xref: /openbmc/qemu/target/arm/cpu.c (revision af51dbed)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191 
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202 
203     /*
204      * If the highest available EL is EL2, AArch32 will start in Hyp
205      * mode; otherwise it starts in SVC. Note that if we start in
206      * AArch64 then these values in the uncached_cpsr will be ignored.
207      */
208     if (arm_feature(env, ARM_FEATURE_EL2) &&
209         !arm_feature(env, ARM_FEATURE_EL3)) {
210         env->uncached_cpsr = ARM_CPU_MODE_HYP;
211     } else {
212         env->uncached_cpsr = ARM_CPU_MODE_SVC;
213     }
214     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         uint32_t initial_msp; /* Loaded from 0x0 */
218         uint32_t initial_pc; /* Loaded from 0x4 */
219         uint8_t *rom;
220         uint32_t vecbase;
221 
222         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223             env->v7m.secure = true;
224         } else {
225             /* This bit resets to 0 if security is supported, but 1 if
226              * it is not. The bit is not present in v7M, but we set it
227              * here so we can avoid having to make checks on it conditional
228              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
229              */
230             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
231         }
232 
233         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234          * that it resets to 1, so QEMU always does that rather than making
235          * it dependent on CPU model. In v8M it is RES1.
236          */
237         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239         if (arm_feature(env, ARM_FEATURE_V8)) {
240             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
243         }
244         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
247         }
248 
249         /* Unlike A/R profile, M profile defines the reset LR value */
250         env->regs[14] = 0xffffffff;
251 
252         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
253 
254         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255         vecbase = env->v7m.vecbase[env->v7m.secure];
256         rom = rom_ptr(vecbase, 8);
257         if (rom) {
258             /* Address zero is covered by ROM which hasn't yet been
259              * copied into physical memory.
260              */
261             initial_msp = ldl_p(rom);
262             initial_pc = ldl_p(rom + 4);
263         } else {
264             /* Address zero not covered by a ROM blob, or the ROM blob
265              * is in non-modifiable memory and this is a second reset after
266              * it got copied into memory. In the latter case, rom_ptr
267              * will return a NULL pointer and we should use ldl_phys instead.
268              */
269             initial_msp = ldl_phys(s->as, vecbase);
270             initial_pc = ldl_phys(s->as, vecbase + 4);
271         }
272 
273         env->regs[13] = initial_msp & 0xFFFFFFFC;
274         env->regs[15] = initial_pc & ~1;
275         env->thumb = initial_pc & 1;
276     }
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     /* M profile requires that reset clears the exclusive monitor;
287      * A profile does not, but clearing it makes more sense than having it
288      * set with an exclusive access on address zero.
289      */
290     arm_clear_exclusive(env);
291 
292     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
294 
295     if (arm_feature(env, ARM_FEATURE_PMSA)) {
296         if (cpu->pmsav7_dregion > 0) {
297             if (arm_feature(env, ARM_FEATURE_V8)) {
298                 memset(env->pmsav8.rbar[M_REG_NS], 0,
299                        sizeof(*env->pmsav8.rbar[M_REG_NS])
300                        * cpu->pmsav7_dregion);
301                 memset(env->pmsav8.rlar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rlar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305                     memset(env->pmsav8.rbar[M_REG_S], 0,
306                            sizeof(*env->pmsav8.rbar[M_REG_S])
307                            * cpu->pmsav7_dregion);
308                     memset(env->pmsav8.rlar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rlar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                 }
312             } else if (arm_feature(env, ARM_FEATURE_V7)) {
313                 memset(env->pmsav7.drbar, 0,
314                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315                 memset(env->pmsav7.drsr, 0,
316                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317                 memset(env->pmsav7.dracr, 0,
318                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
319             }
320         }
321         env->pmsav7.rnr[M_REG_NS] = 0;
322         env->pmsav7.rnr[M_REG_S] = 0;
323         env->pmsav8.mair0[M_REG_NS] = 0;
324         env->pmsav8.mair0[M_REG_S] = 0;
325         env->pmsav8.mair1[M_REG_NS] = 0;
326         env->pmsav8.mair1[M_REG_S] = 0;
327     }
328 
329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330         if (cpu->sau_sregion > 0) {
331             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
333         }
334         env->sau.rnr = 0;
335         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336          * the Cortex-M33 does.
337          */
338         env->sau.ctrl = 0;
339     }
340 
341     set_flush_to_zero(1, &env->vfp.standard_fp_status);
342     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343     set_default_nan_mode(1, &env->vfp.standard_fp_status);
344     set_float_detect_tininess(float_tininess_before_rounding,
345                               &env->vfp.fp_status);
346     set_float_detect_tininess(float_tininess_before_rounding,
347                               &env->vfp.standard_fp_status);
348     set_float_detect_tininess(float_tininess_before_rounding,
349                               &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351     if (kvm_enabled()) {
352         kvm_arm_reset_vcpu(cpu);
353     }
354 #endif
355 
356     hw_breakpoint_update_all(cpu);
357     hw_watchpoint_update_all(cpu);
358 }
359 
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     CPUARMState *env = cs->env_ptr;
364     uint32_t cur_el = arm_current_el(env);
365     bool secure = arm_is_secure(env);
366     uint32_t target_el;
367     uint32_t excp_idx;
368     bool ret = false;
369 
370     if (interrupt_request & CPU_INTERRUPT_FIQ) {
371         excp_idx = EXCP_FIQ;
372         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374             cs->exception_index = excp_idx;
375             env->exception.target_el = target_el;
376             cc->do_interrupt(cs);
377             ret = true;
378         }
379     }
380     if (interrupt_request & CPU_INTERRUPT_HARD) {
381         excp_idx = EXCP_IRQ;
382         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384             cs->exception_index = excp_idx;
385             env->exception.target_el = target_el;
386             cc->do_interrupt(cs);
387             ret = true;
388         }
389     }
390     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391         excp_idx = EXCP_VIRQ;
392         target_el = 1;
393         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394             cs->exception_index = excp_idx;
395             env->exception.target_el = target_el;
396             cc->do_interrupt(cs);
397             ret = true;
398         }
399     }
400     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401         excp_idx = EXCP_VFIQ;
402         target_el = 1;
403         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404             cs->exception_index = excp_idx;
405             env->exception.target_el = target_el;
406             cc->do_interrupt(cs);
407             ret = true;
408         }
409     }
410 
411     return ret;
412 }
413 
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
416 {
417     CPUClass *cc = CPU_GET_CLASS(cs);
418     ARMCPU *cpu = ARM_CPU(cs);
419     CPUARMState *env = &cpu->env;
420     bool ret = false;
421 
422     /* ARMv7-M interrupt masking works differently than -A or -R.
423      * There is no FIQ/IRQ distinction. Instead of I and F bits
424      * masking FIQ and IRQ interrupts, an exception is taken only
425      * if it is higher priority than the current execution priority
426      * (which depends on state like BASEPRI, FAULTMASK and the
427      * currently active exception).
428      */
429     if (interrupt_request & CPU_INTERRUPT_HARD
430         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431         cs->exception_index = EXCP_IRQ;
432         cc->do_interrupt(cs);
433         ret = true;
434     }
435     return ret;
436 }
437 #endif
438 
439 void arm_cpu_update_virq(ARMCPU *cpu)
440 {
441     /*
442      * Update the interrupt level for VIRQ, which is the logical OR of
443      * the HCR_EL2.VI bit and the input line level from the GIC.
444      */
445     CPUARMState *env = &cpu->env;
446     CPUState *cs = CPU(cpu);
447 
448     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
449         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
450 
451     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
452         if (new_state) {
453             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
454         } else {
455             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
456         }
457     }
458 }
459 
460 void arm_cpu_update_vfiq(ARMCPU *cpu)
461 {
462     /*
463      * Update the interrupt level for VFIQ, which is the logical OR of
464      * the HCR_EL2.VF bit and the input line level from the GIC.
465      */
466     CPUARMState *env = &cpu->env;
467     CPUState *cs = CPU(cpu);
468 
469     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
470         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
471 
472     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
473         if (new_state) {
474             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
475         } else {
476             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
477         }
478     }
479 }
480 
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque, int irq, int level)
483 {
484     ARMCPU *cpu = opaque;
485     CPUARMState *env = &cpu->env;
486     CPUState *cs = CPU(cpu);
487     static const int mask[] = {
488         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
489         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
490         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
491         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
492     };
493 
494     if (level) {
495         env->irq_line_state |= mask[irq];
496     } else {
497         env->irq_line_state &= ~mask[irq];
498     }
499 
500     switch (irq) {
501     case ARM_CPU_VIRQ:
502         assert(arm_feature(env, ARM_FEATURE_EL2));
503         arm_cpu_update_virq(cpu);
504         break;
505     case ARM_CPU_VFIQ:
506         assert(arm_feature(env, ARM_FEATURE_EL2));
507         arm_cpu_update_vfiq(cpu);
508         break;
509     case ARM_CPU_IRQ:
510     case ARM_CPU_FIQ:
511         if (level) {
512             cpu_interrupt(cs, mask[irq]);
513         } else {
514             cpu_reset_interrupt(cs, mask[irq]);
515         }
516         break;
517     default:
518         g_assert_not_reached();
519     }
520 }
521 
522 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
523 {
524 #ifdef CONFIG_KVM
525     ARMCPU *cpu = opaque;
526     CPUARMState *env = &cpu->env;
527     CPUState *cs = CPU(cpu);
528     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
529     uint32_t linestate_bit;
530 
531     switch (irq) {
532     case ARM_CPU_IRQ:
533         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
534         linestate_bit = CPU_INTERRUPT_HARD;
535         break;
536     case ARM_CPU_FIQ:
537         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
538         linestate_bit = CPU_INTERRUPT_FIQ;
539         break;
540     default:
541         g_assert_not_reached();
542     }
543 
544     if (level) {
545         env->irq_line_state |= linestate_bit;
546     } else {
547         env->irq_line_state &= ~linestate_bit;
548     }
549 
550     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
551     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
552 #endif
553 }
554 
555 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
556 {
557     ARMCPU *cpu = ARM_CPU(cs);
558     CPUARMState *env = &cpu->env;
559 
560     cpu_synchronize_state(cs);
561     return arm_cpu_data_is_big_endian(env);
562 }
563 
564 #endif
565 
566 static inline void set_feature(CPUARMState *env, int feature)
567 {
568     env->features |= 1ULL << feature;
569 }
570 
571 static inline void unset_feature(CPUARMState *env, int feature)
572 {
573     env->features &= ~(1ULL << feature);
574 }
575 
576 static int
577 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
578 {
579   return print_insn_arm(pc | 1, info);
580 }
581 
582 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
583 {
584     ARMCPU *ac = ARM_CPU(cpu);
585     CPUARMState *env = &ac->env;
586     bool sctlr_b;
587 
588     if (is_a64(env)) {
589         /* We might not be compiled with the A64 disassembler
590          * because it needs a C++ compiler. Leave print_insn
591          * unset in this case to use the caller default behaviour.
592          */
593 #if defined(CONFIG_ARM_A64_DIS)
594         info->print_insn = print_insn_arm_a64;
595 #endif
596         info->cap_arch = CS_ARCH_ARM64;
597         info->cap_insn_unit = 4;
598         info->cap_insn_split = 4;
599     } else {
600         int cap_mode;
601         if (env->thumb) {
602             info->print_insn = print_insn_thumb1;
603             info->cap_insn_unit = 2;
604             info->cap_insn_split = 4;
605             cap_mode = CS_MODE_THUMB;
606         } else {
607             info->print_insn = print_insn_arm;
608             info->cap_insn_unit = 4;
609             info->cap_insn_split = 4;
610             cap_mode = CS_MODE_ARM;
611         }
612         if (arm_feature(env, ARM_FEATURE_V8)) {
613             cap_mode |= CS_MODE_V8;
614         }
615         if (arm_feature(env, ARM_FEATURE_M)) {
616             cap_mode |= CS_MODE_MCLASS;
617         }
618         info->cap_arch = CS_ARCH_ARM;
619         info->cap_mode = cap_mode;
620     }
621 
622     sctlr_b = arm_sctlr_b(env);
623     if (bswap_code(sctlr_b)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625         info->endian = BFD_ENDIAN_LITTLE;
626 #else
627         info->endian = BFD_ENDIAN_BIG;
628 #endif
629     }
630     info->flags &= ~INSN_ARM_BE32;
631 #ifndef CONFIG_USER_ONLY
632     if (sctlr_b) {
633         info->flags |= INSN_ARM_BE32;
634     }
635 #endif
636 }
637 
638 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
639 {
640     uint32_t Aff1 = idx / clustersz;
641     uint32_t Aff0 = idx % clustersz;
642     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
643 }
644 
645 static void arm_cpu_initfn(Object *obj)
646 {
647     CPUState *cs = CPU(obj);
648     ARMCPU *cpu = ARM_CPU(obj);
649 
650     cs->env_ptr = &cpu->env;
651     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
652                                          g_free, g_free);
653 
654     QLIST_INIT(&cpu->pre_el_change_hooks);
655     QLIST_INIT(&cpu->el_change_hooks);
656 
657 #ifndef CONFIG_USER_ONLY
658     /* Our inbound IRQ and FIQ lines */
659     if (kvm_enabled()) {
660         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
661          * the same interface as non-KVM CPUs.
662          */
663         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
664     } else {
665         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
666     }
667 
668     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
669                                                 arm_gt_ptimer_cb, cpu);
670     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
671                                                 arm_gt_vtimer_cb, cpu);
672     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
673                                                 arm_gt_htimer_cb, cpu);
674     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
675                                                 arm_gt_stimer_cb, cpu);
676     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
677                        ARRAY_SIZE(cpu->gt_timer_outputs));
678 
679     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
680                              "gicv3-maintenance-interrupt", 1);
681     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
682                              "pmu-interrupt", 1);
683 #endif
684 
685     /* DTB consumers generally don't in fact care what the 'compatible'
686      * string is, so always provide some string and trust that a hypothetical
687      * picky DTB consumer will also provide a helpful error message.
688      */
689     cpu->dtb_compatible = "qemu,unknown";
690     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
691     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
692 
693     if (tcg_enabled()) {
694         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
695     }
696 }
697 
698 static Property arm_cpu_reset_cbar_property =
699             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
700 
701 static Property arm_cpu_reset_hivecs_property =
702             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
703 
704 static Property arm_cpu_rvbar_property =
705             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
706 
707 static Property arm_cpu_has_el2_property =
708             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
709 
710 static Property arm_cpu_has_el3_property =
711             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
712 
713 static Property arm_cpu_cfgend_property =
714             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
715 
716 /* use property name "pmu" to match other archs and virt tools */
717 static Property arm_cpu_has_pmu_property =
718             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
719 
720 static Property arm_cpu_has_mpu_property =
721             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
722 
723 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
724  * because the CPU initfn will have already set cpu->pmsav7_dregion to
725  * the right value for that particular CPU type, and we don't want
726  * to override that with an incorrect constant value.
727  */
728 static Property arm_cpu_pmsav7_dregion_property =
729             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
730                                            pmsav7_dregion,
731                                            qdev_prop_uint32, uint32_t);
732 
733 /* M profile: initial value of the Secure VTOR */
734 static Property arm_cpu_initsvtor_property =
735             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
736 
737 static void arm_cpu_post_init(Object *obj)
738 {
739     ARMCPU *cpu = ARM_CPU(obj);
740 
741     /* M profile implies PMSA. We have to do this here rather than
742      * in realize with the other feature-implication checks because
743      * we look at the PMSA bit to see if we should add some properties.
744      */
745     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
746         set_feature(&cpu->env, ARM_FEATURE_PMSA);
747     }
748 
749     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
750         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
751         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
752                                  &error_abort);
753     }
754 
755     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
756         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
757                                  &error_abort);
758     }
759 
760     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
761         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
762                                  &error_abort);
763     }
764 
765     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
766         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
767          * prevent "has_el3" from existing on CPUs which cannot support EL3.
768          */
769         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
770                                  &error_abort);
771 
772 #ifndef CONFIG_USER_ONLY
773         object_property_add_link(obj, "secure-memory",
774                                  TYPE_MEMORY_REGION,
775                                  (Object **)&cpu->secure_memory,
776                                  qdev_prop_allow_set_link_before_realize,
777                                  OBJ_PROP_LINK_STRONG,
778                                  &error_abort);
779 #endif
780     }
781 
782     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
783         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
784                                  &error_abort);
785     }
786 
787     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
788         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
789                                  &error_abort);
790     }
791 
792     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
793         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
794                                  &error_abort);
795         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
796             qdev_property_add_static(DEVICE(obj),
797                                      &arm_cpu_pmsav7_dregion_property,
798                                      &error_abort);
799         }
800     }
801 
802     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
803         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
804                                  qdev_prop_allow_set_link_before_realize,
805                                  OBJ_PROP_LINK_STRONG,
806                                  &error_abort);
807         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
808                                  &error_abort);
809     }
810 
811     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
812                              &error_abort);
813 }
814 
815 static void arm_cpu_finalizefn(Object *obj)
816 {
817     ARMCPU *cpu = ARM_CPU(obj);
818     ARMELChangeHook *hook, *next;
819 
820     g_hash_table_destroy(cpu->cp_regs);
821 
822     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
823         QLIST_REMOVE(hook, node);
824         g_free(hook);
825     }
826     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
827         QLIST_REMOVE(hook, node);
828         g_free(hook);
829     }
830 }
831 
832 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
833 {
834     CPUState *cs = CPU(dev);
835     ARMCPU *cpu = ARM_CPU(dev);
836     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
837     CPUARMState *env = &cpu->env;
838     int pagebits;
839     Error *local_err = NULL;
840     bool no_aa32 = false;
841 
842     /* If we needed to query the host kernel for the CPU features
843      * then it's possible that might have failed in the initfn, but
844      * this is the first point where we can report it.
845      */
846     if (cpu->host_cpu_probe_failed) {
847         if (!kvm_enabled()) {
848             error_setg(errp, "The 'host' CPU type can only be used with KVM");
849         } else {
850             error_setg(errp, "Failed to retrieve host CPU features");
851         }
852         return;
853     }
854 
855 #ifndef CONFIG_USER_ONLY
856     /* The NVIC and M-profile CPU are two halves of a single piece of
857      * hardware; trying to use one without the other is a command line
858      * error and will result in segfaults if not caught here.
859      */
860     if (arm_feature(env, ARM_FEATURE_M)) {
861         if (!env->nvic) {
862             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
863             return;
864         }
865     } else {
866         if (env->nvic) {
867             error_setg(errp, "This board can only be used with Cortex-M CPUs");
868             return;
869         }
870     }
871 #endif
872 
873     cpu_exec_realizefn(cs, &local_err);
874     if (local_err != NULL) {
875         error_propagate(errp, local_err);
876         return;
877     }
878 
879     /* Some features automatically imply others: */
880     if (arm_feature(env, ARM_FEATURE_V8)) {
881         if (arm_feature(env, ARM_FEATURE_M)) {
882             set_feature(env, ARM_FEATURE_V7);
883         } else {
884             set_feature(env, ARM_FEATURE_V7VE);
885         }
886     }
887 
888     /*
889      * There exist AArch64 cpus without AArch32 support.  When KVM
890      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
891      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
892      */
893     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
894         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
895     }
896 
897     if (arm_feature(env, ARM_FEATURE_V7VE)) {
898         /* v7 Virtualization Extensions. In real hardware this implies
899          * EL2 and also the presence of the Security Extensions.
900          * For QEMU, for backwards-compatibility we implement some
901          * CPUs or CPU configs which have no actual EL2 or EL3 but do
902          * include the various other features that V7VE implies.
903          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
904          * Security Extensions is ARM_FEATURE_EL3.
905          */
906         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
907         set_feature(env, ARM_FEATURE_LPAE);
908         set_feature(env, ARM_FEATURE_V7);
909     }
910     if (arm_feature(env, ARM_FEATURE_V7)) {
911         set_feature(env, ARM_FEATURE_VAPA);
912         set_feature(env, ARM_FEATURE_THUMB2);
913         set_feature(env, ARM_FEATURE_MPIDR);
914         if (!arm_feature(env, ARM_FEATURE_M)) {
915             set_feature(env, ARM_FEATURE_V6K);
916         } else {
917             set_feature(env, ARM_FEATURE_V6);
918         }
919 
920         /* Always define VBAR for V7 CPUs even if it doesn't exist in
921          * non-EL3 configs. This is needed by some legacy boards.
922          */
923         set_feature(env, ARM_FEATURE_VBAR);
924     }
925     if (arm_feature(env, ARM_FEATURE_V6K)) {
926         set_feature(env, ARM_FEATURE_V6);
927         set_feature(env, ARM_FEATURE_MVFR);
928     }
929     if (arm_feature(env, ARM_FEATURE_V6)) {
930         set_feature(env, ARM_FEATURE_V5);
931         if (!arm_feature(env, ARM_FEATURE_M)) {
932             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
933             set_feature(env, ARM_FEATURE_AUXCR);
934         }
935     }
936     if (arm_feature(env, ARM_FEATURE_V5)) {
937         set_feature(env, ARM_FEATURE_V4T);
938     }
939     if (arm_feature(env, ARM_FEATURE_VFP4)) {
940         set_feature(env, ARM_FEATURE_VFP3);
941         set_feature(env, ARM_FEATURE_VFP_FP16);
942     }
943     if (arm_feature(env, ARM_FEATURE_VFP3)) {
944         set_feature(env, ARM_FEATURE_VFP);
945     }
946     if (arm_feature(env, ARM_FEATURE_LPAE)) {
947         set_feature(env, ARM_FEATURE_V7MP);
948         set_feature(env, ARM_FEATURE_PXN);
949     }
950     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
951         set_feature(env, ARM_FEATURE_CBAR);
952     }
953     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
954         !arm_feature(env, ARM_FEATURE_M)) {
955         set_feature(env, ARM_FEATURE_THUMB_DSP);
956     }
957 
958     if (arm_feature(env, ARM_FEATURE_V7) &&
959         !arm_feature(env, ARM_FEATURE_M) &&
960         !arm_feature(env, ARM_FEATURE_PMSA)) {
961         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
962          * can use 4K pages.
963          */
964         pagebits = 12;
965     } else {
966         /* For CPUs which might have tiny 1K pages, or which have an
967          * MPU and might have small region sizes, stick with 1K pages.
968          */
969         pagebits = 10;
970     }
971     if (!set_preferred_target_page_bits(pagebits)) {
972         /* This can only ever happen for hotplugging a CPU, or if
973          * the board code incorrectly creates a CPU which it has
974          * promised via minimum_page_size that it will not.
975          */
976         error_setg(errp, "This CPU requires a smaller page size than the "
977                    "system is using");
978         return;
979     }
980 
981     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
982      * We don't support setting cluster ID ([16..23]) (known as Aff2
983      * in later ARM ARM versions), or any of the higher affinity level fields,
984      * so these bits always RAZ.
985      */
986     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
987         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
988                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
989     }
990 
991     if (cpu->reset_hivecs) {
992             cpu->reset_sctlr |= (1 << 13);
993     }
994 
995     if (cpu->cfgend) {
996         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
997             cpu->reset_sctlr |= SCTLR_EE;
998         } else {
999             cpu->reset_sctlr |= SCTLR_B;
1000         }
1001     }
1002 
1003     if (!cpu->has_el3) {
1004         /* If the has_el3 CPU property is disabled then we need to disable the
1005          * feature.
1006          */
1007         unset_feature(env, ARM_FEATURE_EL3);
1008 
1009         /* Disable the security extension feature bits in the processor feature
1010          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1011          */
1012         cpu->id_pfr1 &= ~0xf0;
1013         cpu->isar.id_aa64pfr0 &= ~0xf000;
1014     }
1015 
1016     if (!cpu->has_el2) {
1017         unset_feature(env, ARM_FEATURE_EL2);
1018     }
1019 
1020     if (!cpu->has_pmu) {
1021         unset_feature(env, ARM_FEATURE_PMU);
1022         cpu->id_aa64dfr0 &= ~0xf00;
1023     }
1024 
1025     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1026         /* Disable the hypervisor feature bits in the processor feature
1027          * registers if we don't have EL2. These are id_pfr1[15:12] and
1028          * id_aa64pfr0_el1[11:8].
1029          */
1030         cpu->isar.id_aa64pfr0 &= ~0xf00;
1031         cpu->id_pfr1 &= ~0xf000;
1032     }
1033 
1034     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1035      * to false or by setting pmsav7-dregion to 0.
1036      */
1037     if (!cpu->has_mpu) {
1038         cpu->pmsav7_dregion = 0;
1039     }
1040     if (cpu->pmsav7_dregion == 0) {
1041         cpu->has_mpu = false;
1042     }
1043 
1044     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1045         arm_feature(env, ARM_FEATURE_V7)) {
1046         uint32_t nr = cpu->pmsav7_dregion;
1047 
1048         if (nr > 0xff) {
1049             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1050             return;
1051         }
1052 
1053         if (nr) {
1054             if (arm_feature(env, ARM_FEATURE_V8)) {
1055                 /* PMSAv8 */
1056                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1057                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1058                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1059                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1060                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1061                 }
1062             } else {
1063                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1064                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1065                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1066             }
1067         }
1068     }
1069 
1070     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1071         uint32_t nr = cpu->sau_sregion;
1072 
1073         if (nr > 0xff) {
1074             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1075             return;
1076         }
1077 
1078         if (nr) {
1079             env->sau.rbar = g_new0(uint32_t, nr);
1080             env->sau.rlar = g_new0(uint32_t, nr);
1081         }
1082     }
1083 
1084     if (arm_feature(env, ARM_FEATURE_EL3)) {
1085         set_feature(env, ARM_FEATURE_VBAR);
1086     }
1087 
1088     register_cp_regs_for_features(cpu);
1089     arm_cpu_register_gdb_regs_for_features(cpu);
1090 
1091     init_cpreg_list(cpu);
1092 
1093 #ifndef CONFIG_USER_ONLY
1094     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1095         cs->num_ases = 2;
1096 
1097         if (!cpu->secure_memory) {
1098             cpu->secure_memory = cs->memory;
1099         }
1100         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1101                                cpu->secure_memory);
1102     } else {
1103         cs->num_ases = 1;
1104     }
1105     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1106 
1107     /* No core_count specified, default to smp_cpus. */
1108     if (cpu->core_count == -1) {
1109         cpu->core_count = smp_cpus;
1110     }
1111 #endif
1112 
1113     qemu_init_vcpu(cs);
1114     cpu_reset(cs);
1115 
1116     acc->parent_realize(dev, errp);
1117 }
1118 
1119 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1120 {
1121     ObjectClass *oc;
1122     char *typename;
1123     char **cpuname;
1124     const char *cpunamestr;
1125 
1126     cpuname = g_strsplit(cpu_model, ",", 1);
1127     cpunamestr = cpuname[0];
1128 #ifdef CONFIG_USER_ONLY
1129     /* For backwards compatibility usermode emulation allows "-cpu any",
1130      * which has the same semantics as "-cpu max".
1131      */
1132     if (!strcmp(cpunamestr, "any")) {
1133         cpunamestr = "max";
1134     }
1135 #endif
1136     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1137     oc = object_class_by_name(typename);
1138     g_strfreev(cpuname);
1139     g_free(typename);
1140     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1141         object_class_is_abstract(oc)) {
1142         return NULL;
1143     }
1144     return oc;
1145 }
1146 
1147 /* CPU models. These are not needed for the AArch64 linux-user build. */
1148 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1149 
1150 static void arm926_initfn(Object *obj)
1151 {
1152     ARMCPU *cpu = ARM_CPU(obj);
1153 
1154     cpu->dtb_compatible = "arm,arm926";
1155     set_feature(&cpu->env, ARM_FEATURE_V5);
1156     set_feature(&cpu->env, ARM_FEATURE_VFP);
1157     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1158     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1159     cpu->midr = 0x41069265;
1160     cpu->reset_fpsid = 0x41011090;
1161     cpu->ctr = 0x1dd20d2;
1162     cpu->reset_sctlr = 0x00090078;
1163 
1164     /*
1165      * ARMv5 does not have the ID_ISAR registers, but we can still
1166      * set the field to indicate Jazelle support within QEMU.
1167      */
1168     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1169 }
1170 
1171 static void arm946_initfn(Object *obj)
1172 {
1173     ARMCPU *cpu = ARM_CPU(obj);
1174 
1175     cpu->dtb_compatible = "arm,arm946";
1176     set_feature(&cpu->env, ARM_FEATURE_V5);
1177     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1178     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1179     cpu->midr = 0x41059461;
1180     cpu->ctr = 0x0f004006;
1181     cpu->reset_sctlr = 0x00000078;
1182 }
1183 
1184 static void arm1026_initfn(Object *obj)
1185 {
1186     ARMCPU *cpu = ARM_CPU(obj);
1187 
1188     cpu->dtb_compatible = "arm,arm1026";
1189     set_feature(&cpu->env, ARM_FEATURE_V5);
1190     set_feature(&cpu->env, ARM_FEATURE_VFP);
1191     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1192     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1193     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1194     cpu->midr = 0x4106a262;
1195     cpu->reset_fpsid = 0x410110a0;
1196     cpu->ctr = 0x1dd20d2;
1197     cpu->reset_sctlr = 0x00090078;
1198     cpu->reset_auxcr = 1;
1199 
1200     /*
1201      * ARMv5 does not have the ID_ISAR registers, but we can still
1202      * set the field to indicate Jazelle support within QEMU.
1203      */
1204     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1205 
1206     {
1207         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1208         ARMCPRegInfo ifar = {
1209             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1210             .access = PL1_RW,
1211             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1212             .resetvalue = 0
1213         };
1214         define_one_arm_cp_reg(cpu, &ifar);
1215     }
1216 }
1217 
1218 static void arm1136_r2_initfn(Object *obj)
1219 {
1220     ARMCPU *cpu = ARM_CPU(obj);
1221     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1222      * older core than plain "arm1136". In particular this does not
1223      * have the v6K features.
1224      * These ID register values are correct for 1136 but may be wrong
1225      * for 1136_r2 (in particular r0p2 does not actually implement most
1226      * of the ID registers).
1227      */
1228 
1229     cpu->dtb_compatible = "arm,arm1136";
1230     set_feature(&cpu->env, ARM_FEATURE_V6);
1231     set_feature(&cpu->env, ARM_FEATURE_VFP);
1232     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1233     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1234     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1235     cpu->midr = 0x4107b362;
1236     cpu->reset_fpsid = 0x410120b4;
1237     cpu->isar.mvfr0 = 0x11111111;
1238     cpu->isar.mvfr1 = 0x00000000;
1239     cpu->ctr = 0x1dd20d2;
1240     cpu->reset_sctlr = 0x00050078;
1241     cpu->id_pfr0 = 0x111;
1242     cpu->id_pfr1 = 0x1;
1243     cpu->id_dfr0 = 0x2;
1244     cpu->id_afr0 = 0x3;
1245     cpu->id_mmfr0 = 0x01130003;
1246     cpu->id_mmfr1 = 0x10030302;
1247     cpu->id_mmfr2 = 0x01222110;
1248     cpu->isar.id_isar0 = 0x00140011;
1249     cpu->isar.id_isar1 = 0x12002111;
1250     cpu->isar.id_isar2 = 0x11231111;
1251     cpu->isar.id_isar3 = 0x01102131;
1252     cpu->isar.id_isar4 = 0x141;
1253     cpu->reset_auxcr = 7;
1254 }
1255 
1256 static void arm1136_initfn(Object *obj)
1257 {
1258     ARMCPU *cpu = ARM_CPU(obj);
1259 
1260     cpu->dtb_compatible = "arm,arm1136";
1261     set_feature(&cpu->env, ARM_FEATURE_V6K);
1262     set_feature(&cpu->env, ARM_FEATURE_V6);
1263     set_feature(&cpu->env, ARM_FEATURE_VFP);
1264     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1265     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1266     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1267     cpu->midr = 0x4117b363;
1268     cpu->reset_fpsid = 0x410120b4;
1269     cpu->isar.mvfr0 = 0x11111111;
1270     cpu->isar.mvfr1 = 0x00000000;
1271     cpu->ctr = 0x1dd20d2;
1272     cpu->reset_sctlr = 0x00050078;
1273     cpu->id_pfr0 = 0x111;
1274     cpu->id_pfr1 = 0x1;
1275     cpu->id_dfr0 = 0x2;
1276     cpu->id_afr0 = 0x3;
1277     cpu->id_mmfr0 = 0x01130003;
1278     cpu->id_mmfr1 = 0x10030302;
1279     cpu->id_mmfr2 = 0x01222110;
1280     cpu->isar.id_isar0 = 0x00140011;
1281     cpu->isar.id_isar1 = 0x12002111;
1282     cpu->isar.id_isar2 = 0x11231111;
1283     cpu->isar.id_isar3 = 0x01102131;
1284     cpu->isar.id_isar4 = 0x141;
1285     cpu->reset_auxcr = 7;
1286 }
1287 
1288 static void arm1176_initfn(Object *obj)
1289 {
1290     ARMCPU *cpu = ARM_CPU(obj);
1291 
1292     cpu->dtb_compatible = "arm,arm1176";
1293     set_feature(&cpu->env, ARM_FEATURE_V6K);
1294     set_feature(&cpu->env, ARM_FEATURE_VFP);
1295     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1296     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1297     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1298     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1299     set_feature(&cpu->env, ARM_FEATURE_EL3);
1300     cpu->midr = 0x410fb767;
1301     cpu->reset_fpsid = 0x410120b5;
1302     cpu->isar.mvfr0 = 0x11111111;
1303     cpu->isar.mvfr1 = 0x00000000;
1304     cpu->ctr = 0x1dd20d2;
1305     cpu->reset_sctlr = 0x00050078;
1306     cpu->id_pfr0 = 0x111;
1307     cpu->id_pfr1 = 0x11;
1308     cpu->id_dfr0 = 0x33;
1309     cpu->id_afr0 = 0;
1310     cpu->id_mmfr0 = 0x01130003;
1311     cpu->id_mmfr1 = 0x10030302;
1312     cpu->id_mmfr2 = 0x01222100;
1313     cpu->isar.id_isar0 = 0x0140011;
1314     cpu->isar.id_isar1 = 0x12002111;
1315     cpu->isar.id_isar2 = 0x11231121;
1316     cpu->isar.id_isar3 = 0x01102131;
1317     cpu->isar.id_isar4 = 0x01141;
1318     cpu->reset_auxcr = 7;
1319 }
1320 
1321 static void arm11mpcore_initfn(Object *obj)
1322 {
1323     ARMCPU *cpu = ARM_CPU(obj);
1324 
1325     cpu->dtb_compatible = "arm,arm11mpcore";
1326     set_feature(&cpu->env, ARM_FEATURE_V6K);
1327     set_feature(&cpu->env, ARM_FEATURE_VFP);
1328     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1329     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1330     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1331     cpu->midr = 0x410fb022;
1332     cpu->reset_fpsid = 0x410120b4;
1333     cpu->isar.mvfr0 = 0x11111111;
1334     cpu->isar.mvfr1 = 0x00000000;
1335     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1336     cpu->id_pfr0 = 0x111;
1337     cpu->id_pfr1 = 0x1;
1338     cpu->id_dfr0 = 0;
1339     cpu->id_afr0 = 0x2;
1340     cpu->id_mmfr0 = 0x01100103;
1341     cpu->id_mmfr1 = 0x10020302;
1342     cpu->id_mmfr2 = 0x01222000;
1343     cpu->isar.id_isar0 = 0x00100011;
1344     cpu->isar.id_isar1 = 0x12002111;
1345     cpu->isar.id_isar2 = 0x11221011;
1346     cpu->isar.id_isar3 = 0x01102131;
1347     cpu->isar.id_isar4 = 0x141;
1348     cpu->reset_auxcr = 1;
1349 }
1350 
1351 static void cortex_m0_initfn(Object *obj)
1352 {
1353     ARMCPU *cpu = ARM_CPU(obj);
1354     set_feature(&cpu->env, ARM_FEATURE_V6);
1355     set_feature(&cpu->env, ARM_FEATURE_M);
1356 
1357     cpu->midr = 0x410cc200;
1358 }
1359 
1360 static void cortex_m3_initfn(Object *obj)
1361 {
1362     ARMCPU *cpu = ARM_CPU(obj);
1363     set_feature(&cpu->env, ARM_FEATURE_V7);
1364     set_feature(&cpu->env, ARM_FEATURE_M);
1365     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1366     cpu->midr = 0x410fc231;
1367     cpu->pmsav7_dregion = 8;
1368     cpu->id_pfr0 = 0x00000030;
1369     cpu->id_pfr1 = 0x00000200;
1370     cpu->id_dfr0 = 0x00100000;
1371     cpu->id_afr0 = 0x00000000;
1372     cpu->id_mmfr0 = 0x00000030;
1373     cpu->id_mmfr1 = 0x00000000;
1374     cpu->id_mmfr2 = 0x00000000;
1375     cpu->id_mmfr3 = 0x00000000;
1376     cpu->isar.id_isar0 = 0x01141110;
1377     cpu->isar.id_isar1 = 0x02111000;
1378     cpu->isar.id_isar2 = 0x21112231;
1379     cpu->isar.id_isar3 = 0x01111110;
1380     cpu->isar.id_isar4 = 0x01310102;
1381     cpu->isar.id_isar5 = 0x00000000;
1382     cpu->isar.id_isar6 = 0x00000000;
1383 }
1384 
1385 static void cortex_m4_initfn(Object *obj)
1386 {
1387     ARMCPU *cpu = ARM_CPU(obj);
1388 
1389     set_feature(&cpu->env, ARM_FEATURE_V7);
1390     set_feature(&cpu->env, ARM_FEATURE_M);
1391     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1392     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1393     cpu->midr = 0x410fc240; /* r0p0 */
1394     cpu->pmsav7_dregion = 8;
1395     cpu->id_pfr0 = 0x00000030;
1396     cpu->id_pfr1 = 0x00000200;
1397     cpu->id_dfr0 = 0x00100000;
1398     cpu->id_afr0 = 0x00000000;
1399     cpu->id_mmfr0 = 0x00000030;
1400     cpu->id_mmfr1 = 0x00000000;
1401     cpu->id_mmfr2 = 0x00000000;
1402     cpu->id_mmfr3 = 0x00000000;
1403     cpu->isar.id_isar0 = 0x01141110;
1404     cpu->isar.id_isar1 = 0x02111000;
1405     cpu->isar.id_isar2 = 0x21112231;
1406     cpu->isar.id_isar3 = 0x01111110;
1407     cpu->isar.id_isar4 = 0x01310102;
1408     cpu->isar.id_isar5 = 0x00000000;
1409     cpu->isar.id_isar6 = 0x00000000;
1410 }
1411 
1412 static void cortex_m33_initfn(Object *obj)
1413 {
1414     ARMCPU *cpu = ARM_CPU(obj);
1415 
1416     set_feature(&cpu->env, ARM_FEATURE_V8);
1417     set_feature(&cpu->env, ARM_FEATURE_M);
1418     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1419     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1420     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1421     cpu->midr = 0x410fd213; /* r0p3 */
1422     cpu->pmsav7_dregion = 16;
1423     cpu->sau_sregion = 8;
1424     cpu->id_pfr0 = 0x00000030;
1425     cpu->id_pfr1 = 0x00000210;
1426     cpu->id_dfr0 = 0x00200000;
1427     cpu->id_afr0 = 0x00000000;
1428     cpu->id_mmfr0 = 0x00101F40;
1429     cpu->id_mmfr1 = 0x00000000;
1430     cpu->id_mmfr2 = 0x01000000;
1431     cpu->id_mmfr3 = 0x00000000;
1432     cpu->isar.id_isar0 = 0x01101110;
1433     cpu->isar.id_isar1 = 0x02212000;
1434     cpu->isar.id_isar2 = 0x20232232;
1435     cpu->isar.id_isar3 = 0x01111131;
1436     cpu->isar.id_isar4 = 0x01310132;
1437     cpu->isar.id_isar5 = 0x00000000;
1438     cpu->isar.id_isar6 = 0x00000000;
1439     cpu->clidr = 0x00000000;
1440     cpu->ctr = 0x8000c000;
1441 }
1442 
1443 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1444 {
1445     CPUClass *cc = CPU_CLASS(oc);
1446 
1447 #ifndef CONFIG_USER_ONLY
1448     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1449 #endif
1450 
1451     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1452 }
1453 
1454 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1455     /* Dummy the TCM region regs for the moment */
1456     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1457       .access = PL1_RW, .type = ARM_CP_CONST },
1458     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1459       .access = PL1_RW, .type = ARM_CP_CONST },
1460     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1461       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1462     REGINFO_SENTINEL
1463 };
1464 
1465 static void cortex_r5_initfn(Object *obj)
1466 {
1467     ARMCPU *cpu = ARM_CPU(obj);
1468 
1469     set_feature(&cpu->env, ARM_FEATURE_V7);
1470     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1471     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1472     cpu->midr = 0x411fc153; /* r1p3 */
1473     cpu->id_pfr0 = 0x0131;
1474     cpu->id_pfr1 = 0x001;
1475     cpu->id_dfr0 = 0x010400;
1476     cpu->id_afr0 = 0x0;
1477     cpu->id_mmfr0 = 0x0210030;
1478     cpu->id_mmfr1 = 0x00000000;
1479     cpu->id_mmfr2 = 0x01200000;
1480     cpu->id_mmfr3 = 0x0211;
1481     cpu->isar.id_isar0 = 0x02101111;
1482     cpu->isar.id_isar1 = 0x13112111;
1483     cpu->isar.id_isar2 = 0x21232141;
1484     cpu->isar.id_isar3 = 0x01112131;
1485     cpu->isar.id_isar4 = 0x0010142;
1486     cpu->isar.id_isar5 = 0x0;
1487     cpu->isar.id_isar6 = 0x0;
1488     cpu->mp_is_up = true;
1489     cpu->pmsav7_dregion = 16;
1490     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1491 }
1492 
1493 static void cortex_r5f_initfn(Object *obj)
1494 {
1495     ARMCPU *cpu = ARM_CPU(obj);
1496 
1497     cortex_r5_initfn(obj);
1498     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1499 }
1500 
1501 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1502     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1503       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1504     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1505       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1506     REGINFO_SENTINEL
1507 };
1508 
1509 static void cortex_a8_initfn(Object *obj)
1510 {
1511     ARMCPU *cpu = ARM_CPU(obj);
1512 
1513     cpu->dtb_compatible = "arm,cortex-a8";
1514     set_feature(&cpu->env, ARM_FEATURE_V7);
1515     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1516     set_feature(&cpu->env, ARM_FEATURE_NEON);
1517     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1518     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1519     set_feature(&cpu->env, ARM_FEATURE_EL3);
1520     cpu->midr = 0x410fc080;
1521     cpu->reset_fpsid = 0x410330c0;
1522     cpu->isar.mvfr0 = 0x11110222;
1523     cpu->isar.mvfr1 = 0x00011111;
1524     cpu->ctr = 0x82048004;
1525     cpu->reset_sctlr = 0x00c50078;
1526     cpu->id_pfr0 = 0x1031;
1527     cpu->id_pfr1 = 0x11;
1528     cpu->id_dfr0 = 0x400;
1529     cpu->id_afr0 = 0;
1530     cpu->id_mmfr0 = 0x31100003;
1531     cpu->id_mmfr1 = 0x20000000;
1532     cpu->id_mmfr2 = 0x01202000;
1533     cpu->id_mmfr3 = 0x11;
1534     cpu->isar.id_isar0 = 0x00101111;
1535     cpu->isar.id_isar1 = 0x12112111;
1536     cpu->isar.id_isar2 = 0x21232031;
1537     cpu->isar.id_isar3 = 0x11112131;
1538     cpu->isar.id_isar4 = 0x00111142;
1539     cpu->dbgdidr = 0x15141000;
1540     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1541     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1542     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1543     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1544     cpu->reset_auxcr = 2;
1545     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1546 }
1547 
1548 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1549     /* power_control should be set to maximum latency. Again,
1550      * default to 0 and set by private hook
1551      */
1552     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1553       .access = PL1_RW, .resetvalue = 0,
1554       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1555     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1556       .access = PL1_RW, .resetvalue = 0,
1557       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1558     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1559       .access = PL1_RW, .resetvalue = 0,
1560       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1561     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1562       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1563     /* TLB lockdown control */
1564     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1565       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1566     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1567       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1568     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1569       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1570     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1571       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1572     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1573       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1574     REGINFO_SENTINEL
1575 };
1576 
1577 static void cortex_a9_initfn(Object *obj)
1578 {
1579     ARMCPU *cpu = ARM_CPU(obj);
1580 
1581     cpu->dtb_compatible = "arm,cortex-a9";
1582     set_feature(&cpu->env, ARM_FEATURE_V7);
1583     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1584     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1585     set_feature(&cpu->env, ARM_FEATURE_NEON);
1586     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1587     set_feature(&cpu->env, ARM_FEATURE_EL3);
1588     /* Note that A9 supports the MP extensions even for
1589      * A9UP and single-core A9MP (which are both different
1590      * and valid configurations; we don't model A9UP).
1591      */
1592     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1593     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1594     cpu->midr = 0x410fc090;
1595     cpu->reset_fpsid = 0x41033090;
1596     cpu->isar.mvfr0 = 0x11110222;
1597     cpu->isar.mvfr1 = 0x01111111;
1598     cpu->ctr = 0x80038003;
1599     cpu->reset_sctlr = 0x00c50078;
1600     cpu->id_pfr0 = 0x1031;
1601     cpu->id_pfr1 = 0x11;
1602     cpu->id_dfr0 = 0x000;
1603     cpu->id_afr0 = 0;
1604     cpu->id_mmfr0 = 0x00100103;
1605     cpu->id_mmfr1 = 0x20000000;
1606     cpu->id_mmfr2 = 0x01230000;
1607     cpu->id_mmfr3 = 0x00002111;
1608     cpu->isar.id_isar0 = 0x00101111;
1609     cpu->isar.id_isar1 = 0x13112111;
1610     cpu->isar.id_isar2 = 0x21232041;
1611     cpu->isar.id_isar3 = 0x11112131;
1612     cpu->isar.id_isar4 = 0x00111142;
1613     cpu->dbgdidr = 0x35141000;
1614     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1615     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1616     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1617     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1618 }
1619 
1620 #ifndef CONFIG_USER_ONLY
1621 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1622 {
1623     /* Linux wants the number of processors from here.
1624      * Might as well set the interrupt-controller bit too.
1625      */
1626     return ((smp_cpus - 1) << 24) | (1 << 23);
1627 }
1628 #endif
1629 
1630 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1631 #ifndef CONFIG_USER_ONLY
1632     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1633       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1634       .writefn = arm_cp_write_ignore, },
1635 #endif
1636     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1637       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1638     REGINFO_SENTINEL
1639 };
1640 
1641 static void cortex_a7_initfn(Object *obj)
1642 {
1643     ARMCPU *cpu = ARM_CPU(obj);
1644 
1645     cpu->dtb_compatible = "arm,cortex-a7";
1646     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1647     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1648     set_feature(&cpu->env, ARM_FEATURE_NEON);
1649     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1650     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1651     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1652     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1653     set_feature(&cpu->env, ARM_FEATURE_EL2);
1654     set_feature(&cpu->env, ARM_FEATURE_EL3);
1655     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1656     cpu->midr = 0x410fc075;
1657     cpu->reset_fpsid = 0x41023075;
1658     cpu->isar.mvfr0 = 0x10110222;
1659     cpu->isar.mvfr1 = 0x11111111;
1660     cpu->ctr = 0x84448003;
1661     cpu->reset_sctlr = 0x00c50078;
1662     cpu->id_pfr0 = 0x00001131;
1663     cpu->id_pfr1 = 0x00011011;
1664     cpu->id_dfr0 = 0x02010555;
1665     cpu->pmceid0 = 0x00000000;
1666     cpu->pmceid1 = 0x00000000;
1667     cpu->id_afr0 = 0x00000000;
1668     cpu->id_mmfr0 = 0x10101105;
1669     cpu->id_mmfr1 = 0x40000000;
1670     cpu->id_mmfr2 = 0x01240000;
1671     cpu->id_mmfr3 = 0x02102211;
1672     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1673      * table 4-41 gives 0x02101110, which includes the arm div insns.
1674      */
1675     cpu->isar.id_isar0 = 0x02101110;
1676     cpu->isar.id_isar1 = 0x13112111;
1677     cpu->isar.id_isar2 = 0x21232041;
1678     cpu->isar.id_isar3 = 0x11112131;
1679     cpu->isar.id_isar4 = 0x10011142;
1680     cpu->dbgdidr = 0x3515f005;
1681     cpu->clidr = 0x0a200023;
1682     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1683     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1684     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1685     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1686 }
1687 
1688 static void cortex_a15_initfn(Object *obj)
1689 {
1690     ARMCPU *cpu = ARM_CPU(obj);
1691 
1692     cpu->dtb_compatible = "arm,cortex-a15";
1693     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1694     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1695     set_feature(&cpu->env, ARM_FEATURE_NEON);
1696     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1697     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1698     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1699     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1700     set_feature(&cpu->env, ARM_FEATURE_EL2);
1701     set_feature(&cpu->env, ARM_FEATURE_EL3);
1702     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1703     cpu->midr = 0x412fc0f1;
1704     cpu->reset_fpsid = 0x410430f0;
1705     cpu->isar.mvfr0 = 0x10110222;
1706     cpu->isar.mvfr1 = 0x11111111;
1707     cpu->ctr = 0x8444c004;
1708     cpu->reset_sctlr = 0x00c50078;
1709     cpu->id_pfr0 = 0x00001131;
1710     cpu->id_pfr1 = 0x00011011;
1711     cpu->id_dfr0 = 0x02010555;
1712     cpu->pmceid0 = 0x0000000;
1713     cpu->pmceid1 = 0x00000000;
1714     cpu->id_afr0 = 0x00000000;
1715     cpu->id_mmfr0 = 0x10201105;
1716     cpu->id_mmfr1 = 0x20000000;
1717     cpu->id_mmfr2 = 0x01240000;
1718     cpu->id_mmfr3 = 0x02102211;
1719     cpu->isar.id_isar0 = 0x02101110;
1720     cpu->isar.id_isar1 = 0x13112111;
1721     cpu->isar.id_isar2 = 0x21232041;
1722     cpu->isar.id_isar3 = 0x11112131;
1723     cpu->isar.id_isar4 = 0x10011142;
1724     cpu->dbgdidr = 0x3515f021;
1725     cpu->clidr = 0x0a200023;
1726     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1727     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1728     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1729     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1730 }
1731 
1732 static void ti925t_initfn(Object *obj)
1733 {
1734     ARMCPU *cpu = ARM_CPU(obj);
1735     set_feature(&cpu->env, ARM_FEATURE_V4T);
1736     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1737     cpu->midr = ARM_CPUID_TI925T;
1738     cpu->ctr = 0x5109149;
1739     cpu->reset_sctlr = 0x00000070;
1740 }
1741 
1742 static void sa1100_initfn(Object *obj)
1743 {
1744     ARMCPU *cpu = ARM_CPU(obj);
1745 
1746     cpu->dtb_compatible = "intel,sa1100";
1747     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1748     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749     cpu->midr = 0x4401A11B;
1750     cpu->reset_sctlr = 0x00000070;
1751 }
1752 
1753 static void sa1110_initfn(Object *obj)
1754 {
1755     ARMCPU *cpu = ARM_CPU(obj);
1756     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1757     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1758     cpu->midr = 0x6901B119;
1759     cpu->reset_sctlr = 0x00000070;
1760 }
1761 
1762 static void pxa250_initfn(Object *obj)
1763 {
1764     ARMCPU *cpu = ARM_CPU(obj);
1765 
1766     cpu->dtb_compatible = "marvell,xscale";
1767     set_feature(&cpu->env, ARM_FEATURE_V5);
1768     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769     cpu->midr = 0x69052100;
1770     cpu->ctr = 0xd172172;
1771     cpu->reset_sctlr = 0x00000078;
1772 }
1773 
1774 static void pxa255_initfn(Object *obj)
1775 {
1776     ARMCPU *cpu = ARM_CPU(obj);
1777 
1778     cpu->dtb_compatible = "marvell,xscale";
1779     set_feature(&cpu->env, ARM_FEATURE_V5);
1780     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1781     cpu->midr = 0x69052d00;
1782     cpu->ctr = 0xd172172;
1783     cpu->reset_sctlr = 0x00000078;
1784 }
1785 
1786 static void pxa260_initfn(Object *obj)
1787 {
1788     ARMCPU *cpu = ARM_CPU(obj);
1789 
1790     cpu->dtb_compatible = "marvell,xscale";
1791     set_feature(&cpu->env, ARM_FEATURE_V5);
1792     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1793     cpu->midr = 0x69052903;
1794     cpu->ctr = 0xd172172;
1795     cpu->reset_sctlr = 0x00000078;
1796 }
1797 
1798 static void pxa261_initfn(Object *obj)
1799 {
1800     ARMCPU *cpu = ARM_CPU(obj);
1801 
1802     cpu->dtb_compatible = "marvell,xscale";
1803     set_feature(&cpu->env, ARM_FEATURE_V5);
1804     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1805     cpu->midr = 0x69052d05;
1806     cpu->ctr = 0xd172172;
1807     cpu->reset_sctlr = 0x00000078;
1808 }
1809 
1810 static void pxa262_initfn(Object *obj)
1811 {
1812     ARMCPU *cpu = ARM_CPU(obj);
1813 
1814     cpu->dtb_compatible = "marvell,xscale";
1815     set_feature(&cpu->env, ARM_FEATURE_V5);
1816     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1817     cpu->midr = 0x69052d06;
1818     cpu->ctr = 0xd172172;
1819     cpu->reset_sctlr = 0x00000078;
1820 }
1821 
1822 static void pxa270a0_initfn(Object *obj)
1823 {
1824     ARMCPU *cpu = ARM_CPU(obj);
1825 
1826     cpu->dtb_compatible = "marvell,xscale";
1827     set_feature(&cpu->env, ARM_FEATURE_V5);
1828     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1829     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1830     cpu->midr = 0x69054110;
1831     cpu->ctr = 0xd172172;
1832     cpu->reset_sctlr = 0x00000078;
1833 }
1834 
1835 static void pxa270a1_initfn(Object *obj)
1836 {
1837     ARMCPU *cpu = ARM_CPU(obj);
1838 
1839     cpu->dtb_compatible = "marvell,xscale";
1840     set_feature(&cpu->env, ARM_FEATURE_V5);
1841     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1842     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1843     cpu->midr = 0x69054111;
1844     cpu->ctr = 0xd172172;
1845     cpu->reset_sctlr = 0x00000078;
1846 }
1847 
1848 static void pxa270b0_initfn(Object *obj)
1849 {
1850     ARMCPU *cpu = ARM_CPU(obj);
1851 
1852     cpu->dtb_compatible = "marvell,xscale";
1853     set_feature(&cpu->env, ARM_FEATURE_V5);
1854     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1855     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1856     cpu->midr = 0x69054112;
1857     cpu->ctr = 0xd172172;
1858     cpu->reset_sctlr = 0x00000078;
1859 }
1860 
1861 static void pxa270b1_initfn(Object *obj)
1862 {
1863     ARMCPU *cpu = ARM_CPU(obj);
1864 
1865     cpu->dtb_compatible = "marvell,xscale";
1866     set_feature(&cpu->env, ARM_FEATURE_V5);
1867     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1868     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1869     cpu->midr = 0x69054113;
1870     cpu->ctr = 0xd172172;
1871     cpu->reset_sctlr = 0x00000078;
1872 }
1873 
1874 static void pxa270c0_initfn(Object *obj)
1875 {
1876     ARMCPU *cpu = ARM_CPU(obj);
1877 
1878     cpu->dtb_compatible = "marvell,xscale";
1879     set_feature(&cpu->env, ARM_FEATURE_V5);
1880     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1881     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1882     cpu->midr = 0x69054114;
1883     cpu->ctr = 0xd172172;
1884     cpu->reset_sctlr = 0x00000078;
1885 }
1886 
1887 static void pxa270c5_initfn(Object *obj)
1888 {
1889     ARMCPU *cpu = ARM_CPU(obj);
1890 
1891     cpu->dtb_compatible = "marvell,xscale";
1892     set_feature(&cpu->env, ARM_FEATURE_V5);
1893     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1894     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1895     cpu->midr = 0x69054117;
1896     cpu->ctr = 0xd172172;
1897     cpu->reset_sctlr = 0x00000078;
1898 }
1899 
1900 #ifndef TARGET_AARCH64
1901 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1902  * otherwise, a CPU with as many features enabled as our emulation supports.
1903  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1904  * this only needs to handle 32 bits.
1905  */
1906 static void arm_max_initfn(Object *obj)
1907 {
1908     ARMCPU *cpu = ARM_CPU(obj);
1909 
1910     if (kvm_enabled()) {
1911         kvm_arm_set_cpu_features_from_host(cpu);
1912     } else {
1913         cortex_a15_initfn(obj);
1914 #ifdef CONFIG_USER_ONLY
1915         /* We don't set these in system emulation mode for the moment,
1916          * since we don't correctly set (all of) the ID registers to
1917          * advertise them.
1918          */
1919         set_feature(&cpu->env, ARM_FEATURE_V8);
1920         {
1921             uint32_t t;
1922 
1923             t = cpu->isar.id_isar5;
1924             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1925             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1926             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1927             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1928             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1929             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1930             cpu->isar.id_isar5 = t;
1931 
1932             t = cpu->isar.id_isar6;
1933             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1934             cpu->isar.id_isar6 = t;
1935         }
1936 #endif
1937     }
1938 }
1939 #endif
1940 
1941 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1942 
1943 typedef struct ARMCPUInfo {
1944     const char *name;
1945     void (*initfn)(Object *obj);
1946     void (*class_init)(ObjectClass *oc, void *data);
1947 } ARMCPUInfo;
1948 
1949 static const ARMCPUInfo arm_cpus[] = {
1950 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1951     { .name = "arm926",      .initfn = arm926_initfn },
1952     { .name = "arm946",      .initfn = arm946_initfn },
1953     { .name = "arm1026",     .initfn = arm1026_initfn },
1954     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1955      * older core than plain "arm1136". In particular this does not
1956      * have the v6K features.
1957      */
1958     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1959     { .name = "arm1136",     .initfn = arm1136_initfn },
1960     { .name = "arm1176",     .initfn = arm1176_initfn },
1961     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1962     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1963                              .class_init = arm_v7m_class_init },
1964     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1965                              .class_init = arm_v7m_class_init },
1966     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1967                              .class_init = arm_v7m_class_init },
1968     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1969                              .class_init = arm_v7m_class_init },
1970     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1971     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1972     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1973     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1974     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1975     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1976     { .name = "ti925t",      .initfn = ti925t_initfn },
1977     { .name = "sa1100",      .initfn = sa1100_initfn },
1978     { .name = "sa1110",      .initfn = sa1110_initfn },
1979     { .name = "pxa250",      .initfn = pxa250_initfn },
1980     { .name = "pxa255",      .initfn = pxa255_initfn },
1981     { .name = "pxa260",      .initfn = pxa260_initfn },
1982     { .name = "pxa261",      .initfn = pxa261_initfn },
1983     { .name = "pxa262",      .initfn = pxa262_initfn },
1984     /* "pxa270" is an alias for "pxa270-a0" */
1985     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1986     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1987     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1988     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1989     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1990     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1991     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1992 #ifndef TARGET_AARCH64
1993     { .name = "max",         .initfn = arm_max_initfn },
1994 #endif
1995 #ifdef CONFIG_USER_ONLY
1996     { .name = "any",         .initfn = arm_max_initfn },
1997 #endif
1998 #endif
1999     { .name = NULL }
2000 };
2001 
2002 static Property arm_cpu_properties[] = {
2003     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2004     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2005     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2006     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2007                         mp_affinity, ARM64_AFFINITY_INVALID),
2008     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2009     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2010     DEFINE_PROP_END_OF_LIST()
2011 };
2012 
2013 #ifdef CONFIG_USER_ONLY
2014 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2015                                     int rw, int mmu_idx)
2016 {
2017     ARMCPU *cpu = ARM_CPU(cs);
2018     CPUARMState *env = &cpu->env;
2019 
2020     env->exception.vaddress = address;
2021     if (rw == 2) {
2022         cs->exception_index = EXCP_PREFETCH_ABORT;
2023     } else {
2024         cs->exception_index = EXCP_DATA_ABORT;
2025     }
2026     return 1;
2027 }
2028 #endif
2029 
2030 static gchar *arm_gdb_arch_name(CPUState *cs)
2031 {
2032     ARMCPU *cpu = ARM_CPU(cs);
2033     CPUARMState *env = &cpu->env;
2034 
2035     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2036         return g_strdup("iwmmxt");
2037     }
2038     return g_strdup("arm");
2039 }
2040 
2041 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2042 {
2043     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2044     CPUClass *cc = CPU_CLASS(acc);
2045     DeviceClass *dc = DEVICE_CLASS(oc);
2046 
2047     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2048                                     &acc->parent_realize);
2049     dc->props = arm_cpu_properties;
2050 
2051     acc->parent_reset = cc->reset;
2052     cc->reset = arm_cpu_reset;
2053 
2054     cc->class_by_name = arm_cpu_class_by_name;
2055     cc->has_work = arm_cpu_has_work;
2056     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2057     cc->dump_state = arm_cpu_dump_state;
2058     cc->set_pc = arm_cpu_set_pc;
2059     cc->gdb_read_register = arm_cpu_gdb_read_register;
2060     cc->gdb_write_register = arm_cpu_gdb_write_register;
2061 #ifdef CONFIG_USER_ONLY
2062     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2063 #else
2064     cc->do_interrupt = arm_cpu_do_interrupt;
2065     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2066     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2067     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2068     cc->asidx_from_attrs = arm_asidx_from_attrs;
2069     cc->vmsd = &vmstate_arm_cpu;
2070     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2071     cc->write_elf64_note = arm_cpu_write_elf64_note;
2072     cc->write_elf32_note = arm_cpu_write_elf32_note;
2073 #endif
2074     cc->gdb_num_core_regs = 26;
2075     cc->gdb_core_xml_file = "arm-core.xml";
2076     cc->gdb_arch_name = arm_gdb_arch_name;
2077     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2078     cc->gdb_stop_before_watchpoint = true;
2079     cc->debug_excp_handler = arm_debug_excp_handler;
2080     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2081 #if !defined(CONFIG_USER_ONLY)
2082     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2083 #endif
2084 
2085     cc->disas_set_info = arm_disas_set_info;
2086 #ifdef CONFIG_TCG
2087     cc->tcg_initialize = arm_translate_init;
2088 #endif
2089 }
2090 
2091 #ifdef CONFIG_KVM
2092 static void arm_host_initfn(Object *obj)
2093 {
2094     ARMCPU *cpu = ARM_CPU(obj);
2095 
2096     kvm_arm_set_cpu_features_from_host(cpu);
2097 }
2098 
2099 static const TypeInfo host_arm_cpu_type_info = {
2100     .name = TYPE_ARM_HOST_CPU,
2101 #ifdef TARGET_AARCH64
2102     .parent = TYPE_AARCH64_CPU,
2103 #else
2104     .parent = TYPE_ARM_CPU,
2105 #endif
2106     .instance_init = arm_host_initfn,
2107 };
2108 
2109 #endif
2110 
2111 static void cpu_register(const ARMCPUInfo *info)
2112 {
2113     TypeInfo type_info = {
2114         .parent = TYPE_ARM_CPU,
2115         .instance_size = sizeof(ARMCPU),
2116         .instance_init = info->initfn,
2117         .class_size = sizeof(ARMCPUClass),
2118         .class_init = info->class_init,
2119     };
2120 
2121     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2122     type_register(&type_info);
2123     g_free((void *)type_info.name);
2124 }
2125 
2126 static const TypeInfo arm_cpu_type_info = {
2127     .name = TYPE_ARM_CPU,
2128     .parent = TYPE_CPU,
2129     .instance_size = sizeof(ARMCPU),
2130     .instance_init = arm_cpu_initfn,
2131     .instance_post_init = arm_cpu_post_init,
2132     .instance_finalize = arm_cpu_finalizefn,
2133     .abstract = true,
2134     .class_size = sizeof(ARMCPUClass),
2135     .class_init = arm_cpu_class_init,
2136 };
2137 
2138 static const TypeInfo idau_interface_type_info = {
2139     .name = TYPE_IDAU_INTERFACE,
2140     .parent = TYPE_INTERFACE,
2141     .class_size = sizeof(IDAUInterfaceClass),
2142 };
2143 
2144 static void arm_cpu_register_types(void)
2145 {
2146     const ARMCPUInfo *info = arm_cpus;
2147 
2148     type_register_static(&arm_cpu_type_info);
2149     type_register_static(&idau_interface_type_info);
2150 
2151     while (info->name) {
2152         cpu_register(info);
2153         info++;
2154     }
2155 
2156 #ifdef CONFIG_KVM
2157     type_register_static(&host_arm_cpu_type_info);
2158 #endif
2159 }
2160 
2161 type_init(arm_cpu_register_types)
2162