xref: /openbmc/qemu/target/arm/cpu.c (revision a7d8244be9f9a0fde9f694a46bdd04aabbbb5b4a)
1  /*
2   * QEMU ARM CPU
3   *
4   * Copyright (c) 2012 SUSE LINUX Products GmbH
5   *
6   * This program is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU General Public License
8   * as published by the Free Software Foundation; either version 2
9   * of the License, or (at your option) any later version.
10   *
11   * This program is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   * GNU General Public License for more details.
15   *
16   * You should have received a copy of the GNU General Public License
17   * along with this program; if not, see
18   * <http://www.gnu.org/licenses/gpl-2.0.html>
19   */
20  
21  #include "qemu/osdep.h"
22  #include "qemu/qemu-print.h"
23  #include "qemu/timer.h"
24  #include "qemu/log.h"
25  #include "exec/page-vary.h"
26  #include "target/arm/idau.h"
27  #include "qemu/module.h"
28  #include "qapi/error.h"
29  #include "cpu.h"
30  #ifdef CONFIG_TCG
31  #include "hw/core/tcg-cpu-ops.h"
32  #endif /* CONFIG_TCG */
33  #include "internals.h"
34  #include "cpu-features.h"
35  #include "exec/exec-all.h"
36  #include "hw/qdev-properties.h"
37  #if !defined(CONFIG_USER_ONLY)
38  #include "hw/loader.h"
39  #include "hw/boards.h"
40  #ifdef CONFIG_TCG
41  #include "hw/intc/armv7m_nvic.h"
42  #endif /* CONFIG_TCG */
43  #endif /* !CONFIG_USER_ONLY */
44  #include "sysemu/tcg.h"
45  #include "sysemu/qtest.h"
46  #include "sysemu/hw_accel.h"
47  #include "kvm_arm.h"
48  #include "disas/capstone.h"
49  #include "fpu/softfloat.h"
50  #include "cpregs.h"
51  #include "target/arm/cpu-qom.h"
52  #include "target/arm/gtimer.h"
53  
54  static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55  {
56      ARMCPU *cpu = ARM_CPU(cs);
57      CPUARMState *env = &cpu->env;
58  
59      if (is_a64(env)) {
60          env->pc = value;
61          env->thumb = false;
62      } else {
63          env->regs[15] = value & ~1;
64          env->thumb = value & 1;
65      }
66  }
67  
68  static vaddr arm_cpu_get_pc(CPUState *cs)
69  {
70      ARMCPU *cpu = ARM_CPU(cs);
71      CPUARMState *env = &cpu->env;
72  
73      if (is_a64(env)) {
74          return env->pc;
75      } else {
76          return env->regs[15];
77      }
78  }
79  
80  #ifdef CONFIG_TCG
81  void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                   const TranslationBlock *tb)
83  {
84      /* The program counter is always up to date with CF_PCREL. */
85      if (!(tb_cflags(tb) & CF_PCREL)) {
86          CPUARMState *env = cpu_env(cs);
87          /*
88           * It's OK to look at env for the current mode here, because it's
89           * never possible for an AArch64 TB to chain to an AArch32 TB.
90           */
91          if (is_a64(env)) {
92              env->pc = tb->pc;
93          } else {
94              env->regs[15] = tb->pc;
95          }
96      }
97  }
98  
99  void arm_restore_state_to_opc(CPUState *cs,
100                                const TranslationBlock *tb,
101                                const uint64_t *data)
102  {
103      CPUARMState *env = cpu_env(cs);
104  
105      if (is_a64(env)) {
106          if (tb_cflags(tb) & CF_PCREL) {
107              env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108          } else {
109              env->pc = data[0];
110          }
111          env->condexec_bits = 0;
112          env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113      } else {
114          if (tb_cflags(tb) & CF_PCREL) {
115              env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116          } else {
117              env->regs[15] = data[0];
118          }
119          env->condexec_bits = data[1];
120          env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121      }
122  }
123  #endif /* CONFIG_TCG */
124  
125  /*
126   * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
127   * IRQ without Superpriority. Moreover, if the GIC is configured so that
128   * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
129   * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
130   * unconditionally.
131   */
132  static bool arm_cpu_has_work(CPUState *cs)
133  {
134      ARMCPU *cpu = ARM_CPU(cs);
135  
136      return (cpu->power_state != PSCI_OFF)
137          && cs->interrupt_request &
138          (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
139           | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
140           | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
141           | CPU_INTERRUPT_EXITTB);
142  }
143  
144  static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
145  {
146      return arm_env_mmu_index(cpu_env(cs));
147  }
148  
149  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
150                                   void *opaque)
151  {
152      ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
153  
154      entry->hook = hook;
155      entry->opaque = opaque;
156  
157      QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
158  }
159  
160  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
161                                   void *opaque)
162  {
163      ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
164  
165      entry->hook = hook;
166      entry->opaque = opaque;
167  
168      QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
169  }
170  
171  static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
172  {
173      /* Reset a single ARMCPRegInfo register */
174      ARMCPRegInfo *ri = value;
175      ARMCPU *cpu = opaque;
176  
177      if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
178          return;
179      }
180  
181      if (ri->resetfn) {
182          ri->resetfn(&cpu->env, ri);
183          return;
184      }
185  
186      /* A zero offset is never possible as it would be regs[0]
187       * so we use it to indicate that reset is being handled elsewhere.
188       * This is basically only used for fields in non-core coprocessors
189       * (like the pxa2xx ones).
190       */
191      if (!ri->fieldoffset) {
192          return;
193      }
194  
195      if (cpreg_field_is_64bit(ri)) {
196          CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
197      } else {
198          CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
199      }
200  }
201  
202  static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
203  {
204      /* Purely an assertion check: we've already done reset once,
205       * so now check that running the reset for the cpreg doesn't
206       * change its value. This traps bugs where two different cpregs
207       * both try to reset the same state field but to different values.
208       */
209      ARMCPRegInfo *ri = value;
210      ARMCPU *cpu = opaque;
211      uint64_t oldvalue, newvalue;
212  
213      if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
214          return;
215      }
216  
217      oldvalue = read_raw_cp_reg(&cpu->env, ri);
218      cp_reg_reset(key, value, opaque);
219      newvalue = read_raw_cp_reg(&cpu->env, ri);
220      assert(oldvalue == newvalue);
221  }
222  
223  static void arm_cpu_reset_hold(Object *obj, ResetType type)
224  {
225      CPUState *cs = CPU(obj);
226      ARMCPU *cpu = ARM_CPU(cs);
227      ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
228      CPUARMState *env = &cpu->env;
229  
230      if (acc->parent_phases.hold) {
231          acc->parent_phases.hold(obj, type);
232      }
233  
234      memset(env, 0, offsetof(CPUARMState, end_reset_fields));
235  
236      g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
237      g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
238  
239      env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
240      env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
241      env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
242      env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
243  
244      cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
245  
246      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
247          env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
248      }
249  
250      if (arm_feature(env, ARM_FEATURE_AARCH64)) {
251          /* 64 bit CPUs always start in 64 bit mode */
252          env->aarch64 = true;
253  #if defined(CONFIG_USER_ONLY)
254          env->pstate = PSTATE_MODE_EL0t;
255          /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
256          env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
257          /* Enable all PAC keys.  */
258          env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
259                                    SCTLR_EnDA | SCTLR_EnDB);
260          /* Trap on btype=3 for PACIxSP. */
261          env->cp15.sctlr_el[1] |= SCTLR_BT0;
262          /* Trap on implementation defined registers. */
263          if (cpu_isar_feature(aa64_tidcp1, cpu)) {
264              env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
265          }
266          /* and to the FP/Neon instructions */
267          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
268                                           CPACR_EL1, FPEN, 3);
269          /* and to the SVE instructions, with default vector length */
270          if (cpu_isar_feature(aa64_sve, cpu)) {
271              env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
272                                               CPACR_EL1, ZEN, 3);
273              env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
274          }
275          /* and for SME instructions, with default vector length, and TPIDR2 */
276          if (cpu_isar_feature(aa64_sme, cpu)) {
277              env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
278              env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
279                                               CPACR_EL1, SMEN, 3);
280              env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
281              if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
282                  env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
283                                                   SMCR, FA64, 1);
284              }
285          }
286          /*
287           * Enable 48-bit address space (TODO: take reserved_va into account).
288           * Enable TBI0 but not TBI1.
289           * Note that this must match useronly_clean_ptr.
290           */
291          env->cp15.tcr_el[1] = 5 | (1ULL << 37);
292  
293          /* Enable MTE */
294          if (cpu_isar_feature(aa64_mte, cpu)) {
295              /* Enable tag access, but leave TCF0 as No Effect (0). */
296              env->cp15.sctlr_el[1] |= SCTLR_ATA0;
297              /*
298               * Exclude all tags, so that tag 0 is always used.
299               * This corresponds to Linux current->thread.gcr_incl = 0.
300               *
301               * Set RRND, so that helper_irg() will generate a seed later.
302               * Here in cpu_reset(), the crypto subsystem has not yet been
303               * initialized.
304               */
305              env->cp15.gcr_el1 = 0x1ffff;
306          }
307          /*
308           * Disable access to SCXTNUM_EL0 from CSV2_1p2.
309           * This is not yet exposed from the Linux kernel in any way.
310           */
311          env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
312          /* Disable access to Debug Communication Channel (DCC). */
313          env->cp15.mdscr_el1 |= 1 << 12;
314          /* Enable FEAT_MOPS */
315          env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
316  #else
317          /* Reset into the highest available EL */
318          if (arm_feature(env, ARM_FEATURE_EL3)) {
319              env->pstate = PSTATE_MODE_EL3h;
320          } else if (arm_feature(env, ARM_FEATURE_EL2)) {
321              env->pstate = PSTATE_MODE_EL2h;
322          } else {
323              env->pstate = PSTATE_MODE_EL1h;
324          }
325  
326          /* Sample rvbar at reset.  */
327          env->cp15.rvbar = cpu->rvbar_prop;
328          env->pc = env->cp15.rvbar;
329  #endif
330      } else {
331  #if defined(CONFIG_USER_ONLY)
332          /* Userspace expects access to cp10 and cp11 for FP/Neon */
333          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
334                                           CPACR, CP10, 3);
335          env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
336                                           CPACR, CP11, 3);
337  #endif
338          if (arm_feature(env, ARM_FEATURE_V8)) {
339              env->cp15.rvbar = cpu->rvbar_prop;
340              env->regs[15] = cpu->rvbar_prop;
341          }
342      }
343  
344  #if defined(CONFIG_USER_ONLY)
345      env->uncached_cpsr = ARM_CPU_MODE_USR;
346      /* For user mode we must enable access to coprocessors */
347      env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
348      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
349          env->cp15.c15_cpar = 3;
350      } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
351          env->cp15.c15_cpar = 1;
352      }
353  #else
354  
355      /*
356       * If the highest available EL is EL2, AArch32 will start in Hyp
357       * mode; otherwise it starts in SVC. Note that if we start in
358       * AArch64 then these values in the uncached_cpsr will be ignored.
359       */
360      if (arm_feature(env, ARM_FEATURE_EL2) &&
361          !arm_feature(env, ARM_FEATURE_EL3)) {
362          env->uncached_cpsr = ARM_CPU_MODE_HYP;
363      } else {
364          env->uncached_cpsr = ARM_CPU_MODE_SVC;
365      }
366      env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
367  
368      /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
369       * executing as AArch32 then check if highvecs are enabled and
370       * adjust the PC accordingly.
371       */
372      if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
373          env->regs[15] = 0xFFFF0000;
374      }
375  
376      env->vfp.xregs[ARM_VFP_FPEXC] = 0;
377  #endif
378  
379      if (arm_feature(env, ARM_FEATURE_M)) {
380  #ifndef CONFIG_USER_ONLY
381          uint32_t initial_msp; /* Loaded from 0x0 */
382          uint32_t initial_pc; /* Loaded from 0x4 */
383          uint8_t *rom;
384          uint32_t vecbase;
385  #endif
386  
387          if (cpu_isar_feature(aa32_lob, cpu)) {
388              /*
389               * LTPSIZE is constant 4 if MVE not implemented, and resets
390               * to an UNKNOWN value if MVE is implemented. We choose to
391               * always reset to 4.
392               */
393              env->v7m.ltpsize = 4;
394              /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
395              env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
396              env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
397          }
398  
399          if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
400              env->v7m.secure = true;
401          } else {
402              /* This bit resets to 0 if security is supported, but 1 if
403               * it is not. The bit is not present in v7M, but we set it
404               * here so we can avoid having to make checks on it conditional
405               * on ARM_FEATURE_V8 (we don't let the guest see the bit).
406               */
407              env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
408              /*
409               * Set NSACR to indicate "NS access permitted to everything";
410               * this avoids having to have all the tests of it being
411               * conditional on ARM_FEATURE_M_SECURITY. Note also that from
412               * v8.1M the guest-visible value of NSACR in a CPU without the
413               * Security Extension is 0xcff.
414               */
415              env->v7m.nsacr = 0xcff;
416          }
417  
418          /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
419           * that it resets to 1, so QEMU always does that rather than making
420           * it dependent on CPU model. In v8M it is RES1.
421           */
422          env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
423          env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
424          if (arm_feature(env, ARM_FEATURE_V8)) {
425              /* in v8M the NONBASETHRDENA bit [0] is RES1 */
426              env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
427              env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
428          }
429          if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
430              env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
431              env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
432          }
433  
434          if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
435              env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
436              env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
437                  R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
438          }
439  
440  #ifndef CONFIG_USER_ONLY
441          /* Unlike A/R profile, M profile defines the reset LR value */
442          env->regs[14] = 0xffffffff;
443  
444          env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
445          env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
446  
447          /* Load the initial SP and PC from offset 0 and 4 in the vector table */
448          vecbase = env->v7m.vecbase[env->v7m.secure];
449          rom = rom_ptr_for_as(cs->as, vecbase, 8);
450          if (rom) {
451              /* Address zero is covered by ROM which hasn't yet been
452               * copied into physical memory.
453               */
454              initial_msp = ldl_p(rom);
455              initial_pc = ldl_p(rom + 4);
456          } else {
457              /* Address zero not covered by a ROM blob, or the ROM blob
458               * is in non-modifiable memory and this is a second reset after
459               * it got copied into memory. In the latter case, rom_ptr
460               * will return a NULL pointer and we should use ldl_phys instead.
461               */
462              initial_msp = ldl_phys(cs->as, vecbase);
463              initial_pc = ldl_phys(cs->as, vecbase + 4);
464          }
465  
466          qemu_log_mask(CPU_LOG_INT,
467                        "Loaded reset SP 0x%x PC 0x%x from vector table\n",
468                        initial_msp, initial_pc);
469  
470          env->regs[13] = initial_msp & 0xFFFFFFFC;
471          env->regs[15] = initial_pc & ~1;
472          env->thumb = initial_pc & 1;
473  #else
474          /*
475           * For user mode we run non-secure and with access to the FPU.
476           * The FPU context is active (ie does not need further setup)
477           * and is owned by non-secure.
478           */
479          env->v7m.secure = false;
480          env->v7m.nsacr = 0xcff;
481          env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
482          env->v7m.fpccr[M_REG_S] &=
483              ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
484          env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
485  #endif
486      }
487  
488      /* M profile requires that reset clears the exclusive monitor;
489       * A profile does not, but clearing it makes more sense than having it
490       * set with an exclusive access on address zero.
491       */
492      arm_clear_exclusive(env);
493  
494      if (arm_feature(env, ARM_FEATURE_PMSA)) {
495          if (cpu->pmsav7_dregion > 0) {
496              if (arm_feature(env, ARM_FEATURE_V8)) {
497                  memset(env->pmsav8.rbar[M_REG_NS], 0,
498                         sizeof(*env->pmsav8.rbar[M_REG_NS])
499                         * cpu->pmsav7_dregion);
500                  memset(env->pmsav8.rlar[M_REG_NS], 0,
501                         sizeof(*env->pmsav8.rlar[M_REG_NS])
502                         * cpu->pmsav7_dregion);
503                  if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
504                      memset(env->pmsav8.rbar[M_REG_S], 0,
505                             sizeof(*env->pmsav8.rbar[M_REG_S])
506                             * cpu->pmsav7_dregion);
507                      memset(env->pmsav8.rlar[M_REG_S], 0,
508                             sizeof(*env->pmsav8.rlar[M_REG_S])
509                             * cpu->pmsav7_dregion);
510                  }
511              } else if (arm_feature(env, ARM_FEATURE_V7)) {
512                  memset(env->pmsav7.drbar, 0,
513                         sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
514                  memset(env->pmsav7.drsr, 0,
515                         sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
516                  memset(env->pmsav7.dracr, 0,
517                         sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
518              }
519          }
520  
521          if (cpu->pmsav8r_hdregion > 0) {
522              memset(env->pmsav8.hprbar, 0,
523                     sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
524              memset(env->pmsav8.hprlar, 0,
525                     sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
526          }
527  
528          env->pmsav7.rnr[M_REG_NS] = 0;
529          env->pmsav7.rnr[M_REG_S] = 0;
530          env->pmsav8.mair0[M_REG_NS] = 0;
531          env->pmsav8.mair0[M_REG_S] = 0;
532          env->pmsav8.mair1[M_REG_NS] = 0;
533          env->pmsav8.mair1[M_REG_S] = 0;
534      }
535  
536      if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
537          if (cpu->sau_sregion > 0) {
538              memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
539              memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
540          }
541          env->sau.rnr = 0;
542          /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
543           * the Cortex-M33 does.
544           */
545          env->sau.ctrl = 0;
546      }
547  
548      set_flush_to_zero(1, &env->vfp.standard_fp_status);
549      set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
550      set_default_nan_mode(1, &env->vfp.standard_fp_status);
551      set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
552      set_float_detect_tininess(float_tininess_before_rounding,
553                                &env->vfp.fp_status);
554      set_float_detect_tininess(float_tininess_before_rounding,
555                                &env->vfp.standard_fp_status);
556      set_float_detect_tininess(float_tininess_before_rounding,
557                                &env->vfp.fp_status_f16);
558      set_float_detect_tininess(float_tininess_before_rounding,
559                                &env->vfp.standard_fp_status_f16);
560  #ifndef CONFIG_USER_ONLY
561      if (kvm_enabled()) {
562          kvm_arm_reset_vcpu(cpu);
563      }
564  #endif
565  
566      if (tcg_enabled()) {
567          hw_breakpoint_update_all(cpu);
568          hw_watchpoint_update_all(cpu);
569  
570          arm_rebuild_hflags(env);
571      }
572  }
573  
574  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
575  {
576      ARMCPU *cpu = ARM_CPU(cpustate);
577      CPUARMState *env = &cpu->env;
578      bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
579      bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
580  
581      /*
582       * Check we have the EL we're aiming for. If that is the
583       * highest implemented EL, then cpu_reset has already done
584       * all the work.
585       */
586      switch (target_el) {
587      case 3:
588          assert(have_el3);
589          return;
590      case 2:
591          assert(have_el2);
592          if (!have_el3) {
593              return;
594          }
595          break;
596      case 1:
597          if (!have_el3 && !have_el2) {
598              return;
599          }
600          break;
601      default:
602          g_assert_not_reached();
603      }
604  
605      if (have_el3) {
606          /*
607           * Set the EL3 state so code can run at EL2. This should match
608           * the requirements set by Linux in its booting spec.
609           */
610          if (env->aarch64) {
611              env->cp15.scr_el3 |= SCR_RW;
612              if (cpu_isar_feature(aa64_pauth, cpu)) {
613                  env->cp15.scr_el3 |= SCR_API | SCR_APK;
614              }
615              if (cpu_isar_feature(aa64_mte, cpu)) {
616                  env->cp15.scr_el3 |= SCR_ATA;
617              }
618              if (cpu_isar_feature(aa64_sve, cpu)) {
619                  env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
620                  env->vfp.zcr_el[3] = 0xf;
621              }
622              if (cpu_isar_feature(aa64_sme, cpu)) {
623                  env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
624                  env->cp15.scr_el3 |= SCR_ENTP2;
625                  env->vfp.smcr_el[3] = 0xf;
626              }
627              if (cpu_isar_feature(aa64_hcx, cpu)) {
628                  env->cp15.scr_el3 |= SCR_HXEN;
629              }
630              if (cpu_isar_feature(aa64_fgt, cpu)) {
631                  env->cp15.scr_el3 |= SCR_FGTEN;
632              }
633          }
634  
635          if (target_el == 2) {
636              /* If the guest is at EL2 then Linux expects the HVC insn to work */
637              env->cp15.scr_el3 |= SCR_HCE;
638          }
639  
640          /* Put CPU into non-secure state */
641          env->cp15.scr_el3 |= SCR_NS;
642          /* Set NSACR.{CP11,CP10} so NS can access the FPU */
643          env->cp15.nsacr |= 3 << 10;
644      }
645  
646      if (have_el2 && target_el < 2) {
647          /* Set EL2 state so code can run at EL1. */
648          if (env->aarch64) {
649              env->cp15.hcr_el2 |= HCR_RW;
650          }
651      }
652  
653      /* Set the CPU to the desired state */
654      if (env->aarch64) {
655          env->pstate = aarch64_pstate_mode(target_el, true);
656      } else {
657          static const uint32_t mode_for_el[] = {
658              0,
659              ARM_CPU_MODE_SVC,
660              ARM_CPU_MODE_HYP,
661              ARM_CPU_MODE_SVC,
662          };
663  
664          cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
665      }
666  }
667  
668  
669  #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
670  
671  static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
672                                       unsigned int target_el,
673                                       unsigned int cur_el, bool secure,
674                                       uint64_t hcr_el2)
675  {
676      CPUARMState *env = cpu_env(cs);
677      bool pstate_unmasked;
678      bool unmasked = false;
679      bool allIntMask = false;
680  
681      /*
682       * Don't take exceptions if they target a lower EL.
683       * This check should catch any exceptions that would not be taken
684       * but left pending.
685       */
686      if (cur_el > target_el) {
687          return false;
688      }
689  
690      if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
691          env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
692          allIntMask = env->pstate & PSTATE_ALLINT ||
693                       ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
694                        (env->pstate & PSTATE_SP));
695      }
696  
697      switch (excp_idx) {
698      case EXCP_NMI:
699          pstate_unmasked = !allIntMask;
700          break;
701  
702      case EXCP_VINMI:
703          if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
704              /* VINMIs are only taken when hypervized.  */
705              return false;
706          }
707          return !allIntMask;
708      case EXCP_VFNMI:
709          if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
710              /* VFNMIs are only taken when hypervized.  */
711              return false;
712          }
713          return !allIntMask;
714      case EXCP_FIQ:
715          pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
716          break;
717  
718      case EXCP_IRQ:
719          pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
720          break;
721  
722      case EXCP_VFIQ:
723          if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
724              /* VFIQs are only taken when hypervized.  */
725              return false;
726          }
727          return !(env->daif & PSTATE_F) && (!allIntMask);
728      case EXCP_VIRQ:
729          if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
730              /* VIRQs are only taken when hypervized.  */
731              return false;
732          }
733          return !(env->daif & PSTATE_I) && (!allIntMask);
734      case EXCP_VSERR:
735          if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
736              /* VIRQs are only taken when hypervized.  */
737              return false;
738          }
739          return !(env->daif & PSTATE_A);
740      default:
741          g_assert_not_reached();
742      }
743  
744      /*
745       * Use the target EL, current execution state and SCR/HCR settings to
746       * determine whether the corresponding CPSR bit is used to mask the
747       * interrupt.
748       */
749      if ((target_el > cur_el) && (target_el != 1)) {
750          /* Exceptions targeting a higher EL may not be maskable */
751          if (arm_feature(env, ARM_FEATURE_AARCH64)) {
752              switch (target_el) {
753              case 2:
754                  /*
755                   * According to ARM DDI 0487H.a, an interrupt can be masked
756                   * when HCR_E2H and HCR_TGE are both set regardless of the
757                   * current Security state. Note that we need to revisit this
758                   * part again once we need to support NMI.
759                   */
760                  if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
761                          unmasked = true;
762                  }
763                  break;
764              case 3:
765                  /* Interrupt cannot be masked when the target EL is 3 */
766                  unmasked = true;
767                  break;
768              default:
769                  g_assert_not_reached();
770              }
771          } else {
772              /*
773               * The old 32-bit-only environment has a more complicated
774               * masking setup. HCR and SCR bits not only affect interrupt
775               * routing but also change the behaviour of masking.
776               */
777              bool hcr, scr;
778  
779              switch (excp_idx) {
780              case EXCP_FIQ:
781                  /*
782                   * If FIQs are routed to EL3 or EL2 then there are cases where
783                   * we override the CPSR.F in determining if the exception is
784                   * masked or not. If neither of these are set then we fall back
785                   * to the CPSR.F setting otherwise we further assess the state
786                   * below.
787                   */
788                  hcr = hcr_el2 & HCR_FMO;
789                  scr = (env->cp15.scr_el3 & SCR_FIQ);
790  
791                  /*
792                   * When EL3 is 32-bit, the SCR.FW bit controls whether the
793                   * CPSR.F bit masks FIQ interrupts when taken in non-secure
794                   * state. If SCR.FW is set then FIQs can be masked by CPSR.F
795                   * when non-secure but only when FIQs are only routed to EL3.
796                   */
797                  scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
798                  break;
799              case EXCP_IRQ:
800                  /*
801                   * When EL3 execution state is 32-bit, if HCR.IMO is set then
802                   * we may override the CPSR.I masking when in non-secure state.
803                   * The SCR.IRQ setting has already been taken into consideration
804                   * when setting the target EL, so it does not have a further
805                   * affect here.
806                   */
807                  hcr = hcr_el2 & HCR_IMO;
808                  scr = false;
809                  break;
810              default:
811                  g_assert_not_reached();
812              }
813  
814              if ((scr || hcr) && !secure) {
815                  unmasked = true;
816              }
817          }
818      }
819  
820      /*
821       * The PSTATE bits only mask the interrupt if we have not overridden the
822       * ability above.
823       */
824      return unmasked || pstate_unmasked;
825  }
826  
827  static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
828  {
829      CPUClass *cc = CPU_GET_CLASS(cs);
830      CPUARMState *env = cpu_env(cs);
831      uint32_t cur_el = arm_current_el(env);
832      bool secure = arm_is_secure(env);
833      uint64_t hcr_el2 = arm_hcr_el2_eff(env);
834      uint32_t target_el;
835      uint32_t excp_idx;
836  
837      /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
838  
839      if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
840          (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
841          if (interrupt_request & CPU_INTERRUPT_NMI) {
842              excp_idx = EXCP_NMI;
843              target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
844              if (arm_excp_unmasked(cs, excp_idx, target_el,
845                                    cur_el, secure, hcr_el2)) {
846                  goto found;
847              }
848          }
849          if (interrupt_request & CPU_INTERRUPT_VINMI) {
850              excp_idx = EXCP_VINMI;
851              target_el = 1;
852              if (arm_excp_unmasked(cs, excp_idx, target_el,
853                                    cur_el, secure, hcr_el2)) {
854                  goto found;
855              }
856          }
857          if (interrupt_request & CPU_INTERRUPT_VFNMI) {
858              excp_idx = EXCP_VFNMI;
859              target_el = 1;
860              if (arm_excp_unmasked(cs, excp_idx, target_el,
861                                    cur_el, secure, hcr_el2)) {
862                  goto found;
863              }
864          }
865      } else {
866          /*
867           * NMI disabled: interrupts with superpriority are handled
868           * as if they didn't have it
869           */
870          if (interrupt_request & CPU_INTERRUPT_NMI) {
871              interrupt_request |= CPU_INTERRUPT_HARD;
872          }
873          if (interrupt_request & CPU_INTERRUPT_VINMI) {
874              interrupt_request |= CPU_INTERRUPT_VIRQ;
875          }
876          if (interrupt_request & CPU_INTERRUPT_VFNMI) {
877              interrupt_request |= CPU_INTERRUPT_VFIQ;
878          }
879      }
880  
881      if (interrupt_request & CPU_INTERRUPT_FIQ) {
882          excp_idx = EXCP_FIQ;
883          target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
884          if (arm_excp_unmasked(cs, excp_idx, target_el,
885                                cur_el, secure, hcr_el2)) {
886              goto found;
887          }
888      }
889      if (interrupt_request & CPU_INTERRUPT_HARD) {
890          excp_idx = EXCP_IRQ;
891          target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
892          if (arm_excp_unmasked(cs, excp_idx, target_el,
893                                cur_el, secure, hcr_el2)) {
894              goto found;
895          }
896      }
897      if (interrupt_request & CPU_INTERRUPT_VIRQ) {
898          excp_idx = EXCP_VIRQ;
899          target_el = 1;
900          if (arm_excp_unmasked(cs, excp_idx, target_el,
901                                cur_el, secure, hcr_el2)) {
902              goto found;
903          }
904      }
905      if (interrupt_request & CPU_INTERRUPT_VFIQ) {
906          excp_idx = EXCP_VFIQ;
907          target_el = 1;
908          if (arm_excp_unmasked(cs, excp_idx, target_el,
909                                cur_el, secure, hcr_el2)) {
910              goto found;
911          }
912      }
913      if (interrupt_request & CPU_INTERRUPT_VSERR) {
914          excp_idx = EXCP_VSERR;
915          target_el = 1;
916          if (arm_excp_unmasked(cs, excp_idx, target_el,
917                                cur_el, secure, hcr_el2)) {
918              /* Taking a virtual abort clears HCR_EL2.VSE */
919              env->cp15.hcr_el2 &= ~HCR_VSE;
920              cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
921              goto found;
922          }
923      }
924      return false;
925  
926   found:
927      cs->exception_index = excp_idx;
928      env->exception.target_el = target_el;
929      cc->tcg_ops->do_interrupt(cs);
930      return true;
931  }
932  
933  #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
934  
935  void arm_cpu_update_virq(ARMCPU *cpu)
936  {
937      /*
938       * Update the interrupt level for VIRQ, which is the logical OR of
939       * the HCR_EL2.VI bit and the input line level from the GIC.
940       */
941      CPUARMState *env = &cpu->env;
942      CPUState *cs = CPU(cpu);
943  
944      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
945          !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
946          (env->irq_line_state & CPU_INTERRUPT_VIRQ);
947  
948      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
949          if (new_state) {
950              cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
951          } else {
952              cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
953          }
954      }
955  }
956  
957  void arm_cpu_update_vfiq(ARMCPU *cpu)
958  {
959      /*
960       * Update the interrupt level for VFIQ, which is the logical OR of
961       * the HCR_EL2.VF bit and the input line level from the GIC.
962       */
963      CPUARMState *env = &cpu->env;
964      CPUState *cs = CPU(cpu);
965  
966      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
967          !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
968          (env->irq_line_state & CPU_INTERRUPT_VFIQ);
969  
970      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
971          if (new_state) {
972              cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
973          } else {
974              cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
975          }
976      }
977  }
978  
979  void arm_cpu_update_vinmi(ARMCPU *cpu)
980  {
981      /*
982       * Update the interrupt level for VINMI, which is the logical OR of
983       * the HCRX_EL2.VINMI bit and the input line level from the GIC.
984       */
985      CPUARMState *env = &cpu->env;
986      CPUState *cs = CPU(cpu);
987  
988      bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
989                        (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
990          (env->irq_line_state & CPU_INTERRUPT_VINMI);
991  
992      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
993          if (new_state) {
994              cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
995          } else {
996              cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
997          }
998      }
999  }
1000  
1001  void arm_cpu_update_vfnmi(ARMCPU *cpu)
1002  {
1003      /*
1004       * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1005       */
1006      CPUARMState *env = &cpu->env;
1007      CPUState *cs = CPU(cpu);
1008  
1009      bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1010                        (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1011  
1012      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1013          if (new_state) {
1014              cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1015          } else {
1016              cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1017          }
1018      }
1019  }
1020  
1021  void arm_cpu_update_vserr(ARMCPU *cpu)
1022  {
1023      /*
1024       * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1025       */
1026      CPUARMState *env = &cpu->env;
1027      CPUState *cs = CPU(cpu);
1028  
1029      bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1030  
1031      if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1032          if (new_state) {
1033              cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1034          } else {
1035              cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1036          }
1037      }
1038  }
1039  
1040  #ifndef CONFIG_USER_ONLY
1041  static void arm_cpu_set_irq(void *opaque, int irq, int level)
1042  {
1043      ARMCPU *cpu = opaque;
1044      CPUARMState *env = &cpu->env;
1045      CPUState *cs = CPU(cpu);
1046      static const int mask[] = {
1047          [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1048          [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1049          [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1050          [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1051          [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1052          [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1053      };
1054  
1055      if (!arm_feature(env, ARM_FEATURE_EL2) &&
1056          (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1057          /*
1058           * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1059           * have EL2 support we don't care. (Unless the guest is doing something
1060           * silly this will only be calls saying "level is still 0".)
1061           */
1062          return;
1063      }
1064  
1065      if (level) {
1066          env->irq_line_state |= mask[irq];
1067      } else {
1068          env->irq_line_state &= ~mask[irq];
1069      }
1070  
1071      switch (irq) {
1072      case ARM_CPU_VIRQ:
1073          arm_cpu_update_virq(cpu);
1074          break;
1075      case ARM_CPU_VFIQ:
1076          arm_cpu_update_vfiq(cpu);
1077          break;
1078      case ARM_CPU_VINMI:
1079          arm_cpu_update_vinmi(cpu);
1080          break;
1081      case ARM_CPU_IRQ:
1082      case ARM_CPU_FIQ:
1083      case ARM_CPU_NMI:
1084          if (level) {
1085              cpu_interrupt(cs, mask[irq]);
1086          } else {
1087              cpu_reset_interrupt(cs, mask[irq]);
1088          }
1089          break;
1090      default:
1091          g_assert_not_reached();
1092      }
1093  }
1094  
1095  static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1096  {
1097  #ifdef CONFIG_KVM
1098      ARMCPU *cpu = opaque;
1099      CPUARMState *env = &cpu->env;
1100      CPUState *cs = CPU(cpu);
1101      uint32_t linestate_bit;
1102      int irq_id;
1103  
1104      switch (irq) {
1105      case ARM_CPU_IRQ:
1106          irq_id = KVM_ARM_IRQ_CPU_IRQ;
1107          linestate_bit = CPU_INTERRUPT_HARD;
1108          break;
1109      case ARM_CPU_FIQ:
1110          irq_id = KVM_ARM_IRQ_CPU_FIQ;
1111          linestate_bit = CPU_INTERRUPT_FIQ;
1112          break;
1113      default:
1114          g_assert_not_reached();
1115      }
1116  
1117      if (level) {
1118          env->irq_line_state |= linestate_bit;
1119      } else {
1120          env->irq_line_state &= ~linestate_bit;
1121      }
1122      kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1123  #endif
1124  }
1125  
1126  static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1127  {
1128      ARMCPU *cpu = ARM_CPU(cs);
1129      CPUARMState *env = &cpu->env;
1130  
1131      cpu_synchronize_state(cs);
1132      return arm_cpu_data_is_big_endian(env);
1133  }
1134  
1135  #ifdef CONFIG_TCG
1136  static bool arm_cpu_exec_halt(CPUState *cs)
1137  {
1138      bool leave_halt = cpu_has_work(cs);
1139  
1140      if (leave_halt) {
1141          /* We're about to come out of WFI/WFE: disable the WFxT timer */
1142          ARMCPU *cpu = ARM_CPU(cs);
1143          if (cpu->wfxt_timer) {
1144              timer_del(cpu->wfxt_timer);
1145          }
1146      }
1147      return leave_halt;
1148  }
1149  #endif
1150  
1151  static void arm_wfxt_timer_cb(void *opaque)
1152  {
1153      ARMCPU *cpu = opaque;
1154      CPUState *cs = CPU(cpu);
1155  
1156      /*
1157       * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1158       * to return true (so we will come out of halt even with no other
1159       * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1160       * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1161       */
1162      cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1163  }
1164  #endif
1165  
1166  static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1167  {
1168      ARMCPU *ac = ARM_CPU(cpu);
1169      CPUARMState *env = &ac->env;
1170      bool sctlr_b;
1171  
1172      if (is_a64(env)) {
1173          info->cap_arch = CS_ARCH_ARM64;
1174          info->cap_insn_unit = 4;
1175          info->cap_insn_split = 4;
1176      } else {
1177          int cap_mode;
1178          if (env->thumb) {
1179              info->cap_insn_unit = 2;
1180              info->cap_insn_split = 4;
1181              cap_mode = CS_MODE_THUMB;
1182          } else {
1183              info->cap_insn_unit = 4;
1184              info->cap_insn_split = 4;
1185              cap_mode = CS_MODE_ARM;
1186          }
1187          if (arm_feature(env, ARM_FEATURE_V8)) {
1188              cap_mode |= CS_MODE_V8;
1189          }
1190          if (arm_feature(env, ARM_FEATURE_M)) {
1191              cap_mode |= CS_MODE_MCLASS;
1192          }
1193          info->cap_arch = CS_ARCH_ARM;
1194          info->cap_mode = cap_mode;
1195      }
1196  
1197      sctlr_b = arm_sctlr_b(env);
1198      if (bswap_code(sctlr_b)) {
1199  #if TARGET_BIG_ENDIAN
1200          info->endian = BFD_ENDIAN_LITTLE;
1201  #else
1202          info->endian = BFD_ENDIAN_BIG;
1203  #endif
1204      }
1205      info->flags &= ~INSN_ARM_BE32;
1206  #ifndef CONFIG_USER_ONLY
1207      if (sctlr_b) {
1208          info->flags |= INSN_ARM_BE32;
1209      }
1210  #endif
1211  }
1212  
1213  #ifdef TARGET_AARCH64
1214  
1215  static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1216  {
1217      ARMCPU *cpu = ARM_CPU(cs);
1218      CPUARMState *env = &cpu->env;
1219      uint32_t psr = pstate_read(env);
1220      int i, j;
1221      int el = arm_current_el(env);
1222      uint64_t hcr = arm_hcr_el2_eff(env);
1223      const char *ns_status;
1224      bool sve;
1225  
1226      qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1227      for (i = 0; i < 32; i++) {
1228          if (i == 31) {
1229              qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1230          } else {
1231              qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1232                           (i + 2) % 3 ? " " : "\n");
1233          }
1234      }
1235  
1236      if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1237          ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1238      } else {
1239          ns_status = "";
1240      }
1241      qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1242                   psr,
1243                   psr & PSTATE_N ? 'N' : '-',
1244                   psr & PSTATE_Z ? 'Z' : '-',
1245                   psr & PSTATE_C ? 'C' : '-',
1246                   psr & PSTATE_V ? 'V' : '-',
1247                   ns_status,
1248                   el,
1249                   psr & PSTATE_SP ? 'h' : 't');
1250  
1251      if (cpu_isar_feature(aa64_sme, cpu)) {
1252          qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1253                       env->svcr,
1254                       (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1255                       (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1256      }
1257      if (cpu_isar_feature(aa64_bti, cpu)) {
1258          qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1259      }
1260      qemu_fprintf(f, "%s%s%s",
1261                   (hcr & HCR_NV) ? " NV" : "",
1262                   (hcr & HCR_NV1) ? " NV1" : "",
1263                   (hcr & HCR_NV2) ? " NV2" : "");
1264      if (!(flags & CPU_DUMP_FPU)) {
1265          qemu_fprintf(f, "\n");
1266          return;
1267      }
1268      if (fp_exception_el(env, el) != 0) {
1269          qemu_fprintf(f, "    FPU disabled\n");
1270          return;
1271      }
1272      qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1273                   vfp_get_fpcr(env), vfp_get_fpsr(env));
1274  
1275      if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1276          sve = sme_exception_el(env, el) == 0;
1277      } else if (cpu_isar_feature(aa64_sve, cpu)) {
1278          sve = sve_exception_el(env, el) == 0;
1279      } else {
1280          sve = false;
1281      }
1282  
1283      if (sve) {
1284          int zcr_len = sve_vqm1_for_el(env, el);
1285  
1286          for (i = 0; i <= FFR_PRED_NUM; i++) {
1287              bool eol;
1288              if (i == FFR_PRED_NUM) {
1289                  qemu_fprintf(f, "FFR=");
1290                  /* It's last, so end the line.  */
1291                  eol = true;
1292              } else {
1293                  qemu_fprintf(f, "P%02d=", i);
1294                  switch (zcr_len) {
1295                  case 0:
1296                      eol = i % 8 == 7;
1297                      break;
1298                  case 1:
1299                      eol = i % 6 == 5;
1300                      break;
1301                  case 2:
1302                  case 3:
1303                      eol = i % 3 == 2;
1304                      break;
1305                  default:
1306                      /* More than one quadword per predicate.  */
1307                      eol = true;
1308                      break;
1309                  }
1310              }
1311              for (j = zcr_len / 4; j >= 0; j--) {
1312                  int digits;
1313                  if (j * 4 + 4 <= zcr_len + 1) {
1314                      digits = 16;
1315                  } else {
1316                      digits = (zcr_len % 4 + 1) * 4;
1317                  }
1318                  qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1319                               env->vfp.pregs[i].p[j],
1320                               j ? ":" : eol ? "\n" : " ");
1321              }
1322          }
1323  
1324          if (zcr_len == 0) {
1325              /*
1326               * With vl=16, there are only 37 columns per register,
1327               * so output two registers per line.
1328               */
1329              for (i = 0; i < 32; i++) {
1330                  qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1331                               i, env->vfp.zregs[i].d[1],
1332                               env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1333              }
1334          } else {
1335              for (i = 0; i < 32; i++) {
1336                  qemu_fprintf(f, "Z%02d=", i);
1337                  for (j = zcr_len; j >= 0; j--) {
1338                      qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1339                                   env->vfp.zregs[i].d[j * 2 + 1],
1340                                   env->vfp.zregs[i].d[j * 2 + 0],
1341                                   j ? ":" : "\n");
1342                  }
1343              }
1344          }
1345      } else {
1346          for (i = 0; i < 32; i++) {
1347              uint64_t *q = aa64_vfp_qreg(env, i);
1348              qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1349                           i, q[1], q[0], (i & 1 ? "\n" : " "));
1350          }
1351      }
1352  
1353      if (cpu_isar_feature(aa64_sme, cpu) &&
1354          FIELD_EX64(env->svcr, SVCR, ZA) &&
1355          sme_exception_el(env, el) == 0) {
1356          int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1357          int svl = (zcr_len + 1) * 16;
1358          int svl_lg10 = svl < 100 ? 2 : 3;
1359  
1360          for (i = 0; i < svl; i++) {
1361              qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1362              for (j = zcr_len; j >= 0; --j) {
1363                  qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1364                               env->zarray[i].d[2 * j + 1],
1365                               env->zarray[i].d[2 * j],
1366                               j ? ':' : '\n');
1367              }
1368          }
1369      }
1370  }
1371  
1372  #else
1373  
1374  static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1375  {
1376      g_assert_not_reached();
1377  }
1378  
1379  #endif
1380  
1381  static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1382  {
1383      ARMCPU *cpu = ARM_CPU(cs);
1384      CPUARMState *env = &cpu->env;
1385      int i;
1386  
1387      if (is_a64(env)) {
1388          aarch64_cpu_dump_state(cs, f, flags);
1389          return;
1390      }
1391  
1392      for (i = 0; i < 16; i++) {
1393          qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1394          if ((i % 4) == 3) {
1395              qemu_fprintf(f, "\n");
1396          } else {
1397              qemu_fprintf(f, " ");
1398          }
1399      }
1400  
1401      if (arm_feature(env, ARM_FEATURE_M)) {
1402          uint32_t xpsr = xpsr_read(env);
1403          const char *mode;
1404          const char *ns_status = "";
1405  
1406          if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1407              ns_status = env->v7m.secure ? "S " : "NS ";
1408          }
1409  
1410          if (xpsr & XPSR_EXCP) {
1411              mode = "handler";
1412          } else {
1413              if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1414                  mode = "unpriv-thread";
1415              } else {
1416                  mode = "priv-thread";
1417              }
1418          }
1419  
1420          qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1421                       xpsr,
1422                       xpsr & XPSR_N ? 'N' : '-',
1423                       xpsr & XPSR_Z ? 'Z' : '-',
1424                       xpsr & XPSR_C ? 'C' : '-',
1425                       xpsr & XPSR_V ? 'V' : '-',
1426                       xpsr & XPSR_T ? 'T' : 'A',
1427                       ns_status,
1428                       mode);
1429      } else {
1430          uint32_t psr = cpsr_read(env);
1431          const char *ns_status = "";
1432  
1433          if (arm_feature(env, ARM_FEATURE_EL3) &&
1434              (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1435              ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1436          }
1437  
1438          qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1439                       psr,
1440                       psr & CPSR_N ? 'N' : '-',
1441                       psr & CPSR_Z ? 'Z' : '-',
1442                       psr & CPSR_C ? 'C' : '-',
1443                       psr & CPSR_V ? 'V' : '-',
1444                       psr & CPSR_T ? 'T' : 'A',
1445                       ns_status,
1446                       aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1447      }
1448  
1449      if (flags & CPU_DUMP_FPU) {
1450          int numvfpregs = 0;
1451          if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1452              numvfpregs = 32;
1453          } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1454              numvfpregs = 16;
1455          }
1456          for (i = 0; i < numvfpregs; i++) {
1457              uint64_t v = *aa32_vfp_dreg(env, i);
1458              qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1459                           i * 2, (uint32_t)v,
1460                           i * 2 + 1, (uint32_t)(v >> 32),
1461                           i, v);
1462          }
1463          qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1464          if (cpu_isar_feature(aa32_mve, cpu)) {
1465              qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1466          }
1467      }
1468  }
1469  
1470  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1471  {
1472      uint32_t Aff1 = idx / clustersz;
1473      uint32_t Aff0 = idx % clustersz;
1474      return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1475  }
1476  
1477  uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1478  {
1479      return cpu->mp_affinity;
1480  }
1481  
1482  static void arm_cpu_initfn(Object *obj)
1483  {
1484      ARMCPU *cpu = ARM_CPU(obj);
1485  
1486      cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1487                                           NULL, g_free);
1488  
1489      QLIST_INIT(&cpu->pre_el_change_hooks);
1490      QLIST_INIT(&cpu->el_change_hooks);
1491  
1492  #ifdef CONFIG_USER_ONLY
1493  # ifdef TARGET_AARCH64
1494      /*
1495       * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1496       * These values were chosen to fit within the default signal frame.
1497       * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1498       * and our corresponding cpu property.
1499       */
1500      cpu->sve_default_vq = 4;
1501      cpu->sme_default_vq = 2;
1502  # endif
1503  #else
1504      /* Our inbound IRQ and FIQ lines */
1505      if (kvm_enabled()) {
1506          /*
1507           * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1508           * them to maintain the same interface as non-KVM CPUs.
1509           */
1510          qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1511      } else {
1512          qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1513      }
1514  
1515      qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1516                         ARRAY_SIZE(cpu->gt_timer_outputs));
1517  
1518      qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1519                               "gicv3-maintenance-interrupt", 1);
1520      qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1521                               "pmu-interrupt", 1);
1522  #endif
1523  
1524      /* DTB consumers generally don't in fact care what the 'compatible'
1525       * string is, so always provide some string and trust that a hypothetical
1526       * picky DTB consumer will also provide a helpful error message.
1527       */
1528      cpu->dtb_compatible = "qemu,unknown";
1529      cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1530      cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1531  
1532      if (tcg_enabled() || hvf_enabled()) {
1533          /* TCG and HVF implement PSCI 1.1 */
1534          cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1535      }
1536  }
1537  
1538  /*
1539   * 0 means "unset, use the default value". That default might vary depending
1540   * on the CPU type, and is set in the realize fn.
1541   */
1542  static Property arm_cpu_gt_cntfrq_property =
1543              DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1544  
1545  static Property arm_cpu_reset_cbar_property =
1546              DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1547  
1548  static Property arm_cpu_reset_hivecs_property =
1549              DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1550  
1551  #ifndef CONFIG_USER_ONLY
1552  static Property arm_cpu_has_el2_property =
1553              DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1554  
1555  static Property arm_cpu_has_el3_property =
1556              DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1557  #endif
1558  
1559  static Property arm_cpu_cfgend_property =
1560              DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1561  
1562  static Property arm_cpu_has_vfp_property =
1563              DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1564  
1565  static Property arm_cpu_has_vfp_d32_property =
1566              DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1567  
1568  static Property arm_cpu_has_neon_property =
1569              DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1570  
1571  static Property arm_cpu_has_dsp_property =
1572              DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1573  
1574  static Property arm_cpu_has_mpu_property =
1575              DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1576  
1577  /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1578   * because the CPU initfn will have already set cpu->pmsav7_dregion to
1579   * the right value for that particular CPU type, and we don't want
1580   * to override that with an incorrect constant value.
1581   */
1582  static Property arm_cpu_pmsav7_dregion_property =
1583              DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1584                                             pmsav7_dregion,
1585                                             qdev_prop_uint32, uint32_t);
1586  
1587  static bool arm_get_pmu(Object *obj, Error **errp)
1588  {
1589      ARMCPU *cpu = ARM_CPU(obj);
1590  
1591      return cpu->has_pmu;
1592  }
1593  
1594  static void arm_set_pmu(Object *obj, bool value, Error **errp)
1595  {
1596      ARMCPU *cpu = ARM_CPU(obj);
1597  
1598      if (value) {
1599          if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1600              error_setg(errp, "'pmu' feature not supported by KVM on this host");
1601              return;
1602          }
1603          set_feature(&cpu->env, ARM_FEATURE_PMU);
1604      } else {
1605          unset_feature(&cpu->env, ARM_FEATURE_PMU);
1606      }
1607      cpu->has_pmu = value;
1608  }
1609  
1610  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1611  {
1612      /*
1613       * The exact approach to calculating guest ticks is:
1614       *
1615       *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1616       *              NANOSECONDS_PER_SECOND);
1617       *
1618       * We don't do that. Rather we intentionally use integer division
1619       * truncation below and in the caller for the conversion of host monotonic
1620       * time to guest ticks to provide the exact inverse for the semantics of
1621       * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1622       * it loses precision when representing frequencies where
1623       * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1624       * provide an exact inverse leads to scheduling timers with negative
1625       * periods, which in turn leads to sticky behaviour in the guest.
1626       *
1627       * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1628       * cannot become zero.
1629       */
1630      return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1631        NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1632  }
1633  
1634  static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1635  {
1636      CPUARMState *env = &cpu->env;
1637      bool no_aa32 = false;
1638  
1639      /*
1640       * Some features automatically imply others: set the feature
1641       * bits explicitly for these cases.
1642       */
1643  
1644      if (arm_feature(env, ARM_FEATURE_M)) {
1645          set_feature(env, ARM_FEATURE_PMSA);
1646      }
1647  
1648      if (arm_feature(env, ARM_FEATURE_V8)) {
1649          if (arm_feature(env, ARM_FEATURE_M)) {
1650              set_feature(env, ARM_FEATURE_V7);
1651          } else {
1652              set_feature(env, ARM_FEATURE_V7VE);
1653          }
1654      }
1655  
1656      /*
1657       * There exist AArch64 cpus without AArch32 support.  When KVM
1658       * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1659       * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1660       * As a general principle, we also do not make ID register
1661       * consistency checks anywhere unless using TCG, because only
1662       * for TCG would a consistency-check failure be a QEMU bug.
1663       */
1664      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1665          no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1666      }
1667  
1668      if (arm_feature(env, ARM_FEATURE_V7VE)) {
1669          /*
1670           * v7 Virtualization Extensions. In real hardware this implies
1671           * EL2 and also the presence of the Security Extensions.
1672           * For QEMU, for backwards-compatibility we implement some
1673           * CPUs or CPU configs which have no actual EL2 or EL3 but do
1674           * include the various other features that V7VE implies.
1675           * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1676           * Security Extensions is ARM_FEATURE_EL3.
1677           */
1678          assert(!tcg_enabled() || no_aa32 ||
1679                 cpu_isar_feature(aa32_arm_div, cpu));
1680          set_feature(env, ARM_FEATURE_LPAE);
1681          set_feature(env, ARM_FEATURE_V7);
1682      }
1683      if (arm_feature(env, ARM_FEATURE_V7)) {
1684          set_feature(env, ARM_FEATURE_VAPA);
1685          set_feature(env, ARM_FEATURE_THUMB2);
1686          set_feature(env, ARM_FEATURE_MPIDR);
1687          if (!arm_feature(env, ARM_FEATURE_M)) {
1688              set_feature(env, ARM_FEATURE_V6K);
1689          } else {
1690              set_feature(env, ARM_FEATURE_V6);
1691          }
1692  
1693          /*
1694           * Always define VBAR for V7 CPUs even if it doesn't exist in
1695           * non-EL3 configs. This is needed by some legacy boards.
1696           */
1697          set_feature(env, ARM_FEATURE_VBAR);
1698      }
1699      if (arm_feature(env, ARM_FEATURE_V6K)) {
1700          set_feature(env, ARM_FEATURE_V6);
1701          set_feature(env, ARM_FEATURE_MVFR);
1702      }
1703      if (arm_feature(env, ARM_FEATURE_V6)) {
1704          set_feature(env, ARM_FEATURE_V5);
1705          if (!arm_feature(env, ARM_FEATURE_M)) {
1706              assert(!tcg_enabled() || no_aa32 ||
1707                     cpu_isar_feature(aa32_jazelle, cpu));
1708              set_feature(env, ARM_FEATURE_AUXCR);
1709          }
1710      }
1711      if (arm_feature(env, ARM_FEATURE_V5)) {
1712          set_feature(env, ARM_FEATURE_V4T);
1713      }
1714      if (arm_feature(env, ARM_FEATURE_LPAE)) {
1715          set_feature(env, ARM_FEATURE_V7MP);
1716      }
1717      if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1718          set_feature(env, ARM_FEATURE_CBAR);
1719      }
1720      if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1721          !arm_feature(env, ARM_FEATURE_M)) {
1722          set_feature(env, ARM_FEATURE_THUMB_DSP);
1723      }
1724  }
1725  
1726  void arm_cpu_post_init(Object *obj)
1727  {
1728      ARMCPU *cpu = ARM_CPU(obj);
1729  
1730      /*
1731       * Some features imply others. Figure this out now, because we
1732       * are going to look at the feature bits in deciding which
1733       * properties to add.
1734       */
1735      arm_cpu_propagate_feature_implications(cpu);
1736  
1737      if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1738          arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1739          qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1740      }
1741  
1742      if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1743          qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1744      }
1745  
1746      if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1747          object_property_add_uint64_ptr(obj, "rvbar",
1748                                         &cpu->rvbar_prop,
1749                                         OBJ_PROP_FLAG_READWRITE);
1750      }
1751  
1752  #ifndef CONFIG_USER_ONLY
1753      if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1754          /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1755           * prevent "has_el3" from existing on CPUs which cannot support EL3.
1756           */
1757          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1758  
1759          object_property_add_link(obj, "secure-memory",
1760                                   TYPE_MEMORY_REGION,
1761                                   (Object **)&cpu->secure_memory,
1762                                   qdev_prop_allow_set_link_before_realize,
1763                                   OBJ_PROP_LINK_STRONG);
1764      }
1765  
1766      if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1767          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1768      }
1769  #endif
1770  
1771      if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1772          cpu->has_pmu = true;
1773          object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1774      }
1775  
1776      /*
1777       * Allow user to turn off VFP and Neon support, but only for TCG --
1778       * KVM does not currently allow us to lie to the guest about its
1779       * ID/feature registers, so the guest always sees what the host has.
1780       */
1781      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1782          if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1783              cpu->has_vfp = true;
1784              cpu->has_vfp_d32 = true;
1785              if (tcg_enabled() || qtest_enabled()) {
1786                  qdev_property_add_static(DEVICE(obj),
1787                                           &arm_cpu_has_vfp_property);
1788              }
1789          }
1790      } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1791          cpu->has_vfp = true;
1792          if (tcg_enabled() || qtest_enabled()) {
1793              qdev_property_add_static(DEVICE(obj),
1794                                       &arm_cpu_has_vfp_property);
1795          }
1796          if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1797              cpu->has_vfp_d32 = true;
1798              /*
1799               * The permitted values of the SIMDReg bits [3:0] on
1800               * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1801               * make sure that has_vfp_d32 can not be set to false.
1802               */
1803              if ((tcg_enabled() || qtest_enabled())
1804                  && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1805                       && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1806                  qdev_property_add_static(DEVICE(obj),
1807                                           &arm_cpu_has_vfp_d32_property);
1808              }
1809          }
1810      }
1811  
1812      if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1813          cpu->has_neon = true;
1814          if (!kvm_enabled()) {
1815              qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1816          }
1817      }
1818  
1819      if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1820          arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1821          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1822      }
1823  
1824      if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1825          qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1826          if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1827              qdev_property_add_static(DEVICE(obj),
1828                                       &arm_cpu_pmsav7_dregion_property);
1829          }
1830      }
1831  
1832      if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1833          object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1834                                   qdev_prop_allow_set_link_before_realize,
1835                                   OBJ_PROP_LINK_STRONG);
1836          /*
1837           * M profile: initial value of the Secure VTOR. We can't just use
1838           * a simple DEFINE_PROP_UINT32 for this because we want to permit
1839           * the property to be set after realize.
1840           */
1841          object_property_add_uint32_ptr(obj, "init-svtor",
1842                                         &cpu->init_svtor,
1843                                         OBJ_PROP_FLAG_READWRITE);
1844      }
1845      if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1846          /*
1847           * Initial value of the NS VTOR (for cores without the Security
1848           * extension, this is the only VTOR)
1849           */
1850          object_property_add_uint32_ptr(obj, "init-nsvtor",
1851                                         &cpu->init_nsvtor,
1852                                         OBJ_PROP_FLAG_READWRITE);
1853      }
1854  
1855      /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1856      object_property_add_uint32_ptr(obj, "psci-conduit",
1857                                     &cpu->psci_conduit,
1858                                     OBJ_PROP_FLAG_READWRITE);
1859  
1860      qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1861  
1862      if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1863          qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1864      }
1865  
1866      if (kvm_enabled()) {
1867          kvm_arm_add_vcpu_properties(cpu);
1868      }
1869  
1870  #ifndef CONFIG_USER_ONLY
1871      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1872          cpu_isar_feature(aa64_mte, cpu)) {
1873          object_property_add_link(obj, "tag-memory",
1874                                   TYPE_MEMORY_REGION,
1875                                   (Object **)&cpu->tag_memory,
1876                                   qdev_prop_allow_set_link_before_realize,
1877                                   OBJ_PROP_LINK_STRONG);
1878  
1879          if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1880              object_property_add_link(obj, "secure-tag-memory",
1881                                       TYPE_MEMORY_REGION,
1882                                       (Object **)&cpu->secure_tag_memory,
1883                                       qdev_prop_allow_set_link_before_realize,
1884                                       OBJ_PROP_LINK_STRONG);
1885          }
1886      }
1887  #endif
1888  }
1889  
1890  static void arm_cpu_finalizefn(Object *obj)
1891  {
1892      ARMCPU *cpu = ARM_CPU(obj);
1893      ARMELChangeHook *hook, *next;
1894  
1895      g_hash_table_destroy(cpu->cp_regs);
1896  
1897      QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1898          QLIST_REMOVE(hook, node);
1899          g_free(hook);
1900      }
1901      QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1902          QLIST_REMOVE(hook, node);
1903          g_free(hook);
1904      }
1905  #ifndef CONFIG_USER_ONLY
1906      if (cpu->pmu_timer) {
1907          timer_free(cpu->pmu_timer);
1908      }
1909      if (cpu->wfxt_timer) {
1910          timer_free(cpu->wfxt_timer);
1911      }
1912  #endif
1913  }
1914  
1915  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1916  {
1917      Error *local_err = NULL;
1918  
1919  #ifdef TARGET_AARCH64
1920      if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1921          arm_cpu_sve_finalize(cpu, &local_err);
1922          if (local_err != NULL) {
1923              error_propagate(errp, local_err);
1924              return;
1925          }
1926  
1927          /*
1928           * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1929           * FEAT_SME_FA64 is present). However our implementation currently
1930           * assumes it, so if the user asked for sve=off then turn off SME also.
1931           * (KVM doesn't currently support SME at all.)
1932           */
1933          if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1934              object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1935          }
1936  
1937          arm_cpu_sme_finalize(cpu, &local_err);
1938          if (local_err != NULL) {
1939              error_propagate(errp, local_err);
1940              return;
1941          }
1942  
1943          arm_cpu_pauth_finalize(cpu, &local_err);
1944          if (local_err != NULL) {
1945              error_propagate(errp, local_err);
1946              return;
1947          }
1948  
1949          arm_cpu_lpa2_finalize(cpu, &local_err);
1950          if (local_err != NULL) {
1951              error_propagate(errp, local_err);
1952              return;
1953          }
1954      }
1955  #endif
1956  
1957      if (kvm_enabled()) {
1958          kvm_arm_steal_time_finalize(cpu, &local_err);
1959          if (local_err != NULL) {
1960              error_propagate(errp, local_err);
1961              return;
1962          }
1963      }
1964  }
1965  
1966  static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1967  {
1968      CPUState *cs = CPU(dev);
1969      ARMCPU *cpu = ARM_CPU(dev);
1970      ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1971      CPUARMState *env = &cpu->env;
1972      Error *local_err = NULL;
1973  
1974  #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1975      /* Use pc-relative instructions in system-mode */
1976      tcg_cflags_set(cs, CF_PCREL);
1977  #endif
1978  
1979      /* If we needed to query the host kernel for the CPU features
1980       * then it's possible that might have failed in the initfn, but
1981       * this is the first point where we can report it.
1982       */
1983      if (cpu->host_cpu_probe_failed) {
1984          if (!kvm_enabled() && !hvf_enabled()) {
1985              error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1986          } else {
1987              error_setg(errp, "Failed to retrieve host CPU features");
1988          }
1989          return;
1990      }
1991  
1992      if (!cpu->gt_cntfrq_hz) {
1993          /*
1994           * 0 means "the board didn't set a value, use the default". (We also
1995           * get here for the CONFIG_USER_ONLY case.)
1996           * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1997           * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1998           * which gives a 16ns tick period.
1999           *
2000           * We will use the back-compat value:
2001           *  - for QEMU CPU types added before we standardized on 1GHz
2002           *  - for versioned machine types with a version of 9.0 or earlier
2003           */
2004          if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2005              cpu->backcompat_cntfrq) {
2006              cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2007          } else {
2008              cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2009          }
2010      }
2011  
2012  #ifndef CONFIG_USER_ONLY
2013      /* The NVIC and M-profile CPU are two halves of a single piece of
2014       * hardware; trying to use one without the other is a command line
2015       * error and will result in segfaults if not caught here.
2016       */
2017      if (arm_feature(env, ARM_FEATURE_M)) {
2018          if (!env->nvic) {
2019              error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2020              return;
2021          }
2022      } else {
2023          if (env->nvic) {
2024              error_setg(errp, "This board can only be used with Cortex-M CPUs");
2025              return;
2026          }
2027      }
2028  
2029      if (!tcg_enabled() && !qtest_enabled()) {
2030          /*
2031           * We assume that no accelerator except TCG (and the "not really an
2032           * accelerator" qtest) can handle these features, because Arm hardware
2033           * virtualization can't virtualize them.
2034           *
2035           * Catch all the cases which might cause us to create more than one
2036           * address space for the CPU (otherwise we will assert() later in
2037           * cpu_address_space_init()).
2038           */
2039          if (arm_feature(env, ARM_FEATURE_M)) {
2040              error_setg(errp,
2041                         "Cannot enable %s when using an M-profile guest CPU",
2042                         current_accel_name());
2043              return;
2044          }
2045          if (cpu->has_el3) {
2046              error_setg(errp,
2047                         "Cannot enable %s when guest CPU has EL3 enabled",
2048                         current_accel_name());
2049              return;
2050          }
2051          if (cpu->tag_memory) {
2052              error_setg(errp,
2053                         "Cannot enable %s when guest CPUs has MTE enabled",
2054                         current_accel_name());
2055              return;
2056          }
2057      }
2058  
2059      {
2060          uint64_t scale = gt_cntfrq_period_ns(cpu);
2061  
2062          cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2063                                                 arm_gt_ptimer_cb, cpu);
2064          cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2065                                                 arm_gt_vtimer_cb, cpu);
2066          cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2067                                                arm_gt_htimer_cb, cpu);
2068          cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2069                                                arm_gt_stimer_cb, cpu);
2070          cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2071                                                    arm_gt_hvtimer_cb, cpu);
2072      }
2073  #endif
2074  
2075      cpu_exec_realizefn(cs, &local_err);
2076      if (local_err != NULL) {
2077          error_propagate(errp, local_err);
2078          return;
2079      }
2080  
2081      arm_cpu_finalize_features(cpu, &local_err);
2082      if (local_err != NULL) {
2083          error_propagate(errp, local_err);
2084          return;
2085      }
2086  
2087  #ifdef CONFIG_USER_ONLY
2088      /*
2089       * User mode relies on IC IVAU instructions to catch modification of
2090       * dual-mapped code.
2091       *
2092       * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2093       * IC IVAU even if the emulated processor does not normally require it.
2094       */
2095      cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2096  #endif
2097  
2098      if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2099          cpu->has_vfp != cpu->has_neon) {
2100          /*
2101           * This is an architectural requirement for AArch64; AArch32 is
2102           * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2103           */
2104          error_setg(errp,
2105                     "AArch64 CPUs must have both VFP and Neon or neither");
2106          return;
2107      }
2108  
2109      if (cpu->has_vfp_d32 != cpu->has_neon) {
2110          error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2111          return;
2112      }
2113  
2114     if (!cpu->has_vfp_d32) {
2115          uint32_t u;
2116  
2117          u = cpu->isar.mvfr0;
2118          u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2119          cpu->isar.mvfr0 = u;
2120      }
2121  
2122      if (!cpu->has_vfp) {
2123          uint64_t t;
2124          uint32_t u;
2125  
2126          t = cpu->isar.id_aa64isar1;
2127          t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2128          cpu->isar.id_aa64isar1 = t;
2129  
2130          t = cpu->isar.id_aa64pfr0;
2131          t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2132          cpu->isar.id_aa64pfr0 = t;
2133  
2134          u = cpu->isar.id_isar6;
2135          u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2136          u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2137          cpu->isar.id_isar6 = u;
2138  
2139          u = cpu->isar.mvfr0;
2140          u = FIELD_DP32(u, MVFR0, FPSP, 0);
2141          u = FIELD_DP32(u, MVFR0, FPDP, 0);
2142          u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2143          u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2144          u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2145          if (!arm_feature(env, ARM_FEATURE_M)) {
2146              u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2147              u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2148          }
2149          cpu->isar.mvfr0 = u;
2150  
2151          u = cpu->isar.mvfr1;
2152          u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2153          u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2154          u = FIELD_DP32(u, MVFR1, FPHP, 0);
2155          if (arm_feature(env, ARM_FEATURE_M)) {
2156              u = FIELD_DP32(u, MVFR1, FP16, 0);
2157          }
2158          cpu->isar.mvfr1 = u;
2159  
2160          u = cpu->isar.mvfr2;
2161          u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2162          cpu->isar.mvfr2 = u;
2163      }
2164  
2165      if (!cpu->has_neon) {
2166          uint64_t t;
2167          uint32_t u;
2168  
2169          unset_feature(env, ARM_FEATURE_NEON);
2170  
2171          t = cpu->isar.id_aa64isar0;
2172          t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2173          t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2174          t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2175          t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2176          t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2177          t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2178          t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2179          cpu->isar.id_aa64isar0 = t;
2180  
2181          t = cpu->isar.id_aa64isar1;
2182          t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2183          t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2184          t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2185          cpu->isar.id_aa64isar1 = t;
2186  
2187          t = cpu->isar.id_aa64pfr0;
2188          t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2189          cpu->isar.id_aa64pfr0 = t;
2190  
2191          u = cpu->isar.id_isar5;
2192          u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2193          u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2194          u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2195          u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2196          u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2197          cpu->isar.id_isar5 = u;
2198  
2199          u = cpu->isar.id_isar6;
2200          u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2201          u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2202          u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2203          u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2204          cpu->isar.id_isar6 = u;
2205  
2206          if (!arm_feature(env, ARM_FEATURE_M)) {
2207              u = cpu->isar.mvfr1;
2208              u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2209              u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2210              u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2211              u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2212              cpu->isar.mvfr1 = u;
2213  
2214              u = cpu->isar.mvfr2;
2215              u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2216              cpu->isar.mvfr2 = u;
2217          }
2218      }
2219  
2220      if (!cpu->has_neon && !cpu->has_vfp) {
2221          uint64_t t;
2222          uint32_t u;
2223  
2224          t = cpu->isar.id_aa64isar0;
2225          t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2226          cpu->isar.id_aa64isar0 = t;
2227  
2228          t = cpu->isar.id_aa64isar1;
2229          t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2230          cpu->isar.id_aa64isar1 = t;
2231  
2232          u = cpu->isar.mvfr0;
2233          u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2234          cpu->isar.mvfr0 = u;
2235  
2236          /* Despite the name, this field covers both VFP and Neon */
2237          u = cpu->isar.mvfr1;
2238          u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2239          cpu->isar.mvfr1 = u;
2240      }
2241  
2242      if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2243          uint32_t u;
2244  
2245          unset_feature(env, ARM_FEATURE_THUMB_DSP);
2246  
2247          u = cpu->isar.id_isar1;
2248          u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2249          cpu->isar.id_isar1 = u;
2250  
2251          u = cpu->isar.id_isar2;
2252          u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2253          u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2254          cpu->isar.id_isar2 = u;
2255  
2256          u = cpu->isar.id_isar3;
2257          u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2258          u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2259          cpu->isar.id_isar3 = u;
2260      }
2261  
2262  
2263      /*
2264       * We rely on no XScale CPU having VFP so we can use the same bits in the
2265       * TB flags field for VECSTRIDE and XSCALE_CPAR.
2266       */
2267      assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2268             !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2269             !arm_feature(env, ARM_FEATURE_XSCALE));
2270  
2271  #ifndef CONFIG_USER_ONLY
2272      {
2273          int pagebits;
2274          if (arm_feature(env, ARM_FEATURE_V7) &&
2275              !arm_feature(env, ARM_FEATURE_M) &&
2276              !arm_feature(env, ARM_FEATURE_PMSA)) {
2277              /*
2278               * v7VMSA drops support for the old ARMv5 tiny pages,
2279               * so we can use 4K pages.
2280               */
2281              pagebits = 12;
2282          } else {
2283              /*
2284               * For CPUs which might have tiny 1K pages, or which have an
2285               * MPU and might have small region sizes, stick with 1K pages.
2286               */
2287              pagebits = 10;
2288          }
2289          if (!set_preferred_target_page_bits(pagebits)) {
2290              /*
2291               * This can only ever happen for hotplugging a CPU, or if
2292               * the board code incorrectly creates a CPU which it has
2293               * promised via minimum_page_size that it will not.
2294               */
2295              error_setg(errp, "This CPU requires a smaller page size "
2296                         "than the system is using");
2297              return;
2298          }
2299      }
2300  #endif
2301  
2302      /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2303       * We don't support setting cluster ID ([16..23]) (known as Aff2
2304       * in later ARM ARM versions), or any of the higher affinity level fields,
2305       * so these bits always RAZ.
2306       */
2307      if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2308          cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2309                                                   ARM_DEFAULT_CPUS_PER_CLUSTER);
2310      }
2311  
2312      if (cpu->reset_hivecs) {
2313              cpu->reset_sctlr |= (1 << 13);
2314      }
2315  
2316      if (cpu->cfgend) {
2317          if (arm_feature(env, ARM_FEATURE_V7)) {
2318              cpu->reset_sctlr |= SCTLR_EE;
2319          } else {
2320              cpu->reset_sctlr |= SCTLR_B;
2321          }
2322      }
2323  
2324      if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2325          /* If the has_el3 CPU property is disabled then we need to disable the
2326           * feature.
2327           */
2328          unset_feature(env, ARM_FEATURE_EL3);
2329  
2330          /*
2331           * Disable the security extension feature bits in the processor
2332           * feature registers as well.
2333           */
2334          cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2335          cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2336          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2337                                             ID_AA64PFR0, EL3, 0);
2338  
2339          /* Disable the realm management extension, which requires EL3. */
2340          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2341                                             ID_AA64PFR0, RME, 0);
2342      }
2343  
2344      if (!cpu->has_el2) {
2345          unset_feature(env, ARM_FEATURE_EL2);
2346      }
2347  
2348      if (!cpu->has_pmu) {
2349          unset_feature(env, ARM_FEATURE_PMU);
2350      }
2351      if (arm_feature(env, ARM_FEATURE_PMU)) {
2352          pmu_init(cpu);
2353  
2354          if (!kvm_enabled()) {
2355              arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2356              arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2357          }
2358  
2359  #ifndef CONFIG_USER_ONLY
2360          cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2361                  cpu);
2362  #endif
2363      } else {
2364          cpu->isar.id_aa64dfr0 =
2365              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2366          cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2367          cpu->pmceid0 = 0;
2368          cpu->pmceid1 = 0;
2369      }
2370  
2371      if (!arm_feature(env, ARM_FEATURE_EL2)) {
2372          /*
2373           * Disable the hypervisor feature bits in the processor feature
2374           * registers if we don't have EL2.
2375           */
2376          cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2377                                             ID_AA64PFR0, EL2, 0);
2378          cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2379                                         ID_PFR1, VIRTUALIZATION, 0);
2380      }
2381  
2382      if (cpu_isar_feature(aa64_mte, cpu)) {
2383          /*
2384           * The architectural range of GM blocksize is 2-6, however qemu
2385           * doesn't support blocksize of 2 (see HELPER(ldgm)).
2386           */
2387          if (tcg_enabled()) {
2388              assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2389          }
2390  
2391  #ifndef CONFIG_USER_ONLY
2392          /*
2393           * If we do not have tag-memory provided by the machine,
2394           * reduce MTE support to instructions enabled at EL0.
2395           * This matches Cortex-A710 BROADCASTMTE input being LOW.
2396           */
2397          if (cpu->tag_memory == NULL) {
2398              cpu->isar.id_aa64pfr1 =
2399                  FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2400          }
2401  #endif
2402      }
2403  
2404  #ifndef CONFIG_USER_ONLY
2405      if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2406          cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2407                                         arm_wfxt_timer_cb, cpu);
2408      }
2409  #endif
2410  
2411      if (tcg_enabled()) {
2412          /*
2413           * Don't report some architectural features in the ID registers
2414           * where TCG does not yet implement it (not even a minimal
2415           * stub version). This avoids guests falling over when they
2416           * try to access the non-existent system registers for them.
2417           */
2418          /* FEAT_SPE (Statistical Profiling Extension) */
2419          cpu->isar.id_aa64dfr0 =
2420              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2421          /* FEAT_TRBE (Trace Buffer Extension) */
2422          cpu->isar.id_aa64dfr0 =
2423              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2424          /* FEAT_TRF (Self-hosted Trace Extension) */
2425          cpu->isar.id_aa64dfr0 =
2426              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2427          cpu->isar.id_dfr0 =
2428              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2429          /* Trace Macrocell system register access */
2430          cpu->isar.id_aa64dfr0 =
2431              FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2432          cpu->isar.id_dfr0 =
2433              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2434          /* Memory mapped trace */
2435          cpu->isar.id_dfr0 =
2436              FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2437          /* FEAT_AMU (Activity Monitors Extension) */
2438          cpu->isar.id_aa64pfr0 =
2439              FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2440          cpu->isar.id_pfr0 =
2441              FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2442          /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2443          cpu->isar.id_aa64pfr0 =
2444              FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2445      }
2446  
2447      /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2448       * to false or by setting pmsav7-dregion to 0.
2449       */
2450      if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2451          cpu->has_mpu = false;
2452          cpu->pmsav7_dregion = 0;
2453          cpu->pmsav8r_hdregion = 0;
2454      }
2455  
2456      if (arm_feature(env, ARM_FEATURE_PMSA) &&
2457          arm_feature(env, ARM_FEATURE_V7)) {
2458          uint32_t nr = cpu->pmsav7_dregion;
2459  
2460          if (nr > 0xff) {
2461              error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2462              return;
2463          }
2464  
2465          if (nr) {
2466              if (arm_feature(env, ARM_FEATURE_V8)) {
2467                  /* PMSAv8 */
2468                  env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2469                  env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2470                  if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2471                      env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2472                      env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2473                  }
2474              } else {
2475                  env->pmsav7.drbar = g_new0(uint32_t, nr);
2476                  env->pmsav7.drsr = g_new0(uint32_t, nr);
2477                  env->pmsav7.dracr = g_new0(uint32_t, nr);
2478              }
2479          }
2480  
2481          if (cpu->pmsav8r_hdregion > 0xff) {
2482              error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2483                                cpu->pmsav8r_hdregion);
2484              return;
2485          }
2486  
2487          if (cpu->pmsav8r_hdregion) {
2488              env->pmsav8.hprbar = g_new0(uint32_t,
2489                                          cpu->pmsav8r_hdregion);
2490              env->pmsav8.hprlar = g_new0(uint32_t,
2491                                          cpu->pmsav8r_hdregion);
2492          }
2493      }
2494  
2495      if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2496          uint32_t nr = cpu->sau_sregion;
2497  
2498          if (nr > 0xff) {
2499              error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2500              return;
2501          }
2502  
2503          if (nr) {
2504              env->sau.rbar = g_new0(uint32_t, nr);
2505              env->sau.rlar = g_new0(uint32_t, nr);
2506          }
2507      }
2508  
2509      if (arm_feature(env, ARM_FEATURE_EL3)) {
2510          set_feature(env, ARM_FEATURE_VBAR);
2511      }
2512  
2513  #ifndef CONFIG_USER_ONLY
2514      if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2515          arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2516      }
2517  #endif
2518  
2519      register_cp_regs_for_features(cpu);
2520      arm_cpu_register_gdb_regs_for_features(cpu);
2521  
2522      init_cpreg_list(cpu);
2523  
2524  #ifndef CONFIG_USER_ONLY
2525      MachineState *ms = MACHINE(qdev_get_machine());
2526      unsigned int smp_cpus = ms->smp.cpus;
2527      bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2528  
2529      /*
2530       * We must set cs->num_ases to the final value before
2531       * the first call to cpu_address_space_init.
2532       */
2533      if (cpu->tag_memory != NULL) {
2534          cs->num_ases = 3 + has_secure;
2535      } else {
2536          cs->num_ases = 1 + has_secure;
2537      }
2538  
2539      if (has_secure) {
2540          if (!cpu->secure_memory) {
2541              cpu->secure_memory = cs->memory;
2542          }
2543          cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2544                                 cpu->secure_memory);
2545      }
2546  
2547      if (cpu->tag_memory != NULL) {
2548          cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2549                                 cpu->tag_memory);
2550          if (has_secure) {
2551              cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2552                                     cpu->secure_tag_memory);
2553          }
2554      }
2555  
2556      cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2557  
2558      /* No core_count specified, default to smp_cpus. */
2559      if (cpu->core_count == -1) {
2560          cpu->core_count = smp_cpus;
2561      }
2562  #endif
2563  
2564      if (tcg_enabled()) {
2565          int dcz_blocklen = 4 << cpu->dcz_blocksize;
2566  
2567          /*
2568           * We only support DCZ blocklen that fits on one page.
2569           *
2570           * Architectually this is always true.  However TARGET_PAGE_SIZE
2571           * is variable and, for compatibility with -machine virt-2.7,
2572           * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2573           * But even then, while the largest architectural DCZ blocklen
2574           * is 2KiB, no cpu actually uses such a large blocklen.
2575           */
2576          assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2577  
2578          /*
2579           * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2580           * both nibbles of each byte storing tag data may be written at once.
2581           * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2582           */
2583          if (cpu_isar_feature(aa64_mte, cpu)) {
2584              assert(dcz_blocklen >= 2 * TAG_GRANULE);
2585          }
2586      }
2587  
2588      qemu_init_vcpu(cs);
2589      cpu_reset(cs);
2590  
2591      acc->parent_realize(dev, errp);
2592  }
2593  
2594  static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2595  {
2596      ObjectClass *oc;
2597      char *typename;
2598      char **cpuname;
2599      const char *cpunamestr;
2600  
2601      cpuname = g_strsplit(cpu_model, ",", 1);
2602      cpunamestr = cpuname[0];
2603  #ifdef CONFIG_USER_ONLY
2604      /* For backwards compatibility usermode emulation allows "-cpu any",
2605       * which has the same semantics as "-cpu max".
2606       */
2607      if (!strcmp(cpunamestr, "any")) {
2608          cpunamestr = "max";
2609      }
2610  #endif
2611      typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2612      oc = object_class_by_name(typename);
2613      g_strfreev(cpuname);
2614      g_free(typename);
2615  
2616      return oc;
2617  }
2618  
2619  static Property arm_cpu_properties[] = {
2620      DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2621      DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2622                          mp_affinity, ARM64_AFFINITY_INVALID),
2623      DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2624      DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2625      /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2626      DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2627      DEFINE_PROP_END_OF_LIST()
2628  };
2629  
2630  static const gchar *arm_gdb_arch_name(CPUState *cs)
2631  {
2632      ARMCPU *cpu = ARM_CPU(cs);
2633      CPUARMState *env = &cpu->env;
2634  
2635      if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2636          return "iwmmxt";
2637      }
2638      return "arm";
2639  }
2640  
2641  #ifndef CONFIG_USER_ONLY
2642  #include "hw/core/sysemu-cpu-ops.h"
2643  
2644  static const struct SysemuCPUOps arm_sysemu_ops = {
2645      .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2646      .asidx_from_attrs = arm_asidx_from_attrs,
2647      .write_elf32_note = arm_cpu_write_elf32_note,
2648      .write_elf64_note = arm_cpu_write_elf64_note,
2649      .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2650      .legacy_vmsd = &vmstate_arm_cpu,
2651  };
2652  #endif
2653  
2654  #ifdef CONFIG_TCG
2655  static const TCGCPUOps arm_tcg_ops = {
2656      .initialize = arm_translate_init,
2657      .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2658      .debug_excp_handler = arm_debug_excp_handler,
2659      .restore_state_to_opc = arm_restore_state_to_opc,
2660  
2661  #ifdef CONFIG_USER_ONLY
2662      .record_sigsegv = arm_cpu_record_sigsegv,
2663      .record_sigbus = arm_cpu_record_sigbus,
2664  #else
2665      .tlb_fill = arm_cpu_tlb_fill,
2666      .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2667      .cpu_exec_halt = arm_cpu_exec_halt,
2668      .do_interrupt = arm_cpu_do_interrupt,
2669      .do_transaction_failed = arm_cpu_do_transaction_failed,
2670      .do_unaligned_access = arm_cpu_do_unaligned_access,
2671      .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2672      .debug_check_watchpoint = arm_debug_check_watchpoint,
2673      .debug_check_breakpoint = arm_debug_check_breakpoint,
2674  #endif /* !CONFIG_USER_ONLY */
2675  };
2676  #endif /* CONFIG_TCG */
2677  
2678  static void arm_cpu_class_init(ObjectClass *oc, void *data)
2679  {
2680      ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2681      CPUClass *cc = CPU_CLASS(acc);
2682      DeviceClass *dc = DEVICE_CLASS(oc);
2683      ResettableClass *rc = RESETTABLE_CLASS(oc);
2684  
2685      device_class_set_parent_realize(dc, arm_cpu_realizefn,
2686                                      &acc->parent_realize);
2687  
2688      device_class_set_props(dc, arm_cpu_properties);
2689  
2690      resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2691                                         &acc->parent_phases);
2692  
2693      cc->class_by_name = arm_cpu_class_by_name;
2694      cc->has_work = arm_cpu_has_work;
2695      cc->mmu_index = arm_cpu_mmu_index;
2696      cc->dump_state = arm_cpu_dump_state;
2697      cc->set_pc = arm_cpu_set_pc;
2698      cc->get_pc = arm_cpu_get_pc;
2699      cc->gdb_read_register = arm_cpu_gdb_read_register;
2700      cc->gdb_write_register = arm_cpu_gdb_write_register;
2701  #ifndef CONFIG_USER_ONLY
2702      cc->sysemu_ops = &arm_sysemu_ops;
2703  #endif
2704      cc->gdb_arch_name = arm_gdb_arch_name;
2705      cc->gdb_stop_before_watchpoint = true;
2706      cc->disas_set_info = arm_disas_set_info;
2707  
2708  #ifdef CONFIG_TCG
2709      cc->tcg_ops = &arm_tcg_ops;
2710  #endif /* CONFIG_TCG */
2711  }
2712  
2713  static void arm_cpu_instance_init(Object *obj)
2714  {
2715      ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2716  
2717      acc->info->initfn(obj);
2718      arm_cpu_post_init(obj);
2719  }
2720  
2721  static void cpu_register_class_init(ObjectClass *oc, void *data)
2722  {
2723      ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2724      CPUClass *cc = CPU_CLASS(acc);
2725  
2726      acc->info = data;
2727      cc->gdb_core_xml_file = "arm-core.xml";
2728  }
2729  
2730  void arm_cpu_register(const ARMCPUInfo *info)
2731  {
2732      TypeInfo type_info = {
2733          .parent = TYPE_ARM_CPU,
2734          .instance_init = arm_cpu_instance_init,
2735          .class_init = info->class_init ?: cpu_register_class_init,
2736          .class_data = (void *)info,
2737      };
2738  
2739      type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2740      type_register(&type_info);
2741      g_free((void *)type_info.name);
2742  }
2743  
2744  static const TypeInfo arm_cpu_type_info = {
2745      .name = TYPE_ARM_CPU,
2746      .parent = TYPE_CPU,
2747      .instance_size = sizeof(ARMCPU),
2748      .instance_align = __alignof__(ARMCPU),
2749      .instance_init = arm_cpu_initfn,
2750      .instance_finalize = arm_cpu_finalizefn,
2751      .abstract = true,
2752      .class_size = sizeof(ARMCPUClass),
2753      .class_init = arm_cpu_class_init,
2754  };
2755  
2756  static void arm_cpu_register_types(void)
2757  {
2758      type_register_static(&arm_cpu_type_info);
2759  }
2760  
2761  type_init(arm_cpu_register_types)
2762