa64pfr0 &= ~0xf000;
1789     }
1790 
1791     if (!cpu->has_el2) {
1792         unset_feature(env, ARM_FEATURE_EL2);
1793     }
1794 
1795     if (!cpu->has_pmu) {
1796         unset_feature(env, ARM_FEATURE_PMU);
1797     }
1798     if (arm_feature(env, ARM_FEATURE_PMU)) {
1799         pmu_init(cpu);
1800 
1801         if (!kvm_enabled()) {
1802             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1803             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1804         }
1805 
1806 #ifndef CONFIG_USER_ONLY
1807         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1808                 cpu);
1809 #endif
1810     } else {
1811         cpu->isar.id_aa64dfr0 =
1812             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1813         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1814         cpu->pmceid0 = 0;
1815         cpu->pmceid1 = 0;
1816     }
1817 
1818     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1819         /* Disable the hypervisor feature bits in the processor feature
1820          * registers if we don't have EL2. These are id_pfr1[15:12] and
1821          * id_aa64pfr0_el1[11:8].
1822          */
1823         cpu->isar.id_aa64pfr0 &= ~0xf00;
1824         cpu->isar.id_pfr1 &= ~0xf000;
1825     }
1826 
1827 #ifndef CONFIG_USER_ONLY
1828     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1829         /*
1830          * Disable the MTE feature bits if we do not have tag-memory
1831          * provided by the machine.
1832          */
1833         cpu->isar.id_aa64pfr1 =
1834             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1835     }
1836 #endif
1837 
1838     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1839      * to false or by setting pmsav7-dregion to 0.
1840      */
1841     if (!cpu->has_mpu) {
1842         cpu->pmsav7_dregion = 0;
1843     }
1844     if (cpu->pmsav7_dregion == 0) {
1845         cpu->has_mpu = false;
1846     }
1847 
1848     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1849         arm_feature(env, ARM_FEATURE_V7)) {
1850         uint32_t nr = cpu->pmsav7_dregion;
1851 
1852         if (nr > 0xff) {
1853             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1854             return;
1855         }
1856 
1857         if (nr) {
1858             if (arm_feature(env, ARM_FEATURE_V8)) {
1859                 /* PMSAv8 */
1860                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1861                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1862                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1863                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1864                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1865                 }
1866             } else {
1867                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1868                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1869                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1870             }
1871         }
1872     }
1873 
1874     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1875         uint32_t nr = cpu->sau_sregion;
1876 
1877         if (nr > 0xff) {
1878             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1879             return;
1880         }
1881 
1882         if (nr) {
1883             env->sau.rbar = g_new0(uint32_t, nr);
1884             env->sau.rlar = g_new0(uint32_t, nr);
1885         }
1886     }
1887 
1888     if (arm_feature(env, ARM_FEATURE_EL3)) {
1889         set_feature(env, ARM_FEATURE_VBAR);
1890     }
1891 
1892     register_cp_regs_for_features(cpu);
1893     arm_cpu_register_gdb_regs_for_features(cpu);
1894 
1895     init_cpreg_list(cpu);
1896 
1897 #ifndef CONFIG_USER_ONLY
1898     MachineState *ms = MACHINE(qdev_get_machine());
1899     unsigned int smp_cpus = ms->smp.cpus;
1900     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1901 
1902     /*
1903      * We must set cs->num_ases to the final value before
1904      * the first call to cpu_address_space_init.
1905      */
1906     if (cpu->tag_memory != NULL) {
1907         cs->num_ases = 3 + has_secure;
1908     } else {
1909         cs->num_ases = 1 + has_secure;
1910     }
1911 
1912     if (has_secure) {
1913         if (!cpu->secure_memory) {
1914             cpu->secure_memory = cs->memory;
1915         }
1916         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1917                                cpu->secure_memory);
1918     }
1919 
1920     if (cpu->tag_memory != NULL) {
1921         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1922                                cpu->tag_memory);
1923         if (has_secure) {
1924             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1925                                    cpu->secure_tag_memory);
1926         }
1927     }
1928 
1929     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1930 
1931     /* No core_count specified, default to smp_cpus. */
1932     if (cpu->core_count == -1) {
1933         cpu->core_count = smp_cpus;
1934     }
1935 #endif
1936 
1937     if (tcg_enabled()) {
1938         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1939 
1940         /*
1941          * We only support DCZ blocklen that fits on one page.
1942          *
1943          * Architectually this is always true.  However TARGET_PAGE_SIZE
1944          * is variable and, for compatibility with -machine virt-2.7,
1945          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1946          * But even then, while the largest architectural DCZ blocklen
1947          * is 2KiB, no cpu actually uses such a large blocklen.
1948          */
1949         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1950 
1951         /*
1952          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1953          * both nibbles of each byte storing tag data may be written at once.
1954          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1955          */
1956         if (cpu_isar_feature(aa64_mte, cpu)) {
1957             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1958         }
1959     }
1960 
1961     qemu_init_vcpu(cs);
1962     cpu_reset(cs);
1963 
1964     acc->parent_realize(dev, errp);
1965 }
1966 
1967 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1968 {
1969     ObjectClass *oc;
1970     char *typename;
1971     char **cpuname;
1972     const char *cpunamestr;
1973 
1974     cpuname = g_strsplit(cpu_model, ",", 1);
1975     cpunamestr = cpuname[0];
1976 #ifdef CONFIG_USER_ONLY
1977     /* For backwards compatibility usermode emulation allows "-cpu any",
1978      * which has the same semantics as "-cpu max".
1979      */
1980     if (!strcmp(cpunamestr, "any")) {
1981         cpunamestr = "max";
1982     }
1983 #endif
1984     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1985     oc = object_class_by_name(typename);
1986     g_strfreev(cpuname);
1987     g_free(typename);
1988     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1989         object_class_is_abstract(oc)) {
1990         return NULL;
1991     }
1992     return oc;
1993 }
1994 
1995 static Property arm_cpu_properties[] = {
1996     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1997     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1998                         mp_affinity, ARM64_AFFINITY_INVALID),
1999     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2000     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2001     DEFINE_PROP_END_OF_LIST()
2002 };
2003 
2004 static gchar *arm_gdb_arch_name(CPUState *cs)
2005 {
2006     ARMCPU *cpu = ARM_CPU(cs);
2007     CPUARMState *env = &cpu->env;
2008 
2009     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2010         return g_strdup("iwmmxt");
2011     }
2012     return g_strdup("arm");
2013 }
2014 
2015 #ifndef CONFIG_USER_ONLY
2016 #include "hw/core/sysemu-cpu-ops.h"
2017 
2018 static const struct SysemuCPUOps arm_sysemu_ops = {
2019     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2020     .asidx_from_attrs = arm_asidx_from_attrs,
2021     .write_elf32_note = arm_cpu_write_elf32_note,
2022     .write_elf64_note = arm_cpu_write_elf64_note,
2023     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2024     .legacy_vmsd = &vmstate_arm_cpu,
2025 };
2026 #endif
2027 
2028 #ifdef CONFIG_TCG
2029 static const struct TCGCPUOps arm_tcg_ops = {
2030     .initialize = arm_translate_init,
2031     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2032     .debug_excp_handler = arm_debug_excp_handler,
2033 
2034 #ifdef CONFIG_USER_ONLY
2035     .record_sigsegv = arm_cpu_record_sigsegv,
2036     .record_sigbus = arm_cpu_record_sigbus,
2037 #else
2038     .tlb_fill = arm_cpu_tlb_fill,
2039     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2040     .do_interrupt = arm_cpu_do_interrupt,
2041     .do_transaction_failed = arm_cpu_do_transaction_failed,
2042     .do_unaligned_access = arm_cpu_do_unaligned_access,
2043     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2044     .debug_check_watchpoint = arm_debug_check_watchpoint,
2045     .debug_check_breakpoint = arm_debug_check_breakpoint,
2046 #endif /* !CONFIG_USER_ONLY */
2047 };
2048 #endif /* CONFIG_TCG */
2049 
2050 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2051 {
2052     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2053     CPUClass *cc = CPU_CLASS(acc);
2054     DeviceClass *dc = DEVICE_CLASS(oc);
2055 
2056     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2057                                     &acc->parent_realize);
2058 
2059     device_class_set_props(dc, arm_cpu_properties);
2060     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2061 
2062     cc->class_by_name = arm_cpu_class_by_name;
2063     cc->has_work = arm_cpu_has_work;
2064     cc->dump_state = arm_cpu_dump_state;
2065     cc->set_pc = arm_cpu_set_pc;
2066     cc->gdb_read_register = arm_cpu_gdb_read_register;
2067     cc->gdb_write_register = arm_cpu_gdb_write_register;
2068 #ifndef CONFIG_USER_ONLY
2069     cc->sysemu_ops = &arm_sysemu_ops;
2070 #endif
2071     cc->gdb_num_core_regs = 26;
2072     cc->gdb_core_xml_file = "arm-core.xml";
2073     cc->gdb_arch_name = arm_gdb_arch_name;
2074     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2075     cc->gdb_stop_before_watchpoint = true;
2076     cc->disas_set_info = arm_disas_set_info;
2077 
2078 #ifdef CONFIG_TCG
2079     cc->tcg_ops = &arm_tcg_ops;
2080 #endif /* CONFIG_TCG */
2081 }
2082 
2083 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2084 static void arm_host_initfn(Object *obj)
2085 {
2086     ARMCPU *cpu = ARM_CPU(obj);
2087 
2088 #ifdef CONFIG_KVM
2089     kvm_arm_set_cpu_features_from_host(cpu);
2090     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2091         aarch64_add_sve_properties(obj);
2092         aarch64_add_pauth_properties(obj);
2093     }
2094 #else
2095     hvf_arm_set_cpu_features_from_host(cpu);
2096 #endif
2097     arm_cpu_post_init(obj);
2098 }
2099 
2100 static const TypeInfo host_arm_cpu_type_info = {
2101     .name = TYPE_ARM_HOST_CPU,
2102     .parent = TYPE_AARCH64_CPU,
2103     .instance_init = arm_host_initfn,
2104 };
2105 
2106 #endif
2107 
2108 static void arm_cpu_instance_init(Object *obj)
2109 {
2110     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2111 
2112     acc->info->initfn(obj);
2113     arm_cpu_post_init(obj);
2114 }
2115 
2116 static void cpu_register_class_init(ObjectClass *oc, void *data)
2117 {
2118     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2119 
2120     acc->info = data;
2121 }
2122 
2123 void arm_cpu_register(const ARMCPUInfo *info)
2124 {
2125     TypeInfo type_info = {
2126         .parent = TYPE_ARM_CPU,
2127         .instance_size = sizeof(ARMCPU),
2128         .instance_align = __alignof__(ARMCPU),
2129         .instance_init = arm_cpu_instance_init,
2130         .class_size = sizeof(ARMCPUClass),
2131         .class_init = info->class_init ?: cpu_register_class_init,
2132         .class_data = (void *)info,
2133     };
2134 
2135     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2136     type_register(&type_info);
2137     g_free((void *)type_info.name);
2138 }
2139 
2140 static const TypeInfo arm_cpu_type_info = {
2141     .name = TYPE_ARM_CPU,
2142     .parent = TYPE_CPU,
2143     .instance_size = sizeof(ARMCPU),
2144     .instance_align = __alignof__(ARMCPU),
2145     .instance_init = arm_cpu_initfn,
2146     .instance_finalize = arm_cpu_finalizefn,
2147     .abstract = true,
2148     .class_size = sizeof(ARMCPUClass),
2149     .class_init = arm_cpu_class_init,
2150 };
2151 
2152 static void arm_cpu_register_types(void)
2153 {
2154     type_register_static(&arm_cpu_type_info);
2155 
2156 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2157     type_register_static(&host_arm_cpu_type_info);
2158 #endif
2159 }
2160 
2161 type_init(arm_cpu_register_types)
2162