1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu/timer.h" 24 #include "qemu-common.h" 25 #include "target/arm/idau.h" 26 #include "qemu/module.h" 27 #include "qapi/error.h" 28 #include "qapi/visitor.h" 29 #include "cpu.h" 30 #ifdef CONFIG_TCG 31 #include "hw/core/tcg-cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 #include "internals.h" 34 #include "exec/exec-all.h" 35 #include "hw/qdev-properties.h" 36 #if !defined(CONFIG_USER_ONLY) 37 #include "hw/loader.h" 38 #include "hw/boards.h" 39 #endif 40 #include "sysemu/tcg.h" 41 #include "sysemu/hw_accel.h" 42 #include "kvm_arm.h" 43 #include "hvf_arm.h" 44 #include "disas/capstone.h" 45 #include "fpu/softfloat.h" 46 47 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 48 { 49 ARMCPU *cpu = ARM_CPU(cs); 50 CPUARMState *env = &cpu->env; 51 52 if (is_a64(env)) { 53 env->pc = value; 54 env->thumb = 0; 55 } else { 56 env->regs[15] = value & ~1; 57 env->thumb = value & 1; 58 } 59 } 60 61 #ifdef CONFIG_TCG 62 void arm_cpu_synchronize_from_tb(CPUState *cs, 63 const TranslationBlock *tb) 64 { 65 ARMCPU *cpu = ARM_CPU(cs); 66 CPUARMState *env = &cpu->env; 67 68 /* 69 * It's OK to look at env for the current mode here, because it's 70 * never possible for an AArch64 TB to chain to an AArch32 TB. 71 */ 72 if (is_a64(env)) { 73 env->pc = tb->pc; 74 } else { 75 env->regs[15] = tb->pc; 76 } 77 } 78 #endif /* CONFIG_TCG */ 79 80 static bool arm_cpu_has_work(CPUState *cs) 81 { 82 ARMCPU *cpu = ARM_CPU(cs); 83 84 return (cpu->power_state != PSCI_OFF) 85 && cs->interrupt_request & 86 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 87 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 88 | CPU_INTERRUPT_EXITTB); 89 } 90 91 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 92 void *opaque) 93 { 94 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 95 96 entry->hook = hook; 97 entry->opaque = opaque; 98 99 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 100 } 101 102 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 103 void *opaque) 104 { 105 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 106 107 entry->hook = hook; 108 entry->opaque = opaque; 109 110 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 111 } 112 113 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 114 { 115 /* Reset a single ARMCPRegInfo register */ 116 ARMCPRegInfo *ri = value; 117 ARMCPU *cpu = opaque; 118 119 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 120 return; 121 } 122 123 if (ri->resetfn) { 124 ri->resetfn(&cpu->env, ri); 125 return; 126 } 127 128 /* A zero offset is never possible as it would be regs[0] 129 * so we use it to indicate that reset is being handled elsewhere. 130 * This is basically only used for fields in non-core coprocessors 131 * (like the pxa2xx ones). 132 */ 133 if (!ri->fieldoffset) { 134 return; 135 } 136 137 if (cpreg_field_is_64bit(ri)) { 138 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 139 } else { 140 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 141 } 142 } 143 144 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 145 { 146 /* Purely an assertion check: we've already done reset once, 147 * so now check that running the reset for the cpreg doesn't 148 * change its value. This traps bugs where two different cpregs 149 * both try to reset the same state field but to different values. 150 */ 151 ARMCPRegInfo *ri = value; 152 ARMCPU *cpu = opaque; 153 uint64_t oldvalue, newvalue; 154 155 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 156 return; 157 } 158 159 oldvalue = read_raw_cp_reg(&cpu->env, ri); 160 cp_reg_reset(key, value, opaque); 161 newvalue = read_raw_cp_reg(&cpu->env, ri); 162 assert(oldvalue == newvalue); 163 } 164 165 static void arm_cpu_reset(DeviceState *dev) 166 { 167 CPUState *s = CPU(dev); 168 ARMCPU *cpu = ARM_CPU(s); 169 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 170 CPUARMState *env = &cpu->env; 171 172 acc->parent_reset(dev); 173 174 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 175 176 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 177 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 178 179 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 180 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 181 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 182 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 183 184 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 185 186 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 187 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 188 } 189 190 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 191 /* 64 bit CPUs always start in 64 bit mode */ 192 env->aarch64 = 1; 193 #if defined(CONFIG_USER_ONLY) 194 env->pstate = PSTATE_MODE_EL0t; 195 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 196 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 197 /* Enable all PAC keys. */ 198 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 199 SCTLR_EnDA | SCTLR_EnDB); 200 /* and to the FP/Neon instructions */ 201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 202 /* and to the SVE instructions */ 203 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 204 /* with reasonable vector length */ 205 if (cpu_isar_feature(aa64_sve, cpu)) { 206 env->vfp.zcr_el[1] = 207 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1); 208 } 209 /* 210 * Enable TBI0 but not TBI1. 211 * Note that this must match useronly_clean_ptr. 212 */ 213 env->cp15.tcr_el[1].raw_tcr = (1ULL << 37); 214 215 /* Enable MTE */ 216 if (cpu_isar_feature(aa64_mte, cpu)) { 217 /* Enable tag access, but leave TCF0 as No Effect (0). */ 218 env->cp15.sctlr_el[1] |= SCTLR_ATA0; 219 /* 220 * Exclude all tags, so that tag 0 is always used. 221 * This corresponds to Linux current->thread.gcr_incl = 0. 222 * 223 * Set RRND, so that helper_irg() will generate a seed later. 224 * Here in cpu_reset(), the crypto subsystem has not yet been 225 * initialized. 226 */ 227 env->cp15.gcr_el1 = 0x1ffff; 228 } 229 #else 230 /* Reset into the highest available EL */ 231 if (arm_feature(env, ARM_FEATURE_EL3)) { 232 env->pstate = PSTATE_MODE_EL3h; 233 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 234 env->pstate = PSTATE_MODE_EL2h; 235 } else { 236 env->pstate = PSTATE_MODE_EL1h; 237 } 238 env->pc = cpu->rvbar; 239 #endif 240 } else { 241 #if defined(CONFIG_USER_ONLY) 242 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 243 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 244 #endif 245 } 246 247 #if defined(CONFIG_USER_ONLY) 248 env->uncached_cpsr = ARM_CPU_MODE_USR; 249 /* For user mode we must enable access to coprocessors */ 250 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 251 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 252 env->cp15.c15_cpar = 3; 253 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 254 env->cp15.c15_cpar = 1; 255 } 256 #else 257 258 /* 259 * If the highest available EL is EL2, AArch32 will start in Hyp 260 * mode; otherwise it starts in SVC. Note that if we start in 261 * AArch64 then these values in the uncached_cpsr will be ignored. 262 */ 263 if (arm_feature(env, ARM_FEATURE_EL2) && 264 !arm_feature(env, ARM_FEATURE_EL3)) { 265 env->uncached_cpsr = ARM_CPU_MODE_HYP; 266 } else { 267 env->uncached_cpsr = ARM_CPU_MODE_SVC; 268 } 269 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 270 271 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 272 * executing as AArch32 then check if highvecs are enabled and 273 * adjust the PC accordingly. 274 */ 275 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 276 env->regs[15] = 0xFFFF0000; 277 } 278 279 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 280 #endif 281 282 if (arm_feature(env, ARM_FEATURE_M)) { 283 #ifndef CONFIG_USER_ONLY 284 uint32_t initial_msp; /* Loaded from 0x0 */ 285 uint32_t initial_pc; /* Loaded from 0x4 */ 286 uint8_t *rom; 287 uint32_t vecbase; 288 #endif 289 290 if (cpu_isar_feature(aa32_lob, cpu)) { 291 /* 292 * LTPSIZE is constant 4 if MVE not implemented, and resets 293 * to an UNKNOWN value if MVE is implemented. We choose to 294 * always reset to 4. 295 */ 296 env->v7m.ltpsize = 4; 297 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 298 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 299 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 300 } 301 302 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 303 env->v7m.secure = true; 304 } else { 305 /* This bit resets to 0 if security is supported, but 1 if 306 * it is not. The bit is not present in v7M, but we set it 307 * here so we can avoid having to make checks on it conditional 308 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 309 */ 310 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 311 /* 312 * Set NSACR to indicate "NS access permitted to everything"; 313 * this avoids having to have all the tests of it being 314 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 315 * v8.1M the guest-visible value of NSACR in a CPU without the 316 * Security Extension is 0xcff. 317 */ 318 env->v7m.nsacr = 0xcff; 319 } 320 321 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 322 * that it resets to 1, so QEMU always does that rather than making 323 * it dependent on CPU model. In v8M it is RES1. 324 */ 325 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 326 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 327 if (arm_feature(env, ARM_FEATURE_V8)) { 328 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 329 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 330 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 331 } 332 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 333 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 334 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 335 } 336 337 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 338 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 339 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 340 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 341 } 342 343 #ifndef CONFIG_USER_ONLY 344 /* Unlike A/R profile, M profile defines the reset LR value */ 345 env->regs[14] = 0xffffffff; 346 347 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 348 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; 349 350 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 351 vecbase = env->v7m.vecbase[env->v7m.secure]; 352 rom = rom_ptr_for_as(s->as, vecbase, 8); 353 if (rom) { 354 /* Address zero is covered by ROM which hasn't yet been 355 * copied into physical memory. 356 */ 357 initial_msp = ldl_p(rom); 358 initial_pc = ldl_p(rom + 4); 359 } else { 360 /* Address zero not covered by a ROM blob, or the ROM blob 361 * is in non-modifiable memory and this is a second reset after 362 * it got copied into memory. In the latter case, rom_ptr 363 * will return a NULL pointer and we should use ldl_phys instead. 364 */ 365 initial_msp = ldl_phys(s->as, vecbase); 366 initial_pc = ldl_phys(s->as, vecbase + 4); 367 } 368 369 env->regs[13] = initial_msp & 0xFFFFFFFC; 370 env->regs[15] = initial_pc & ~1; 371 env->thumb = initial_pc & 1; 372 #else 373 /* 374 * For user mode we run non-secure and with access to the FPU. 375 * The FPU context is active (ie does not need further setup) 376 * and is owned by non-secure. 377 */ 378 env->v7m.secure = false; 379 env->v7m.nsacr = 0xcff; 380 env->v7m.cpacr[M_REG_NS] = 0xf0ffff; 381 env->v7m.fpccr[M_REG_S] &= 382 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); 383 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 384 #endif 385 } 386 387 /* M profile requires that reset clears the exclusive monitor; 388 * A profile does not, but clearing it makes more sense than having it 389 * set with an exclusive access on address zero. 390 */ 391 arm_clear_exclusive(env); 392 393 if (arm_feature(env, ARM_FEATURE_PMSA)) { 394 if (cpu->pmsav7_dregion > 0) { 395 if (arm_feature(env, ARM_FEATURE_V8)) { 396 memset(env->pmsav8.rbar[M_REG_NS], 0, 397 sizeof(*env->pmsav8.rbar[M_REG_NS]) 398 * cpu->pmsav7_dregion); 399 memset(env->pmsav8.rlar[M_REG_NS], 0, 400 sizeof(*env->pmsav8.rlar[M_REG_NS]) 401 * cpu->pmsav7_dregion); 402 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 403 memset(env->pmsav8.rbar[M_REG_S], 0, 404 sizeof(*env->pmsav8.rbar[M_REG_S]) 405 * cpu->pmsav7_dregion); 406 memset(env->pmsav8.rlar[M_REG_S], 0, 407 sizeof(*env->pmsav8.rlar[M_REG_S]) 408 * cpu->pmsav7_dregion); 409 } 410 } else if (arm_feature(env, ARM_FEATURE_V7)) { 411 memset(env->pmsav7.drbar, 0, 412 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 413 memset(env->pmsav7.drsr, 0, 414 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 415 memset(env->pmsav7.dracr, 0, 416 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 417 } 418 } 419 env->pmsav7.rnr[M_REG_NS] = 0; 420 env->pmsav7.rnr[M_REG_S] = 0; 421 env->pmsav8.mair0[M_REG_NS] = 0; 422 env->pmsav8.mair0[M_REG_S] = 0; 423 env->pmsav8.mair1[M_REG_NS] = 0; 424 env->pmsav8.mair1[M_REG_S] = 0; 425 } 426 427 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 428 if (cpu->sau_sregion > 0) { 429 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 430 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 431 } 432 env->sau.rnr = 0; 433 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 434 * the Cortex-M33 does. 435 */ 436 env->sau.ctrl = 0; 437 } 438 439 set_flush_to_zero(1, &env->vfp.standard_fp_status); 440 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 441 set_default_nan_mode(1, &env->vfp.standard_fp_status); 442 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 443 set_float_detect_tininess(float_tininess_before_rounding, 444 &env->vfp.fp_status); 445 set_float_detect_tininess(float_tininess_before_rounding, 446 &env->vfp.standard_fp_status); 447 set_float_detect_tininess(float_tininess_before_rounding, 448 &env->vfp.fp_status_f16); 449 set_float_detect_tininess(float_tininess_before_rounding, 450 &env->vfp.standard_fp_status_f16); 451 #ifndef CONFIG_USER_ONLY 452 if (kvm_enabled()) { 453 kvm_arm_reset_vcpu(cpu); 454 } 455 #endif 456 457 hw_breakpoint_update_all(cpu); 458 hw_watchpoint_update_all(cpu); 459 arm_rebuild_hflags(env); 460 } 461 462 #ifndef CONFIG_USER_ONLY 463 464 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 465 unsigned int target_el, 466 unsigned int cur_el, bool secure, 467 uint64_t hcr_el2) 468 { 469 CPUARMState *env = cs->env_ptr; 470 bool pstate_unmasked; 471 bool unmasked = false; 472 473 /* 474 * Don't take exceptions if they target a lower EL. 475 * This check should catch any exceptions that would not be taken 476 * but left pending. 477 */ 478 if (cur_el > target_el) { 479 return false; 480 } 481 482 switch (excp_idx) { 483 case EXCP_FIQ: 484 pstate_unmasked = !(env->daif & PSTATE_F); 485 break; 486 487 case EXCP_IRQ: 488 pstate_unmasked = !(env->daif & PSTATE_I); 489 break; 490 491 case EXCP_VFIQ: 492 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 493 /* VFIQs are only taken when hypervized. */ 494 return false; 495 } 496 return !(env->daif & PSTATE_F); 497 case EXCP_VIRQ: 498 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 499 /* VIRQs are only taken when hypervized. */ 500 return false; 501 } 502 return !(env->daif & PSTATE_I); 503 default: 504 g_assert_not_reached(); 505 } 506 507 /* 508 * Use the target EL, current execution state and SCR/HCR settings to 509 * determine whether the corresponding CPSR bit is used to mask the 510 * interrupt. 511 */ 512 if ((target_el > cur_el) && (target_el != 1)) { 513 /* Exceptions targeting a higher EL may not be maskable */ 514 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 515 /* 516 * 64-bit masking rules are simple: exceptions to EL3 517 * can't be masked, and exceptions to EL2 can only be 518 * masked from Secure state. The HCR and SCR settings 519 * don't affect the masking logic, only the interrupt routing. 520 */ 521 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) { 522 unmasked = true; 523 } 524 } else { 525 /* 526 * The old 32-bit-only environment has a more complicated 527 * masking setup. HCR and SCR bits not only affect interrupt 528 * routing but also change the behaviour of masking. 529 */ 530 bool hcr, scr; 531 532 switch (excp_idx) { 533 case EXCP_FIQ: 534 /* 535 * If FIQs are routed to EL3 or EL2 then there are cases where 536 * we override the CPSR.F in determining if the exception is 537 * masked or not. If neither of these are set then we fall back 538 * to the CPSR.F setting otherwise we further assess the state 539 * below. 540 */ 541 hcr = hcr_el2 & HCR_FMO; 542 scr = (env->cp15.scr_el3 & SCR_FIQ); 543 544 /* 545 * When EL3 is 32-bit, the SCR.FW bit controls whether the 546 * CPSR.F bit masks FIQ interrupts when taken in non-secure 547 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 548 * when non-secure but only when FIQs are only routed to EL3. 549 */ 550 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 551 break; 552 case EXCP_IRQ: 553 /* 554 * When EL3 execution state is 32-bit, if HCR.IMO is set then 555 * we may override the CPSR.I masking when in non-secure state. 556 * The SCR.IRQ setting has already been taken into consideration 557 * when setting the target EL, so it does not have a further 558 * affect here. 559 */ 560 hcr = hcr_el2 & HCR_IMO; 561 scr = false; 562 break; 563 default: 564 g_assert_not_reached(); 565 } 566 567 if ((scr || hcr) && !secure) { 568 unmasked = true; 569 } 570 } 571 } 572 573 /* 574 * The PSTATE bits only mask the interrupt if we have not overriden the 575 * ability above. 576 */ 577 return unmasked || pstate_unmasked; 578 } 579 580 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 581 { 582 CPUClass *cc = CPU_GET_CLASS(cs); 583 CPUARMState *env = cs->env_ptr; 584 uint32_t cur_el = arm_current_el(env); 585 bool secure = arm_is_secure(env); 586 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 587 uint32_t target_el; 588 uint32_t excp_idx; 589 590 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 591 592 if (interrupt_request & CPU_INTERRUPT_FIQ) { 593 excp_idx = EXCP_FIQ; 594 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 595 if (arm_excp_unmasked(cs, excp_idx, target_el, 596 cur_el, secure, hcr_el2)) { 597 goto found; 598 } 599 } 600 if (interrupt_request & CPU_INTERRUPT_HARD) { 601 excp_idx = EXCP_IRQ; 602 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 603 if (arm_excp_unmasked(cs, excp_idx, target_el, 604 cur_el, secure, hcr_el2)) { 605 goto found; 606 } 607 } 608 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 609 excp_idx = EXCP_VIRQ; 610 target_el = 1; 611 if (arm_excp_unmasked(cs, excp_idx, target_el, 612 cur_el, secure, hcr_el2)) { 613 goto found; 614 } 615 } 616 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 617 excp_idx = EXCP_VFIQ; 618 target_el = 1; 619 if (arm_excp_unmasked(cs, excp_idx, target_el, 620 cur_el, secure, hcr_el2)) { 621 goto found; 622 } 623 } 624 return false; 625 626 found: 627 cs->exception_index = excp_idx; 628 env->exception.target_el = target_el; 629 cc->tcg_ops->do_interrupt(cs); 630 return true; 631 } 632 #endif /* !CONFIG_USER_ONLY */ 633 634 void arm_cpu_update_virq(ARMCPU *cpu) 635 { 636 /* 637 * Update the interrupt level for VIRQ, which is the logical OR of 638 * the HCR_EL2.VI bit and the input line level from the GIC. 639 */ 640 CPUARMState *env = &cpu->env; 641 CPUState *cs = CPU(cpu); 642 643 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 644 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 645 646 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 647 if (new_state) { 648 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 649 } else { 650 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 651 } 652 } 653 } 654 655 void arm_cpu_update_vfiq(ARMCPU *cpu) 656 { 657 /* 658 * Update the interrupt level for VFIQ, which is the logical OR of 659 * the HCR_EL2.VF bit and the input line level from the GIC. 660 */ 661 CPUARMState *env = &cpu->env; 662 CPUState *cs = CPU(cpu); 663 664 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 665 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 666 667 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 668 if (new_state) { 669 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 670 } else { 671 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 672 } 673 } 674 } 675 676 #ifndef CONFIG_USER_ONLY 677 static void arm_cpu_set_irq(void *opaque, int irq, int level) 678 { 679 ARMCPU *cpu = opaque; 680 CPUARMState *env = &cpu->env; 681 CPUState *cs = CPU(cpu); 682 static const int mask[] = { 683 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 684 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 685 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 686 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 687 }; 688 689 if (level) { 690 env->irq_line_state |= mask[irq]; 691 } else { 692 env->irq_line_state &= ~mask[irq]; 693 } 694 695 switch (irq) { 696 case ARM_CPU_VIRQ: 697 assert(arm_feature(env, ARM_FEATURE_EL2)); 698 arm_cpu_update_virq(cpu); 699 break; 700 case ARM_CPU_VFIQ: 701 assert(arm_feature(env, ARM_FEATURE_EL2)); 702 arm_cpu_update_vfiq(cpu); 703 break; 704 case ARM_CPU_IRQ: 705 case ARM_CPU_FIQ: 706 if (level) { 707 cpu_interrupt(cs, mask[irq]); 708 } else { 709 cpu_reset_interrupt(cs, mask[irq]); 710 } 711 break; 712 default: 713 g_assert_not_reached(); 714 } 715 } 716 717 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 718 { 719 #ifdef CONFIG_KVM 720 ARMCPU *cpu = opaque; 721 CPUARMState *env = &cpu->env; 722 CPUState *cs = CPU(cpu); 723 uint32_t linestate_bit; 724 int irq_id; 725 726 switch (irq) { 727 case ARM_CPU_IRQ: 728 irq_id = KVM_ARM_IRQ_CPU_IRQ; 729 linestate_bit = CPU_INTERRUPT_HARD; 730 break; 731 case ARM_CPU_FIQ: 732 irq_id = KVM_ARM_IRQ_CPU_FIQ; 733 linestate_bit = CPU_INTERRUPT_FIQ; 734 break; 735 default: 736 g_assert_not_reached(); 737 } 738 739 if (level) { 740 env->irq_line_state |= linestate_bit; 741 } else { 742 env->irq_line_state &= ~linestate_bit; 743 } 744 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 745 #endif 746 } 747 748 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 749 { 750 ARMCPU *cpu = ARM_CPU(cs); 751 CPUARMState *env = &cpu->env; 752 753 cpu_synchronize_state(cs); 754 return arm_cpu_data_is_big_endian(env); 755 } 756 757 #endif 758 759 static int 760 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 761 { 762 return print_insn_arm(pc | 1, info); 763 } 764 765 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 766 { 767 ARMCPU *ac = ARM_CPU(cpu); 768 CPUARMState *env = &ac->env; 769 bool sctlr_b; 770 771 if (is_a64(env)) { 772 /* We might not be compiled with the A64 disassembler 773 * because it needs a C++ compiler. Leave print_insn 774 * unset in this case to use the caller default behaviour. 775 */ 776 #if defined(CONFIG_ARM_A64_DIS) 777 info->print_insn = print_insn_arm_a64; 778 #endif 779 info->cap_arch = CS_ARCH_ARM64; 780 info->cap_insn_unit = 4; 781 info->cap_insn_split = 4; 782 } else { 783 int cap_mode; 784 if (env->thumb) { 785 info->print_insn = print_insn_thumb1; 786 info->cap_insn_unit = 2; 787 info->cap_insn_split = 4; 788 cap_mode = CS_MODE_THUMB; 789 } else { 790 info->print_insn = print_insn_arm; 791 info->cap_insn_unit = 4; 792 info->cap_insn_split = 4; 793 cap_mode = CS_MODE_ARM; 794 } 795 if (arm_feature(env, ARM_FEATURE_V8)) { 796 cap_mode |= CS_MODE_V8; 797 } 798 if (arm_feature(env, ARM_FEATURE_M)) { 799 cap_mode |= CS_MODE_MCLASS; 800 } 801 info->cap_arch = CS_ARCH_ARM; 802 info->cap_mode = cap_mode; 803 } 804 805 sctlr_b = arm_sctlr_b(env); 806 if (bswap_code(sctlr_b)) { 807 #ifdef TARGET_WORDS_BIGENDIAN 808 info->endian = BFD_ENDIAN_LITTLE; 809 #else 810 info->endian = BFD_ENDIAN_BIG; 811 #endif 812 } 813 info->flags &= ~INSN_ARM_BE32; 814 #ifndef CONFIG_USER_ONLY 815 if (sctlr_b) { 816 info->flags |= INSN_ARM_BE32; 817 } 818 #endif 819 } 820 821 #ifdef TARGET_AARCH64 822 823 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 824 { 825 ARMCPU *cpu = ARM_CPU(cs); 826 CPUARMState *env = &cpu->env; 827 uint32_t psr = pstate_read(env); 828 int i; 829 int el = arm_current_el(env); 830 const char *ns_status; 831 832 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 833 for (i = 0; i < 32; i++) { 834 if (i == 31) { 835 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 836 } else { 837 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 838 (i + 2) % 3 ? " " : "\n"); 839 } 840 } 841 842 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 843 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 844 } else { 845 ns_status = ""; 846 } 847 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 848 psr, 849 psr & PSTATE_N ? 'N' : '-', 850 psr & PSTATE_Z ? 'Z' : '-', 851 psr & PSTATE_C ? 'C' : '-', 852 psr & PSTATE_V ? 'V' : '-', 853 ns_status, 854 el, 855 psr & PSTATE_SP ? 'h' : 't'); 856 857 if (cpu_isar_feature(aa64_bti, cpu)) { 858 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 859 } 860 if (!(flags & CPU_DUMP_FPU)) { 861 qemu_fprintf(f, "\n"); 862 return; 863 } 864 if (fp_exception_el(env, el) != 0) { 865 qemu_fprintf(f, " FPU disabled\n"); 866 return; 867 } 868 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 869 vfp_get_fpcr(env), vfp_get_fpsr(env)); 870 871 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { 872 int j, zcr_len = sve_zcr_len_for_el(env, el); 873 874 for (i = 0; i <= FFR_PRED_NUM; i++) { 875 bool eol; 876 if (i == FFR_PRED_NUM) { 877 qemu_fprintf(f, "FFR="); 878 /* It's last, so end the line. */ 879 eol = true; 880 } else { 881 qemu_fprintf(f, "P%02d=", i); 882 switch (zcr_len) { 883 case 0: 884 eol = i % 8 == 7; 885 break; 886 case 1: 887 eol = i % 6 == 5; 888 break; 889 case 2: 890 case 3: 891 eol = i % 3 == 2; 892 break; 893 default: 894 /* More than one quadword per predicate. */ 895 eol = true; 896 break; 897 } 898 } 899 for (j = zcr_len / 4; j >= 0; j--) { 900 int digits; 901 if (j * 4 + 4 <= zcr_len + 1) { 902 digits = 16; 903 } else { 904 digits = (zcr_len % 4 + 1) * 4; 905 } 906 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 907 env->vfp.pregs[i].p[j], 908 j ? ":" : eol ? "\n" : " "); 909 } 910 } 911 912 for (i = 0; i < 32; i++) { 913 if (zcr_len == 0) { 914 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 915 i, env->vfp.zregs[i].d[1], 916 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 917 } else if (zcr_len == 1) { 918 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 919 ":%016" PRIx64 ":%016" PRIx64 "\n", 920 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 921 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 922 } else { 923 for (j = zcr_len; j >= 0; j--) { 924 bool odd = (zcr_len - j) % 2 != 0; 925 if (j == zcr_len) { 926 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 927 } else if (!odd) { 928 if (j > 0) { 929 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 930 } else { 931 qemu_fprintf(f, " [%x]=", j); 932 } 933 } 934 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 935 env->vfp.zregs[i].d[j * 2 + 1], 936 env->vfp.zregs[i].d[j * 2], 937 odd || j == 0 ? "\n" : ":"); 938 } 939 } 940 } 941 } else { 942 for (i = 0; i < 32; i++) { 943 uint64_t *q = aa64_vfp_qreg(env, i); 944 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 945 i, q[1], q[0], (i & 1 ? "\n" : " ")); 946 } 947 } 948 } 949 950 #else 951 952 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 953 { 954 g_assert_not_reached(); 955 } 956 957 #endif 958 959 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 960 { 961 ARMCPU *cpu = ARM_CPU(cs); 962 CPUARMState *env = &cpu->env; 963 int i; 964 965 if (is_a64(env)) { 966 aarch64_cpu_dump_state(cs, f, flags); 967 return; 968 } 969 970 for (i = 0; i < 16; i++) { 971 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 972 if ((i % 4) == 3) { 973 qemu_fprintf(f, "\n"); 974 } else { 975 qemu_fprintf(f, " "); 976 } 977 } 978 979 if (arm_feature(env, ARM_FEATURE_M)) { 980 uint32_t xpsr = xpsr_read(env); 981 const char *mode; 982 const char *ns_status = ""; 983 984 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 985 ns_status = env->v7m.secure ? "S " : "NS "; 986 } 987 988 if (xpsr & XPSR_EXCP) { 989 mode = "handler"; 990 } else { 991 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 992 mode = "unpriv-thread"; 993 } else { 994 mode = "priv-thread"; 995 } 996 } 997 998 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 999 xpsr, 1000 xpsr & XPSR_N ? 'N' : '-', 1001 xpsr & XPSR_Z ? 'Z' : '-', 1002 xpsr & XPSR_C ? 'C' : '-', 1003 xpsr & XPSR_V ? 'V' : '-', 1004 xpsr & XPSR_T ? 'T' : 'A', 1005 ns_status, 1006 mode); 1007 } else { 1008 uint32_t psr = cpsr_read(env); 1009 const char *ns_status = ""; 1010 1011 if (arm_feature(env, ARM_FEATURE_EL3) && 1012 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 1013 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1014 } 1015 1016 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1017 psr, 1018 psr & CPSR_N ? 'N' : '-', 1019 psr & CPSR_Z ? 'Z' : '-', 1020 psr & CPSR_C ? 'C' : '-', 1021 psr & CPSR_V ? 'V' : '-', 1022 psr & CPSR_T ? 'T' : 'A', 1023 ns_status, 1024 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1025 } 1026 1027 if (flags & CPU_DUMP_FPU) { 1028 int numvfpregs = 0; 1029 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1030 numvfpregs = 32; 1031 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1032 numvfpregs = 16; 1033 } 1034 for (i = 0; i < numvfpregs; i++) { 1035 uint64_t v = *aa32_vfp_dreg(env, i); 1036 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1037 i * 2, (uint32_t)v, 1038 i * 2 + 1, (uint32_t)(v >> 32), 1039 i, v); 1040 } 1041 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1042 if (cpu_isar_feature(aa32_mve, cpu)) { 1043 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); 1044 } 1045 } 1046 } 1047 1048 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 1049 { 1050 uint32_t Aff1 = idx / clustersz; 1051 uint32_t Aff0 = idx % clustersz; 1052 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1053 } 1054 1055 static void cpreg_hashtable_data_destroy(gpointer data) 1056 { 1057 /* 1058 * Destroy function for cpu->cp_regs hashtable data entries. 1059 * We must free the name string because it was g_strdup()ed in 1060 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 1061 * from r->name because we know we definitely allocated it. 1062 */ 1063 ARMCPRegInfo *r = data; 1064 1065 g_free((void *)r->name); 1066 g_free(r); 1067 } 1068 1069 static void arm_cpu_initfn(Object *obj) 1070 { 1071 ARMCPU *cpu = ARM_CPU(obj); 1072 1073 cpu_set_cpustate_pointers(cpu); 1074 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 1075 g_free, cpreg_hashtable_data_destroy); 1076 1077 QLIST_INIT(&cpu->pre_el_change_hooks); 1078 QLIST_INIT(&cpu->el_change_hooks); 1079 1080 #ifdef CONFIG_USER_ONLY 1081 # ifdef TARGET_AARCH64 1082 /* 1083 * The linux kernel defaults to 512-bit vectors, when sve is supported. 1084 * See documentation for /proc/sys/abi/sve_default_vector_length, and 1085 * our corresponding sve-default-vector-length cpu property. 1086 */ 1087 cpu->sve_default_vq = 4; 1088 # endif 1089 #else 1090 /* Our inbound IRQ and FIQ lines */ 1091 if (kvm_enabled()) { 1092 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1093 * the same interface as non-KVM CPUs. 1094 */ 1095 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1096 } else { 1097 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1098 } 1099 1100 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1101 ARRAY_SIZE(cpu->gt_timer_outputs)); 1102 1103 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1104 "gicv3-maintenance-interrupt", 1); 1105 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1106 "pmu-interrupt", 1); 1107 #endif 1108 1109 /* DTB consumers generally don't in fact care what the 'compatible' 1110 * string is, so always provide some string and trust that a hypothetical 1111 * picky DTB consumer will also provide a helpful error message. 1112 */ 1113 cpu->dtb_compatible = "qemu,unknown"; 1114 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 1115 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1116 1117 if (tcg_enabled() || hvf_enabled()) { 1118 cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */ 1119 } 1120 } 1121 1122 static Property arm_cpu_gt_cntfrq_property = 1123 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1124 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1125 1126 static Property arm_cpu_reset_cbar_property = 1127 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1128 1129 static Property arm_cpu_reset_hivecs_property = 1130 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1131 1132 static Property arm_cpu_rvbar_property = 1133 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 1134 1135 #ifndef CONFIG_USER_ONLY 1136 static Property arm_cpu_has_el2_property = 1137 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1138 1139 static Property arm_cpu_has_el3_property = 1140 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1141 #endif 1142 1143 static Property arm_cpu_cfgend_property = 1144 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1145 1146 static Property arm_cpu_has_vfp_property = 1147 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1148 1149 static Property arm_cpu_has_neon_property = 1150 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1151 1152 static Property arm_cpu_has_dsp_property = 1153 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1154 1155 static Property arm_cpu_has_mpu_property = 1156 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1157 1158 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1159 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1160 * the right value for that particular CPU type, and we don't want 1161 * to override that with an incorrect constant value. 1162 */ 1163 static Property arm_cpu_pmsav7_dregion_property = 1164 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1165 pmsav7_dregion, 1166 qdev_prop_uint32, uint32_t); 1167 1168 static bool arm_get_pmu(Object *obj, Error **errp) 1169 { 1170 ARMCPU *cpu = ARM_CPU(obj); 1171 1172 return cpu->has_pmu; 1173 } 1174 1175 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1176 { 1177 ARMCPU *cpu = ARM_CPU(obj); 1178 1179 if (value) { 1180 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1181 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1182 return; 1183 } 1184 set_feature(&cpu->env, ARM_FEATURE_PMU); 1185 } else { 1186 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1187 } 1188 cpu->has_pmu = value; 1189 } 1190 1191 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1192 { 1193 /* 1194 * The exact approach to calculating guest ticks is: 1195 * 1196 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1197 * NANOSECONDS_PER_SECOND); 1198 * 1199 * We don't do that. Rather we intentionally use integer division 1200 * truncation below and in the caller for the conversion of host monotonic 1201 * time to guest ticks to provide the exact inverse for the semantics of 1202 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1203 * it loses precision when representing frequencies where 1204 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1205 * provide an exact inverse leads to scheduling timers with negative 1206 * periods, which in turn leads to sticky behaviour in the guest. 1207 * 1208 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1209 * cannot become zero. 1210 */ 1211 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1212 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1213 } 1214 1215 void arm_cpu_post_init(Object *obj) 1216 { 1217 ARMCPU *cpu = ARM_CPU(obj); 1218 1219 /* M profile implies PMSA. We have to do this here rather than 1220 * in realize with the other feature-implication checks because 1221 * we look at the PMSA bit to see if we should add some properties. 1222 */ 1223 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1224 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1225 } 1226 1227 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1228 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1229 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1230 } 1231 1232 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1233 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1234 } 1235 1236 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1237 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property); 1238 } 1239 1240 #ifndef CONFIG_USER_ONLY 1241 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1242 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1243 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1244 */ 1245 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1246 1247 object_property_add_link(obj, "secure-memory", 1248 TYPE_MEMORY_REGION, 1249 (Object **)&cpu->secure_memory, 1250 qdev_prop_allow_set_link_before_realize, 1251 OBJ_PROP_LINK_STRONG); 1252 } 1253 1254 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1255 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1256 } 1257 #endif 1258 1259 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1260 cpu->has_pmu = true; 1261 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1262 } 1263 1264 /* 1265 * Allow user to turn off VFP and Neon support, but only for TCG -- 1266 * KVM does not currently allow us to lie to the guest about its 1267 * ID/feature registers, so the guest always sees what the host has. 1268 */ 1269 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 1270 ? cpu_isar_feature(aa64_fp_simd, cpu) 1271 : cpu_isar_feature(aa32_vfp, cpu)) { 1272 cpu->has_vfp = true; 1273 if (!kvm_enabled()) { 1274 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1275 } 1276 } 1277 1278 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1279 cpu->has_neon = true; 1280 if (!kvm_enabled()) { 1281 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1282 } 1283 } 1284 1285 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1286 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1287 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1288 } 1289 1290 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1291 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1292 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1293 qdev_property_add_static(DEVICE(obj), 1294 &arm_cpu_pmsav7_dregion_property); 1295 } 1296 } 1297 1298 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1299 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1300 qdev_prop_allow_set_link_before_realize, 1301 OBJ_PROP_LINK_STRONG); 1302 /* 1303 * M profile: initial value of the Secure VTOR. We can't just use 1304 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1305 * the property to be set after realize. 1306 */ 1307 object_property_add_uint32_ptr(obj, "init-svtor", 1308 &cpu->init_svtor, 1309 OBJ_PROP_FLAG_READWRITE); 1310 } 1311 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1312 /* 1313 * Initial value of the NS VTOR (for cores without the Security 1314 * extension, this is the only VTOR) 1315 */ 1316 object_property_add_uint32_ptr(obj, "init-nsvtor", 1317 &cpu->init_nsvtor, 1318 OBJ_PROP_FLAG_READWRITE); 1319 } 1320 1321 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ 1322 object_property_add_uint32_ptr(obj, "psci-conduit", 1323 &cpu->psci_conduit, 1324 OBJ_PROP_FLAG_READWRITE); 1325 1326 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1327 1328 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1329 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1330 } 1331 1332 if (kvm_enabled()) { 1333 kvm_arm_add_vcpu_properties(obj); 1334 } 1335 1336 #ifndef CONFIG_USER_ONLY 1337 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1338 cpu_isar_feature(aa64_mte, cpu)) { 1339 object_property_add_link(obj, "tag-memory", 1340 TYPE_MEMORY_REGION, 1341 (Object **)&cpu->tag_memory, 1342 qdev_prop_allow_set_link_before_realize, 1343 OBJ_PROP_LINK_STRONG); 1344 1345 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1346 object_property_add_link(obj, "secure-tag-memory", 1347 TYPE_MEMORY_REGION, 1348 (Object **)&cpu->secure_tag_memory, 1349 qdev_prop_allow_set_link_before_realize, 1350 OBJ_PROP_LINK_STRONG); 1351 } 1352 } 1353 #endif 1354 } 1355 1356 static void arm_cpu_finalizefn(Object *obj) 1357 { 1358 ARMCPU *cpu = ARM_CPU(obj); 1359 ARMELChangeHook *hook, *next; 1360 1361 g_hash_table_destroy(cpu->cp_regs); 1362 1363 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1364 QLIST_REMOVE(hook, node); 1365 g_free(hook); 1366 } 1367 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1368 QLIST_REMOVE(hook, node); 1369 g_free(hook); 1370 } 1371 #ifndef CONFIG_USER_ONLY 1372 if (cpu->pmu_timer) { 1373 timer_free(cpu->pmu_timer); 1374 } 1375 #endif 1376 } 1377 1378 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1379 { 1380 Error *local_err = NULL; 1381 1382 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1383 arm_cpu_sve_finalize(cpu, &local_err); 1384 if (local_err != NULL) { 1385 error_propagate(errp, local_err); 1386 return; 1387 } 1388 1389 arm_cpu_pauth_finalize(cpu, &local_err); 1390 if (local_err != NULL) { 1391 error_propagate(errp, local_err); 1392 return; 1393 } 1394 } 1395 1396 if (kvm_enabled()) { 1397 kvm_arm_steal_time_finalize(cpu, &local_err); 1398 if (local_err != NULL) { 1399 error_propagate(errp, local_err); 1400 return; 1401 } 1402 } 1403 } 1404 1405 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1406 { 1407 CPUState *cs = CPU(dev); 1408 ARMCPU *cpu = ARM_CPU(dev); 1409 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1410 CPUARMState *env = &cpu->env; 1411 int pagebits; 1412 Error *local_err = NULL; 1413 bool no_aa32 = false; 1414 1415 /* If we needed to query the host kernel for the CPU features 1416 * then it's possible that might have failed in the initfn, but 1417 * this is the first point where we can report it. 1418 */ 1419 if (cpu->host_cpu_probe_failed) { 1420 if (!kvm_enabled() && !hvf_enabled()) { 1421 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); 1422 } else { 1423 error_setg(errp, "Failed to retrieve host CPU features"); 1424 } 1425 return; 1426 } 1427 1428 #ifndef CONFIG_USER_ONLY 1429 /* The NVIC and M-profile CPU are two halves of a single piece of 1430 * hardware; trying to use one without the other is a command line 1431 * error and will result in segfaults if not caught here. 1432 */ 1433 if (arm_feature(env, ARM_FEATURE_M)) { 1434 if (!env->nvic) { 1435 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1436 return; 1437 } 1438 } else { 1439 if (env->nvic) { 1440 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1441 return; 1442 } 1443 } 1444 1445 if (kvm_enabled()) { 1446 /* 1447 * Catch all the cases which might cause us to create more than one 1448 * address space for the CPU (otherwise we will assert() later in 1449 * cpu_address_space_init()). 1450 */ 1451 if (arm_feature(env, ARM_FEATURE_M)) { 1452 error_setg(errp, 1453 "Cannot enable KVM when using an M-profile guest CPU"); 1454 return; 1455 } 1456 if (cpu->has_el3) { 1457 error_setg(errp, 1458 "Cannot enable KVM when guest CPU has EL3 enabled"); 1459 return; 1460 } 1461 if (cpu->tag_memory) { 1462 error_setg(errp, 1463 "Cannot enable KVM when guest CPUs has MTE enabled"); 1464 return; 1465 } 1466 } 1467 1468 { 1469 uint64_t scale; 1470 1471 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1472 if (!cpu->gt_cntfrq_hz) { 1473 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1474 cpu->gt_cntfrq_hz); 1475 return; 1476 } 1477 scale = gt_cntfrq_period_ns(cpu); 1478 } else { 1479 scale = GTIMER_SCALE; 1480 } 1481 1482 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1483 arm_gt_ptimer_cb, cpu); 1484 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1485 arm_gt_vtimer_cb, cpu); 1486 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1487 arm_gt_htimer_cb, cpu); 1488 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1489 arm_gt_stimer_cb, cpu); 1490 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1491 arm_gt_hvtimer_cb, cpu); 1492 } 1493 #endif 1494 1495 cpu_exec_realizefn(cs, &local_err); 1496 if (local_err != NULL) { 1497 error_propagate(errp, local_err); 1498 return; 1499 } 1500 1501 arm_cpu_finalize_features(cpu, &local_err); 1502 if (local_err != NULL) { 1503 error_propagate(errp, local_err); 1504 return; 1505 } 1506 1507 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1508 cpu->has_vfp != cpu->has_neon) { 1509 /* 1510 * This is an architectural requirement for AArch64; AArch32 is 1511 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1512 */ 1513 error_setg(errp, 1514 "AArch64 CPUs must have both VFP and Neon or neither"); 1515 return; 1516 } 1517 1518 if (!cpu->has_vfp) { 1519 uint64_t t; 1520 uint32_t u; 1521 1522 t = cpu->isar.id_aa64isar1; 1523 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1524 cpu->isar.id_aa64isar1 = t; 1525 1526 t = cpu->isar.id_aa64pfr0; 1527 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1528 cpu->isar.id_aa64pfr0 = t; 1529 1530 u = cpu->isar.id_isar6; 1531 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1532 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1533 cpu->isar.id_isar6 = u; 1534 1535 u = cpu->isar.mvfr0; 1536 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1537 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1538 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1539 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1540 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1541 if (!arm_feature(env, ARM_FEATURE_M)) { 1542 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1543 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1544 } 1545 cpu->isar.mvfr0 = u; 1546 1547 u = cpu->isar.mvfr1; 1548 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1549 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1550 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1551 if (arm_feature(env, ARM_FEATURE_M)) { 1552 u = FIELD_DP32(u, MVFR1, FP16, 0); 1553 } 1554 cpu->isar.mvfr1 = u; 1555 1556 u = cpu->isar.mvfr2; 1557 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1558 cpu->isar.mvfr2 = u; 1559 } 1560 1561 if (!cpu->has_neon) { 1562 uint64_t t; 1563 uint32_t u; 1564 1565 unset_feature(env, ARM_FEATURE_NEON); 1566 1567 t = cpu->isar.id_aa64isar0; 1568 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1569 cpu->isar.id_aa64isar0 = t; 1570 1571 t = cpu->isar.id_aa64isar1; 1572 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1573 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); 1574 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); 1575 cpu->isar.id_aa64isar1 = t; 1576 1577 t = cpu->isar.id_aa64pfr0; 1578 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1579 cpu->isar.id_aa64pfr0 = t; 1580 1581 u = cpu->isar.id_isar5; 1582 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1583 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1584 cpu->isar.id_isar5 = u; 1585 1586 u = cpu->isar.id_isar6; 1587 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1588 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1589 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 1590 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); 1591 cpu->isar.id_isar6 = u; 1592 1593 if (!arm_feature(env, ARM_FEATURE_M)) { 1594 u = cpu->isar.mvfr1; 1595 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1596 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1597 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1598 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1599 cpu->isar.mvfr1 = u; 1600 1601 u = cpu->isar.mvfr2; 1602 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1603 cpu->isar.mvfr2 = u; 1604 } 1605 } 1606 1607 if (!cpu->has_neon && !cpu->has_vfp) { 1608 uint64_t t; 1609 uint32_t u; 1610 1611 t = cpu->isar.id_aa64isar0; 1612 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1613 cpu->isar.id_aa64isar0 = t; 1614 1615 t = cpu->isar.id_aa64isar1; 1616 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1617 cpu->isar.id_aa64isar1 = t; 1618 1619 u = cpu->isar.mvfr0; 1620 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1621 cpu->isar.mvfr0 = u; 1622 1623 /* Despite the name, this field covers both VFP and Neon */ 1624 u = cpu->isar.mvfr1; 1625 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1626 cpu->isar.mvfr1 = u; 1627 } 1628 1629 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1630 uint32_t u; 1631 1632 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1633 1634 u = cpu->isar.id_isar1; 1635 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1636 cpu->isar.id_isar1 = u; 1637 1638 u = cpu->isar.id_isar2; 1639 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1640 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1641 cpu->isar.id_isar2 = u; 1642 1643 u = cpu->isar.id_isar3; 1644 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1645 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1646 cpu->isar.id_isar3 = u; 1647 } 1648 1649 /* Some features automatically imply others: */ 1650 if (arm_feature(env, ARM_FEATURE_V8)) { 1651 if (arm_feature(env, ARM_FEATURE_M)) { 1652 set_feature(env, ARM_FEATURE_V7); 1653 } else { 1654 set_feature(env, ARM_FEATURE_V7VE); 1655 } 1656 } 1657 1658 /* 1659 * There exist AArch64 cpus without AArch32 support. When KVM 1660 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1661 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1662 * As a general principle, we also do not make ID register 1663 * consistency checks anywhere unless using TCG, because only 1664 * for TCG would a consistency-check failure be a QEMU bug. 1665 */ 1666 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1667 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1668 } 1669 1670 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1671 /* v7 Virtualization Extensions. In real hardware this implies 1672 * EL2 and also the presence of the Security Extensions. 1673 * For QEMU, for backwards-compatibility we implement some 1674 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1675 * include the various other features that V7VE implies. 1676 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1677 * Security Extensions is ARM_FEATURE_EL3. 1678 */ 1679 assert(!tcg_enabled() || no_aa32 || 1680 cpu_isar_feature(aa32_arm_div, cpu)); 1681 set_feature(env, ARM_FEATURE_LPAE); 1682 set_feature(env, ARM_FEATURE_V7); 1683 } 1684 if (arm_feature(env, ARM_FEATURE_V7)) { 1685 set_feature(env, ARM_FEATURE_VAPA); 1686 set_feature(env, ARM_FEATURE_THUMB2); 1687 set_feature(env, ARM_FEATURE_MPIDR); 1688 if (!arm_feature(env, ARM_FEATURE_M)) { 1689 set_feature(env, ARM_FEATURE_V6K); 1690 } else { 1691 set_feature(env, ARM_FEATURE_V6); 1692 } 1693 1694 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1695 * non-EL3 configs. This is needed by some legacy boards. 1696 */ 1697 set_feature(env, ARM_FEATURE_VBAR); 1698 } 1699 if (arm_feature(env, ARM_FEATURE_V6K)) { 1700 set_feature(env, ARM_FEATURE_V6); 1701 set_feature(env, ARM_FEATURE_MVFR); 1702 } 1703 if (arm_feature(env, ARM_FEATURE_V6)) { 1704 set_feature(env, ARM_FEATURE_V5); 1705 if (!arm_feature(env, ARM_FEATURE_M)) { 1706 assert(!tcg_enabled() || no_aa32 || 1707 cpu_isar_feature(aa32_jazelle, cpu)); 1708 set_feature(env, ARM_FEATURE_AUXCR); 1709 } 1710 } 1711 if (arm_feature(env, ARM_FEATURE_V5)) { 1712 set_feature(env, ARM_FEATURE_V4T); 1713 } 1714 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1715 set_feature(env, ARM_FEATURE_V7MP); 1716 } 1717 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1718 set_feature(env, ARM_FEATURE_CBAR); 1719 } 1720 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1721 !arm_feature(env, ARM_FEATURE_M)) { 1722 set_feature(env, ARM_FEATURE_THUMB_DSP); 1723 } 1724 1725 /* 1726 * We rely on no XScale CPU having VFP so we can use the same bits in the 1727 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1728 */ 1729 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 1730 !cpu_isar_feature(aa32_vfp_simd, cpu) || 1731 !arm_feature(env, ARM_FEATURE_XSCALE)); 1732 1733 if (arm_feature(env, ARM_FEATURE_V7) && 1734 !arm_feature(env, ARM_FEATURE_M) && 1735 !arm_feature(env, ARM_FEATURE_PMSA)) { 1736 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1737 * can use 4K pages. 1738 */ 1739 pagebits = 12; 1740 } else { 1741 /* For CPUs which might have tiny 1K pages, or which have an 1742 * MPU and might have small region sizes, stick with 1K pages. 1743 */ 1744 pagebits = 10; 1745 } 1746 if (!set_preferred_target_page_bits(pagebits)) { 1747 /* This can only ever happen for hotplugging a CPU, or if 1748 * the board code incorrectly creates a CPU which it has 1749 * promised via minimum_page_size that it will not. 1750 */ 1751 error_setg(errp, "This CPU requires a smaller page size than the " 1752 "system is using"); 1753 return; 1754 } 1755 1756 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1757 * We don't support setting cluster ID ([16..23]) (known as Aff2 1758 * in later ARM ARM versions), or any of the higher affinity level fields, 1759 * so these bits always RAZ. 1760 */ 1761 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1762 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1763 ARM_DEFAULT_CPUS_PER_CLUSTER); 1764 } 1765 1766 if (cpu->reset_hivecs) { 1767 cpu->reset_sctlr |= (1 << 13); 1768 } 1769 1770 if (cpu->cfgend) { 1771 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1772 cpu->reset_sctlr |= SCTLR_EE; 1773 } else { 1774 cpu->reset_sctlr |= SCTLR_B; 1775 } 1776 } 1777 1778 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 1779 /* If the has_el3 CPU property is disabled then we need to disable the 1780 * feature. 1781 */ 1782 unset_feature(env, ARM_FEATURE_EL3); 1783 1784 /* Disable the security extension feature bits in the processor feature 1785 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1786 */ 1787 cpu->isar.id_pfr1 &= ~0xf0; 1788 cpu->isar.id_aa64pfr0 &= ~0xf000; 1789 } 1790 1791 if (!cpu->has_el2) { 1792 unset_feature(env, ARM_FEATURE_EL2); 1793 } 1794 1795 if (!cpu->has_pmu) { 1796 unset_feature(env, ARM_FEATURE_PMU); 1797 } 1798 if (arm_feature(env, ARM_FEATURE_PMU)) { 1799 pmu_init(cpu); 1800 1801 if (!kvm_enabled()) { 1802 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1803 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1804 } 1805 1806 #ifndef CONFIG_USER_ONLY 1807 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1808 cpu); 1809 #endif 1810 } else { 1811 cpu->isar.id_aa64dfr0 = 1812 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 1813 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 1814 cpu->pmceid0 = 0; 1815 cpu->pmceid1 = 0; 1816 } 1817 1818 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1819 /* Disable the hypervisor feature bits in the processor feature 1820 * registers if we don't have EL2. These are id_pfr1[15:12] and 1821 * id_aa64pfr0_el1[11:8]. 1822 */ 1823 cpu->isar.id_aa64pfr0 &= ~0xf00; 1824 cpu->isar.id_pfr1 &= ~0xf000; 1825 } 1826 1827 #ifndef CONFIG_USER_ONLY 1828 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { 1829 /* 1830 * Disable the MTE feature bits if we do not have tag-memory 1831 * provided by the machine. 1832 */ 1833 cpu->isar.id_aa64pfr1 = 1834 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 1835 } 1836 #endif 1837 1838 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1839 * to false or by setting pmsav7-dregion to 0. 1840 */ 1841 if (!cpu->has_mpu) { 1842 cpu->pmsav7_dregion = 0; 1843 } 1844 if (cpu->pmsav7_dregion == 0) { 1845 cpu->has_mpu = false; 1846 } 1847 1848 if (arm_feature(env, ARM_FEATURE_PMSA) && 1849 arm_feature(env, ARM_FEATURE_V7)) { 1850 uint32_t nr = cpu->pmsav7_dregion; 1851 1852 if (nr > 0xff) { 1853 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1854 return; 1855 } 1856 1857 if (nr) { 1858 if (arm_feature(env, ARM_FEATURE_V8)) { 1859 /* PMSAv8 */ 1860 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1861 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1862 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1863 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1864 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1865 } 1866 } else { 1867 env->pmsav7.drbar = g_new0(uint32_t, nr); 1868 env->pmsav7.drsr = g_new0(uint32_t, nr); 1869 env->pmsav7.dracr = g_new0(uint32_t, nr); 1870 } 1871 } 1872 } 1873 1874 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1875 uint32_t nr = cpu->sau_sregion; 1876 1877 if (nr > 0xff) { 1878 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1879 return; 1880 } 1881 1882 if (nr) { 1883 env->sau.rbar = g_new0(uint32_t, nr); 1884 env->sau.rlar = g_new0(uint32_t, nr); 1885 } 1886 } 1887 1888 if (arm_feature(env, ARM_FEATURE_EL3)) { 1889 set_feature(env, ARM_FEATURE_VBAR); 1890 } 1891 1892 register_cp_regs_for_features(cpu); 1893 arm_cpu_register_gdb_regs_for_features(cpu); 1894 1895 init_cpreg_list(cpu); 1896 1897 #ifndef CONFIG_USER_ONLY 1898 MachineState *ms = MACHINE(qdev_get_machine()); 1899 unsigned int smp_cpus = ms->smp.cpus; 1900 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 1901 1902 /* 1903 * We must set cs->num_ases to the final value before 1904 * the first call to cpu_address_space_init. 1905 */ 1906 if (cpu->tag_memory != NULL) { 1907 cs->num_ases = 3 + has_secure; 1908 } else { 1909 cs->num_ases = 1 + has_secure; 1910 } 1911 1912 if (has_secure) { 1913 if (!cpu->secure_memory) { 1914 cpu->secure_memory = cs->memory; 1915 } 1916 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1917 cpu->secure_memory); 1918 } 1919 1920 if (cpu->tag_memory != NULL) { 1921 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 1922 cpu->tag_memory); 1923 if (has_secure) { 1924 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 1925 cpu->secure_tag_memory); 1926 } 1927 } 1928 1929 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1930 1931 /* No core_count specified, default to smp_cpus. */ 1932 if (cpu->core_count == -1) { 1933 cpu->core_count = smp_cpus; 1934 } 1935 #endif 1936 1937 if (tcg_enabled()) { 1938 int dcz_blocklen = 4 << cpu->dcz_blocksize; 1939 1940 /* 1941 * We only support DCZ blocklen that fits on one page. 1942 * 1943 * Architectually this is always true. However TARGET_PAGE_SIZE 1944 * is variable and, for compatibility with -machine virt-2.7, 1945 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 1946 * But even then, while the largest architectural DCZ blocklen 1947 * is 2KiB, no cpu actually uses such a large blocklen. 1948 */ 1949 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 1950 1951 /* 1952 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 1953 * both nibbles of each byte storing tag data may be written at once. 1954 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 1955 */ 1956 if (cpu_isar_feature(aa64_mte, cpu)) { 1957 assert(dcz_blocklen >= 2 * TAG_GRANULE); 1958 } 1959 } 1960 1961 qemu_init_vcpu(cs); 1962 cpu_reset(cs); 1963 1964 acc->parent_realize(dev, errp); 1965 } 1966 1967 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1968 { 1969 ObjectClass *oc; 1970 char *typename; 1971 char **cpuname; 1972 const char *cpunamestr; 1973 1974 cpuname = g_strsplit(cpu_model, ",", 1); 1975 cpunamestr = cpuname[0]; 1976 #ifdef CONFIG_USER_ONLY 1977 /* For backwards compatibility usermode emulation allows "-cpu any", 1978 * which has the same semantics as "-cpu max". 1979 */ 1980 if (!strcmp(cpunamestr, "any")) { 1981 cpunamestr = "max"; 1982 } 1983 #endif 1984 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1985 oc = object_class_by_name(typename); 1986 g_strfreev(cpuname); 1987 g_free(typename); 1988 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1989 object_class_is_abstract(oc)) { 1990 return NULL; 1991 } 1992 return oc; 1993 } 1994 1995 static Property arm_cpu_properties[] = { 1996 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 1997 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 1998 mp_affinity, ARM64_AFFINITY_INVALID), 1999 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2000 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2001 DEFINE_PROP_END_OF_LIST() 2002 }; 2003 2004 static gchar *arm_gdb_arch_name(CPUState *cs) 2005 { 2006 ARMCPU *cpu = ARM_CPU(cs); 2007 CPUARMState *env = &cpu->env; 2008 2009 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2010 return g_strdup("iwmmxt"); 2011 } 2012 return g_strdup("arm"); 2013 } 2014 2015 #ifndef CONFIG_USER_ONLY 2016 #include "hw/core/sysemu-cpu-ops.h" 2017 2018 static const struct SysemuCPUOps arm_sysemu_ops = { 2019 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, 2020 .asidx_from_attrs = arm_asidx_from_attrs, 2021 .write_elf32_note = arm_cpu_write_elf32_note, 2022 .write_elf64_note = arm_cpu_write_elf64_note, 2023 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, 2024 .legacy_vmsd = &vmstate_arm_cpu, 2025 }; 2026 #endif 2027 2028 #ifdef CONFIG_TCG 2029 static const struct TCGCPUOps arm_tcg_ops = { 2030 .initialize = arm_translate_init, 2031 .synchronize_from_tb = arm_cpu_synchronize_from_tb, 2032 .debug_excp_handler = arm_debug_excp_handler, 2033 2034 #ifdef CONFIG_USER_ONLY 2035 .record_sigsegv = arm_cpu_record_sigsegv, 2036 .record_sigbus = arm_cpu_record_sigbus, 2037 #else 2038 .tlb_fill = arm_cpu_tlb_fill, 2039 .cpu_exec_interrupt = arm_cpu_exec_interrupt, 2040 .do_interrupt = arm_cpu_do_interrupt, 2041 .do_transaction_failed = arm_cpu_do_transaction_failed, 2042 .do_unaligned_access = arm_cpu_do_unaligned_access, 2043 .adjust_watchpoint_address = arm_adjust_watchpoint_address, 2044 .debug_check_watchpoint = arm_debug_check_watchpoint, 2045 .debug_check_breakpoint = arm_debug_check_breakpoint, 2046 #endif /* !CONFIG_USER_ONLY */ 2047 }; 2048 #endif /* CONFIG_TCG */ 2049 2050 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2051 { 2052 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2053 CPUClass *cc = CPU_CLASS(acc); 2054 DeviceClass *dc = DEVICE_CLASS(oc); 2055 2056 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2057 &acc->parent_realize); 2058 2059 device_class_set_props(dc, arm_cpu_properties); 2060 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); 2061 2062 cc->class_by_name = arm_cpu_class_by_name; 2063 cc->has_work = arm_cpu_has_work; 2064 cc->dump_state = arm_cpu_dump_state; 2065 cc->set_pc = arm_cpu_set_pc; 2066 cc->gdb_read_register = arm_cpu_gdb_read_register; 2067 cc->gdb_write_register = arm_cpu_gdb_write_register; 2068 #ifndef CONFIG_USER_ONLY 2069 cc->sysemu_ops = &arm_sysemu_ops; 2070 #endif 2071 cc->gdb_num_core_regs = 26; 2072 cc->gdb_core_xml_file = "arm-core.xml"; 2073 cc->gdb_arch_name = arm_gdb_arch_name; 2074 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2075 cc->gdb_stop_before_watchpoint = true; 2076 cc->disas_set_info = arm_disas_set_info; 2077 2078 #ifdef CONFIG_TCG 2079 cc->tcg_ops = &arm_tcg_ops; 2080 #endif /* CONFIG_TCG */ 2081 } 2082 2083 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 2084 static void arm_host_initfn(Object *obj) 2085 { 2086 ARMCPU *cpu = ARM_CPU(obj); 2087 2088 #ifdef CONFIG_KVM 2089 kvm_arm_set_cpu_features_from_host(cpu); 2090 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 2091 aarch64_add_sve_properties(obj); 2092 aarch64_add_pauth_properties(obj); 2093 } 2094 #else 2095 hvf_arm_set_cpu_features_from_host(cpu); 2096 #endif 2097 arm_cpu_post_init(obj); 2098 } 2099 2100 static const TypeInfo host_arm_cpu_type_info = { 2101 .name = TYPE_ARM_HOST_CPU, 2102 .parent = TYPE_AARCH64_CPU, 2103 .instance_init = arm_host_initfn, 2104 }; 2105 2106 #endif 2107 2108 static void arm_cpu_instance_init(Object *obj) 2109 { 2110 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2111 2112 acc->info->initfn(obj); 2113 arm_cpu_post_init(obj); 2114 } 2115 2116 static void cpu_register_class_init(ObjectClass *oc, void *data) 2117 { 2118 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2119 2120 acc->info = data; 2121 } 2122 2123 void arm_cpu_register(const ARMCPUInfo *info) 2124 { 2125 TypeInfo type_info = { 2126 .parent = TYPE_ARM_CPU, 2127 .instance_size = sizeof(ARMCPU), 2128 .instance_align = __alignof__(ARMCPU), 2129 .instance_init = arm_cpu_instance_init, 2130 .class_size = sizeof(ARMCPUClass), 2131 .class_init = info->class_init ?: cpu_register_class_init, 2132 .class_data = (void *)info, 2133 }; 2134 2135 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2136 type_register(&type_info); 2137 g_free((void *)type_info.name); 2138 } 2139 2140 static const TypeInfo arm_cpu_type_info = { 2141 .name = TYPE_ARM_CPU, 2142 .parent = TYPE_CPU, 2143 .instance_size = sizeof(ARMCPU), 2144 .instance_align = __alignof__(ARMCPU), 2145 .instance_init = arm_cpu_initfn, 2146 .instance_finalize = arm_cpu_finalizefn, 2147 .abstract = true, 2148 .class_size = sizeof(ARMCPUClass), 2149 .class_init = arm_cpu_class_init, 2150 }; 2151 2152 static void arm_cpu_register_types(void) 2153 { 2154 type_register_static(&arm_cpu_type_info); 2155 2156 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 2157 type_register_static(&host_arm_cpu_type_info); 2158 #endif 2159 } 2160 2161 type_init(arm_cpu_register_types) 2162