xref: /openbmc/qemu/target/arm/cpu.c (revision 9db2cf3f29a843829b9dff870948ddfb26eb1288)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 #include "disas/capstone.h"
37 
38 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 {
40     ARMCPU *cpu = ARM_CPU(cs);
41 
42     cpu->env.regs[15] = value;
43 }
44 
45 static bool arm_cpu_has_work(CPUState *cs)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48 
49     return (cpu->power_state != PSCI_OFF)
50         && cs->interrupt_request &
51         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
52          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
53          | CPU_INTERRUPT_EXITTB);
54 }
55 
56 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
57                                  void *opaque)
58 {
59     /* We currently only support registering a single hook function */
60     assert(!cpu->el_change_hook);
61     cpu->el_change_hook = hook;
62     cpu->el_change_hook_opaque = opaque;
63 }
64 
65 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 {
67     /* Reset a single ARMCPRegInfo register */
68     ARMCPRegInfo *ri = value;
69     ARMCPU *cpu = opaque;
70 
71     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
72         return;
73     }
74 
75     if (ri->resetfn) {
76         ri->resetfn(&cpu->env, ri);
77         return;
78     }
79 
80     /* A zero offset is never possible as it would be regs[0]
81      * so we use it to indicate that reset is being handled elsewhere.
82      * This is basically only used for fields in non-core coprocessors
83      * (like the pxa2xx ones).
84      */
85     if (!ri->fieldoffset) {
86         return;
87     }
88 
89     if (cpreg_field_is_64bit(ri)) {
90         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
91     } else {
92         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
93     }
94 }
95 
96 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
97 {
98     /* Purely an assertion check: we've already done reset once,
99      * so now check that running the reset for the cpreg doesn't
100      * change its value. This traps bugs where two different cpregs
101      * both try to reset the same state field but to different values.
102      */
103     ARMCPRegInfo *ri = value;
104     ARMCPU *cpu = opaque;
105     uint64_t oldvalue, newvalue;
106 
107     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
108         return;
109     }
110 
111     oldvalue = read_raw_cp_reg(&cpu->env, ri);
112     cp_reg_reset(key, value, opaque);
113     newvalue = read_raw_cp_reg(&cpu->env, ri);
114     assert(oldvalue == newvalue);
115 }
116 
117 /* CPUClass::reset() */
118 static void arm_cpu_reset(CPUState *s)
119 {
120     ARMCPU *cpu = ARM_CPU(s);
121     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
122     CPUARMState *env = &cpu->env;
123 
124     acc->parent_reset(s);
125 
126     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
129     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 
131     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
132     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
133     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
134     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 
136     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
137     s->halted = cpu->start_powered_off;
138 
139     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
140         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
141     }
142 
143     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
144         /* 64 bit CPUs always start in 64 bit mode */
145         env->aarch64 = 1;
146 #if defined(CONFIG_USER_ONLY)
147         env->pstate = PSTATE_MODE_EL0t;
148         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
149         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
150         /* and to the FP/Neon instructions */
151         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
152 #else
153         /* Reset into the highest available EL */
154         if (arm_feature(env, ARM_FEATURE_EL3)) {
155             env->pstate = PSTATE_MODE_EL3h;
156         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
157             env->pstate = PSTATE_MODE_EL2h;
158         } else {
159             env->pstate = PSTATE_MODE_EL1h;
160         }
161         env->pc = cpu->rvbar;
162 #endif
163     } else {
164 #if defined(CONFIG_USER_ONLY)
165         /* Userspace expects access to cp10 and cp11 for FP/Neon */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
167 #endif
168     }
169 
170 #if defined(CONFIG_USER_ONLY)
171     env->uncached_cpsr = ARM_CPU_MODE_USR;
172     /* For user mode we must enable access to coprocessors */
173     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
174     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
175         env->cp15.c15_cpar = 3;
176     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
177         env->cp15.c15_cpar = 1;
178     }
179 #else
180     /* SVC mode with interrupts disabled.  */
181     env->uncached_cpsr = ARM_CPU_MODE_SVC;
182     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 
184     if (arm_feature(env, ARM_FEATURE_M)) {
185         uint32_t initial_msp; /* Loaded from 0x0 */
186         uint32_t initial_pc; /* Loaded from 0x4 */
187         uint8_t *rom;
188 
189         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
190             env->v7m.secure = true;
191         } else {
192             /* This bit resets to 0 if security is supported, but 1 if
193              * it is not. The bit is not present in v7M, but we set it
194              * here so we can avoid having to make checks on it conditional
195              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
196              */
197             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
198         }
199 
200         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
201          * that it resets to 1, so QEMU always does that rather than making
202          * it dependent on CPU model. In v8M it is RES1.
203          */
204         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
205         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
206         if (arm_feature(env, ARM_FEATURE_V8)) {
207             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
208             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
209             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
210         }
211 
212         /* Unlike A/R profile, M profile defines the reset LR value */
213         env->regs[14] = 0xffffffff;
214 
215         /* Load the initial SP and PC from the vector table at address 0 */
216         rom = rom_ptr(0);
217         if (rom) {
218             /* Address zero is covered by ROM which hasn't yet been
219              * copied into physical memory.
220              */
221             initial_msp = ldl_p(rom);
222             initial_pc = ldl_p(rom + 4);
223         } else {
224             /* Address zero not covered by a ROM blob, or the ROM blob
225              * is in non-modifiable memory and this is a second reset after
226              * it got copied into memory. In the latter case, rom_ptr
227              * will return a NULL pointer and we should use ldl_phys instead.
228              */
229             initial_msp = ldl_phys(s->as, 0);
230             initial_pc = ldl_phys(s->as, 4);
231         }
232 
233         env->regs[13] = initial_msp & 0xFFFFFFFC;
234         env->regs[15] = initial_pc & ~1;
235         env->thumb = initial_pc & 1;
236     }
237 
238     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
239      * executing as AArch32 then check if highvecs are enabled and
240      * adjust the PC accordingly.
241      */
242     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
243         env->regs[15] = 0xFFFF0000;
244     }
245 
246     /* M profile requires that reset clears the exclusive monitor;
247      * A profile does not, but clearing it makes more sense than having it
248      * set with an exclusive access on address zero.
249      */
250     arm_clear_exclusive(env);
251 
252     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
253 #endif
254 
255     if (arm_feature(env, ARM_FEATURE_PMSA)) {
256         if (cpu->pmsav7_dregion > 0) {
257             if (arm_feature(env, ARM_FEATURE_V8)) {
258                 memset(env->pmsav8.rbar[M_REG_NS], 0,
259                        sizeof(*env->pmsav8.rbar[M_REG_NS])
260                        * cpu->pmsav7_dregion);
261                 memset(env->pmsav8.rlar[M_REG_NS], 0,
262                        sizeof(*env->pmsav8.rlar[M_REG_NS])
263                        * cpu->pmsav7_dregion);
264                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
265                     memset(env->pmsav8.rbar[M_REG_S], 0,
266                            sizeof(*env->pmsav8.rbar[M_REG_S])
267                            * cpu->pmsav7_dregion);
268                     memset(env->pmsav8.rlar[M_REG_S], 0,
269                            sizeof(*env->pmsav8.rlar[M_REG_S])
270                            * cpu->pmsav7_dregion);
271                 }
272             } else if (arm_feature(env, ARM_FEATURE_V7)) {
273                 memset(env->pmsav7.drbar, 0,
274                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
275                 memset(env->pmsav7.drsr, 0,
276                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
277                 memset(env->pmsav7.dracr, 0,
278                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
279             }
280         }
281         env->pmsav7.rnr[M_REG_NS] = 0;
282         env->pmsav7.rnr[M_REG_S] = 0;
283         env->pmsav8.mair0[M_REG_NS] = 0;
284         env->pmsav8.mair0[M_REG_S] = 0;
285         env->pmsav8.mair1[M_REG_NS] = 0;
286         env->pmsav8.mair1[M_REG_S] = 0;
287     }
288 
289     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
290         if (cpu->sau_sregion > 0) {
291             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
292             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
293         }
294         env->sau.rnr = 0;
295         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
296          * the Cortex-M33 does.
297          */
298         env->sau.ctrl = 0;
299     }
300 
301     set_flush_to_zero(1, &env->vfp.standard_fp_status);
302     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
303     set_default_nan_mode(1, &env->vfp.standard_fp_status);
304     set_float_detect_tininess(float_tininess_before_rounding,
305                               &env->vfp.fp_status);
306     set_float_detect_tininess(float_tininess_before_rounding,
307                               &env->vfp.standard_fp_status);
308 #ifndef CONFIG_USER_ONLY
309     if (kvm_enabled()) {
310         kvm_arm_reset_vcpu(cpu);
311     }
312 #endif
313 
314     hw_breakpoint_update_all(cpu);
315     hw_watchpoint_update_all(cpu);
316 }
317 
318 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
319 {
320     CPUClass *cc = CPU_GET_CLASS(cs);
321     CPUARMState *env = cs->env_ptr;
322     uint32_t cur_el = arm_current_el(env);
323     bool secure = arm_is_secure(env);
324     uint32_t target_el;
325     uint32_t excp_idx;
326     bool ret = false;
327 
328     if (interrupt_request & CPU_INTERRUPT_FIQ) {
329         excp_idx = EXCP_FIQ;
330         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
331         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
332             cs->exception_index = excp_idx;
333             env->exception.target_el = target_el;
334             cc->do_interrupt(cs);
335             ret = true;
336         }
337     }
338     if (interrupt_request & CPU_INTERRUPT_HARD) {
339         excp_idx = EXCP_IRQ;
340         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
341         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
342             cs->exception_index = excp_idx;
343             env->exception.target_el = target_el;
344             cc->do_interrupt(cs);
345             ret = true;
346         }
347     }
348     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
349         excp_idx = EXCP_VIRQ;
350         target_el = 1;
351         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
352             cs->exception_index = excp_idx;
353             env->exception.target_el = target_el;
354             cc->do_interrupt(cs);
355             ret = true;
356         }
357     }
358     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
359         excp_idx = EXCP_VFIQ;
360         target_el = 1;
361         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
362             cs->exception_index = excp_idx;
363             env->exception.target_el = target_el;
364             cc->do_interrupt(cs);
365             ret = true;
366         }
367     }
368 
369     return ret;
370 }
371 
372 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
373 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
374 {
375     CPUClass *cc = CPU_GET_CLASS(cs);
376     ARMCPU *cpu = ARM_CPU(cs);
377     CPUARMState *env = &cpu->env;
378     bool ret = false;
379 
380     /* ARMv7-M interrupt masking works differently than -A or -R.
381      * There is no FIQ/IRQ distinction. Instead of I and F bits
382      * masking FIQ and IRQ interrupts, an exception is taken only
383      * if it is higher priority than the current execution priority
384      * (which depends on state like BASEPRI, FAULTMASK and the
385      * currently active exception).
386      */
387     if (interrupt_request & CPU_INTERRUPT_HARD
388         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
389         cs->exception_index = EXCP_IRQ;
390         cc->do_interrupt(cs);
391         ret = true;
392     }
393     return ret;
394 }
395 #endif
396 
397 #ifndef CONFIG_USER_ONLY
398 static void arm_cpu_set_irq(void *opaque, int irq, int level)
399 {
400     ARMCPU *cpu = opaque;
401     CPUARMState *env = &cpu->env;
402     CPUState *cs = CPU(cpu);
403     static const int mask[] = {
404         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
405         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
406         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
407         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
408     };
409 
410     switch (irq) {
411     case ARM_CPU_VIRQ:
412     case ARM_CPU_VFIQ:
413         assert(arm_feature(env, ARM_FEATURE_EL2));
414         /* fall through */
415     case ARM_CPU_IRQ:
416     case ARM_CPU_FIQ:
417         if (level) {
418             cpu_interrupt(cs, mask[irq]);
419         } else {
420             cpu_reset_interrupt(cs, mask[irq]);
421         }
422         break;
423     default:
424         g_assert_not_reached();
425     }
426 }
427 
428 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
429 {
430 #ifdef CONFIG_KVM
431     ARMCPU *cpu = opaque;
432     CPUState *cs = CPU(cpu);
433     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
434 
435     switch (irq) {
436     case ARM_CPU_IRQ:
437         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
438         break;
439     case ARM_CPU_FIQ:
440         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
441         break;
442     default:
443         g_assert_not_reached();
444     }
445     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
446     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
447 #endif
448 }
449 
450 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
451 {
452     ARMCPU *cpu = ARM_CPU(cs);
453     CPUARMState *env = &cpu->env;
454 
455     cpu_synchronize_state(cs);
456     return arm_cpu_data_is_big_endian(env);
457 }
458 
459 #endif
460 
461 static inline void set_feature(CPUARMState *env, int feature)
462 {
463     env->features |= 1ULL << feature;
464 }
465 
466 static inline void unset_feature(CPUARMState *env, int feature)
467 {
468     env->features &= ~(1ULL << feature);
469 }
470 
471 static int
472 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
473 {
474   return print_insn_arm(pc | 1, info);
475 }
476 
477 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
478 {
479     ARMCPU *ac = ARM_CPU(cpu);
480     CPUARMState *env = &ac->env;
481     bool sctlr_b;
482 
483     if (is_a64(env)) {
484         /* We might not be compiled with the A64 disassembler
485          * because it needs a C++ compiler. Leave print_insn
486          * unset in this case to use the caller default behaviour.
487          */
488 #if defined(CONFIG_ARM_A64_DIS)
489         info->print_insn = print_insn_arm_a64;
490 #endif
491         info->cap_arch = CS_ARCH_ARM64;
492     } else {
493         int cap_mode;
494         if (env->thumb) {
495             info->print_insn = print_insn_thumb1;
496             cap_mode = CS_MODE_THUMB;
497         } else {
498             info->print_insn = print_insn_arm;
499             cap_mode = CS_MODE_ARM;
500         }
501         if (arm_feature(env, ARM_FEATURE_V8)) {
502             cap_mode |= CS_MODE_V8;
503         }
504         if (arm_feature(env, ARM_FEATURE_M)) {
505             cap_mode |= CS_MODE_MCLASS;
506         }
507         info->cap_arch = CS_ARCH_ARM;
508         info->cap_mode = cap_mode;
509     }
510 
511     sctlr_b = arm_sctlr_b(env);
512     if (bswap_code(sctlr_b)) {
513 #ifdef TARGET_WORDS_BIGENDIAN
514         info->endian = BFD_ENDIAN_LITTLE;
515 #else
516         info->endian = BFD_ENDIAN_BIG;
517 #endif
518     }
519     info->flags &= ~INSN_ARM_BE32;
520 #ifndef CONFIG_USER_ONLY
521     if (sctlr_b) {
522         info->flags |= INSN_ARM_BE32;
523     }
524 #endif
525 }
526 
527 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
528 {
529     uint32_t Aff1 = idx / clustersz;
530     uint32_t Aff0 = idx % clustersz;
531     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
532 }
533 
534 static void arm_cpu_initfn(Object *obj)
535 {
536     CPUState *cs = CPU(obj);
537     ARMCPU *cpu = ARM_CPU(obj);
538 
539     cs->env_ptr = &cpu->env;
540     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
541                                          g_free, g_free);
542 
543 #ifndef CONFIG_USER_ONLY
544     /* Our inbound IRQ and FIQ lines */
545     if (kvm_enabled()) {
546         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
547          * the same interface as non-KVM CPUs.
548          */
549         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
550     } else {
551         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
552     }
553 
554     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
555                                                 arm_gt_ptimer_cb, cpu);
556     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
557                                                 arm_gt_vtimer_cb, cpu);
558     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
559                                                 arm_gt_htimer_cb, cpu);
560     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
561                                                 arm_gt_stimer_cb, cpu);
562     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
563                        ARRAY_SIZE(cpu->gt_timer_outputs));
564 
565     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
566                              "gicv3-maintenance-interrupt", 1);
567     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
568                              "pmu-interrupt", 1);
569 #endif
570 
571     /* DTB consumers generally don't in fact care what the 'compatible'
572      * string is, so always provide some string and trust that a hypothetical
573      * picky DTB consumer will also provide a helpful error message.
574      */
575     cpu->dtb_compatible = "qemu,unknown";
576     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
577     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
578 
579     if (tcg_enabled()) {
580         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
581     }
582 }
583 
584 static Property arm_cpu_reset_cbar_property =
585             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
586 
587 static Property arm_cpu_reset_hivecs_property =
588             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
589 
590 static Property arm_cpu_rvbar_property =
591             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
592 
593 static Property arm_cpu_has_el2_property =
594             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
595 
596 static Property arm_cpu_has_el3_property =
597             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
598 
599 static Property arm_cpu_cfgend_property =
600             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
601 
602 /* use property name "pmu" to match other archs and virt tools */
603 static Property arm_cpu_has_pmu_property =
604             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
605 
606 static Property arm_cpu_has_mpu_property =
607             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
608 
609 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
610  * because the CPU initfn will have already set cpu->pmsav7_dregion to
611  * the right value for that particular CPU type, and we don't want
612  * to override that with an incorrect constant value.
613  */
614 static Property arm_cpu_pmsav7_dregion_property =
615             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
616                                            pmsav7_dregion,
617                                            qdev_prop_uint32, uint32_t);
618 
619 static void arm_cpu_post_init(Object *obj)
620 {
621     ARMCPU *cpu = ARM_CPU(obj);
622 
623     /* M profile implies PMSA. We have to do this here rather than
624      * in realize with the other feature-implication checks because
625      * we look at the PMSA bit to see if we should add some properties.
626      */
627     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
628         set_feature(&cpu->env, ARM_FEATURE_PMSA);
629     }
630 
631     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
632         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
633         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
634                                  &error_abort);
635     }
636 
637     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
638         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
639                                  &error_abort);
640     }
641 
642     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
643         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
644                                  &error_abort);
645     }
646 
647     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
648         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
649          * prevent "has_el3" from existing on CPUs which cannot support EL3.
650          */
651         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
652                                  &error_abort);
653 
654 #ifndef CONFIG_USER_ONLY
655         object_property_add_link(obj, "secure-memory",
656                                  TYPE_MEMORY_REGION,
657                                  (Object **)&cpu->secure_memory,
658                                  qdev_prop_allow_set_link_before_realize,
659                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
660                                  &error_abort);
661 #endif
662     }
663 
664     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
665         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
666                                  &error_abort);
667     }
668 
669     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
670         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
671                                  &error_abort);
672     }
673 
674     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
675         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
676                                  &error_abort);
677         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
678             qdev_property_add_static(DEVICE(obj),
679                                      &arm_cpu_pmsav7_dregion_property,
680                                      &error_abort);
681         }
682     }
683 
684     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
685                              &error_abort);
686 }
687 
688 static void arm_cpu_finalizefn(Object *obj)
689 {
690     ARMCPU *cpu = ARM_CPU(obj);
691     g_hash_table_destroy(cpu->cp_regs);
692 }
693 
694 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
695 {
696     CPUState *cs = CPU(dev);
697     ARMCPU *cpu = ARM_CPU(dev);
698     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
699     CPUARMState *env = &cpu->env;
700     int pagebits;
701     Error *local_err = NULL;
702 #ifndef CONFIG_USER_ONLY
703     AddressSpace *as;
704 #endif
705 
706     cpu_exec_realizefn(cs, &local_err);
707     if (local_err != NULL) {
708         error_propagate(errp, local_err);
709         return;
710     }
711 
712     /* Some features automatically imply others: */
713     if (arm_feature(env, ARM_FEATURE_V8)) {
714         set_feature(env, ARM_FEATURE_V7);
715         set_feature(env, ARM_FEATURE_ARM_DIV);
716         set_feature(env, ARM_FEATURE_LPAE);
717     }
718     if (arm_feature(env, ARM_FEATURE_V7)) {
719         set_feature(env, ARM_FEATURE_VAPA);
720         set_feature(env, ARM_FEATURE_THUMB2);
721         set_feature(env, ARM_FEATURE_MPIDR);
722         if (!arm_feature(env, ARM_FEATURE_M)) {
723             set_feature(env, ARM_FEATURE_V6K);
724         } else {
725             set_feature(env, ARM_FEATURE_V6);
726         }
727 
728         /* Always define VBAR for V7 CPUs even if it doesn't exist in
729          * non-EL3 configs. This is needed by some legacy boards.
730          */
731         set_feature(env, ARM_FEATURE_VBAR);
732     }
733     if (arm_feature(env, ARM_FEATURE_V6K)) {
734         set_feature(env, ARM_FEATURE_V6);
735         set_feature(env, ARM_FEATURE_MVFR);
736     }
737     if (arm_feature(env, ARM_FEATURE_V6)) {
738         set_feature(env, ARM_FEATURE_V5);
739         set_feature(env, ARM_FEATURE_JAZELLE);
740         if (!arm_feature(env, ARM_FEATURE_M)) {
741             set_feature(env, ARM_FEATURE_AUXCR);
742         }
743     }
744     if (arm_feature(env, ARM_FEATURE_V5)) {
745         set_feature(env, ARM_FEATURE_V4T);
746     }
747     if (arm_feature(env, ARM_FEATURE_M)) {
748         set_feature(env, ARM_FEATURE_THUMB_DIV);
749     }
750     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
751         set_feature(env, ARM_FEATURE_THUMB_DIV);
752     }
753     if (arm_feature(env, ARM_FEATURE_VFP4)) {
754         set_feature(env, ARM_FEATURE_VFP3);
755         set_feature(env, ARM_FEATURE_VFP_FP16);
756     }
757     if (arm_feature(env, ARM_FEATURE_VFP3)) {
758         set_feature(env, ARM_FEATURE_VFP);
759     }
760     if (arm_feature(env, ARM_FEATURE_LPAE)) {
761         set_feature(env, ARM_FEATURE_V7MP);
762         set_feature(env, ARM_FEATURE_PXN);
763     }
764     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
765         set_feature(env, ARM_FEATURE_CBAR);
766     }
767     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
768         !arm_feature(env, ARM_FEATURE_M)) {
769         set_feature(env, ARM_FEATURE_THUMB_DSP);
770     }
771 
772     if (arm_feature(env, ARM_FEATURE_V7) &&
773         !arm_feature(env, ARM_FEATURE_M) &&
774         !arm_feature(env, ARM_FEATURE_PMSA)) {
775         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
776          * can use 4K pages.
777          */
778         pagebits = 12;
779     } else {
780         /* For CPUs which might have tiny 1K pages, or which have an
781          * MPU and might have small region sizes, stick with 1K pages.
782          */
783         pagebits = 10;
784     }
785     if (!set_preferred_target_page_bits(pagebits)) {
786         /* This can only ever happen for hotplugging a CPU, or if
787          * the board code incorrectly creates a CPU which it has
788          * promised via minimum_page_size that it will not.
789          */
790         error_setg(errp, "This CPU requires a smaller page size than the "
791                    "system is using");
792         return;
793     }
794 
795     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
796      * We don't support setting cluster ID ([16..23]) (known as Aff2
797      * in later ARM ARM versions), or any of the higher affinity level fields,
798      * so these bits always RAZ.
799      */
800     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
801         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
802                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
803     }
804 
805     if (cpu->reset_hivecs) {
806             cpu->reset_sctlr |= (1 << 13);
807     }
808 
809     if (cpu->cfgend) {
810         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
811             cpu->reset_sctlr |= SCTLR_EE;
812         } else {
813             cpu->reset_sctlr |= SCTLR_B;
814         }
815     }
816 
817     if (!cpu->has_el3) {
818         /* If the has_el3 CPU property is disabled then we need to disable the
819          * feature.
820          */
821         unset_feature(env, ARM_FEATURE_EL3);
822 
823         /* Disable the security extension feature bits in the processor feature
824          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
825          */
826         cpu->id_pfr1 &= ~0xf0;
827         cpu->id_aa64pfr0 &= ~0xf000;
828     }
829 
830     if (!cpu->has_el2) {
831         unset_feature(env, ARM_FEATURE_EL2);
832     }
833 
834     if (!cpu->has_pmu) {
835         unset_feature(env, ARM_FEATURE_PMU);
836         cpu->id_aa64dfr0 &= ~0xf00;
837     }
838 
839     if (!arm_feature(env, ARM_FEATURE_EL2)) {
840         /* Disable the hypervisor feature bits in the processor feature
841          * registers if we don't have EL2. These are id_pfr1[15:12] and
842          * id_aa64pfr0_el1[11:8].
843          */
844         cpu->id_aa64pfr0 &= ~0xf00;
845         cpu->id_pfr1 &= ~0xf000;
846     }
847 
848     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
849      * to false or by setting pmsav7-dregion to 0.
850      */
851     if (!cpu->has_mpu) {
852         cpu->pmsav7_dregion = 0;
853     }
854     if (cpu->pmsav7_dregion == 0) {
855         cpu->has_mpu = false;
856     }
857 
858     if (arm_feature(env, ARM_FEATURE_PMSA) &&
859         arm_feature(env, ARM_FEATURE_V7)) {
860         uint32_t nr = cpu->pmsav7_dregion;
861 
862         if (nr > 0xff) {
863             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
864             return;
865         }
866 
867         if (nr) {
868             if (arm_feature(env, ARM_FEATURE_V8)) {
869                 /* PMSAv8 */
870                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
871                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
872                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
873                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
874                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
875                 }
876             } else {
877                 env->pmsav7.drbar = g_new0(uint32_t, nr);
878                 env->pmsav7.drsr = g_new0(uint32_t, nr);
879                 env->pmsav7.dracr = g_new0(uint32_t, nr);
880             }
881         }
882     }
883 
884     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
885         uint32_t nr = cpu->sau_sregion;
886 
887         if (nr > 0xff) {
888             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
889             return;
890         }
891 
892         if (nr) {
893             env->sau.rbar = g_new0(uint32_t, nr);
894             env->sau.rlar = g_new0(uint32_t, nr);
895         }
896     }
897 
898     if (arm_feature(env, ARM_FEATURE_EL3)) {
899         set_feature(env, ARM_FEATURE_VBAR);
900     }
901 
902     register_cp_regs_for_features(cpu);
903     arm_cpu_register_gdb_regs_for_features(cpu);
904 
905     init_cpreg_list(cpu);
906 
907 #ifndef CONFIG_USER_ONLY
908     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
909         as = g_new0(AddressSpace, 1);
910 
911         cs->num_ases = 2;
912 
913         if (!cpu->secure_memory) {
914             cpu->secure_memory = cs->memory;
915         }
916         address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
917         cpu_address_space_init(cs, as, ARMASIdx_S);
918     } else {
919         cs->num_ases = 1;
920     }
921     as = g_new0(AddressSpace, 1);
922     address_space_init(as, cs->memory, "cpu-memory");
923     cpu_address_space_init(cs, as, ARMASIdx_NS);
924 #endif
925 
926     qemu_init_vcpu(cs);
927     cpu_reset(cs);
928 
929     acc->parent_realize(dev, errp);
930 }
931 
932 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
933 {
934     ObjectClass *oc;
935     char *typename;
936     char **cpuname;
937 
938     cpuname = g_strsplit(cpu_model, ",", 1);
939     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
940     oc = object_class_by_name(typename);
941     g_strfreev(cpuname);
942     g_free(typename);
943     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
944         object_class_is_abstract(oc)) {
945         return NULL;
946     }
947     return oc;
948 }
949 
950 /* CPU models. These are not needed for the AArch64 linux-user build. */
951 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
952 
953 static void arm926_initfn(Object *obj)
954 {
955     ARMCPU *cpu = ARM_CPU(obj);
956 
957     cpu->dtb_compatible = "arm,arm926";
958     set_feature(&cpu->env, ARM_FEATURE_V5);
959     set_feature(&cpu->env, ARM_FEATURE_VFP);
960     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
961     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
962     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
963     cpu->midr = 0x41069265;
964     cpu->reset_fpsid = 0x41011090;
965     cpu->ctr = 0x1dd20d2;
966     cpu->reset_sctlr = 0x00090078;
967 }
968 
969 static void arm946_initfn(Object *obj)
970 {
971     ARMCPU *cpu = ARM_CPU(obj);
972 
973     cpu->dtb_compatible = "arm,arm946";
974     set_feature(&cpu->env, ARM_FEATURE_V5);
975     set_feature(&cpu->env, ARM_FEATURE_PMSA);
976     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
977     cpu->midr = 0x41059461;
978     cpu->ctr = 0x0f004006;
979     cpu->reset_sctlr = 0x00000078;
980 }
981 
982 static void arm1026_initfn(Object *obj)
983 {
984     ARMCPU *cpu = ARM_CPU(obj);
985 
986     cpu->dtb_compatible = "arm,arm1026";
987     set_feature(&cpu->env, ARM_FEATURE_V5);
988     set_feature(&cpu->env, ARM_FEATURE_VFP);
989     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
990     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
991     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
992     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
993     cpu->midr = 0x4106a262;
994     cpu->reset_fpsid = 0x410110a0;
995     cpu->ctr = 0x1dd20d2;
996     cpu->reset_sctlr = 0x00090078;
997     cpu->reset_auxcr = 1;
998     {
999         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1000         ARMCPRegInfo ifar = {
1001             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1002             .access = PL1_RW,
1003             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1004             .resetvalue = 0
1005         };
1006         define_one_arm_cp_reg(cpu, &ifar);
1007     }
1008 }
1009 
1010 static void arm1136_r2_initfn(Object *obj)
1011 {
1012     ARMCPU *cpu = ARM_CPU(obj);
1013     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1014      * older core than plain "arm1136". In particular this does not
1015      * have the v6K features.
1016      * These ID register values are correct for 1136 but may be wrong
1017      * for 1136_r2 (in particular r0p2 does not actually implement most
1018      * of the ID registers).
1019      */
1020 
1021     cpu->dtb_compatible = "arm,arm1136";
1022     set_feature(&cpu->env, ARM_FEATURE_V6);
1023     set_feature(&cpu->env, ARM_FEATURE_VFP);
1024     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1025     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1026     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1027     cpu->midr = 0x4107b362;
1028     cpu->reset_fpsid = 0x410120b4;
1029     cpu->mvfr0 = 0x11111111;
1030     cpu->mvfr1 = 0x00000000;
1031     cpu->ctr = 0x1dd20d2;
1032     cpu->reset_sctlr = 0x00050078;
1033     cpu->id_pfr0 = 0x111;
1034     cpu->id_pfr1 = 0x1;
1035     cpu->id_dfr0 = 0x2;
1036     cpu->id_afr0 = 0x3;
1037     cpu->id_mmfr0 = 0x01130003;
1038     cpu->id_mmfr1 = 0x10030302;
1039     cpu->id_mmfr2 = 0x01222110;
1040     cpu->id_isar0 = 0x00140011;
1041     cpu->id_isar1 = 0x12002111;
1042     cpu->id_isar2 = 0x11231111;
1043     cpu->id_isar3 = 0x01102131;
1044     cpu->id_isar4 = 0x141;
1045     cpu->reset_auxcr = 7;
1046 }
1047 
1048 static void arm1136_initfn(Object *obj)
1049 {
1050     ARMCPU *cpu = ARM_CPU(obj);
1051 
1052     cpu->dtb_compatible = "arm,arm1136";
1053     set_feature(&cpu->env, ARM_FEATURE_V6K);
1054     set_feature(&cpu->env, ARM_FEATURE_V6);
1055     set_feature(&cpu->env, ARM_FEATURE_VFP);
1056     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1057     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1058     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1059     cpu->midr = 0x4117b363;
1060     cpu->reset_fpsid = 0x410120b4;
1061     cpu->mvfr0 = 0x11111111;
1062     cpu->mvfr1 = 0x00000000;
1063     cpu->ctr = 0x1dd20d2;
1064     cpu->reset_sctlr = 0x00050078;
1065     cpu->id_pfr0 = 0x111;
1066     cpu->id_pfr1 = 0x1;
1067     cpu->id_dfr0 = 0x2;
1068     cpu->id_afr0 = 0x3;
1069     cpu->id_mmfr0 = 0x01130003;
1070     cpu->id_mmfr1 = 0x10030302;
1071     cpu->id_mmfr2 = 0x01222110;
1072     cpu->id_isar0 = 0x00140011;
1073     cpu->id_isar1 = 0x12002111;
1074     cpu->id_isar2 = 0x11231111;
1075     cpu->id_isar3 = 0x01102131;
1076     cpu->id_isar4 = 0x141;
1077     cpu->reset_auxcr = 7;
1078 }
1079 
1080 static void arm1176_initfn(Object *obj)
1081 {
1082     ARMCPU *cpu = ARM_CPU(obj);
1083 
1084     cpu->dtb_compatible = "arm,arm1176";
1085     set_feature(&cpu->env, ARM_FEATURE_V6K);
1086     set_feature(&cpu->env, ARM_FEATURE_VFP);
1087     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1088     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1089     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1090     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1091     set_feature(&cpu->env, ARM_FEATURE_EL3);
1092     cpu->midr = 0x410fb767;
1093     cpu->reset_fpsid = 0x410120b5;
1094     cpu->mvfr0 = 0x11111111;
1095     cpu->mvfr1 = 0x00000000;
1096     cpu->ctr = 0x1dd20d2;
1097     cpu->reset_sctlr = 0x00050078;
1098     cpu->id_pfr0 = 0x111;
1099     cpu->id_pfr1 = 0x11;
1100     cpu->id_dfr0 = 0x33;
1101     cpu->id_afr0 = 0;
1102     cpu->id_mmfr0 = 0x01130003;
1103     cpu->id_mmfr1 = 0x10030302;
1104     cpu->id_mmfr2 = 0x01222100;
1105     cpu->id_isar0 = 0x0140011;
1106     cpu->id_isar1 = 0x12002111;
1107     cpu->id_isar2 = 0x11231121;
1108     cpu->id_isar3 = 0x01102131;
1109     cpu->id_isar4 = 0x01141;
1110     cpu->reset_auxcr = 7;
1111 }
1112 
1113 static void arm11mpcore_initfn(Object *obj)
1114 {
1115     ARMCPU *cpu = ARM_CPU(obj);
1116 
1117     cpu->dtb_compatible = "arm,arm11mpcore";
1118     set_feature(&cpu->env, ARM_FEATURE_V6K);
1119     set_feature(&cpu->env, ARM_FEATURE_VFP);
1120     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1121     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1122     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1123     cpu->midr = 0x410fb022;
1124     cpu->reset_fpsid = 0x410120b4;
1125     cpu->mvfr0 = 0x11111111;
1126     cpu->mvfr1 = 0x00000000;
1127     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1128     cpu->id_pfr0 = 0x111;
1129     cpu->id_pfr1 = 0x1;
1130     cpu->id_dfr0 = 0;
1131     cpu->id_afr0 = 0x2;
1132     cpu->id_mmfr0 = 0x01100103;
1133     cpu->id_mmfr1 = 0x10020302;
1134     cpu->id_mmfr2 = 0x01222000;
1135     cpu->id_isar0 = 0x00100011;
1136     cpu->id_isar1 = 0x12002111;
1137     cpu->id_isar2 = 0x11221011;
1138     cpu->id_isar3 = 0x01102131;
1139     cpu->id_isar4 = 0x141;
1140     cpu->reset_auxcr = 1;
1141 }
1142 
1143 static void cortex_m3_initfn(Object *obj)
1144 {
1145     ARMCPU *cpu = ARM_CPU(obj);
1146     set_feature(&cpu->env, ARM_FEATURE_V7);
1147     set_feature(&cpu->env, ARM_FEATURE_M);
1148     cpu->midr = 0x410fc231;
1149     cpu->pmsav7_dregion = 8;
1150 }
1151 
1152 static void cortex_m4_initfn(Object *obj)
1153 {
1154     ARMCPU *cpu = ARM_CPU(obj);
1155 
1156     set_feature(&cpu->env, ARM_FEATURE_V7);
1157     set_feature(&cpu->env, ARM_FEATURE_M);
1158     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1159     cpu->midr = 0x410fc240; /* r0p0 */
1160     cpu->pmsav7_dregion = 8;
1161 }
1162 
1163 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1164 {
1165     CPUClass *cc = CPU_CLASS(oc);
1166 
1167 #ifndef CONFIG_USER_ONLY
1168     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1169 #endif
1170 
1171     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1172 }
1173 
1174 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1175     /* Dummy the TCM region regs for the moment */
1176     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1177       .access = PL1_RW, .type = ARM_CP_CONST },
1178     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1179       .access = PL1_RW, .type = ARM_CP_CONST },
1180     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1181       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1182     REGINFO_SENTINEL
1183 };
1184 
1185 static void cortex_r5_initfn(Object *obj)
1186 {
1187     ARMCPU *cpu = ARM_CPU(obj);
1188 
1189     set_feature(&cpu->env, ARM_FEATURE_V7);
1190     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1191     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1192     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1193     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1194     cpu->midr = 0x411fc153; /* r1p3 */
1195     cpu->id_pfr0 = 0x0131;
1196     cpu->id_pfr1 = 0x001;
1197     cpu->id_dfr0 = 0x010400;
1198     cpu->id_afr0 = 0x0;
1199     cpu->id_mmfr0 = 0x0210030;
1200     cpu->id_mmfr1 = 0x00000000;
1201     cpu->id_mmfr2 = 0x01200000;
1202     cpu->id_mmfr3 = 0x0211;
1203     cpu->id_isar0 = 0x2101111;
1204     cpu->id_isar1 = 0x13112111;
1205     cpu->id_isar2 = 0x21232141;
1206     cpu->id_isar3 = 0x01112131;
1207     cpu->id_isar4 = 0x0010142;
1208     cpu->id_isar5 = 0x0;
1209     cpu->mp_is_up = true;
1210     cpu->pmsav7_dregion = 16;
1211     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1212 }
1213 
1214 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1215     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1216       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1217     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1218       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1219     REGINFO_SENTINEL
1220 };
1221 
1222 static void cortex_a8_initfn(Object *obj)
1223 {
1224     ARMCPU *cpu = ARM_CPU(obj);
1225 
1226     cpu->dtb_compatible = "arm,cortex-a8";
1227     set_feature(&cpu->env, ARM_FEATURE_V7);
1228     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1229     set_feature(&cpu->env, ARM_FEATURE_NEON);
1230     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1231     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1232     set_feature(&cpu->env, ARM_FEATURE_EL3);
1233     cpu->midr = 0x410fc080;
1234     cpu->reset_fpsid = 0x410330c0;
1235     cpu->mvfr0 = 0x11110222;
1236     cpu->mvfr1 = 0x00011111;
1237     cpu->ctr = 0x82048004;
1238     cpu->reset_sctlr = 0x00c50078;
1239     cpu->id_pfr0 = 0x1031;
1240     cpu->id_pfr1 = 0x11;
1241     cpu->id_dfr0 = 0x400;
1242     cpu->id_afr0 = 0;
1243     cpu->id_mmfr0 = 0x31100003;
1244     cpu->id_mmfr1 = 0x20000000;
1245     cpu->id_mmfr2 = 0x01202000;
1246     cpu->id_mmfr3 = 0x11;
1247     cpu->id_isar0 = 0x00101111;
1248     cpu->id_isar1 = 0x12112111;
1249     cpu->id_isar2 = 0x21232031;
1250     cpu->id_isar3 = 0x11112131;
1251     cpu->id_isar4 = 0x00111142;
1252     cpu->dbgdidr = 0x15141000;
1253     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1254     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1255     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1256     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1257     cpu->reset_auxcr = 2;
1258     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1259 }
1260 
1261 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1262     /* power_control should be set to maximum latency. Again,
1263      * default to 0 and set by private hook
1264      */
1265     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1266       .access = PL1_RW, .resetvalue = 0,
1267       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1268     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1269       .access = PL1_RW, .resetvalue = 0,
1270       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1271     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1272       .access = PL1_RW, .resetvalue = 0,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1274     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1275       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1276     /* TLB lockdown control */
1277     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1278       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1279     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1280       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1281     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1282       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1283     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1284       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1285     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1286       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1287     REGINFO_SENTINEL
1288 };
1289 
1290 static void cortex_a9_initfn(Object *obj)
1291 {
1292     ARMCPU *cpu = ARM_CPU(obj);
1293 
1294     cpu->dtb_compatible = "arm,cortex-a9";
1295     set_feature(&cpu->env, ARM_FEATURE_V7);
1296     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1297     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1298     set_feature(&cpu->env, ARM_FEATURE_NEON);
1299     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1300     set_feature(&cpu->env, ARM_FEATURE_EL3);
1301     /* Note that A9 supports the MP extensions even for
1302      * A9UP and single-core A9MP (which are both different
1303      * and valid configurations; we don't model A9UP).
1304      */
1305     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1306     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1307     cpu->midr = 0x410fc090;
1308     cpu->reset_fpsid = 0x41033090;
1309     cpu->mvfr0 = 0x11110222;
1310     cpu->mvfr1 = 0x01111111;
1311     cpu->ctr = 0x80038003;
1312     cpu->reset_sctlr = 0x00c50078;
1313     cpu->id_pfr0 = 0x1031;
1314     cpu->id_pfr1 = 0x11;
1315     cpu->id_dfr0 = 0x000;
1316     cpu->id_afr0 = 0;
1317     cpu->id_mmfr0 = 0x00100103;
1318     cpu->id_mmfr1 = 0x20000000;
1319     cpu->id_mmfr2 = 0x01230000;
1320     cpu->id_mmfr3 = 0x00002111;
1321     cpu->id_isar0 = 0x00101111;
1322     cpu->id_isar1 = 0x13112111;
1323     cpu->id_isar2 = 0x21232041;
1324     cpu->id_isar3 = 0x11112131;
1325     cpu->id_isar4 = 0x00111142;
1326     cpu->dbgdidr = 0x35141000;
1327     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1328     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1329     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1330     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1331 }
1332 
1333 #ifndef CONFIG_USER_ONLY
1334 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1335 {
1336     /* Linux wants the number of processors from here.
1337      * Might as well set the interrupt-controller bit too.
1338      */
1339     return ((smp_cpus - 1) << 24) | (1 << 23);
1340 }
1341 #endif
1342 
1343 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1344 #ifndef CONFIG_USER_ONLY
1345     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1346       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1347       .writefn = arm_cp_write_ignore, },
1348 #endif
1349     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1350       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1351     REGINFO_SENTINEL
1352 };
1353 
1354 static void cortex_a7_initfn(Object *obj)
1355 {
1356     ARMCPU *cpu = ARM_CPU(obj);
1357 
1358     cpu->dtb_compatible = "arm,cortex-a7";
1359     set_feature(&cpu->env, ARM_FEATURE_V7);
1360     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1361     set_feature(&cpu->env, ARM_FEATURE_NEON);
1362     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1363     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1364     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1365     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1366     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1367     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1368     set_feature(&cpu->env, ARM_FEATURE_EL3);
1369     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1370     cpu->midr = 0x410fc075;
1371     cpu->reset_fpsid = 0x41023075;
1372     cpu->mvfr0 = 0x10110222;
1373     cpu->mvfr1 = 0x11111111;
1374     cpu->ctr = 0x84448003;
1375     cpu->reset_sctlr = 0x00c50078;
1376     cpu->id_pfr0 = 0x00001131;
1377     cpu->id_pfr1 = 0x00011011;
1378     cpu->id_dfr0 = 0x02010555;
1379     cpu->pmceid0 = 0x00000000;
1380     cpu->pmceid1 = 0x00000000;
1381     cpu->id_afr0 = 0x00000000;
1382     cpu->id_mmfr0 = 0x10101105;
1383     cpu->id_mmfr1 = 0x40000000;
1384     cpu->id_mmfr2 = 0x01240000;
1385     cpu->id_mmfr3 = 0x02102211;
1386     cpu->id_isar0 = 0x01101110;
1387     cpu->id_isar1 = 0x13112111;
1388     cpu->id_isar2 = 0x21232041;
1389     cpu->id_isar3 = 0x11112131;
1390     cpu->id_isar4 = 0x10011142;
1391     cpu->dbgdidr = 0x3515f005;
1392     cpu->clidr = 0x0a200023;
1393     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1394     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1395     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1396     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1397 }
1398 
1399 static void cortex_a15_initfn(Object *obj)
1400 {
1401     ARMCPU *cpu = ARM_CPU(obj);
1402 
1403     cpu->dtb_compatible = "arm,cortex-a15";
1404     set_feature(&cpu->env, ARM_FEATURE_V7);
1405     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1406     set_feature(&cpu->env, ARM_FEATURE_NEON);
1407     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1408     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1409     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1410     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1411     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1412     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1413     set_feature(&cpu->env, ARM_FEATURE_EL3);
1414     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1415     cpu->midr = 0x412fc0f1;
1416     cpu->reset_fpsid = 0x410430f0;
1417     cpu->mvfr0 = 0x10110222;
1418     cpu->mvfr1 = 0x11111111;
1419     cpu->ctr = 0x8444c004;
1420     cpu->reset_sctlr = 0x00c50078;
1421     cpu->id_pfr0 = 0x00001131;
1422     cpu->id_pfr1 = 0x00011011;
1423     cpu->id_dfr0 = 0x02010555;
1424     cpu->pmceid0 = 0x0000000;
1425     cpu->pmceid1 = 0x00000000;
1426     cpu->id_afr0 = 0x00000000;
1427     cpu->id_mmfr0 = 0x10201105;
1428     cpu->id_mmfr1 = 0x20000000;
1429     cpu->id_mmfr2 = 0x01240000;
1430     cpu->id_mmfr3 = 0x02102211;
1431     cpu->id_isar0 = 0x02101110;
1432     cpu->id_isar1 = 0x13112111;
1433     cpu->id_isar2 = 0x21232041;
1434     cpu->id_isar3 = 0x11112131;
1435     cpu->id_isar4 = 0x10011142;
1436     cpu->dbgdidr = 0x3515f021;
1437     cpu->clidr = 0x0a200023;
1438     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1439     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1440     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1441     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1442 }
1443 
1444 static void ti925t_initfn(Object *obj)
1445 {
1446     ARMCPU *cpu = ARM_CPU(obj);
1447     set_feature(&cpu->env, ARM_FEATURE_V4T);
1448     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1449     cpu->midr = ARM_CPUID_TI925T;
1450     cpu->ctr = 0x5109149;
1451     cpu->reset_sctlr = 0x00000070;
1452 }
1453 
1454 static void sa1100_initfn(Object *obj)
1455 {
1456     ARMCPU *cpu = ARM_CPU(obj);
1457 
1458     cpu->dtb_compatible = "intel,sa1100";
1459     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1460     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1461     cpu->midr = 0x4401A11B;
1462     cpu->reset_sctlr = 0x00000070;
1463 }
1464 
1465 static void sa1110_initfn(Object *obj)
1466 {
1467     ARMCPU *cpu = ARM_CPU(obj);
1468     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1469     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1470     cpu->midr = 0x6901B119;
1471     cpu->reset_sctlr = 0x00000070;
1472 }
1473 
1474 static void pxa250_initfn(Object *obj)
1475 {
1476     ARMCPU *cpu = ARM_CPU(obj);
1477 
1478     cpu->dtb_compatible = "marvell,xscale";
1479     set_feature(&cpu->env, ARM_FEATURE_V5);
1480     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1481     cpu->midr = 0x69052100;
1482     cpu->ctr = 0xd172172;
1483     cpu->reset_sctlr = 0x00000078;
1484 }
1485 
1486 static void pxa255_initfn(Object *obj)
1487 {
1488     ARMCPU *cpu = ARM_CPU(obj);
1489 
1490     cpu->dtb_compatible = "marvell,xscale";
1491     set_feature(&cpu->env, ARM_FEATURE_V5);
1492     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1493     cpu->midr = 0x69052d00;
1494     cpu->ctr = 0xd172172;
1495     cpu->reset_sctlr = 0x00000078;
1496 }
1497 
1498 static void pxa260_initfn(Object *obj)
1499 {
1500     ARMCPU *cpu = ARM_CPU(obj);
1501 
1502     cpu->dtb_compatible = "marvell,xscale";
1503     set_feature(&cpu->env, ARM_FEATURE_V5);
1504     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1505     cpu->midr = 0x69052903;
1506     cpu->ctr = 0xd172172;
1507     cpu->reset_sctlr = 0x00000078;
1508 }
1509 
1510 static void pxa261_initfn(Object *obj)
1511 {
1512     ARMCPU *cpu = ARM_CPU(obj);
1513 
1514     cpu->dtb_compatible = "marvell,xscale";
1515     set_feature(&cpu->env, ARM_FEATURE_V5);
1516     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1517     cpu->midr = 0x69052d05;
1518     cpu->ctr = 0xd172172;
1519     cpu->reset_sctlr = 0x00000078;
1520 }
1521 
1522 static void pxa262_initfn(Object *obj)
1523 {
1524     ARMCPU *cpu = ARM_CPU(obj);
1525 
1526     cpu->dtb_compatible = "marvell,xscale";
1527     set_feature(&cpu->env, ARM_FEATURE_V5);
1528     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1529     cpu->midr = 0x69052d06;
1530     cpu->ctr = 0xd172172;
1531     cpu->reset_sctlr = 0x00000078;
1532 }
1533 
1534 static void pxa270a0_initfn(Object *obj)
1535 {
1536     ARMCPU *cpu = ARM_CPU(obj);
1537 
1538     cpu->dtb_compatible = "marvell,xscale";
1539     set_feature(&cpu->env, ARM_FEATURE_V5);
1540     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1541     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1542     cpu->midr = 0x69054110;
1543     cpu->ctr = 0xd172172;
1544     cpu->reset_sctlr = 0x00000078;
1545 }
1546 
1547 static void pxa270a1_initfn(Object *obj)
1548 {
1549     ARMCPU *cpu = ARM_CPU(obj);
1550 
1551     cpu->dtb_compatible = "marvell,xscale";
1552     set_feature(&cpu->env, ARM_FEATURE_V5);
1553     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1554     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1555     cpu->midr = 0x69054111;
1556     cpu->ctr = 0xd172172;
1557     cpu->reset_sctlr = 0x00000078;
1558 }
1559 
1560 static void pxa270b0_initfn(Object *obj)
1561 {
1562     ARMCPU *cpu = ARM_CPU(obj);
1563 
1564     cpu->dtb_compatible = "marvell,xscale";
1565     set_feature(&cpu->env, ARM_FEATURE_V5);
1566     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1567     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1568     cpu->midr = 0x69054112;
1569     cpu->ctr = 0xd172172;
1570     cpu->reset_sctlr = 0x00000078;
1571 }
1572 
1573 static void pxa270b1_initfn(Object *obj)
1574 {
1575     ARMCPU *cpu = ARM_CPU(obj);
1576 
1577     cpu->dtb_compatible = "marvell,xscale";
1578     set_feature(&cpu->env, ARM_FEATURE_V5);
1579     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1580     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1581     cpu->midr = 0x69054113;
1582     cpu->ctr = 0xd172172;
1583     cpu->reset_sctlr = 0x00000078;
1584 }
1585 
1586 static void pxa270c0_initfn(Object *obj)
1587 {
1588     ARMCPU *cpu = ARM_CPU(obj);
1589 
1590     cpu->dtb_compatible = "marvell,xscale";
1591     set_feature(&cpu->env, ARM_FEATURE_V5);
1592     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1593     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1594     cpu->midr = 0x69054114;
1595     cpu->ctr = 0xd172172;
1596     cpu->reset_sctlr = 0x00000078;
1597 }
1598 
1599 static void pxa270c5_initfn(Object *obj)
1600 {
1601     ARMCPU *cpu = ARM_CPU(obj);
1602 
1603     cpu->dtb_compatible = "marvell,xscale";
1604     set_feature(&cpu->env, ARM_FEATURE_V5);
1605     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1606     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1607     cpu->midr = 0x69054117;
1608     cpu->ctr = 0xd172172;
1609     cpu->reset_sctlr = 0x00000078;
1610 }
1611 
1612 #ifdef CONFIG_USER_ONLY
1613 static void arm_any_initfn(Object *obj)
1614 {
1615     ARMCPU *cpu = ARM_CPU(obj);
1616     set_feature(&cpu->env, ARM_FEATURE_V8);
1617     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1618     set_feature(&cpu->env, ARM_FEATURE_NEON);
1619     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1620     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1621     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1622     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1623     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1624     set_feature(&cpu->env, ARM_FEATURE_CRC);
1625     cpu->midr = 0xffffffff;
1626 }
1627 #endif
1628 
1629 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1630 
1631 typedef struct ARMCPUInfo {
1632     const char *name;
1633     void (*initfn)(Object *obj);
1634     void (*class_init)(ObjectClass *oc, void *data);
1635 } ARMCPUInfo;
1636 
1637 static const ARMCPUInfo arm_cpus[] = {
1638 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1639     { .name = "arm926",      .initfn = arm926_initfn },
1640     { .name = "arm946",      .initfn = arm946_initfn },
1641     { .name = "arm1026",     .initfn = arm1026_initfn },
1642     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1643      * older core than plain "arm1136". In particular this does not
1644      * have the v6K features.
1645      */
1646     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1647     { .name = "arm1136",     .initfn = arm1136_initfn },
1648     { .name = "arm1176",     .initfn = arm1176_initfn },
1649     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1650     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1651                              .class_init = arm_v7m_class_init },
1652     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1653                              .class_init = arm_v7m_class_init },
1654     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1655     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1656     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1657     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1658     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1659     { .name = "ti925t",      .initfn = ti925t_initfn },
1660     { .name = "sa1100",      .initfn = sa1100_initfn },
1661     { .name = "sa1110",      .initfn = sa1110_initfn },
1662     { .name = "pxa250",      .initfn = pxa250_initfn },
1663     { .name = "pxa255",      .initfn = pxa255_initfn },
1664     { .name = "pxa260",      .initfn = pxa260_initfn },
1665     { .name = "pxa261",      .initfn = pxa261_initfn },
1666     { .name = "pxa262",      .initfn = pxa262_initfn },
1667     /* "pxa270" is an alias for "pxa270-a0" */
1668     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1669     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1670     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1671     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1672     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1673     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1674     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1675 #ifdef CONFIG_USER_ONLY
1676     { .name = "any",         .initfn = arm_any_initfn },
1677 #endif
1678 #endif
1679     { .name = NULL }
1680 };
1681 
1682 static Property arm_cpu_properties[] = {
1683     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1684     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1685     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1686     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1687                         mp_affinity, ARM64_AFFINITY_INVALID),
1688     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1689     DEFINE_PROP_END_OF_LIST()
1690 };
1691 
1692 #ifdef CONFIG_USER_ONLY
1693 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1694                                     int mmu_idx)
1695 {
1696     ARMCPU *cpu = ARM_CPU(cs);
1697     CPUARMState *env = &cpu->env;
1698 
1699     env->exception.vaddress = address;
1700     if (rw == 2) {
1701         cs->exception_index = EXCP_PREFETCH_ABORT;
1702     } else {
1703         cs->exception_index = EXCP_DATA_ABORT;
1704     }
1705     return 1;
1706 }
1707 #endif
1708 
1709 static gchar *arm_gdb_arch_name(CPUState *cs)
1710 {
1711     ARMCPU *cpu = ARM_CPU(cs);
1712     CPUARMState *env = &cpu->env;
1713 
1714     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1715         return g_strdup("iwmmxt");
1716     }
1717     return g_strdup("arm");
1718 }
1719 
1720 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1721 {
1722     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1723     CPUClass *cc = CPU_CLASS(acc);
1724     DeviceClass *dc = DEVICE_CLASS(oc);
1725 
1726     acc->parent_realize = dc->realize;
1727     dc->realize = arm_cpu_realizefn;
1728     dc->props = arm_cpu_properties;
1729 
1730     acc->parent_reset = cc->reset;
1731     cc->reset = arm_cpu_reset;
1732 
1733     cc->class_by_name = arm_cpu_class_by_name;
1734     cc->has_work = arm_cpu_has_work;
1735     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1736     cc->dump_state = arm_cpu_dump_state;
1737     cc->set_pc = arm_cpu_set_pc;
1738     cc->gdb_read_register = arm_cpu_gdb_read_register;
1739     cc->gdb_write_register = arm_cpu_gdb_write_register;
1740 #ifdef CONFIG_USER_ONLY
1741     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1742 #else
1743     cc->do_interrupt = arm_cpu_do_interrupt;
1744     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1745     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1746     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1747     cc->asidx_from_attrs = arm_asidx_from_attrs;
1748     cc->vmsd = &vmstate_arm_cpu;
1749     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1750     cc->write_elf64_note = arm_cpu_write_elf64_note;
1751     cc->write_elf32_note = arm_cpu_write_elf32_note;
1752 #endif
1753     cc->gdb_num_core_regs = 26;
1754     cc->gdb_core_xml_file = "arm-core.xml";
1755     cc->gdb_arch_name = arm_gdb_arch_name;
1756     cc->gdb_stop_before_watchpoint = true;
1757     cc->debug_excp_handler = arm_debug_excp_handler;
1758     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1759 #if !defined(CONFIG_USER_ONLY)
1760     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1761 #endif
1762 
1763     cc->disas_set_info = arm_disas_set_info;
1764 #ifdef CONFIG_TCG
1765     cc->tcg_initialize = arm_translate_init;
1766 #endif
1767 }
1768 
1769 static void cpu_register(const ARMCPUInfo *info)
1770 {
1771     TypeInfo type_info = {
1772         .parent = TYPE_ARM_CPU,
1773         .instance_size = sizeof(ARMCPU),
1774         .instance_init = info->initfn,
1775         .class_size = sizeof(ARMCPUClass),
1776         .class_init = info->class_init,
1777     };
1778 
1779     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1780     type_register(&type_info);
1781     g_free((void *)type_info.name);
1782 }
1783 
1784 static const TypeInfo arm_cpu_type_info = {
1785     .name = TYPE_ARM_CPU,
1786     .parent = TYPE_CPU,
1787     .instance_size = sizeof(ARMCPU),
1788     .instance_init = arm_cpu_initfn,
1789     .instance_post_init = arm_cpu_post_init,
1790     .instance_finalize = arm_cpu_finalizefn,
1791     .abstract = true,
1792     .class_size = sizeof(ARMCPUClass),
1793     .class_init = arm_cpu_class_init,
1794 };
1795 
1796 static void arm_cpu_register_types(void)
1797 {
1798     const ARMCPUInfo *info = arm_cpus;
1799 
1800     type_register_static(&arm_cpu_type_info);
1801 
1802     while (info->name) {
1803         cpu_register(info);
1804         info++;
1805     }
1806 }
1807 
1808 type_init(arm_cpu_register_types)
1809