xref: /openbmc/qemu/target/arm/cpu.c (revision b0476d66)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with reasonable vector length */
199         if (cpu_isar_feature(aa64_sve, cpu)) {
200             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201         }
202         /*
203          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
204          * turning on both here will produce smaller code and otherwise
205          * make no difference to the user-level emulation.
206          *
207          * In sve_probe_page, we assume that this is set.
208          * Do not modify this without other changes.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 #else
212         /* Reset into the highest available EL */
213         if (arm_feature(env, ARM_FEATURE_EL3)) {
214             env->pstate = PSTATE_MODE_EL3h;
215         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
216             env->pstate = PSTATE_MODE_EL2h;
217         } else {
218             env->pstate = PSTATE_MODE_EL1h;
219         }
220         env->pc = cpu->rvbar;
221 #endif
222     } else {
223 #if defined(CONFIG_USER_ONLY)
224         /* Userspace expects access to cp10 and cp11 for FP/Neon */
225         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
226 #endif
227     }
228 
229 #if defined(CONFIG_USER_ONLY)
230     env->uncached_cpsr = ARM_CPU_MODE_USR;
231     /* For user mode we must enable access to coprocessors */
232     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
233     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234         env->cp15.c15_cpar = 3;
235     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
236         env->cp15.c15_cpar = 1;
237     }
238 #else
239 
240     /*
241      * If the highest available EL is EL2, AArch32 will start in Hyp
242      * mode; otherwise it starts in SVC. Note that if we start in
243      * AArch64 then these values in the uncached_cpsr will be ignored.
244      */
245     if (arm_feature(env, ARM_FEATURE_EL2) &&
246         !arm_feature(env, ARM_FEATURE_EL3)) {
247         env->uncached_cpsr = ARM_CPU_MODE_HYP;
248     } else {
249         env->uncached_cpsr = ARM_CPU_MODE_SVC;
250     }
251     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 
253     if (arm_feature(env, ARM_FEATURE_M)) {
254         uint32_t initial_msp; /* Loaded from 0x0 */
255         uint32_t initial_pc; /* Loaded from 0x4 */
256         uint8_t *rom;
257         uint32_t vecbase;
258 
259         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
260             env->v7m.secure = true;
261         } else {
262             /* This bit resets to 0 if security is supported, but 1 if
263              * it is not. The bit is not present in v7M, but we set it
264              * here so we can avoid having to make checks on it conditional
265              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266              */
267             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
268             /*
269              * Set NSACR to indicate "NS access permitted to everything";
270              * this avoids having to have all the tests of it being
271              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
272              * v8.1M the guest-visible value of NSACR in a CPU without the
273              * Security Extension is 0xcff.
274              */
275             env->v7m.nsacr = 0xcff;
276         }
277 
278         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
279          * that it resets to 1, so QEMU always does that rather than making
280          * it dependent on CPU model. In v8M it is RES1.
281          */
282         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
283         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
284         if (arm_feature(env, ARM_FEATURE_V8)) {
285             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
286             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288         }
289         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
290             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292         }
293 
294         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
295             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
296             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
297                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
298         }
299         /* Unlike A/R profile, M profile defines the reset LR value */
300         env->regs[14] = 0xffffffff;
301 
302         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
303 
304         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
305         vecbase = env->v7m.vecbase[env->v7m.secure];
306         rom = rom_ptr(vecbase, 8);
307         if (rom) {
308             /* Address zero is covered by ROM which hasn't yet been
309              * copied into physical memory.
310              */
311             initial_msp = ldl_p(rom);
312             initial_pc = ldl_p(rom + 4);
313         } else {
314             /* Address zero not covered by a ROM blob, or the ROM blob
315              * is in non-modifiable memory and this is a second reset after
316              * it got copied into memory. In the latter case, rom_ptr
317              * will return a NULL pointer and we should use ldl_phys instead.
318              */
319             initial_msp = ldl_phys(s->as, vecbase);
320             initial_pc = ldl_phys(s->as, vecbase + 4);
321         }
322 
323         env->regs[13] = initial_msp & 0xFFFFFFFC;
324         env->regs[15] = initial_pc & ~1;
325         env->thumb = initial_pc & 1;
326     }
327 
328     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
329      * executing as AArch32 then check if highvecs are enabled and
330      * adjust the PC accordingly.
331      */
332     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
333         env->regs[15] = 0xFFFF0000;
334     }
335 
336     /* M profile requires that reset clears the exclusive monitor;
337      * A profile does not, but clearing it makes more sense than having it
338      * set with an exclusive access on address zero.
339      */
340     arm_clear_exclusive(env);
341 
342     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
343 #endif
344 
345     if (arm_feature(env, ARM_FEATURE_PMSA)) {
346         if (cpu->pmsav7_dregion > 0) {
347             if (arm_feature(env, ARM_FEATURE_V8)) {
348                 memset(env->pmsav8.rbar[M_REG_NS], 0,
349                        sizeof(*env->pmsav8.rbar[M_REG_NS])
350                        * cpu->pmsav7_dregion);
351                 memset(env->pmsav8.rlar[M_REG_NS], 0,
352                        sizeof(*env->pmsav8.rlar[M_REG_NS])
353                        * cpu->pmsav7_dregion);
354                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
355                     memset(env->pmsav8.rbar[M_REG_S], 0,
356                            sizeof(*env->pmsav8.rbar[M_REG_S])
357                            * cpu->pmsav7_dregion);
358                     memset(env->pmsav8.rlar[M_REG_S], 0,
359                            sizeof(*env->pmsav8.rlar[M_REG_S])
360                            * cpu->pmsav7_dregion);
361                 }
362             } else if (arm_feature(env, ARM_FEATURE_V7)) {
363                 memset(env->pmsav7.drbar, 0,
364                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
365                 memset(env->pmsav7.drsr, 0,
366                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.dracr, 0,
368                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
369             }
370         }
371         env->pmsav7.rnr[M_REG_NS] = 0;
372         env->pmsav7.rnr[M_REG_S] = 0;
373         env->pmsav8.mair0[M_REG_NS] = 0;
374         env->pmsav8.mair0[M_REG_S] = 0;
375         env->pmsav8.mair1[M_REG_NS] = 0;
376         env->pmsav8.mair1[M_REG_S] = 0;
377     }
378 
379     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
380         if (cpu->sau_sregion > 0) {
381             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
382             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
383         }
384         env->sau.rnr = 0;
385         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
386          * the Cortex-M33 does.
387          */
388         env->sau.ctrl = 0;
389     }
390 
391     set_flush_to_zero(1, &env->vfp.standard_fp_status);
392     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
393     set_default_nan_mode(1, &env->vfp.standard_fp_status);
394     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status);
397     set_float_detect_tininess(float_tininess_before_rounding,
398                               &env->vfp.standard_fp_status);
399     set_float_detect_tininess(float_tininess_before_rounding,
400                               &env->vfp.fp_status_f16);
401     set_float_detect_tininess(float_tininess_before_rounding,
402                               &env->vfp.standard_fp_status_f16);
403 #ifndef CONFIG_USER_ONLY
404     if (kvm_enabled()) {
405         kvm_arm_reset_vcpu(cpu);
406     }
407 #endif
408 
409     hw_breakpoint_update_all(cpu);
410     hw_watchpoint_update_all(cpu);
411     arm_rebuild_hflags(env);
412 }
413 
414 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
415                                      unsigned int target_el,
416                                      unsigned int cur_el, bool secure,
417                                      uint64_t hcr_el2)
418 {
419     CPUARMState *env = cs->env_ptr;
420     bool pstate_unmasked;
421     bool unmasked = false;
422 
423     /*
424      * Don't take exceptions if they target a lower EL.
425      * This check should catch any exceptions that would not be taken
426      * but left pending.
427      */
428     if (cur_el > target_el) {
429         return false;
430     }
431 
432     switch (excp_idx) {
433     case EXCP_FIQ:
434         pstate_unmasked = !(env->daif & PSTATE_F);
435         break;
436 
437     case EXCP_IRQ:
438         pstate_unmasked = !(env->daif & PSTATE_I);
439         break;
440 
441     case EXCP_VFIQ:
442         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
443             /* VFIQs are only taken when hypervized and non-secure.  */
444             return false;
445         }
446         return !(env->daif & PSTATE_F);
447     case EXCP_VIRQ:
448         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
449             /* VIRQs are only taken when hypervized and non-secure.  */
450             return false;
451         }
452         return !(env->daif & PSTATE_I);
453     default:
454         g_assert_not_reached();
455     }
456 
457     /*
458      * Use the target EL, current execution state and SCR/HCR settings to
459      * determine whether the corresponding CPSR bit is used to mask the
460      * interrupt.
461      */
462     if ((target_el > cur_el) && (target_el != 1)) {
463         /* Exceptions targeting a higher EL may not be maskable */
464         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
465             /*
466              * 64-bit masking rules are simple: exceptions to EL3
467              * can't be masked, and exceptions to EL2 can only be
468              * masked from Secure state. The HCR and SCR settings
469              * don't affect the masking logic, only the interrupt routing.
470              */
471             if (target_el == 3 || !secure) {
472                 unmasked = true;
473             }
474         } else {
475             /*
476              * The old 32-bit-only environment has a more complicated
477              * masking setup. HCR and SCR bits not only affect interrupt
478              * routing but also change the behaviour of masking.
479              */
480             bool hcr, scr;
481 
482             switch (excp_idx) {
483             case EXCP_FIQ:
484                 /*
485                  * If FIQs are routed to EL3 or EL2 then there are cases where
486                  * we override the CPSR.F in determining if the exception is
487                  * masked or not. If neither of these are set then we fall back
488                  * to the CPSR.F setting otherwise we further assess the state
489                  * below.
490                  */
491                 hcr = hcr_el2 & HCR_FMO;
492                 scr = (env->cp15.scr_el3 & SCR_FIQ);
493 
494                 /*
495                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
496                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
497                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
498                  * when non-secure but only when FIQs are only routed to EL3.
499                  */
500                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
501                 break;
502             case EXCP_IRQ:
503                 /*
504                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
505                  * we may override the CPSR.I masking when in non-secure state.
506                  * The SCR.IRQ setting has already been taken into consideration
507                  * when setting the target EL, so it does not have a further
508                  * affect here.
509                  */
510                 hcr = hcr_el2 & HCR_IMO;
511                 scr = false;
512                 break;
513             default:
514                 g_assert_not_reached();
515             }
516 
517             if ((scr || hcr) && !secure) {
518                 unmasked = true;
519             }
520         }
521     }
522 
523     /*
524      * The PSTATE bits only mask the interrupt if we have not overriden the
525      * ability above.
526      */
527     return unmasked || pstate_unmasked;
528 }
529 
530 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
531 {
532     CPUClass *cc = CPU_GET_CLASS(cs);
533     CPUARMState *env = cs->env_ptr;
534     uint32_t cur_el = arm_current_el(env);
535     bool secure = arm_is_secure(env);
536     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
537     uint32_t target_el;
538     uint32_t excp_idx;
539 
540     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
541 
542     if (interrupt_request & CPU_INTERRUPT_FIQ) {
543         excp_idx = EXCP_FIQ;
544         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
545         if (arm_excp_unmasked(cs, excp_idx, target_el,
546                               cur_el, secure, hcr_el2)) {
547             goto found;
548         }
549     }
550     if (interrupt_request & CPU_INTERRUPT_HARD) {
551         excp_idx = EXCP_IRQ;
552         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
553         if (arm_excp_unmasked(cs, excp_idx, target_el,
554                               cur_el, secure, hcr_el2)) {
555             goto found;
556         }
557     }
558     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
559         excp_idx = EXCP_VIRQ;
560         target_el = 1;
561         if (arm_excp_unmasked(cs, excp_idx, target_el,
562                               cur_el, secure, hcr_el2)) {
563             goto found;
564         }
565     }
566     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
567         excp_idx = EXCP_VFIQ;
568         target_el = 1;
569         if (arm_excp_unmasked(cs, excp_idx, target_el,
570                               cur_el, secure, hcr_el2)) {
571             goto found;
572         }
573     }
574     return false;
575 
576  found:
577     cs->exception_index = excp_idx;
578     env->exception.target_el = target_el;
579     cc->do_interrupt(cs);
580     return true;
581 }
582 
583 void arm_cpu_update_virq(ARMCPU *cpu)
584 {
585     /*
586      * Update the interrupt level for VIRQ, which is the logical OR of
587      * the HCR_EL2.VI bit and the input line level from the GIC.
588      */
589     CPUARMState *env = &cpu->env;
590     CPUState *cs = CPU(cpu);
591 
592     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
593         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
594 
595     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
596         if (new_state) {
597             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
598         } else {
599             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
600         }
601     }
602 }
603 
604 void arm_cpu_update_vfiq(ARMCPU *cpu)
605 {
606     /*
607      * Update the interrupt level for VFIQ, which is the logical OR of
608      * the HCR_EL2.VF bit and the input line level from the GIC.
609      */
610     CPUARMState *env = &cpu->env;
611     CPUState *cs = CPU(cpu);
612 
613     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
614         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
615 
616     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
617         if (new_state) {
618             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
619         } else {
620             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
621         }
622     }
623 }
624 
625 #ifndef CONFIG_USER_ONLY
626 static void arm_cpu_set_irq(void *opaque, int irq, int level)
627 {
628     ARMCPU *cpu = opaque;
629     CPUARMState *env = &cpu->env;
630     CPUState *cs = CPU(cpu);
631     static const int mask[] = {
632         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
633         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
634         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
635         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
636     };
637 
638     if (level) {
639         env->irq_line_state |= mask[irq];
640     } else {
641         env->irq_line_state &= ~mask[irq];
642     }
643 
644     switch (irq) {
645     case ARM_CPU_VIRQ:
646         assert(arm_feature(env, ARM_FEATURE_EL2));
647         arm_cpu_update_virq(cpu);
648         break;
649     case ARM_CPU_VFIQ:
650         assert(arm_feature(env, ARM_FEATURE_EL2));
651         arm_cpu_update_vfiq(cpu);
652         break;
653     case ARM_CPU_IRQ:
654     case ARM_CPU_FIQ:
655         if (level) {
656             cpu_interrupt(cs, mask[irq]);
657         } else {
658             cpu_reset_interrupt(cs, mask[irq]);
659         }
660         break;
661     default:
662         g_assert_not_reached();
663     }
664 }
665 
666 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
667 {
668 #ifdef CONFIG_KVM
669     ARMCPU *cpu = opaque;
670     CPUARMState *env = &cpu->env;
671     CPUState *cs = CPU(cpu);
672     uint32_t linestate_bit;
673     int irq_id;
674 
675     switch (irq) {
676     case ARM_CPU_IRQ:
677         irq_id = KVM_ARM_IRQ_CPU_IRQ;
678         linestate_bit = CPU_INTERRUPT_HARD;
679         break;
680     case ARM_CPU_FIQ:
681         irq_id = KVM_ARM_IRQ_CPU_FIQ;
682         linestate_bit = CPU_INTERRUPT_FIQ;
683         break;
684     default:
685         g_assert_not_reached();
686     }
687 
688     if (level) {
689         env->irq_line_state |= linestate_bit;
690     } else {
691         env->irq_line_state &= ~linestate_bit;
692     }
693     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
694 #endif
695 }
696 
697 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
698 {
699     ARMCPU *cpu = ARM_CPU(cs);
700     CPUARMState *env = &cpu->env;
701 
702     cpu_synchronize_state(cs);
703     return arm_cpu_data_is_big_endian(env);
704 }
705 
706 #endif
707 
708 static int
709 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
710 {
711   return print_insn_arm(pc | 1, info);
712 }
713 
714 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
715 {
716     ARMCPU *ac = ARM_CPU(cpu);
717     CPUARMState *env = &ac->env;
718     bool sctlr_b;
719 
720     if (is_a64(env)) {
721         /* We might not be compiled with the A64 disassembler
722          * because it needs a C++ compiler. Leave print_insn
723          * unset in this case to use the caller default behaviour.
724          */
725 #if defined(CONFIG_ARM_A64_DIS)
726         info->print_insn = print_insn_arm_a64;
727 #endif
728         info->cap_arch = CS_ARCH_ARM64;
729         info->cap_insn_unit = 4;
730         info->cap_insn_split = 4;
731     } else {
732         int cap_mode;
733         if (env->thumb) {
734             info->print_insn = print_insn_thumb1;
735             info->cap_insn_unit = 2;
736             info->cap_insn_split = 4;
737             cap_mode = CS_MODE_THUMB;
738         } else {
739             info->print_insn = print_insn_arm;
740             info->cap_insn_unit = 4;
741             info->cap_insn_split = 4;
742             cap_mode = CS_MODE_ARM;
743         }
744         if (arm_feature(env, ARM_FEATURE_V8)) {
745             cap_mode |= CS_MODE_V8;
746         }
747         if (arm_feature(env, ARM_FEATURE_M)) {
748             cap_mode |= CS_MODE_MCLASS;
749         }
750         info->cap_arch = CS_ARCH_ARM;
751         info->cap_mode = cap_mode;
752     }
753 
754     sctlr_b = arm_sctlr_b(env);
755     if (bswap_code(sctlr_b)) {
756 #ifdef TARGET_WORDS_BIGENDIAN
757         info->endian = BFD_ENDIAN_LITTLE;
758 #else
759         info->endian = BFD_ENDIAN_BIG;
760 #endif
761     }
762     info->flags &= ~INSN_ARM_BE32;
763 #ifndef CONFIG_USER_ONLY
764     if (sctlr_b) {
765         info->flags |= INSN_ARM_BE32;
766     }
767 #endif
768 }
769 
770 #ifdef TARGET_AARCH64
771 
772 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
773 {
774     ARMCPU *cpu = ARM_CPU(cs);
775     CPUARMState *env = &cpu->env;
776     uint32_t psr = pstate_read(env);
777     int i;
778     int el = arm_current_el(env);
779     const char *ns_status;
780 
781     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
782     for (i = 0; i < 32; i++) {
783         if (i == 31) {
784             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
785         } else {
786             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
787                          (i + 2) % 3 ? " " : "\n");
788         }
789     }
790 
791     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
792         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
793     } else {
794         ns_status = "";
795     }
796     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
797                  psr,
798                  psr & PSTATE_N ? 'N' : '-',
799                  psr & PSTATE_Z ? 'Z' : '-',
800                  psr & PSTATE_C ? 'C' : '-',
801                  psr & PSTATE_V ? 'V' : '-',
802                  ns_status,
803                  el,
804                  psr & PSTATE_SP ? 'h' : 't');
805 
806     if (cpu_isar_feature(aa64_bti, cpu)) {
807         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
808     }
809     if (!(flags & CPU_DUMP_FPU)) {
810         qemu_fprintf(f, "\n");
811         return;
812     }
813     if (fp_exception_el(env, el) != 0) {
814         qemu_fprintf(f, "    FPU disabled\n");
815         return;
816     }
817     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
818                  vfp_get_fpcr(env), vfp_get_fpsr(env));
819 
820     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
821         int j, zcr_len = sve_zcr_len_for_el(env, el);
822 
823         for (i = 0; i <= FFR_PRED_NUM; i++) {
824             bool eol;
825             if (i == FFR_PRED_NUM) {
826                 qemu_fprintf(f, "FFR=");
827                 /* It's last, so end the line.  */
828                 eol = true;
829             } else {
830                 qemu_fprintf(f, "P%02d=", i);
831                 switch (zcr_len) {
832                 case 0:
833                     eol = i % 8 == 7;
834                     break;
835                 case 1:
836                     eol = i % 6 == 5;
837                     break;
838                 case 2:
839                 case 3:
840                     eol = i % 3 == 2;
841                     break;
842                 default:
843                     /* More than one quadword per predicate.  */
844                     eol = true;
845                     break;
846                 }
847             }
848             for (j = zcr_len / 4; j >= 0; j--) {
849                 int digits;
850                 if (j * 4 + 4 <= zcr_len + 1) {
851                     digits = 16;
852                 } else {
853                     digits = (zcr_len % 4 + 1) * 4;
854                 }
855                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
856                              env->vfp.pregs[i].p[j],
857                              j ? ":" : eol ? "\n" : " ");
858             }
859         }
860 
861         for (i = 0; i < 32; i++) {
862             if (zcr_len == 0) {
863                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
864                              i, env->vfp.zregs[i].d[1],
865                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
866             } else if (zcr_len == 1) {
867                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
868                              ":%016" PRIx64 ":%016" PRIx64 "\n",
869                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
870                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
871             } else {
872                 for (j = zcr_len; j >= 0; j--) {
873                     bool odd = (zcr_len - j) % 2 != 0;
874                     if (j == zcr_len) {
875                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
876                     } else if (!odd) {
877                         if (j > 0) {
878                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
879                         } else {
880                             qemu_fprintf(f, "     [%x]=", j);
881                         }
882                     }
883                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
884                                  env->vfp.zregs[i].d[j * 2 + 1],
885                                  env->vfp.zregs[i].d[j * 2],
886                                  odd || j == 0 ? "\n" : ":");
887                 }
888             }
889         }
890     } else {
891         for (i = 0; i < 32; i++) {
892             uint64_t *q = aa64_vfp_qreg(env, i);
893             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
894                          i, q[1], q[0], (i & 1 ? "\n" : " "));
895         }
896     }
897 }
898 
899 #else
900 
901 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
902 {
903     g_assert_not_reached();
904 }
905 
906 #endif
907 
908 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
909 {
910     ARMCPU *cpu = ARM_CPU(cs);
911     CPUARMState *env = &cpu->env;
912     int i;
913 
914     if (is_a64(env)) {
915         aarch64_cpu_dump_state(cs, f, flags);
916         return;
917     }
918 
919     for (i = 0; i < 16; i++) {
920         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
921         if ((i % 4) == 3) {
922             qemu_fprintf(f, "\n");
923         } else {
924             qemu_fprintf(f, " ");
925         }
926     }
927 
928     if (arm_feature(env, ARM_FEATURE_M)) {
929         uint32_t xpsr = xpsr_read(env);
930         const char *mode;
931         const char *ns_status = "";
932 
933         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
934             ns_status = env->v7m.secure ? "S " : "NS ";
935         }
936 
937         if (xpsr & XPSR_EXCP) {
938             mode = "handler";
939         } else {
940             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
941                 mode = "unpriv-thread";
942             } else {
943                 mode = "priv-thread";
944             }
945         }
946 
947         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
948                      xpsr,
949                      xpsr & XPSR_N ? 'N' : '-',
950                      xpsr & XPSR_Z ? 'Z' : '-',
951                      xpsr & XPSR_C ? 'C' : '-',
952                      xpsr & XPSR_V ? 'V' : '-',
953                      xpsr & XPSR_T ? 'T' : 'A',
954                      ns_status,
955                      mode);
956     } else {
957         uint32_t psr = cpsr_read(env);
958         const char *ns_status = "";
959 
960         if (arm_feature(env, ARM_FEATURE_EL3) &&
961             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
962             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
963         }
964 
965         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
966                      psr,
967                      psr & CPSR_N ? 'N' : '-',
968                      psr & CPSR_Z ? 'Z' : '-',
969                      psr & CPSR_C ? 'C' : '-',
970                      psr & CPSR_V ? 'V' : '-',
971                      psr & CPSR_T ? 'T' : 'A',
972                      ns_status,
973                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
974     }
975 
976     if (flags & CPU_DUMP_FPU) {
977         int numvfpregs = 0;
978         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
979             numvfpregs = 32;
980         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
981             numvfpregs = 16;
982         }
983         for (i = 0; i < numvfpregs; i++) {
984             uint64_t v = *aa32_vfp_dreg(env, i);
985             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
986                          i * 2, (uint32_t)v,
987                          i * 2 + 1, (uint32_t)(v >> 32),
988                          i, v);
989         }
990         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
991     }
992 }
993 
994 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
995 {
996     uint32_t Aff1 = idx / clustersz;
997     uint32_t Aff0 = idx % clustersz;
998     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
999 }
1000 
1001 static void cpreg_hashtable_data_destroy(gpointer data)
1002 {
1003     /*
1004      * Destroy function for cpu->cp_regs hashtable data entries.
1005      * We must free the name string because it was g_strdup()ed in
1006      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1007      * from r->name because we know we definitely allocated it.
1008      */
1009     ARMCPRegInfo *r = data;
1010 
1011     g_free((void *)r->name);
1012     g_free(r);
1013 }
1014 
1015 static void arm_cpu_initfn(Object *obj)
1016 {
1017     ARMCPU *cpu = ARM_CPU(obj);
1018 
1019     cpu_set_cpustate_pointers(cpu);
1020     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1021                                          g_free, cpreg_hashtable_data_destroy);
1022 
1023     QLIST_INIT(&cpu->pre_el_change_hooks);
1024     QLIST_INIT(&cpu->el_change_hooks);
1025 
1026 #ifndef CONFIG_USER_ONLY
1027     /* Our inbound IRQ and FIQ lines */
1028     if (kvm_enabled()) {
1029         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1030          * the same interface as non-KVM CPUs.
1031          */
1032         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1033     } else {
1034         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1035     }
1036 
1037     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1038                        ARRAY_SIZE(cpu->gt_timer_outputs));
1039 
1040     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1041                              "gicv3-maintenance-interrupt", 1);
1042     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1043                              "pmu-interrupt", 1);
1044 #endif
1045 
1046     /* DTB consumers generally don't in fact care what the 'compatible'
1047      * string is, so always provide some string and trust that a hypothetical
1048      * picky DTB consumer will also provide a helpful error message.
1049      */
1050     cpu->dtb_compatible = "qemu,unknown";
1051     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1052     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1053 
1054     if (tcg_enabled()) {
1055         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1056     }
1057 }
1058 
1059 static Property arm_cpu_gt_cntfrq_property =
1060             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1061                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1062 
1063 static Property arm_cpu_reset_cbar_property =
1064             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1065 
1066 static Property arm_cpu_reset_hivecs_property =
1067             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1068 
1069 static Property arm_cpu_rvbar_property =
1070             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1071 
1072 #ifndef CONFIG_USER_ONLY
1073 static Property arm_cpu_has_el2_property =
1074             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1075 
1076 static Property arm_cpu_has_el3_property =
1077             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1078 #endif
1079 
1080 static Property arm_cpu_cfgend_property =
1081             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1082 
1083 static Property arm_cpu_has_vfp_property =
1084             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1085 
1086 static Property arm_cpu_has_neon_property =
1087             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1088 
1089 static Property arm_cpu_has_dsp_property =
1090             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1091 
1092 static Property arm_cpu_has_mpu_property =
1093             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1094 
1095 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1096  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1097  * the right value for that particular CPU type, and we don't want
1098  * to override that with an incorrect constant value.
1099  */
1100 static Property arm_cpu_pmsav7_dregion_property =
1101             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1102                                            pmsav7_dregion,
1103                                            qdev_prop_uint32, uint32_t);
1104 
1105 static bool arm_get_pmu(Object *obj, Error **errp)
1106 {
1107     ARMCPU *cpu = ARM_CPU(obj);
1108 
1109     return cpu->has_pmu;
1110 }
1111 
1112 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1113 {
1114     ARMCPU *cpu = ARM_CPU(obj);
1115 
1116     if (value) {
1117         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1118             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1119             return;
1120         }
1121         set_feature(&cpu->env, ARM_FEATURE_PMU);
1122     } else {
1123         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1124     }
1125     cpu->has_pmu = value;
1126 }
1127 
1128 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1129 {
1130     /*
1131      * The exact approach to calculating guest ticks is:
1132      *
1133      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1134      *              NANOSECONDS_PER_SECOND);
1135      *
1136      * We don't do that. Rather we intentionally use integer division
1137      * truncation below and in the caller for the conversion of host monotonic
1138      * time to guest ticks to provide the exact inverse for the semantics of
1139      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1140      * it loses precision when representing frequencies where
1141      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1142      * provide an exact inverse leads to scheduling timers with negative
1143      * periods, which in turn leads to sticky behaviour in the guest.
1144      *
1145      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1146      * cannot become zero.
1147      */
1148     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1149       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1150 }
1151 
1152 void arm_cpu_post_init(Object *obj)
1153 {
1154     ARMCPU *cpu = ARM_CPU(obj);
1155 
1156     /* M profile implies PMSA. We have to do this here rather than
1157      * in realize with the other feature-implication checks because
1158      * we look at the PMSA bit to see if we should add some properties.
1159      */
1160     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1161         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1162     }
1163 
1164     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1165         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1166         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1167     }
1168 
1169     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1170         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1171     }
1172 
1173     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1174         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1175     }
1176 
1177 #ifndef CONFIG_USER_ONLY
1178     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1179         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1180          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1181          */
1182         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1183 
1184         object_property_add_link(obj, "secure-memory",
1185                                  TYPE_MEMORY_REGION,
1186                                  (Object **)&cpu->secure_memory,
1187                                  qdev_prop_allow_set_link_before_realize,
1188                                  OBJ_PROP_LINK_STRONG);
1189     }
1190 
1191     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1192         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1193     }
1194 #endif
1195 
1196     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1197         cpu->has_pmu = true;
1198         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1199     }
1200 
1201     /*
1202      * Allow user to turn off VFP and Neon support, but only for TCG --
1203      * KVM does not currently allow us to lie to the guest about its
1204      * ID/feature registers, so the guest always sees what the host has.
1205      */
1206     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1207         ? cpu_isar_feature(aa64_fp_simd, cpu)
1208         : cpu_isar_feature(aa32_vfp, cpu)) {
1209         cpu->has_vfp = true;
1210         if (!kvm_enabled()) {
1211             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1212         }
1213     }
1214 
1215     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1216         cpu->has_neon = true;
1217         if (!kvm_enabled()) {
1218             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1219         }
1220     }
1221 
1222     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1223         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1224         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1225     }
1226 
1227     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1228         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1229         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1230             qdev_property_add_static(DEVICE(obj),
1231                                      &arm_cpu_pmsav7_dregion_property);
1232         }
1233     }
1234 
1235     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1236         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1237                                  qdev_prop_allow_set_link_before_realize,
1238                                  OBJ_PROP_LINK_STRONG);
1239         /*
1240          * M profile: initial value of the Secure VTOR. We can't just use
1241          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1242          * the property to be set after realize.
1243          */
1244         object_property_add_uint32_ptr(obj, "init-svtor",
1245                                        &cpu->init_svtor,
1246                                        OBJ_PROP_FLAG_READWRITE);
1247     }
1248 
1249     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1250 
1251     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1252         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1253     }
1254 
1255     if (kvm_enabled()) {
1256         kvm_arm_add_vcpu_properties(obj);
1257     }
1258 
1259 #ifndef CONFIG_USER_ONLY
1260     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1261         cpu_isar_feature(aa64_mte, cpu)) {
1262         object_property_add_link(obj, "tag-memory",
1263                                  TYPE_MEMORY_REGION,
1264                                  (Object **)&cpu->tag_memory,
1265                                  qdev_prop_allow_set_link_before_realize,
1266                                  OBJ_PROP_LINK_STRONG);
1267 
1268         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1269             object_property_add_link(obj, "secure-tag-memory",
1270                                      TYPE_MEMORY_REGION,
1271                                      (Object **)&cpu->secure_tag_memory,
1272                                      qdev_prop_allow_set_link_before_realize,
1273                                      OBJ_PROP_LINK_STRONG);
1274         }
1275     }
1276 #endif
1277 }
1278 
1279 static void arm_cpu_finalizefn(Object *obj)
1280 {
1281     ARMCPU *cpu = ARM_CPU(obj);
1282     ARMELChangeHook *hook, *next;
1283 
1284     g_hash_table_destroy(cpu->cp_regs);
1285 
1286     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1287         QLIST_REMOVE(hook, node);
1288         g_free(hook);
1289     }
1290     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1291         QLIST_REMOVE(hook, node);
1292         g_free(hook);
1293     }
1294 #ifndef CONFIG_USER_ONLY
1295     if (cpu->pmu_timer) {
1296         timer_del(cpu->pmu_timer);
1297         timer_deinit(cpu->pmu_timer);
1298         timer_free(cpu->pmu_timer);
1299     }
1300 #endif
1301 }
1302 
1303 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1304 {
1305     Error *local_err = NULL;
1306 
1307     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1308         arm_cpu_sve_finalize(cpu, &local_err);
1309         if (local_err != NULL) {
1310             error_propagate(errp, local_err);
1311             return;
1312         }
1313     }
1314 }
1315 
1316 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1317 {
1318     CPUState *cs = CPU(dev);
1319     ARMCPU *cpu = ARM_CPU(dev);
1320     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1321     CPUARMState *env = &cpu->env;
1322     int pagebits;
1323     Error *local_err = NULL;
1324     bool no_aa32 = false;
1325 
1326     /* If we needed to query the host kernel for the CPU features
1327      * then it's possible that might have failed in the initfn, but
1328      * this is the first point where we can report it.
1329      */
1330     if (cpu->host_cpu_probe_failed) {
1331         if (!kvm_enabled()) {
1332             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1333         } else {
1334             error_setg(errp, "Failed to retrieve host CPU features");
1335         }
1336         return;
1337     }
1338 
1339 #ifndef CONFIG_USER_ONLY
1340     /* The NVIC and M-profile CPU are two halves of a single piece of
1341      * hardware; trying to use one without the other is a command line
1342      * error and will result in segfaults if not caught here.
1343      */
1344     if (arm_feature(env, ARM_FEATURE_M)) {
1345         if (!env->nvic) {
1346             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1347             return;
1348         }
1349     } else {
1350         if (env->nvic) {
1351             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1352             return;
1353         }
1354     }
1355 
1356     {
1357         uint64_t scale;
1358 
1359         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1360             if (!cpu->gt_cntfrq_hz) {
1361                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1362                            cpu->gt_cntfrq_hz);
1363                 return;
1364             }
1365             scale = gt_cntfrq_period_ns(cpu);
1366         } else {
1367             scale = GTIMER_SCALE;
1368         }
1369 
1370         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1371                                                arm_gt_ptimer_cb, cpu);
1372         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1373                                                arm_gt_vtimer_cb, cpu);
1374         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1375                                               arm_gt_htimer_cb, cpu);
1376         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1377                                               arm_gt_stimer_cb, cpu);
1378         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1379                                                   arm_gt_hvtimer_cb, cpu);
1380     }
1381 #endif
1382 
1383     cpu_exec_realizefn(cs, &local_err);
1384     if (local_err != NULL) {
1385         error_propagate(errp, local_err);
1386         return;
1387     }
1388 
1389     arm_cpu_finalize_features(cpu, &local_err);
1390     if (local_err != NULL) {
1391         error_propagate(errp, local_err);
1392         return;
1393     }
1394 
1395     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1396         cpu->has_vfp != cpu->has_neon) {
1397         /*
1398          * This is an architectural requirement for AArch64; AArch32 is
1399          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1400          */
1401         error_setg(errp,
1402                    "AArch64 CPUs must have both VFP and Neon or neither");
1403         return;
1404     }
1405 
1406     if (!cpu->has_vfp) {
1407         uint64_t t;
1408         uint32_t u;
1409 
1410         t = cpu->isar.id_aa64isar1;
1411         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1412         cpu->isar.id_aa64isar1 = t;
1413 
1414         t = cpu->isar.id_aa64pfr0;
1415         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1416         cpu->isar.id_aa64pfr0 = t;
1417 
1418         u = cpu->isar.id_isar6;
1419         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1420         cpu->isar.id_isar6 = u;
1421 
1422         u = cpu->isar.mvfr0;
1423         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1424         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1425         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1426         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1427         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1428         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1429         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1430         cpu->isar.mvfr0 = u;
1431 
1432         u = cpu->isar.mvfr1;
1433         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1434         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1435         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1436         cpu->isar.mvfr1 = u;
1437 
1438         u = cpu->isar.mvfr2;
1439         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1440         cpu->isar.mvfr2 = u;
1441     }
1442 
1443     if (!cpu->has_neon) {
1444         uint64_t t;
1445         uint32_t u;
1446 
1447         unset_feature(env, ARM_FEATURE_NEON);
1448 
1449         t = cpu->isar.id_aa64isar0;
1450         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1451         cpu->isar.id_aa64isar0 = t;
1452 
1453         t = cpu->isar.id_aa64isar1;
1454         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1455         cpu->isar.id_aa64isar1 = t;
1456 
1457         t = cpu->isar.id_aa64pfr0;
1458         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1459         cpu->isar.id_aa64pfr0 = t;
1460 
1461         u = cpu->isar.id_isar5;
1462         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1463         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1464         cpu->isar.id_isar5 = u;
1465 
1466         u = cpu->isar.id_isar6;
1467         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1468         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1469         cpu->isar.id_isar6 = u;
1470 
1471         u = cpu->isar.mvfr1;
1472         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1473         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1474         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1475         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1476         cpu->isar.mvfr1 = u;
1477 
1478         u = cpu->isar.mvfr2;
1479         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1480         cpu->isar.mvfr2 = u;
1481     }
1482 
1483     if (!cpu->has_neon && !cpu->has_vfp) {
1484         uint64_t t;
1485         uint32_t u;
1486 
1487         t = cpu->isar.id_aa64isar0;
1488         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1489         cpu->isar.id_aa64isar0 = t;
1490 
1491         t = cpu->isar.id_aa64isar1;
1492         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1493         cpu->isar.id_aa64isar1 = t;
1494 
1495         u = cpu->isar.mvfr0;
1496         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1497         cpu->isar.mvfr0 = u;
1498 
1499         /* Despite the name, this field covers both VFP and Neon */
1500         u = cpu->isar.mvfr1;
1501         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1502         cpu->isar.mvfr1 = u;
1503     }
1504 
1505     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1506         uint32_t u;
1507 
1508         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1509 
1510         u = cpu->isar.id_isar1;
1511         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1512         cpu->isar.id_isar1 = u;
1513 
1514         u = cpu->isar.id_isar2;
1515         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1516         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1517         cpu->isar.id_isar2 = u;
1518 
1519         u = cpu->isar.id_isar3;
1520         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1521         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1522         cpu->isar.id_isar3 = u;
1523     }
1524 
1525     /* Some features automatically imply others: */
1526     if (arm_feature(env, ARM_FEATURE_V8)) {
1527         if (arm_feature(env, ARM_FEATURE_M)) {
1528             set_feature(env, ARM_FEATURE_V7);
1529         } else {
1530             set_feature(env, ARM_FEATURE_V7VE);
1531         }
1532     }
1533 
1534     /*
1535      * There exist AArch64 cpus without AArch32 support.  When KVM
1536      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1537      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1538      * As a general principle, we also do not make ID register
1539      * consistency checks anywhere unless using TCG, because only
1540      * for TCG would a consistency-check failure be a QEMU bug.
1541      */
1542     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1543         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1544     }
1545 
1546     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1547         /* v7 Virtualization Extensions. In real hardware this implies
1548          * EL2 and also the presence of the Security Extensions.
1549          * For QEMU, for backwards-compatibility we implement some
1550          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1551          * include the various other features that V7VE implies.
1552          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1553          * Security Extensions is ARM_FEATURE_EL3.
1554          */
1555         assert(!tcg_enabled() || no_aa32 ||
1556                cpu_isar_feature(aa32_arm_div, cpu));
1557         set_feature(env, ARM_FEATURE_LPAE);
1558         set_feature(env, ARM_FEATURE_V7);
1559     }
1560     if (arm_feature(env, ARM_FEATURE_V7)) {
1561         set_feature(env, ARM_FEATURE_VAPA);
1562         set_feature(env, ARM_FEATURE_THUMB2);
1563         set_feature(env, ARM_FEATURE_MPIDR);
1564         if (!arm_feature(env, ARM_FEATURE_M)) {
1565             set_feature(env, ARM_FEATURE_V6K);
1566         } else {
1567             set_feature(env, ARM_FEATURE_V6);
1568         }
1569 
1570         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1571          * non-EL3 configs. This is needed by some legacy boards.
1572          */
1573         set_feature(env, ARM_FEATURE_VBAR);
1574     }
1575     if (arm_feature(env, ARM_FEATURE_V6K)) {
1576         set_feature(env, ARM_FEATURE_V6);
1577         set_feature(env, ARM_FEATURE_MVFR);
1578     }
1579     if (arm_feature(env, ARM_FEATURE_V6)) {
1580         set_feature(env, ARM_FEATURE_V5);
1581         if (!arm_feature(env, ARM_FEATURE_M)) {
1582             assert(!tcg_enabled() || no_aa32 ||
1583                    cpu_isar_feature(aa32_jazelle, cpu));
1584             set_feature(env, ARM_FEATURE_AUXCR);
1585         }
1586     }
1587     if (arm_feature(env, ARM_FEATURE_V5)) {
1588         set_feature(env, ARM_FEATURE_V4T);
1589     }
1590     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1591         set_feature(env, ARM_FEATURE_V7MP);
1592         set_feature(env, ARM_FEATURE_PXN);
1593     }
1594     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1595         set_feature(env, ARM_FEATURE_CBAR);
1596     }
1597     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1598         !arm_feature(env, ARM_FEATURE_M)) {
1599         set_feature(env, ARM_FEATURE_THUMB_DSP);
1600     }
1601 
1602     /*
1603      * We rely on no XScale CPU having VFP so we can use the same bits in the
1604      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1605      */
1606     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1607            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1608            !arm_feature(env, ARM_FEATURE_XSCALE));
1609 
1610     if (arm_feature(env, ARM_FEATURE_V7) &&
1611         !arm_feature(env, ARM_FEATURE_M) &&
1612         !arm_feature(env, ARM_FEATURE_PMSA)) {
1613         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1614          * can use 4K pages.
1615          */
1616         pagebits = 12;
1617     } else {
1618         /* For CPUs which might have tiny 1K pages, or which have an
1619          * MPU and might have small region sizes, stick with 1K pages.
1620          */
1621         pagebits = 10;
1622     }
1623     if (!set_preferred_target_page_bits(pagebits)) {
1624         /* This can only ever happen for hotplugging a CPU, or if
1625          * the board code incorrectly creates a CPU which it has
1626          * promised via minimum_page_size that it will not.
1627          */
1628         error_setg(errp, "This CPU requires a smaller page size than the "
1629                    "system is using");
1630         return;
1631     }
1632 
1633     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1634      * We don't support setting cluster ID ([16..23]) (known as Aff2
1635      * in later ARM ARM versions), or any of the higher affinity level fields,
1636      * so these bits always RAZ.
1637      */
1638     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1639         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1640                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1641     }
1642 
1643     if (cpu->reset_hivecs) {
1644             cpu->reset_sctlr |= (1 << 13);
1645     }
1646 
1647     if (cpu->cfgend) {
1648         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1649             cpu->reset_sctlr |= SCTLR_EE;
1650         } else {
1651             cpu->reset_sctlr |= SCTLR_B;
1652         }
1653     }
1654 
1655     if (!cpu->has_el3) {
1656         /* If the has_el3 CPU property is disabled then we need to disable the
1657          * feature.
1658          */
1659         unset_feature(env, ARM_FEATURE_EL3);
1660 
1661         /* Disable the security extension feature bits in the processor feature
1662          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1663          */
1664         cpu->id_pfr1 &= ~0xf0;
1665         cpu->isar.id_aa64pfr0 &= ~0xf000;
1666     }
1667 
1668     if (!cpu->has_el2) {
1669         unset_feature(env, ARM_FEATURE_EL2);
1670     }
1671 
1672     if (!cpu->has_pmu) {
1673         unset_feature(env, ARM_FEATURE_PMU);
1674     }
1675     if (arm_feature(env, ARM_FEATURE_PMU)) {
1676         pmu_init(cpu);
1677 
1678         if (!kvm_enabled()) {
1679             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1680             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1681         }
1682 
1683 #ifndef CONFIG_USER_ONLY
1684         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1685                 cpu);
1686 #endif
1687     } else {
1688         cpu->isar.id_aa64dfr0 =
1689             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1690         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1691         cpu->pmceid0 = 0;
1692         cpu->pmceid1 = 0;
1693     }
1694 
1695     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1696         /* Disable the hypervisor feature bits in the processor feature
1697          * registers if we don't have EL2. These are id_pfr1[15:12] and
1698          * id_aa64pfr0_el1[11:8].
1699          */
1700         cpu->isar.id_aa64pfr0 &= ~0xf00;
1701         cpu->id_pfr1 &= ~0xf000;
1702     }
1703 
1704 #ifndef CONFIG_USER_ONLY
1705     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1706         /*
1707          * Disable the MTE feature bits if we do not have tag-memory
1708          * provided by the machine.
1709          */
1710         cpu->isar.id_aa64pfr1 =
1711             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1712     }
1713 #endif
1714 
1715     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1716      * to false or by setting pmsav7-dregion to 0.
1717      */
1718     if (!cpu->has_mpu) {
1719         cpu->pmsav7_dregion = 0;
1720     }
1721     if (cpu->pmsav7_dregion == 0) {
1722         cpu->has_mpu = false;
1723     }
1724 
1725     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1726         arm_feature(env, ARM_FEATURE_V7)) {
1727         uint32_t nr = cpu->pmsav7_dregion;
1728 
1729         if (nr > 0xff) {
1730             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1731             return;
1732         }
1733 
1734         if (nr) {
1735             if (arm_feature(env, ARM_FEATURE_V8)) {
1736                 /* PMSAv8 */
1737                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1738                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1739                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1740                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1741                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1742                 }
1743             } else {
1744                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1745                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1746                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1747             }
1748         }
1749     }
1750 
1751     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1752         uint32_t nr = cpu->sau_sregion;
1753 
1754         if (nr > 0xff) {
1755             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1756             return;
1757         }
1758 
1759         if (nr) {
1760             env->sau.rbar = g_new0(uint32_t, nr);
1761             env->sau.rlar = g_new0(uint32_t, nr);
1762         }
1763     }
1764 
1765     if (arm_feature(env, ARM_FEATURE_EL3)) {
1766         set_feature(env, ARM_FEATURE_VBAR);
1767     }
1768 
1769     register_cp_regs_for_features(cpu);
1770     arm_cpu_register_gdb_regs_for_features(cpu);
1771 
1772     init_cpreg_list(cpu);
1773 
1774 #ifndef CONFIG_USER_ONLY
1775     MachineState *ms = MACHINE(qdev_get_machine());
1776     unsigned int smp_cpus = ms->smp.cpus;
1777     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1778 
1779     /*
1780      * We must set cs->num_ases to the final value before
1781      * the first call to cpu_address_space_init.
1782      */
1783     if (cpu->tag_memory != NULL) {
1784         cs->num_ases = 3 + has_secure;
1785     } else {
1786         cs->num_ases = 1 + has_secure;
1787     }
1788 
1789     if (has_secure) {
1790         if (!cpu->secure_memory) {
1791             cpu->secure_memory = cs->memory;
1792         }
1793         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1794                                cpu->secure_memory);
1795     }
1796 
1797     if (cpu->tag_memory != NULL) {
1798         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1799                                cpu->tag_memory);
1800         if (has_secure) {
1801             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1802                                    cpu->secure_tag_memory);
1803         }
1804     }
1805 
1806     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1807 
1808     /* No core_count specified, default to smp_cpus. */
1809     if (cpu->core_count == -1) {
1810         cpu->core_count = smp_cpus;
1811     }
1812 #endif
1813 
1814     if (tcg_enabled()) {
1815         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1816 
1817         /*
1818          * We only support DCZ blocklen that fits on one page.
1819          *
1820          * Architectually this is always true.  However TARGET_PAGE_SIZE
1821          * is variable and, for compatibility with -machine virt-2.7,
1822          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1823          * But even then, while the largest architectural DCZ blocklen
1824          * is 2KiB, no cpu actually uses such a large blocklen.
1825          */
1826         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1827 
1828         /*
1829          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1830          * both nibbles of each byte storing tag data may be written at once.
1831          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1832          */
1833         if (cpu_isar_feature(aa64_mte, cpu)) {
1834             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1835         }
1836     }
1837 
1838     qemu_init_vcpu(cs);
1839     cpu_reset(cs);
1840 
1841     acc->parent_realize(dev, errp);
1842 }
1843 
1844 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1845 {
1846     ObjectClass *oc;
1847     char *typename;
1848     char **cpuname;
1849     const char *cpunamestr;
1850 
1851     cpuname = g_strsplit(cpu_model, ",", 1);
1852     cpunamestr = cpuname[0];
1853 #ifdef CONFIG_USER_ONLY
1854     /* For backwards compatibility usermode emulation allows "-cpu any",
1855      * which has the same semantics as "-cpu max".
1856      */
1857     if (!strcmp(cpunamestr, "any")) {
1858         cpunamestr = "max";
1859     }
1860 #endif
1861     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1862     oc = object_class_by_name(typename);
1863     g_strfreev(cpuname);
1864     g_free(typename);
1865     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1866         object_class_is_abstract(oc)) {
1867         return NULL;
1868     }
1869     return oc;
1870 }
1871 
1872 /* CPU models. These are not needed for the AArch64 linux-user build. */
1873 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1874 
1875 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1876     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1877       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1878     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1879       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1880     REGINFO_SENTINEL
1881 };
1882 
1883 static void cortex_a8_initfn(Object *obj)
1884 {
1885     ARMCPU *cpu = ARM_CPU(obj);
1886 
1887     cpu->dtb_compatible = "arm,cortex-a8";
1888     set_feature(&cpu->env, ARM_FEATURE_V7);
1889     set_feature(&cpu->env, ARM_FEATURE_NEON);
1890     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1891     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1892     set_feature(&cpu->env, ARM_FEATURE_EL3);
1893     cpu->midr = 0x410fc080;
1894     cpu->reset_fpsid = 0x410330c0;
1895     cpu->isar.mvfr0 = 0x11110222;
1896     cpu->isar.mvfr1 = 0x00011111;
1897     cpu->ctr = 0x82048004;
1898     cpu->reset_sctlr = 0x00c50078;
1899     cpu->id_pfr0 = 0x1031;
1900     cpu->id_pfr1 = 0x11;
1901     cpu->isar.id_dfr0 = 0x400;
1902     cpu->id_afr0 = 0;
1903     cpu->isar.id_mmfr0 = 0x31100003;
1904     cpu->isar.id_mmfr1 = 0x20000000;
1905     cpu->isar.id_mmfr2 = 0x01202000;
1906     cpu->isar.id_mmfr3 = 0x11;
1907     cpu->isar.id_isar0 = 0x00101111;
1908     cpu->isar.id_isar1 = 0x12112111;
1909     cpu->isar.id_isar2 = 0x21232031;
1910     cpu->isar.id_isar3 = 0x11112131;
1911     cpu->isar.id_isar4 = 0x00111142;
1912     cpu->isar.dbgdidr = 0x15141000;
1913     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1914     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1915     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1916     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1917     cpu->reset_auxcr = 2;
1918     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1919 }
1920 
1921 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1922     /* power_control should be set to maximum latency. Again,
1923      * default to 0 and set by private hook
1924      */
1925     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1926       .access = PL1_RW, .resetvalue = 0,
1927       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1928     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1929       .access = PL1_RW, .resetvalue = 0,
1930       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1931     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1932       .access = PL1_RW, .resetvalue = 0,
1933       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1934     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1935       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1936     /* TLB lockdown control */
1937     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1938       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1939     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1940       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1941     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1942       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1943     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1944       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1945     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1946       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1947     REGINFO_SENTINEL
1948 };
1949 
1950 static void cortex_a9_initfn(Object *obj)
1951 {
1952     ARMCPU *cpu = ARM_CPU(obj);
1953 
1954     cpu->dtb_compatible = "arm,cortex-a9";
1955     set_feature(&cpu->env, ARM_FEATURE_V7);
1956     set_feature(&cpu->env, ARM_FEATURE_NEON);
1957     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1958     set_feature(&cpu->env, ARM_FEATURE_EL3);
1959     /* Note that A9 supports the MP extensions even for
1960      * A9UP and single-core A9MP (which are both different
1961      * and valid configurations; we don't model A9UP).
1962      */
1963     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1964     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1965     cpu->midr = 0x410fc090;
1966     cpu->reset_fpsid = 0x41033090;
1967     cpu->isar.mvfr0 = 0x11110222;
1968     cpu->isar.mvfr1 = 0x01111111;
1969     cpu->ctr = 0x80038003;
1970     cpu->reset_sctlr = 0x00c50078;
1971     cpu->id_pfr0 = 0x1031;
1972     cpu->id_pfr1 = 0x11;
1973     cpu->isar.id_dfr0 = 0x000;
1974     cpu->id_afr0 = 0;
1975     cpu->isar.id_mmfr0 = 0x00100103;
1976     cpu->isar.id_mmfr1 = 0x20000000;
1977     cpu->isar.id_mmfr2 = 0x01230000;
1978     cpu->isar.id_mmfr3 = 0x00002111;
1979     cpu->isar.id_isar0 = 0x00101111;
1980     cpu->isar.id_isar1 = 0x13112111;
1981     cpu->isar.id_isar2 = 0x21232041;
1982     cpu->isar.id_isar3 = 0x11112131;
1983     cpu->isar.id_isar4 = 0x00111142;
1984     cpu->isar.dbgdidr = 0x35141000;
1985     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1986     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1987     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1988     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1989 }
1990 
1991 #ifndef CONFIG_USER_ONLY
1992 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1993 {
1994     MachineState *ms = MACHINE(qdev_get_machine());
1995 
1996     /* Linux wants the number of processors from here.
1997      * Might as well set the interrupt-controller bit too.
1998      */
1999     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2000 }
2001 #endif
2002 
2003 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2004 #ifndef CONFIG_USER_ONLY
2005     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2006       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2007       .writefn = arm_cp_write_ignore, },
2008 #endif
2009     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2010       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2011     REGINFO_SENTINEL
2012 };
2013 
2014 static void cortex_a7_initfn(Object *obj)
2015 {
2016     ARMCPU *cpu = ARM_CPU(obj);
2017 
2018     cpu->dtb_compatible = "arm,cortex-a7";
2019     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2020     set_feature(&cpu->env, ARM_FEATURE_NEON);
2021     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2022     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2023     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2024     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2025     set_feature(&cpu->env, ARM_FEATURE_EL2);
2026     set_feature(&cpu->env, ARM_FEATURE_EL3);
2027     set_feature(&cpu->env, ARM_FEATURE_PMU);
2028     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2029     cpu->midr = 0x410fc075;
2030     cpu->reset_fpsid = 0x41023075;
2031     cpu->isar.mvfr0 = 0x10110222;
2032     cpu->isar.mvfr1 = 0x11111111;
2033     cpu->ctr = 0x84448003;
2034     cpu->reset_sctlr = 0x00c50078;
2035     cpu->id_pfr0 = 0x00001131;
2036     cpu->id_pfr1 = 0x00011011;
2037     cpu->isar.id_dfr0 = 0x02010555;
2038     cpu->id_afr0 = 0x00000000;
2039     cpu->isar.id_mmfr0 = 0x10101105;
2040     cpu->isar.id_mmfr1 = 0x40000000;
2041     cpu->isar.id_mmfr2 = 0x01240000;
2042     cpu->isar.id_mmfr3 = 0x02102211;
2043     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2044      * table 4-41 gives 0x02101110, which includes the arm div insns.
2045      */
2046     cpu->isar.id_isar0 = 0x02101110;
2047     cpu->isar.id_isar1 = 0x13112111;
2048     cpu->isar.id_isar2 = 0x21232041;
2049     cpu->isar.id_isar3 = 0x11112131;
2050     cpu->isar.id_isar4 = 0x10011142;
2051     cpu->isar.dbgdidr = 0x3515f005;
2052     cpu->clidr = 0x0a200023;
2053     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2054     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2055     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2056     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2057 }
2058 
2059 static void cortex_a15_initfn(Object *obj)
2060 {
2061     ARMCPU *cpu = ARM_CPU(obj);
2062 
2063     cpu->dtb_compatible = "arm,cortex-a15";
2064     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2065     set_feature(&cpu->env, ARM_FEATURE_NEON);
2066     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2067     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2068     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2069     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2070     set_feature(&cpu->env, ARM_FEATURE_EL2);
2071     set_feature(&cpu->env, ARM_FEATURE_EL3);
2072     set_feature(&cpu->env, ARM_FEATURE_PMU);
2073     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2074     cpu->midr = 0x412fc0f1;
2075     cpu->reset_fpsid = 0x410430f0;
2076     cpu->isar.mvfr0 = 0x10110222;
2077     cpu->isar.mvfr1 = 0x11111111;
2078     cpu->ctr = 0x8444c004;
2079     cpu->reset_sctlr = 0x00c50078;
2080     cpu->id_pfr0 = 0x00001131;
2081     cpu->id_pfr1 = 0x00011011;
2082     cpu->isar.id_dfr0 = 0x02010555;
2083     cpu->id_afr0 = 0x00000000;
2084     cpu->isar.id_mmfr0 = 0x10201105;
2085     cpu->isar.id_mmfr1 = 0x20000000;
2086     cpu->isar.id_mmfr2 = 0x01240000;
2087     cpu->isar.id_mmfr3 = 0x02102211;
2088     cpu->isar.id_isar0 = 0x02101110;
2089     cpu->isar.id_isar1 = 0x13112111;
2090     cpu->isar.id_isar2 = 0x21232041;
2091     cpu->isar.id_isar3 = 0x11112131;
2092     cpu->isar.id_isar4 = 0x10011142;
2093     cpu->isar.dbgdidr = 0x3515f021;
2094     cpu->clidr = 0x0a200023;
2095     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2096     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2097     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2098     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2099 }
2100 
2101 #ifndef TARGET_AARCH64
2102 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2103  * otherwise, a CPU with as many features enabled as our emulation supports.
2104  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2105  * this only needs to handle 32 bits.
2106  */
2107 static void arm_max_initfn(Object *obj)
2108 {
2109     ARMCPU *cpu = ARM_CPU(obj);
2110 
2111     if (kvm_enabled()) {
2112         kvm_arm_set_cpu_features_from_host(cpu);
2113     } else {
2114         cortex_a15_initfn(obj);
2115 
2116         /* old-style VFP short-vector support */
2117         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2118 
2119 #ifdef CONFIG_USER_ONLY
2120         /* We don't set these in system emulation mode for the moment,
2121          * since we don't correctly set (all of) the ID registers to
2122          * advertise them.
2123          */
2124         set_feature(&cpu->env, ARM_FEATURE_V8);
2125         {
2126             uint32_t t;
2127 
2128             t = cpu->isar.id_isar5;
2129             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2130             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2131             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2132             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2133             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2134             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2135             cpu->isar.id_isar5 = t;
2136 
2137             t = cpu->isar.id_isar6;
2138             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2139             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2140             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2141             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2142             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2143             cpu->isar.id_isar6 = t;
2144 
2145             t = cpu->isar.mvfr1;
2146             t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2147             t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2148             cpu->isar.mvfr1 = t;
2149 
2150             t = cpu->isar.mvfr2;
2151             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2152             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2153             cpu->isar.mvfr2 = t;
2154 
2155             t = cpu->isar.id_mmfr3;
2156             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2157             cpu->isar.id_mmfr3 = t;
2158 
2159             t = cpu->isar.id_mmfr4;
2160             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2161             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2162             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2163             t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2164             cpu->isar.id_mmfr4 = t;
2165         }
2166 #endif
2167     }
2168 }
2169 #endif
2170 
2171 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2172 
2173 static const ARMCPUInfo arm_cpus[] = {
2174 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2175     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2176     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2177     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2178     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2179 #ifndef TARGET_AARCH64
2180     { .name = "max",         .initfn = arm_max_initfn },
2181 #endif
2182 #ifdef CONFIG_USER_ONLY
2183     { .name = "any",         .initfn = arm_max_initfn },
2184 #endif
2185 #endif
2186 };
2187 
2188 static Property arm_cpu_properties[] = {
2189     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2190     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2191     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2192     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2193                         mp_affinity, ARM64_AFFINITY_INVALID),
2194     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2195     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2196     DEFINE_PROP_END_OF_LIST()
2197 };
2198 
2199 static gchar *arm_gdb_arch_name(CPUState *cs)
2200 {
2201     ARMCPU *cpu = ARM_CPU(cs);
2202     CPUARMState *env = &cpu->env;
2203 
2204     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2205         return g_strdup("iwmmxt");
2206     }
2207     return g_strdup("arm");
2208 }
2209 
2210 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2211 {
2212     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2213     CPUClass *cc = CPU_CLASS(acc);
2214     DeviceClass *dc = DEVICE_CLASS(oc);
2215 
2216     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2217                                     &acc->parent_realize);
2218 
2219     device_class_set_props(dc, arm_cpu_properties);
2220     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2221 
2222     cc->class_by_name = arm_cpu_class_by_name;
2223     cc->has_work = arm_cpu_has_work;
2224     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2225     cc->dump_state = arm_cpu_dump_state;
2226     cc->set_pc = arm_cpu_set_pc;
2227     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2228     cc->gdb_read_register = arm_cpu_gdb_read_register;
2229     cc->gdb_write_register = arm_cpu_gdb_write_register;
2230 #ifndef CONFIG_USER_ONLY
2231     cc->do_interrupt = arm_cpu_do_interrupt;
2232     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2233     cc->asidx_from_attrs = arm_asidx_from_attrs;
2234     cc->vmsd = &vmstate_arm_cpu;
2235     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2236     cc->write_elf64_note = arm_cpu_write_elf64_note;
2237     cc->write_elf32_note = arm_cpu_write_elf32_note;
2238 #endif
2239     cc->gdb_num_core_regs = 26;
2240     cc->gdb_core_xml_file = "arm-core.xml";
2241     cc->gdb_arch_name = arm_gdb_arch_name;
2242     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2243     cc->gdb_stop_before_watchpoint = true;
2244     cc->disas_set_info = arm_disas_set_info;
2245 #ifdef CONFIG_TCG
2246     cc->tcg_initialize = arm_translate_init;
2247     cc->tlb_fill = arm_cpu_tlb_fill;
2248     cc->debug_excp_handler = arm_debug_excp_handler;
2249     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2250     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2251 #if !defined(CONFIG_USER_ONLY)
2252     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2253     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2254 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2255 #endif
2256 }
2257 
2258 #ifdef CONFIG_KVM
2259 static void arm_host_initfn(Object *obj)
2260 {
2261     ARMCPU *cpu = ARM_CPU(obj);
2262 
2263     kvm_arm_set_cpu_features_from_host(cpu);
2264     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2265         aarch64_add_sve_properties(obj);
2266     }
2267     arm_cpu_post_init(obj);
2268 }
2269 
2270 static const TypeInfo host_arm_cpu_type_info = {
2271     .name = TYPE_ARM_HOST_CPU,
2272 #ifdef TARGET_AARCH64
2273     .parent = TYPE_AARCH64_CPU,
2274 #else
2275     .parent = TYPE_ARM_CPU,
2276 #endif
2277     .instance_init = arm_host_initfn,
2278 };
2279 
2280 #endif
2281 
2282 static void arm_cpu_instance_init(Object *obj)
2283 {
2284     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2285 
2286     acc->info->initfn(obj);
2287     arm_cpu_post_init(obj);
2288 }
2289 
2290 static void cpu_register_class_init(ObjectClass *oc, void *data)
2291 {
2292     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2293 
2294     acc->info = data;
2295 }
2296 
2297 void arm_cpu_register(const ARMCPUInfo *info)
2298 {
2299     TypeInfo type_info = {
2300         .parent = TYPE_ARM_CPU,
2301         .instance_size = sizeof(ARMCPU),
2302         .instance_init = arm_cpu_instance_init,
2303         .class_size = sizeof(ARMCPUClass),
2304         .class_init = info->class_init ?: cpu_register_class_init,
2305         .class_data = (void *)info,
2306     };
2307 
2308     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2309     type_register(&type_info);
2310     g_free((void *)type_info.name);
2311 }
2312 
2313 static const TypeInfo arm_cpu_type_info = {
2314     .name = TYPE_ARM_CPU,
2315     .parent = TYPE_CPU,
2316     .instance_size = sizeof(ARMCPU),
2317     .instance_init = arm_cpu_initfn,
2318     .instance_finalize = arm_cpu_finalizefn,
2319     .abstract = true,
2320     .class_size = sizeof(ARMCPUClass),
2321     .class_init = arm_cpu_class_init,
2322 };
2323 
2324 static const TypeInfo idau_interface_type_info = {
2325     .name = TYPE_IDAU_INTERFACE,
2326     .parent = TYPE_INTERFACE,
2327     .class_size = sizeof(IDAUInterfaceClass),
2328 };
2329 
2330 static void arm_cpu_register_types(void)
2331 {
2332     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2333 
2334     type_register_static(&arm_cpu_type_info);
2335 
2336 #ifdef CONFIG_KVM
2337     type_register_static(&host_arm_cpu_type_info);
2338 #endif
2339 
2340     if (cpu_count) {
2341         size_t i;
2342 
2343         type_register_static(&idau_interface_type_info);
2344         for (i = 0; i < cpu_count; ++i) {
2345             arm_cpu_register(&arm_cpus[i]);
2346         }
2347     }
2348 }
2349 
2350 type_init(arm_cpu_register_types)
2351