xref: /openbmc/qemu/target/arm/cpu.c (revision ad1e84f5)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 static vaddr arm_cpu_get_pc(CPUState *cs)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     if (is_a64(env)) {
69         return env->pc;
70     } else {
71         return env->regs[15];
72     }
73 }
74 
75 #ifdef CONFIG_TCG
76 void arm_cpu_synchronize_from_tb(CPUState *cs,
77                                  const TranslationBlock *tb)
78 {
79     /* The program counter is always up to date with TARGET_TB_PCREL. */
80     if (!TARGET_TB_PCREL) {
81         CPUARMState *env = cs->env_ptr;
82         /*
83          * It's OK to look at env for the current mode here, because it's
84          * never possible for an AArch64 TB to chain to an AArch32 TB.
85          */
86         if (is_a64(env)) {
87             env->pc = tb_pc(tb);
88         } else {
89             env->regs[15] = tb_pc(tb);
90         }
91     }
92 }
93 
94 static void arm_restore_state_to_opc(CPUState *cs,
95                                      const TranslationBlock *tb,
96                                      const uint64_t *data)
97 {
98     CPUARMState *env = cs->env_ptr;
99 
100     if (is_a64(env)) {
101         if (TARGET_TB_PCREL) {
102             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
103         } else {
104             env->pc = data[0];
105         }
106         env->condexec_bits = 0;
107         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
108     } else {
109         if (TARGET_TB_PCREL) {
110             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
111         } else {
112             env->regs[15] = data[0];
113         }
114         env->condexec_bits = data[1];
115         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
116     }
117 }
118 #endif /* CONFIG_TCG */
119 
120 static bool arm_cpu_has_work(CPUState *cs)
121 {
122     ARMCPU *cpu = ARM_CPU(cs);
123 
124     return (cpu->power_state != PSCI_OFF)
125         && cs->interrupt_request &
126         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
127          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
128          | CPU_INTERRUPT_EXITTB);
129 }
130 
131 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
132                                  void *opaque)
133 {
134     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
135 
136     entry->hook = hook;
137     entry->opaque = opaque;
138 
139     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
140 }
141 
142 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
143                                  void *opaque)
144 {
145     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
146 
147     entry->hook = hook;
148     entry->opaque = opaque;
149 
150     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
151 }
152 
153 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
154 {
155     /* Reset a single ARMCPRegInfo register */
156     ARMCPRegInfo *ri = value;
157     ARMCPU *cpu = opaque;
158 
159     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
160         return;
161     }
162 
163     if (ri->resetfn) {
164         ri->resetfn(&cpu->env, ri);
165         return;
166     }
167 
168     /* A zero offset is never possible as it would be regs[0]
169      * so we use it to indicate that reset is being handled elsewhere.
170      * This is basically only used for fields in non-core coprocessors
171      * (like the pxa2xx ones).
172      */
173     if (!ri->fieldoffset) {
174         return;
175     }
176 
177     if (cpreg_field_is_64bit(ri)) {
178         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
179     } else {
180         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
181     }
182 }
183 
184 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
185 {
186     /* Purely an assertion check: we've already done reset once,
187      * so now check that running the reset for the cpreg doesn't
188      * change its value. This traps bugs where two different cpregs
189      * both try to reset the same state field but to different values.
190      */
191     ARMCPRegInfo *ri = value;
192     ARMCPU *cpu = opaque;
193     uint64_t oldvalue, newvalue;
194 
195     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
196         return;
197     }
198 
199     oldvalue = read_raw_cp_reg(&cpu->env, ri);
200     cp_reg_reset(key, value, opaque);
201     newvalue = read_raw_cp_reg(&cpu->env, ri);
202     assert(oldvalue == newvalue);
203 }
204 
205 static void arm_cpu_reset(DeviceState *dev)
206 {
207     CPUState *s = CPU(dev);
208     ARMCPU *cpu = ARM_CPU(s);
209     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
210     CPUARMState *env = &cpu->env;
211 
212     acc->parent_reset(dev);
213 
214     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
215 
216     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
217     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
218 
219     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
220     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
221     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
222     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
223 
224     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
225 
226     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
227         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
228     }
229 
230     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
231         /* 64 bit CPUs always start in 64 bit mode */
232         env->aarch64 = true;
233 #if defined(CONFIG_USER_ONLY)
234         env->pstate = PSTATE_MODE_EL0t;
235         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
236         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
237         /* Enable all PAC keys.  */
238         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
239                                   SCTLR_EnDA | SCTLR_EnDB);
240         /* Trap on btype=3 for PACIxSP. */
241         env->cp15.sctlr_el[1] |= SCTLR_BT0;
242         /* and to the FP/Neon instructions */
243         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
244                                          CPACR_EL1, FPEN, 3);
245         /* and to the SVE instructions, with default vector length */
246         if (cpu_isar_feature(aa64_sve, cpu)) {
247             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248                                              CPACR_EL1, ZEN, 3);
249             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
250         }
251         /* and for SME instructions, with default vector length, and TPIDR2 */
252         if (cpu_isar_feature(aa64_sme, cpu)) {
253             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
254             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
255                                              CPACR_EL1, SMEN, 3);
256             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
257             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
258                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
259                                                  SMCR, FA64, 1);
260             }
261         }
262         /*
263          * Enable 48-bit address space (TODO: take reserved_va into account).
264          * Enable TBI0 but not TBI1.
265          * Note that this must match useronly_clean_ptr.
266          */
267         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
268 
269         /* Enable MTE */
270         if (cpu_isar_feature(aa64_mte, cpu)) {
271             /* Enable tag access, but leave TCF0 as No Effect (0). */
272             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
273             /*
274              * Exclude all tags, so that tag 0 is always used.
275              * This corresponds to Linux current->thread.gcr_incl = 0.
276              *
277              * Set RRND, so that helper_irg() will generate a seed later.
278              * Here in cpu_reset(), the crypto subsystem has not yet been
279              * initialized.
280              */
281             env->cp15.gcr_el1 = 0x1ffff;
282         }
283         /*
284          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
285          * This is not yet exposed from the Linux kernel in any way.
286          */
287         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
288 #else
289         /* Reset into the highest available EL */
290         if (arm_feature(env, ARM_FEATURE_EL3)) {
291             env->pstate = PSTATE_MODE_EL3h;
292         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
293             env->pstate = PSTATE_MODE_EL2h;
294         } else {
295             env->pstate = PSTATE_MODE_EL1h;
296         }
297 
298         /* Sample rvbar at reset.  */
299         env->cp15.rvbar = cpu->rvbar_prop;
300         env->pc = env->cp15.rvbar;
301 #endif
302     } else {
303 #if defined(CONFIG_USER_ONLY)
304         /* Userspace expects access to cp10 and cp11 for FP/Neon */
305         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
306                                          CPACR, CP10, 3);
307         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
308                                          CPACR, CP11, 3);
309 #endif
310     }
311 
312 #if defined(CONFIG_USER_ONLY)
313     env->uncached_cpsr = ARM_CPU_MODE_USR;
314     /* For user mode we must enable access to coprocessors */
315     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
316     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
317         env->cp15.c15_cpar = 3;
318     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
319         env->cp15.c15_cpar = 1;
320     }
321 #else
322 
323     /*
324      * If the highest available EL is EL2, AArch32 will start in Hyp
325      * mode; otherwise it starts in SVC. Note that if we start in
326      * AArch64 then these values in the uncached_cpsr will be ignored.
327      */
328     if (arm_feature(env, ARM_FEATURE_EL2) &&
329         !arm_feature(env, ARM_FEATURE_EL3)) {
330         env->uncached_cpsr = ARM_CPU_MODE_HYP;
331     } else {
332         env->uncached_cpsr = ARM_CPU_MODE_SVC;
333     }
334     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
335 
336     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
337      * executing as AArch32 then check if highvecs are enabled and
338      * adjust the PC accordingly.
339      */
340     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
341         env->regs[15] = 0xFFFF0000;
342     }
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_M)) {
348 #ifndef CONFIG_USER_ONLY
349         uint32_t initial_msp; /* Loaded from 0x0 */
350         uint32_t initial_pc; /* Loaded from 0x4 */
351         uint8_t *rom;
352         uint32_t vecbase;
353 #endif
354 
355         if (cpu_isar_feature(aa32_lob, cpu)) {
356             /*
357              * LTPSIZE is constant 4 if MVE not implemented, and resets
358              * to an UNKNOWN value if MVE is implemented. We choose to
359              * always reset to 4.
360              */
361             env->v7m.ltpsize = 4;
362             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
363             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
364             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
365         }
366 
367         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
368             env->v7m.secure = true;
369         } else {
370             /* This bit resets to 0 if security is supported, but 1 if
371              * it is not. The bit is not present in v7M, but we set it
372              * here so we can avoid having to make checks on it conditional
373              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
374              */
375             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
376             /*
377              * Set NSACR to indicate "NS access permitted to everything";
378              * this avoids having to have all the tests of it being
379              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
380              * v8.1M the guest-visible value of NSACR in a CPU without the
381              * Security Extension is 0xcff.
382              */
383             env->v7m.nsacr = 0xcff;
384         }
385 
386         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
387          * that it resets to 1, so QEMU always does that rather than making
388          * it dependent on CPU model. In v8M it is RES1.
389          */
390         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
391         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
392         if (arm_feature(env, ARM_FEATURE_V8)) {
393             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
394             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
395             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
396         }
397         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
398             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
399             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
400         }
401 
402         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
403             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
404             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
405                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
406         }
407 
408 #ifndef CONFIG_USER_ONLY
409         /* Unlike A/R profile, M profile defines the reset LR value */
410         env->regs[14] = 0xffffffff;
411 
412         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
413         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
414 
415         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
416         vecbase = env->v7m.vecbase[env->v7m.secure];
417         rom = rom_ptr_for_as(s->as, vecbase, 8);
418         if (rom) {
419             /* Address zero is covered by ROM which hasn't yet been
420              * copied into physical memory.
421              */
422             initial_msp = ldl_p(rom);
423             initial_pc = ldl_p(rom + 4);
424         } else {
425             /* Address zero not covered by a ROM blob, or the ROM blob
426              * is in non-modifiable memory and this is a second reset after
427              * it got copied into memory. In the latter case, rom_ptr
428              * will return a NULL pointer and we should use ldl_phys instead.
429              */
430             initial_msp = ldl_phys(s->as, vecbase);
431             initial_pc = ldl_phys(s->as, vecbase + 4);
432         }
433 
434         qemu_log_mask(CPU_LOG_INT,
435                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
436                       initial_msp, initial_pc);
437 
438         env->regs[13] = initial_msp & 0xFFFFFFFC;
439         env->regs[15] = initial_pc & ~1;
440         env->thumb = initial_pc & 1;
441 #else
442         /*
443          * For user mode we run non-secure and with access to the FPU.
444          * The FPU context is active (ie does not need further setup)
445          * and is owned by non-secure.
446          */
447         env->v7m.secure = false;
448         env->v7m.nsacr = 0xcff;
449         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
450         env->v7m.fpccr[M_REG_S] &=
451             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
452         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
453 #endif
454     }
455 
456     /* M profile requires that reset clears the exclusive monitor;
457      * A profile does not, but clearing it makes more sense than having it
458      * set with an exclusive access on address zero.
459      */
460     arm_clear_exclusive(env);
461 
462     if (arm_feature(env, ARM_FEATURE_PMSA)) {
463         if (cpu->pmsav7_dregion > 0) {
464             if (arm_feature(env, ARM_FEATURE_V8)) {
465                 memset(env->pmsav8.rbar[M_REG_NS], 0,
466                        sizeof(*env->pmsav8.rbar[M_REG_NS])
467                        * cpu->pmsav7_dregion);
468                 memset(env->pmsav8.rlar[M_REG_NS], 0,
469                        sizeof(*env->pmsav8.rlar[M_REG_NS])
470                        * cpu->pmsav7_dregion);
471                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
472                     memset(env->pmsav8.rbar[M_REG_S], 0,
473                            sizeof(*env->pmsav8.rbar[M_REG_S])
474                            * cpu->pmsav7_dregion);
475                     memset(env->pmsav8.rlar[M_REG_S], 0,
476                            sizeof(*env->pmsav8.rlar[M_REG_S])
477                            * cpu->pmsav7_dregion);
478                 }
479             } else if (arm_feature(env, ARM_FEATURE_V7)) {
480                 memset(env->pmsav7.drbar, 0,
481                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
482                 memset(env->pmsav7.drsr, 0,
483                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
484                 memset(env->pmsav7.dracr, 0,
485                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
486             }
487         }
488         env->pmsav7.rnr[M_REG_NS] = 0;
489         env->pmsav7.rnr[M_REG_S] = 0;
490         env->pmsav8.mair0[M_REG_NS] = 0;
491         env->pmsav8.mair0[M_REG_S] = 0;
492         env->pmsav8.mair1[M_REG_NS] = 0;
493         env->pmsav8.mair1[M_REG_S] = 0;
494     }
495 
496     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
497         if (cpu->sau_sregion > 0) {
498             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
499             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
500         }
501         env->sau.rnr = 0;
502         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
503          * the Cortex-M33 does.
504          */
505         env->sau.ctrl = 0;
506     }
507 
508     set_flush_to_zero(1, &env->vfp.standard_fp_status);
509     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
510     set_default_nan_mode(1, &env->vfp.standard_fp_status);
511     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
512     set_float_detect_tininess(float_tininess_before_rounding,
513                               &env->vfp.fp_status);
514     set_float_detect_tininess(float_tininess_before_rounding,
515                               &env->vfp.standard_fp_status);
516     set_float_detect_tininess(float_tininess_before_rounding,
517                               &env->vfp.fp_status_f16);
518     set_float_detect_tininess(float_tininess_before_rounding,
519                               &env->vfp.standard_fp_status_f16);
520 #ifndef CONFIG_USER_ONLY
521     if (kvm_enabled()) {
522         kvm_arm_reset_vcpu(cpu);
523     }
524 #endif
525 
526     hw_breakpoint_update_all(cpu);
527     hw_watchpoint_update_all(cpu);
528     arm_rebuild_hflags(env);
529 }
530 
531 #ifndef CONFIG_USER_ONLY
532 
533 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
534                                      unsigned int target_el,
535                                      unsigned int cur_el, bool secure,
536                                      uint64_t hcr_el2)
537 {
538     CPUARMState *env = cs->env_ptr;
539     bool pstate_unmasked;
540     bool unmasked = false;
541 
542     /*
543      * Don't take exceptions if they target a lower EL.
544      * This check should catch any exceptions that would not be taken
545      * but left pending.
546      */
547     if (cur_el > target_el) {
548         return false;
549     }
550 
551     switch (excp_idx) {
552     case EXCP_FIQ:
553         pstate_unmasked = !(env->daif & PSTATE_F);
554         break;
555 
556     case EXCP_IRQ:
557         pstate_unmasked = !(env->daif & PSTATE_I);
558         break;
559 
560     case EXCP_VFIQ:
561         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
562             /* VFIQs are only taken when hypervized.  */
563             return false;
564         }
565         return !(env->daif & PSTATE_F);
566     case EXCP_VIRQ:
567         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
568             /* VIRQs are only taken when hypervized.  */
569             return false;
570         }
571         return !(env->daif & PSTATE_I);
572     case EXCP_VSERR:
573         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
574             /* VIRQs are only taken when hypervized.  */
575             return false;
576         }
577         return !(env->daif & PSTATE_A);
578     default:
579         g_assert_not_reached();
580     }
581 
582     /*
583      * Use the target EL, current execution state and SCR/HCR settings to
584      * determine whether the corresponding CPSR bit is used to mask the
585      * interrupt.
586      */
587     if ((target_el > cur_el) && (target_el != 1)) {
588         /* Exceptions targeting a higher EL may not be maskable */
589         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
590             /*
591              * 64-bit masking rules are simple: exceptions to EL3
592              * can't be masked, and exceptions to EL2 can only be
593              * masked from Secure state. The HCR and SCR settings
594              * don't affect the masking logic, only the interrupt routing.
595              */
596             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
597                 unmasked = true;
598             }
599         } else {
600             /*
601              * The old 32-bit-only environment has a more complicated
602              * masking setup. HCR and SCR bits not only affect interrupt
603              * routing but also change the behaviour of masking.
604              */
605             bool hcr, scr;
606 
607             switch (excp_idx) {
608             case EXCP_FIQ:
609                 /*
610                  * If FIQs are routed to EL3 or EL2 then there are cases where
611                  * we override the CPSR.F in determining if the exception is
612                  * masked or not. If neither of these are set then we fall back
613                  * to the CPSR.F setting otherwise we further assess the state
614                  * below.
615                  */
616                 hcr = hcr_el2 & HCR_FMO;
617                 scr = (env->cp15.scr_el3 & SCR_FIQ);
618 
619                 /*
620                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
621                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
622                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
623                  * when non-secure but only when FIQs are only routed to EL3.
624                  */
625                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
626                 break;
627             case EXCP_IRQ:
628                 /*
629                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
630                  * we may override the CPSR.I masking when in non-secure state.
631                  * The SCR.IRQ setting has already been taken into consideration
632                  * when setting the target EL, so it does not have a further
633                  * affect here.
634                  */
635                 hcr = hcr_el2 & HCR_IMO;
636                 scr = false;
637                 break;
638             default:
639                 g_assert_not_reached();
640             }
641 
642             if ((scr || hcr) && !secure) {
643                 unmasked = true;
644             }
645         }
646     }
647 
648     /*
649      * The PSTATE bits only mask the interrupt if we have not overriden the
650      * ability above.
651      */
652     return unmasked || pstate_unmasked;
653 }
654 
655 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
656 {
657     CPUClass *cc = CPU_GET_CLASS(cs);
658     CPUARMState *env = cs->env_ptr;
659     uint32_t cur_el = arm_current_el(env);
660     bool secure = arm_is_secure(env);
661     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
662     uint32_t target_el;
663     uint32_t excp_idx;
664 
665     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
666 
667     if (interrupt_request & CPU_INTERRUPT_FIQ) {
668         excp_idx = EXCP_FIQ;
669         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
670         if (arm_excp_unmasked(cs, excp_idx, target_el,
671                               cur_el, secure, hcr_el2)) {
672             goto found;
673         }
674     }
675     if (interrupt_request & CPU_INTERRUPT_HARD) {
676         excp_idx = EXCP_IRQ;
677         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
678         if (arm_excp_unmasked(cs, excp_idx, target_el,
679                               cur_el, secure, hcr_el2)) {
680             goto found;
681         }
682     }
683     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
684         excp_idx = EXCP_VIRQ;
685         target_el = 1;
686         if (arm_excp_unmasked(cs, excp_idx, target_el,
687                               cur_el, secure, hcr_el2)) {
688             goto found;
689         }
690     }
691     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
692         excp_idx = EXCP_VFIQ;
693         target_el = 1;
694         if (arm_excp_unmasked(cs, excp_idx, target_el,
695                               cur_el, secure, hcr_el2)) {
696             goto found;
697         }
698     }
699     if (interrupt_request & CPU_INTERRUPT_VSERR) {
700         excp_idx = EXCP_VSERR;
701         target_el = 1;
702         if (arm_excp_unmasked(cs, excp_idx, target_el,
703                               cur_el, secure, hcr_el2)) {
704             /* Taking a virtual abort clears HCR_EL2.VSE */
705             env->cp15.hcr_el2 &= ~HCR_VSE;
706             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
707             goto found;
708         }
709     }
710     return false;
711 
712  found:
713     cs->exception_index = excp_idx;
714     env->exception.target_el = target_el;
715     cc->tcg_ops->do_interrupt(cs);
716     return true;
717 }
718 #endif /* !CONFIG_USER_ONLY */
719 
720 void arm_cpu_update_virq(ARMCPU *cpu)
721 {
722     /*
723      * Update the interrupt level for VIRQ, which is the logical OR of
724      * the HCR_EL2.VI bit and the input line level from the GIC.
725      */
726     CPUARMState *env = &cpu->env;
727     CPUState *cs = CPU(cpu);
728 
729     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
730         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
731 
732     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
733         if (new_state) {
734             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
735         } else {
736             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
737         }
738     }
739 }
740 
741 void arm_cpu_update_vfiq(ARMCPU *cpu)
742 {
743     /*
744      * Update the interrupt level for VFIQ, which is the logical OR of
745      * the HCR_EL2.VF bit and the input line level from the GIC.
746      */
747     CPUARMState *env = &cpu->env;
748     CPUState *cs = CPU(cpu);
749 
750     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
751         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
752 
753     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
754         if (new_state) {
755             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
756         } else {
757             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
758         }
759     }
760 }
761 
762 void arm_cpu_update_vserr(ARMCPU *cpu)
763 {
764     /*
765      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
766      */
767     CPUARMState *env = &cpu->env;
768     CPUState *cs = CPU(cpu);
769 
770     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
771 
772     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
773         if (new_state) {
774             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
775         } else {
776             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
777         }
778     }
779 }
780 
781 #ifndef CONFIG_USER_ONLY
782 static void arm_cpu_set_irq(void *opaque, int irq, int level)
783 {
784     ARMCPU *cpu = opaque;
785     CPUARMState *env = &cpu->env;
786     CPUState *cs = CPU(cpu);
787     static const int mask[] = {
788         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
789         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
790         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
791         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
792     };
793 
794     if (!arm_feature(env, ARM_FEATURE_EL2) &&
795         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
796         /*
797          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
798          * have EL2 support we don't care. (Unless the guest is doing something
799          * silly this will only be calls saying "level is still 0".)
800          */
801         return;
802     }
803 
804     if (level) {
805         env->irq_line_state |= mask[irq];
806     } else {
807         env->irq_line_state &= ~mask[irq];
808     }
809 
810     switch (irq) {
811     case ARM_CPU_VIRQ:
812         arm_cpu_update_virq(cpu);
813         break;
814     case ARM_CPU_VFIQ:
815         arm_cpu_update_vfiq(cpu);
816         break;
817     case ARM_CPU_IRQ:
818     case ARM_CPU_FIQ:
819         if (level) {
820             cpu_interrupt(cs, mask[irq]);
821         } else {
822             cpu_reset_interrupt(cs, mask[irq]);
823         }
824         break;
825     default:
826         g_assert_not_reached();
827     }
828 }
829 
830 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
831 {
832 #ifdef CONFIG_KVM
833     ARMCPU *cpu = opaque;
834     CPUARMState *env = &cpu->env;
835     CPUState *cs = CPU(cpu);
836     uint32_t linestate_bit;
837     int irq_id;
838 
839     switch (irq) {
840     case ARM_CPU_IRQ:
841         irq_id = KVM_ARM_IRQ_CPU_IRQ;
842         linestate_bit = CPU_INTERRUPT_HARD;
843         break;
844     case ARM_CPU_FIQ:
845         irq_id = KVM_ARM_IRQ_CPU_FIQ;
846         linestate_bit = CPU_INTERRUPT_FIQ;
847         break;
848     default:
849         g_assert_not_reached();
850     }
851 
852     if (level) {
853         env->irq_line_state |= linestate_bit;
854     } else {
855         env->irq_line_state &= ~linestate_bit;
856     }
857     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
858 #endif
859 }
860 
861 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
862 {
863     ARMCPU *cpu = ARM_CPU(cs);
864     CPUARMState *env = &cpu->env;
865 
866     cpu_synchronize_state(cs);
867     return arm_cpu_data_is_big_endian(env);
868 }
869 
870 #endif
871 
872 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
873 {
874     ARMCPU *ac = ARM_CPU(cpu);
875     CPUARMState *env = &ac->env;
876     bool sctlr_b;
877 
878     if (is_a64(env)) {
879         info->cap_arch = CS_ARCH_ARM64;
880         info->cap_insn_unit = 4;
881         info->cap_insn_split = 4;
882     } else {
883         int cap_mode;
884         if (env->thumb) {
885             info->cap_insn_unit = 2;
886             info->cap_insn_split = 4;
887             cap_mode = CS_MODE_THUMB;
888         } else {
889             info->cap_insn_unit = 4;
890             info->cap_insn_split = 4;
891             cap_mode = CS_MODE_ARM;
892         }
893         if (arm_feature(env, ARM_FEATURE_V8)) {
894             cap_mode |= CS_MODE_V8;
895         }
896         if (arm_feature(env, ARM_FEATURE_M)) {
897             cap_mode |= CS_MODE_MCLASS;
898         }
899         info->cap_arch = CS_ARCH_ARM;
900         info->cap_mode = cap_mode;
901     }
902 
903     sctlr_b = arm_sctlr_b(env);
904     if (bswap_code(sctlr_b)) {
905 #if TARGET_BIG_ENDIAN
906         info->endian = BFD_ENDIAN_LITTLE;
907 #else
908         info->endian = BFD_ENDIAN_BIG;
909 #endif
910     }
911     info->flags &= ~INSN_ARM_BE32;
912 #ifndef CONFIG_USER_ONLY
913     if (sctlr_b) {
914         info->flags |= INSN_ARM_BE32;
915     }
916 #endif
917 }
918 
919 #ifdef TARGET_AARCH64
920 
921 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
922 {
923     ARMCPU *cpu = ARM_CPU(cs);
924     CPUARMState *env = &cpu->env;
925     uint32_t psr = pstate_read(env);
926     int i;
927     int el = arm_current_el(env);
928     const char *ns_status;
929     bool sve;
930 
931     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
932     for (i = 0; i < 32; i++) {
933         if (i == 31) {
934             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
935         } else {
936             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
937                          (i + 2) % 3 ? " " : "\n");
938         }
939     }
940 
941     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
942         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
943     } else {
944         ns_status = "";
945     }
946     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
947                  psr,
948                  psr & PSTATE_N ? 'N' : '-',
949                  psr & PSTATE_Z ? 'Z' : '-',
950                  psr & PSTATE_C ? 'C' : '-',
951                  psr & PSTATE_V ? 'V' : '-',
952                  ns_status,
953                  el,
954                  psr & PSTATE_SP ? 'h' : 't');
955 
956     if (cpu_isar_feature(aa64_sme, cpu)) {
957         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
958                      env->svcr,
959                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
960                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
961     }
962     if (cpu_isar_feature(aa64_bti, cpu)) {
963         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
964     }
965     if (!(flags & CPU_DUMP_FPU)) {
966         qemu_fprintf(f, "\n");
967         return;
968     }
969     if (fp_exception_el(env, el) != 0) {
970         qemu_fprintf(f, "    FPU disabled\n");
971         return;
972     }
973     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
974                  vfp_get_fpcr(env), vfp_get_fpsr(env));
975 
976     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
977         sve = sme_exception_el(env, el) == 0;
978     } else if (cpu_isar_feature(aa64_sve, cpu)) {
979         sve = sve_exception_el(env, el) == 0;
980     } else {
981         sve = false;
982     }
983 
984     if (sve) {
985         int j, zcr_len = sve_vqm1_for_el(env, el);
986 
987         for (i = 0; i <= FFR_PRED_NUM; i++) {
988             bool eol;
989             if (i == FFR_PRED_NUM) {
990                 qemu_fprintf(f, "FFR=");
991                 /* It's last, so end the line.  */
992                 eol = true;
993             } else {
994                 qemu_fprintf(f, "P%02d=", i);
995                 switch (zcr_len) {
996                 case 0:
997                     eol = i % 8 == 7;
998                     break;
999                 case 1:
1000                     eol = i % 6 == 5;
1001                     break;
1002                 case 2:
1003                 case 3:
1004                     eol = i % 3 == 2;
1005                     break;
1006                 default:
1007                     /* More than one quadword per predicate.  */
1008                     eol = true;
1009                     break;
1010                 }
1011             }
1012             for (j = zcr_len / 4; j >= 0; j--) {
1013                 int digits;
1014                 if (j * 4 + 4 <= zcr_len + 1) {
1015                     digits = 16;
1016                 } else {
1017                     digits = (zcr_len % 4 + 1) * 4;
1018                 }
1019                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1020                              env->vfp.pregs[i].p[j],
1021                              j ? ":" : eol ? "\n" : " ");
1022             }
1023         }
1024 
1025         for (i = 0; i < 32; i++) {
1026             if (zcr_len == 0) {
1027                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1028                              i, env->vfp.zregs[i].d[1],
1029                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1030             } else if (zcr_len == 1) {
1031                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1032                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1033                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1034                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1035             } else {
1036                 for (j = zcr_len; j >= 0; j--) {
1037                     bool odd = (zcr_len - j) % 2 != 0;
1038                     if (j == zcr_len) {
1039                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1040                     } else if (!odd) {
1041                         if (j > 0) {
1042                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1043                         } else {
1044                             qemu_fprintf(f, "     [%x]=", j);
1045                         }
1046                     }
1047                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1048                                  env->vfp.zregs[i].d[j * 2 + 1],
1049                                  env->vfp.zregs[i].d[j * 2],
1050                                  odd || j == 0 ? "\n" : ":");
1051                 }
1052             }
1053         }
1054     } else {
1055         for (i = 0; i < 32; i++) {
1056             uint64_t *q = aa64_vfp_qreg(env, i);
1057             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1058                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1059         }
1060     }
1061 }
1062 
1063 #else
1064 
1065 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1066 {
1067     g_assert_not_reached();
1068 }
1069 
1070 #endif
1071 
1072 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1073 {
1074     ARMCPU *cpu = ARM_CPU(cs);
1075     CPUARMState *env = &cpu->env;
1076     int i;
1077 
1078     if (is_a64(env)) {
1079         aarch64_cpu_dump_state(cs, f, flags);
1080         return;
1081     }
1082 
1083     for (i = 0; i < 16; i++) {
1084         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1085         if ((i % 4) == 3) {
1086             qemu_fprintf(f, "\n");
1087         } else {
1088             qemu_fprintf(f, " ");
1089         }
1090     }
1091 
1092     if (arm_feature(env, ARM_FEATURE_M)) {
1093         uint32_t xpsr = xpsr_read(env);
1094         const char *mode;
1095         const char *ns_status = "";
1096 
1097         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1098             ns_status = env->v7m.secure ? "S " : "NS ";
1099         }
1100 
1101         if (xpsr & XPSR_EXCP) {
1102             mode = "handler";
1103         } else {
1104             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1105                 mode = "unpriv-thread";
1106             } else {
1107                 mode = "priv-thread";
1108             }
1109         }
1110 
1111         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1112                      xpsr,
1113                      xpsr & XPSR_N ? 'N' : '-',
1114                      xpsr & XPSR_Z ? 'Z' : '-',
1115                      xpsr & XPSR_C ? 'C' : '-',
1116                      xpsr & XPSR_V ? 'V' : '-',
1117                      xpsr & XPSR_T ? 'T' : 'A',
1118                      ns_status,
1119                      mode);
1120     } else {
1121         uint32_t psr = cpsr_read(env);
1122         const char *ns_status = "";
1123 
1124         if (arm_feature(env, ARM_FEATURE_EL3) &&
1125             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1126             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1127         }
1128 
1129         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1130                      psr,
1131                      psr & CPSR_N ? 'N' : '-',
1132                      psr & CPSR_Z ? 'Z' : '-',
1133                      psr & CPSR_C ? 'C' : '-',
1134                      psr & CPSR_V ? 'V' : '-',
1135                      psr & CPSR_T ? 'T' : 'A',
1136                      ns_status,
1137                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1138     }
1139 
1140     if (flags & CPU_DUMP_FPU) {
1141         int numvfpregs = 0;
1142         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1143             numvfpregs = 32;
1144         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1145             numvfpregs = 16;
1146         }
1147         for (i = 0; i < numvfpregs; i++) {
1148             uint64_t v = *aa32_vfp_dreg(env, i);
1149             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1150                          i * 2, (uint32_t)v,
1151                          i * 2 + 1, (uint32_t)(v >> 32),
1152                          i, v);
1153         }
1154         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1155         if (cpu_isar_feature(aa32_mve, cpu)) {
1156             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1157         }
1158     }
1159 }
1160 
1161 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1162 {
1163     uint32_t Aff1 = idx / clustersz;
1164     uint32_t Aff0 = idx % clustersz;
1165     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1166 }
1167 
1168 static void arm_cpu_initfn(Object *obj)
1169 {
1170     ARMCPU *cpu = ARM_CPU(obj);
1171 
1172     cpu_set_cpustate_pointers(cpu);
1173     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1174                                          NULL, g_free);
1175 
1176     QLIST_INIT(&cpu->pre_el_change_hooks);
1177     QLIST_INIT(&cpu->el_change_hooks);
1178 
1179 #ifdef CONFIG_USER_ONLY
1180 # ifdef TARGET_AARCH64
1181     /*
1182      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1183      * These values were chosen to fit within the default signal frame.
1184      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1185      * and our corresponding cpu property.
1186      */
1187     cpu->sve_default_vq = 4;
1188     cpu->sme_default_vq = 2;
1189 # endif
1190 #else
1191     /* Our inbound IRQ and FIQ lines */
1192     if (kvm_enabled()) {
1193         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1194          * the same interface as non-KVM CPUs.
1195          */
1196         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1197     } else {
1198         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1199     }
1200 
1201     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1202                        ARRAY_SIZE(cpu->gt_timer_outputs));
1203 
1204     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1205                              "gicv3-maintenance-interrupt", 1);
1206     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1207                              "pmu-interrupt", 1);
1208 #endif
1209 
1210     /* DTB consumers generally don't in fact care what the 'compatible'
1211      * string is, so always provide some string and trust that a hypothetical
1212      * picky DTB consumer will also provide a helpful error message.
1213      */
1214     cpu->dtb_compatible = "qemu,unknown";
1215     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1216     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1217 
1218     if (tcg_enabled() || hvf_enabled()) {
1219         /* TCG and HVF implement PSCI 1.1 */
1220         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1221     }
1222 }
1223 
1224 static Property arm_cpu_gt_cntfrq_property =
1225             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1226                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1227 
1228 static Property arm_cpu_reset_cbar_property =
1229             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1230 
1231 static Property arm_cpu_reset_hivecs_property =
1232             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1233 
1234 #ifndef CONFIG_USER_ONLY
1235 static Property arm_cpu_has_el2_property =
1236             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1237 
1238 static Property arm_cpu_has_el3_property =
1239             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1240 #endif
1241 
1242 static Property arm_cpu_cfgend_property =
1243             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1244 
1245 static Property arm_cpu_has_vfp_property =
1246             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1247 
1248 static Property arm_cpu_has_neon_property =
1249             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1250 
1251 static Property arm_cpu_has_dsp_property =
1252             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1253 
1254 static Property arm_cpu_has_mpu_property =
1255             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1256 
1257 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1258  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1259  * the right value for that particular CPU type, and we don't want
1260  * to override that with an incorrect constant value.
1261  */
1262 static Property arm_cpu_pmsav7_dregion_property =
1263             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1264                                            pmsav7_dregion,
1265                                            qdev_prop_uint32, uint32_t);
1266 
1267 static bool arm_get_pmu(Object *obj, Error **errp)
1268 {
1269     ARMCPU *cpu = ARM_CPU(obj);
1270 
1271     return cpu->has_pmu;
1272 }
1273 
1274 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1275 {
1276     ARMCPU *cpu = ARM_CPU(obj);
1277 
1278     if (value) {
1279         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1280             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1281             return;
1282         }
1283         set_feature(&cpu->env, ARM_FEATURE_PMU);
1284     } else {
1285         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1286     }
1287     cpu->has_pmu = value;
1288 }
1289 
1290 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1291 {
1292     /*
1293      * The exact approach to calculating guest ticks is:
1294      *
1295      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1296      *              NANOSECONDS_PER_SECOND);
1297      *
1298      * We don't do that. Rather we intentionally use integer division
1299      * truncation below and in the caller for the conversion of host monotonic
1300      * time to guest ticks to provide the exact inverse for the semantics of
1301      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1302      * it loses precision when representing frequencies where
1303      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1304      * provide an exact inverse leads to scheduling timers with negative
1305      * periods, which in turn leads to sticky behaviour in the guest.
1306      *
1307      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1308      * cannot become zero.
1309      */
1310     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1311       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1312 }
1313 
1314 void arm_cpu_post_init(Object *obj)
1315 {
1316     ARMCPU *cpu = ARM_CPU(obj);
1317 
1318     /* M profile implies PMSA. We have to do this here rather than
1319      * in realize with the other feature-implication checks because
1320      * we look at the PMSA bit to see if we should add some properties.
1321      */
1322     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1323         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1324     }
1325 
1326     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1327         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1328         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1329     }
1330 
1331     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1332         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1333     }
1334 
1335     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1336         object_property_add_uint64_ptr(obj, "rvbar",
1337                                        &cpu->rvbar_prop,
1338                                        OBJ_PROP_FLAG_READWRITE);
1339     }
1340 
1341 #ifndef CONFIG_USER_ONLY
1342     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1343         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1344          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1345          */
1346         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1347 
1348         object_property_add_link(obj, "secure-memory",
1349                                  TYPE_MEMORY_REGION,
1350                                  (Object **)&cpu->secure_memory,
1351                                  qdev_prop_allow_set_link_before_realize,
1352                                  OBJ_PROP_LINK_STRONG);
1353     }
1354 
1355     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1356         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1357     }
1358 #endif
1359 
1360     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1361         cpu->has_pmu = true;
1362         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1363     }
1364 
1365     /*
1366      * Allow user to turn off VFP and Neon support, but only for TCG --
1367      * KVM does not currently allow us to lie to the guest about its
1368      * ID/feature registers, so the guest always sees what the host has.
1369      */
1370     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1371         ? cpu_isar_feature(aa64_fp_simd, cpu)
1372         : cpu_isar_feature(aa32_vfp, cpu)) {
1373         cpu->has_vfp = true;
1374         if (!kvm_enabled()) {
1375             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1376         }
1377     }
1378 
1379     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1380         cpu->has_neon = true;
1381         if (!kvm_enabled()) {
1382             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1383         }
1384     }
1385 
1386     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1387         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1388         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1389     }
1390 
1391     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1392         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1393         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1394             qdev_property_add_static(DEVICE(obj),
1395                                      &arm_cpu_pmsav7_dregion_property);
1396         }
1397     }
1398 
1399     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1400         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1401                                  qdev_prop_allow_set_link_before_realize,
1402                                  OBJ_PROP_LINK_STRONG);
1403         /*
1404          * M profile: initial value of the Secure VTOR. We can't just use
1405          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1406          * the property to be set after realize.
1407          */
1408         object_property_add_uint32_ptr(obj, "init-svtor",
1409                                        &cpu->init_svtor,
1410                                        OBJ_PROP_FLAG_READWRITE);
1411     }
1412     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1413         /*
1414          * Initial value of the NS VTOR (for cores without the Security
1415          * extension, this is the only VTOR)
1416          */
1417         object_property_add_uint32_ptr(obj, "init-nsvtor",
1418                                        &cpu->init_nsvtor,
1419                                        OBJ_PROP_FLAG_READWRITE);
1420     }
1421 
1422     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1423     object_property_add_uint32_ptr(obj, "psci-conduit",
1424                                    &cpu->psci_conduit,
1425                                    OBJ_PROP_FLAG_READWRITE);
1426 
1427     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1428 
1429     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1430         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1431     }
1432 
1433     if (kvm_enabled()) {
1434         kvm_arm_add_vcpu_properties(obj);
1435     }
1436 
1437 #ifndef CONFIG_USER_ONLY
1438     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1439         cpu_isar_feature(aa64_mte, cpu)) {
1440         object_property_add_link(obj, "tag-memory",
1441                                  TYPE_MEMORY_REGION,
1442                                  (Object **)&cpu->tag_memory,
1443                                  qdev_prop_allow_set_link_before_realize,
1444                                  OBJ_PROP_LINK_STRONG);
1445 
1446         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1447             object_property_add_link(obj, "secure-tag-memory",
1448                                      TYPE_MEMORY_REGION,
1449                                      (Object **)&cpu->secure_tag_memory,
1450                                      qdev_prop_allow_set_link_before_realize,
1451                                      OBJ_PROP_LINK_STRONG);
1452         }
1453     }
1454 #endif
1455 }
1456 
1457 static void arm_cpu_finalizefn(Object *obj)
1458 {
1459     ARMCPU *cpu = ARM_CPU(obj);
1460     ARMELChangeHook *hook, *next;
1461 
1462     g_hash_table_destroy(cpu->cp_regs);
1463 
1464     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1465         QLIST_REMOVE(hook, node);
1466         g_free(hook);
1467     }
1468     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1469         QLIST_REMOVE(hook, node);
1470         g_free(hook);
1471     }
1472 #ifndef CONFIG_USER_ONLY
1473     if (cpu->pmu_timer) {
1474         timer_free(cpu->pmu_timer);
1475     }
1476 #endif
1477 }
1478 
1479 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1480 {
1481     Error *local_err = NULL;
1482 
1483 #ifdef TARGET_AARCH64
1484     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1485         arm_cpu_sve_finalize(cpu, &local_err);
1486         if (local_err != NULL) {
1487             error_propagate(errp, local_err);
1488             return;
1489         }
1490 
1491         arm_cpu_sme_finalize(cpu, &local_err);
1492         if (local_err != NULL) {
1493             error_propagate(errp, local_err);
1494             return;
1495         }
1496 
1497         arm_cpu_pauth_finalize(cpu, &local_err);
1498         if (local_err != NULL) {
1499             error_propagate(errp, local_err);
1500             return;
1501         }
1502 
1503         arm_cpu_lpa2_finalize(cpu, &local_err);
1504         if (local_err != NULL) {
1505             error_propagate(errp, local_err);
1506             return;
1507         }
1508     }
1509 #endif
1510 
1511     if (kvm_enabled()) {
1512         kvm_arm_steal_time_finalize(cpu, &local_err);
1513         if (local_err != NULL) {
1514             error_propagate(errp, local_err);
1515             return;
1516         }
1517     }
1518 }
1519 
1520 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1521 {
1522     CPUState *cs = CPU(dev);
1523     ARMCPU *cpu = ARM_CPU(dev);
1524     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1525     CPUARMState *env = &cpu->env;
1526     int pagebits;
1527     Error *local_err = NULL;
1528     bool no_aa32 = false;
1529 
1530     /* If we needed to query the host kernel for the CPU features
1531      * then it's possible that might have failed in the initfn, but
1532      * this is the first point where we can report it.
1533      */
1534     if (cpu->host_cpu_probe_failed) {
1535         if (!kvm_enabled() && !hvf_enabled()) {
1536             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1537         } else {
1538             error_setg(errp, "Failed to retrieve host CPU features");
1539         }
1540         return;
1541     }
1542 
1543 #ifndef CONFIG_USER_ONLY
1544     /* The NVIC and M-profile CPU are two halves of a single piece of
1545      * hardware; trying to use one without the other is a command line
1546      * error and will result in segfaults if not caught here.
1547      */
1548     if (arm_feature(env, ARM_FEATURE_M)) {
1549         if (!env->nvic) {
1550             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1551             return;
1552         }
1553     } else {
1554         if (env->nvic) {
1555             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1556             return;
1557         }
1558     }
1559 
1560     if (!tcg_enabled() && !qtest_enabled()) {
1561         /*
1562          * We assume that no accelerator except TCG (and the "not really an
1563          * accelerator" qtest) can handle these features, because Arm hardware
1564          * virtualization can't virtualize them.
1565          *
1566          * Catch all the cases which might cause us to create more than one
1567          * address space for the CPU (otherwise we will assert() later in
1568          * cpu_address_space_init()).
1569          */
1570         if (arm_feature(env, ARM_FEATURE_M)) {
1571             error_setg(errp,
1572                        "Cannot enable %s when using an M-profile guest CPU",
1573                        current_accel_name());
1574             return;
1575         }
1576         if (cpu->has_el3) {
1577             error_setg(errp,
1578                        "Cannot enable %s when guest CPU has EL3 enabled",
1579                        current_accel_name());
1580             return;
1581         }
1582         if (cpu->tag_memory) {
1583             error_setg(errp,
1584                        "Cannot enable %s when guest CPUs has MTE enabled",
1585                        current_accel_name());
1586             return;
1587         }
1588     }
1589 
1590     {
1591         uint64_t scale;
1592 
1593         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1594             if (!cpu->gt_cntfrq_hz) {
1595                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1596                            cpu->gt_cntfrq_hz);
1597                 return;
1598             }
1599             scale = gt_cntfrq_period_ns(cpu);
1600         } else {
1601             scale = GTIMER_SCALE;
1602         }
1603 
1604         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1605                                                arm_gt_ptimer_cb, cpu);
1606         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1607                                                arm_gt_vtimer_cb, cpu);
1608         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1609                                               arm_gt_htimer_cb, cpu);
1610         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1611                                               arm_gt_stimer_cb, cpu);
1612         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1613                                                   arm_gt_hvtimer_cb, cpu);
1614     }
1615 #endif
1616 
1617     cpu_exec_realizefn(cs, &local_err);
1618     if (local_err != NULL) {
1619         error_propagate(errp, local_err);
1620         return;
1621     }
1622 
1623     arm_cpu_finalize_features(cpu, &local_err);
1624     if (local_err != NULL) {
1625         error_propagate(errp, local_err);
1626         return;
1627     }
1628 
1629     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1630         cpu->has_vfp != cpu->has_neon) {
1631         /*
1632          * This is an architectural requirement for AArch64; AArch32 is
1633          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1634          */
1635         error_setg(errp,
1636                    "AArch64 CPUs must have both VFP and Neon or neither");
1637         return;
1638     }
1639 
1640     if (!cpu->has_vfp) {
1641         uint64_t t;
1642         uint32_t u;
1643 
1644         t = cpu->isar.id_aa64isar1;
1645         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1646         cpu->isar.id_aa64isar1 = t;
1647 
1648         t = cpu->isar.id_aa64pfr0;
1649         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1650         cpu->isar.id_aa64pfr0 = t;
1651 
1652         u = cpu->isar.id_isar6;
1653         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1654         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1655         cpu->isar.id_isar6 = u;
1656 
1657         u = cpu->isar.mvfr0;
1658         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1659         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1660         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1661         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1662         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1663         if (!arm_feature(env, ARM_FEATURE_M)) {
1664             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1665             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1666         }
1667         cpu->isar.mvfr0 = u;
1668 
1669         u = cpu->isar.mvfr1;
1670         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1671         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1672         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1673         if (arm_feature(env, ARM_FEATURE_M)) {
1674             u = FIELD_DP32(u, MVFR1, FP16, 0);
1675         }
1676         cpu->isar.mvfr1 = u;
1677 
1678         u = cpu->isar.mvfr2;
1679         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1680         cpu->isar.mvfr2 = u;
1681     }
1682 
1683     if (!cpu->has_neon) {
1684         uint64_t t;
1685         uint32_t u;
1686 
1687         unset_feature(env, ARM_FEATURE_NEON);
1688 
1689         t = cpu->isar.id_aa64isar0;
1690         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1691         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1692         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1693         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1694         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1695         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1696         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1697         cpu->isar.id_aa64isar0 = t;
1698 
1699         t = cpu->isar.id_aa64isar1;
1700         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1701         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1702         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1703         cpu->isar.id_aa64isar1 = t;
1704 
1705         t = cpu->isar.id_aa64pfr0;
1706         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1707         cpu->isar.id_aa64pfr0 = t;
1708 
1709         u = cpu->isar.id_isar5;
1710         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1711         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1712         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1713         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1714         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1715         cpu->isar.id_isar5 = u;
1716 
1717         u = cpu->isar.id_isar6;
1718         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1719         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1720         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1721         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1722         cpu->isar.id_isar6 = u;
1723 
1724         if (!arm_feature(env, ARM_FEATURE_M)) {
1725             u = cpu->isar.mvfr1;
1726             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1727             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1728             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1729             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1730             cpu->isar.mvfr1 = u;
1731 
1732             u = cpu->isar.mvfr2;
1733             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1734             cpu->isar.mvfr2 = u;
1735         }
1736     }
1737 
1738     if (!cpu->has_neon && !cpu->has_vfp) {
1739         uint64_t t;
1740         uint32_t u;
1741 
1742         t = cpu->isar.id_aa64isar0;
1743         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1744         cpu->isar.id_aa64isar0 = t;
1745 
1746         t = cpu->isar.id_aa64isar1;
1747         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1748         cpu->isar.id_aa64isar1 = t;
1749 
1750         u = cpu->isar.mvfr0;
1751         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1752         cpu->isar.mvfr0 = u;
1753 
1754         /* Despite the name, this field covers both VFP and Neon */
1755         u = cpu->isar.mvfr1;
1756         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1757         cpu->isar.mvfr1 = u;
1758     }
1759 
1760     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1761         uint32_t u;
1762 
1763         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1764 
1765         u = cpu->isar.id_isar1;
1766         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1767         cpu->isar.id_isar1 = u;
1768 
1769         u = cpu->isar.id_isar2;
1770         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1771         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1772         cpu->isar.id_isar2 = u;
1773 
1774         u = cpu->isar.id_isar3;
1775         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1776         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1777         cpu->isar.id_isar3 = u;
1778     }
1779 
1780     /* Some features automatically imply others: */
1781     if (arm_feature(env, ARM_FEATURE_V8)) {
1782         if (arm_feature(env, ARM_FEATURE_M)) {
1783             set_feature(env, ARM_FEATURE_V7);
1784         } else {
1785             set_feature(env, ARM_FEATURE_V7VE);
1786         }
1787     }
1788 
1789     /*
1790      * There exist AArch64 cpus without AArch32 support.  When KVM
1791      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1792      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1793      * As a general principle, we also do not make ID register
1794      * consistency checks anywhere unless using TCG, because only
1795      * for TCG would a consistency-check failure be a QEMU bug.
1796      */
1797     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1798         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1799     }
1800 
1801     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1802         /* v7 Virtualization Extensions. In real hardware this implies
1803          * EL2 and also the presence of the Security Extensions.
1804          * For QEMU, for backwards-compatibility we implement some
1805          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1806          * include the various other features that V7VE implies.
1807          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1808          * Security Extensions is ARM_FEATURE_EL3.
1809          */
1810         assert(!tcg_enabled() || no_aa32 ||
1811                cpu_isar_feature(aa32_arm_div, cpu));
1812         set_feature(env, ARM_FEATURE_LPAE);
1813         set_feature(env, ARM_FEATURE_V7);
1814     }
1815     if (arm_feature(env, ARM_FEATURE_V7)) {
1816         set_feature(env, ARM_FEATURE_VAPA);
1817         set_feature(env, ARM_FEATURE_THUMB2);
1818         set_feature(env, ARM_FEATURE_MPIDR);
1819         if (!arm_feature(env, ARM_FEATURE_M)) {
1820             set_feature(env, ARM_FEATURE_V6K);
1821         } else {
1822             set_feature(env, ARM_FEATURE_V6);
1823         }
1824 
1825         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1826          * non-EL3 configs. This is needed by some legacy boards.
1827          */
1828         set_feature(env, ARM_FEATURE_VBAR);
1829     }
1830     if (arm_feature(env, ARM_FEATURE_V6K)) {
1831         set_feature(env, ARM_FEATURE_V6);
1832         set_feature(env, ARM_FEATURE_MVFR);
1833     }
1834     if (arm_feature(env, ARM_FEATURE_V6)) {
1835         set_feature(env, ARM_FEATURE_V5);
1836         if (!arm_feature(env, ARM_FEATURE_M)) {
1837             assert(!tcg_enabled() || no_aa32 ||
1838                    cpu_isar_feature(aa32_jazelle, cpu));
1839             set_feature(env, ARM_FEATURE_AUXCR);
1840         }
1841     }
1842     if (arm_feature(env, ARM_FEATURE_V5)) {
1843         set_feature(env, ARM_FEATURE_V4T);
1844     }
1845     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1846         set_feature(env, ARM_FEATURE_V7MP);
1847     }
1848     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1849         set_feature(env, ARM_FEATURE_CBAR);
1850     }
1851     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1852         !arm_feature(env, ARM_FEATURE_M)) {
1853         set_feature(env, ARM_FEATURE_THUMB_DSP);
1854     }
1855 
1856     /*
1857      * We rely on no XScale CPU having VFP so we can use the same bits in the
1858      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1859      */
1860     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1861            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1862            !arm_feature(env, ARM_FEATURE_XSCALE));
1863 
1864     if (arm_feature(env, ARM_FEATURE_V7) &&
1865         !arm_feature(env, ARM_FEATURE_M) &&
1866         !arm_feature(env, ARM_FEATURE_PMSA)) {
1867         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1868          * can use 4K pages.
1869          */
1870         pagebits = 12;
1871     } else {
1872         /* For CPUs which might have tiny 1K pages, or which have an
1873          * MPU and might have small region sizes, stick with 1K pages.
1874          */
1875         pagebits = 10;
1876     }
1877     if (!set_preferred_target_page_bits(pagebits)) {
1878         /* This can only ever happen for hotplugging a CPU, or if
1879          * the board code incorrectly creates a CPU which it has
1880          * promised via minimum_page_size that it will not.
1881          */
1882         error_setg(errp, "This CPU requires a smaller page size than the "
1883                    "system is using");
1884         return;
1885     }
1886 
1887     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1888      * We don't support setting cluster ID ([16..23]) (known as Aff2
1889      * in later ARM ARM versions), or any of the higher affinity level fields,
1890      * so these bits always RAZ.
1891      */
1892     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1893         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1894                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1895     }
1896 
1897     if (cpu->reset_hivecs) {
1898             cpu->reset_sctlr |= (1 << 13);
1899     }
1900 
1901     if (cpu->cfgend) {
1902         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1903             cpu->reset_sctlr |= SCTLR_EE;
1904         } else {
1905             cpu->reset_sctlr |= SCTLR_B;
1906         }
1907     }
1908 
1909     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1910         /* If the has_el3 CPU property is disabled then we need to disable the
1911          * feature.
1912          */
1913         unset_feature(env, ARM_FEATURE_EL3);
1914 
1915         /*
1916          * Disable the security extension feature bits in the processor
1917          * feature registers as well.
1918          */
1919         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1920         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1921         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1922                                            ID_AA64PFR0, EL3, 0);
1923     }
1924 
1925     if (!cpu->has_el2) {
1926         unset_feature(env, ARM_FEATURE_EL2);
1927     }
1928 
1929     if (!cpu->has_pmu) {
1930         unset_feature(env, ARM_FEATURE_PMU);
1931     }
1932     if (arm_feature(env, ARM_FEATURE_PMU)) {
1933         pmu_init(cpu);
1934 
1935         if (!kvm_enabled()) {
1936             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1937             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1938         }
1939 
1940 #ifndef CONFIG_USER_ONLY
1941         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1942                 cpu);
1943 #endif
1944     } else {
1945         cpu->isar.id_aa64dfr0 =
1946             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1947         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1948         cpu->pmceid0 = 0;
1949         cpu->pmceid1 = 0;
1950     }
1951 
1952     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1953         /*
1954          * Disable the hypervisor feature bits in the processor feature
1955          * registers if we don't have EL2.
1956          */
1957         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1958                                            ID_AA64PFR0, EL2, 0);
1959         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1960                                        ID_PFR1, VIRTUALIZATION, 0);
1961     }
1962 
1963 #ifndef CONFIG_USER_ONLY
1964     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1965         /*
1966          * Disable the MTE feature bits if we do not have tag-memory
1967          * provided by the machine.
1968          */
1969         cpu->isar.id_aa64pfr1 =
1970             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1971     }
1972 #endif
1973 
1974     if (tcg_enabled()) {
1975         /*
1976          * Don't report the Statistical Profiling Extension in the ID
1977          * registers, because TCG doesn't implement it yet (not even a
1978          * minimal stub version) and guests will fall over when they
1979          * try to access the non-existent system registers for it.
1980          */
1981         cpu->isar.id_aa64dfr0 =
1982             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
1983     }
1984 
1985     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1986      * to false or by setting pmsav7-dregion to 0.
1987      */
1988     if (!cpu->has_mpu) {
1989         cpu->pmsav7_dregion = 0;
1990     }
1991     if (cpu->pmsav7_dregion == 0) {
1992         cpu->has_mpu = false;
1993     }
1994 
1995     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1996         arm_feature(env, ARM_FEATURE_V7)) {
1997         uint32_t nr = cpu->pmsav7_dregion;
1998 
1999         if (nr > 0xff) {
2000             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2001             return;
2002         }
2003 
2004         if (nr) {
2005             if (arm_feature(env, ARM_FEATURE_V8)) {
2006                 /* PMSAv8 */
2007                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2008                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2009                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2010                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2011                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2012                 }
2013             } else {
2014                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2015                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2016                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2017             }
2018         }
2019     }
2020 
2021     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2022         uint32_t nr = cpu->sau_sregion;
2023 
2024         if (nr > 0xff) {
2025             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2026             return;
2027         }
2028 
2029         if (nr) {
2030             env->sau.rbar = g_new0(uint32_t, nr);
2031             env->sau.rlar = g_new0(uint32_t, nr);
2032         }
2033     }
2034 
2035     if (arm_feature(env, ARM_FEATURE_EL3)) {
2036         set_feature(env, ARM_FEATURE_VBAR);
2037     }
2038 
2039     register_cp_regs_for_features(cpu);
2040     arm_cpu_register_gdb_regs_for_features(cpu);
2041 
2042     init_cpreg_list(cpu);
2043 
2044 #ifndef CONFIG_USER_ONLY
2045     MachineState *ms = MACHINE(qdev_get_machine());
2046     unsigned int smp_cpus = ms->smp.cpus;
2047     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2048 
2049     /*
2050      * We must set cs->num_ases to the final value before
2051      * the first call to cpu_address_space_init.
2052      */
2053     if (cpu->tag_memory != NULL) {
2054         cs->num_ases = 3 + has_secure;
2055     } else {
2056         cs->num_ases = 1 + has_secure;
2057     }
2058 
2059     if (has_secure) {
2060         if (!cpu->secure_memory) {
2061             cpu->secure_memory = cs->memory;
2062         }
2063         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2064                                cpu->secure_memory);
2065     }
2066 
2067     if (cpu->tag_memory != NULL) {
2068         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2069                                cpu->tag_memory);
2070         if (has_secure) {
2071             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2072                                    cpu->secure_tag_memory);
2073         }
2074     }
2075 
2076     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2077 
2078     /* No core_count specified, default to smp_cpus. */
2079     if (cpu->core_count == -1) {
2080         cpu->core_count = smp_cpus;
2081     }
2082 #endif
2083 
2084     if (tcg_enabled()) {
2085         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2086 
2087         /*
2088          * We only support DCZ blocklen that fits on one page.
2089          *
2090          * Architectually this is always true.  However TARGET_PAGE_SIZE
2091          * is variable and, for compatibility with -machine virt-2.7,
2092          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2093          * But even then, while the largest architectural DCZ blocklen
2094          * is 2KiB, no cpu actually uses such a large blocklen.
2095          */
2096         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2097 
2098         /*
2099          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2100          * both nibbles of each byte storing tag data may be written at once.
2101          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2102          */
2103         if (cpu_isar_feature(aa64_mte, cpu)) {
2104             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2105         }
2106     }
2107 
2108     qemu_init_vcpu(cs);
2109     cpu_reset(cs);
2110 
2111     acc->parent_realize(dev, errp);
2112 }
2113 
2114 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2115 {
2116     ObjectClass *oc;
2117     char *typename;
2118     char **cpuname;
2119     const char *cpunamestr;
2120 
2121     cpuname = g_strsplit(cpu_model, ",", 1);
2122     cpunamestr = cpuname[0];
2123 #ifdef CONFIG_USER_ONLY
2124     /* For backwards compatibility usermode emulation allows "-cpu any",
2125      * which has the same semantics as "-cpu max".
2126      */
2127     if (!strcmp(cpunamestr, "any")) {
2128         cpunamestr = "max";
2129     }
2130 #endif
2131     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2132     oc = object_class_by_name(typename);
2133     g_strfreev(cpuname);
2134     g_free(typename);
2135     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2136         object_class_is_abstract(oc)) {
2137         return NULL;
2138     }
2139     return oc;
2140 }
2141 
2142 static Property arm_cpu_properties[] = {
2143     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2144     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2145                         mp_affinity, ARM64_AFFINITY_INVALID),
2146     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2147     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2148     DEFINE_PROP_END_OF_LIST()
2149 };
2150 
2151 static gchar *arm_gdb_arch_name(CPUState *cs)
2152 {
2153     ARMCPU *cpu = ARM_CPU(cs);
2154     CPUARMState *env = &cpu->env;
2155 
2156     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2157         return g_strdup("iwmmxt");
2158     }
2159     return g_strdup("arm");
2160 }
2161 
2162 #ifndef CONFIG_USER_ONLY
2163 #include "hw/core/sysemu-cpu-ops.h"
2164 
2165 static const struct SysemuCPUOps arm_sysemu_ops = {
2166     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2167     .asidx_from_attrs = arm_asidx_from_attrs,
2168     .write_elf32_note = arm_cpu_write_elf32_note,
2169     .write_elf64_note = arm_cpu_write_elf64_note,
2170     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2171     .legacy_vmsd = &vmstate_arm_cpu,
2172 };
2173 #endif
2174 
2175 #ifdef CONFIG_TCG
2176 static const struct TCGCPUOps arm_tcg_ops = {
2177     .initialize = arm_translate_init,
2178     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2179     .debug_excp_handler = arm_debug_excp_handler,
2180     .restore_state_to_opc = arm_restore_state_to_opc,
2181 
2182 #ifdef CONFIG_USER_ONLY
2183     .record_sigsegv = arm_cpu_record_sigsegv,
2184     .record_sigbus = arm_cpu_record_sigbus,
2185 #else
2186     .tlb_fill = arm_cpu_tlb_fill,
2187     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2188     .do_interrupt = arm_cpu_do_interrupt,
2189     .do_transaction_failed = arm_cpu_do_transaction_failed,
2190     .do_unaligned_access = arm_cpu_do_unaligned_access,
2191     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2192     .debug_check_watchpoint = arm_debug_check_watchpoint,
2193     .debug_check_breakpoint = arm_debug_check_breakpoint,
2194 #endif /* !CONFIG_USER_ONLY */
2195 };
2196 #endif /* CONFIG_TCG */
2197 
2198 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2199 {
2200     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2201     CPUClass *cc = CPU_CLASS(acc);
2202     DeviceClass *dc = DEVICE_CLASS(oc);
2203 
2204     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2205                                     &acc->parent_realize);
2206 
2207     device_class_set_props(dc, arm_cpu_properties);
2208     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2209 
2210     cc->class_by_name = arm_cpu_class_by_name;
2211     cc->has_work = arm_cpu_has_work;
2212     cc->dump_state = arm_cpu_dump_state;
2213     cc->set_pc = arm_cpu_set_pc;
2214     cc->get_pc = arm_cpu_get_pc;
2215     cc->gdb_read_register = arm_cpu_gdb_read_register;
2216     cc->gdb_write_register = arm_cpu_gdb_write_register;
2217 #ifndef CONFIG_USER_ONLY
2218     cc->sysemu_ops = &arm_sysemu_ops;
2219 #endif
2220     cc->gdb_num_core_regs = 26;
2221     cc->gdb_core_xml_file = "arm-core.xml";
2222     cc->gdb_arch_name = arm_gdb_arch_name;
2223     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2224     cc->gdb_stop_before_watchpoint = true;
2225     cc->disas_set_info = arm_disas_set_info;
2226 
2227 #ifdef CONFIG_TCG
2228     cc->tcg_ops = &arm_tcg_ops;
2229 #endif /* CONFIG_TCG */
2230 }
2231 
2232 static void arm_cpu_instance_init(Object *obj)
2233 {
2234     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2235 
2236     acc->info->initfn(obj);
2237     arm_cpu_post_init(obj);
2238 }
2239 
2240 static void cpu_register_class_init(ObjectClass *oc, void *data)
2241 {
2242     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2243 
2244     acc->info = data;
2245 }
2246 
2247 void arm_cpu_register(const ARMCPUInfo *info)
2248 {
2249     TypeInfo type_info = {
2250         .parent = TYPE_ARM_CPU,
2251         .instance_size = sizeof(ARMCPU),
2252         .instance_align = __alignof__(ARMCPU),
2253         .instance_init = arm_cpu_instance_init,
2254         .class_size = sizeof(ARMCPUClass),
2255         .class_init = info->class_init ?: cpu_register_class_init,
2256         .class_data = (void *)info,
2257     };
2258 
2259     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2260     type_register(&type_info);
2261     g_free((void *)type_info.name);
2262 }
2263 
2264 static const TypeInfo arm_cpu_type_info = {
2265     .name = TYPE_ARM_CPU,
2266     .parent = TYPE_CPU,
2267     .instance_size = sizeof(ARMCPU),
2268     .instance_align = __alignof__(ARMCPU),
2269     .instance_init = arm_cpu_initfn,
2270     .instance_finalize = arm_cpu_finalizefn,
2271     .abstract = true,
2272     .class_size = sizeof(ARMCPUClass),
2273     .class_init = arm_cpu_class_init,
2274 };
2275 
2276 static void arm_cpu_register_types(void)
2277 {
2278     type_register_static(&arm_cpu_type_info);
2279 }
2280 
2281 type_init(arm_cpu_register_types)
2282