xref: /openbmc/qemu/target/arm/cpu.c (revision 9d81b2d2)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189             env->v7m.secure = true;
190         }
191 
192         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
193          * that it resets to 1, so QEMU always does that rather than making
194          * it dependent on CPU model. In v8M it is RES1.
195          */
196         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
197         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
198         if (arm_feature(env, ARM_FEATURE_V8)) {
199             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
200             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
201             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
202         }
203 
204         /* Unlike A/R profile, M profile defines the reset LR value */
205         env->regs[14] = 0xffffffff;
206 
207         /* Load the initial SP and PC from the vector table at address 0 */
208         rom = rom_ptr(0);
209         if (rom) {
210             /* Address zero is covered by ROM which hasn't yet been
211              * copied into physical memory.
212              */
213             initial_msp = ldl_p(rom);
214             initial_pc = ldl_p(rom + 4);
215         } else {
216             /* Address zero not covered by a ROM blob, or the ROM blob
217              * is in non-modifiable memory and this is a second reset after
218              * it got copied into memory. In the latter case, rom_ptr
219              * will return a NULL pointer and we should use ldl_phys instead.
220              */
221             initial_msp = ldl_phys(s->as, 0);
222             initial_pc = ldl_phys(s->as, 4);
223         }
224 
225         env->regs[13] = initial_msp & 0xFFFFFFFC;
226         env->regs[15] = initial_pc & ~1;
227         env->thumb = initial_pc & 1;
228     }
229 
230     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
231      * executing as AArch32 then check if highvecs are enabled and
232      * adjust the PC accordingly.
233      */
234     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
235         env->regs[15] = 0xFFFF0000;
236     }
237 
238     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
239 #endif
240 
241     if (arm_feature(env, ARM_FEATURE_PMSA)) {
242         if (cpu->pmsav7_dregion > 0) {
243             if (arm_feature(env, ARM_FEATURE_V8)) {
244                 memset(env->pmsav8.rbar[M_REG_NS], 0,
245                        sizeof(*env->pmsav8.rbar[M_REG_NS])
246                        * cpu->pmsav7_dregion);
247                 memset(env->pmsav8.rlar[M_REG_NS], 0,
248                        sizeof(*env->pmsav8.rlar[M_REG_NS])
249                        * cpu->pmsav7_dregion);
250                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
251                     memset(env->pmsav8.rbar[M_REG_S], 0,
252                            sizeof(*env->pmsav8.rbar[M_REG_S])
253                            * cpu->pmsav7_dregion);
254                     memset(env->pmsav8.rlar[M_REG_S], 0,
255                            sizeof(*env->pmsav8.rlar[M_REG_S])
256                            * cpu->pmsav7_dregion);
257                 }
258             } else if (arm_feature(env, ARM_FEATURE_V7)) {
259                 memset(env->pmsav7.drbar, 0,
260                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
261                 memset(env->pmsav7.drsr, 0,
262                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
263                 memset(env->pmsav7.dracr, 0,
264                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
265             }
266         }
267         env->pmsav7.rnr[M_REG_NS] = 0;
268         env->pmsav7.rnr[M_REG_S] = 0;
269         env->pmsav8.mair0[M_REG_NS] = 0;
270         env->pmsav8.mair0[M_REG_S] = 0;
271         env->pmsav8.mair1[M_REG_NS] = 0;
272         env->pmsav8.mair1[M_REG_S] = 0;
273     }
274 
275     set_flush_to_zero(1, &env->vfp.standard_fp_status);
276     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
277     set_default_nan_mode(1, &env->vfp.standard_fp_status);
278     set_float_detect_tininess(float_tininess_before_rounding,
279                               &env->vfp.fp_status);
280     set_float_detect_tininess(float_tininess_before_rounding,
281                               &env->vfp.standard_fp_status);
282 #ifndef CONFIG_USER_ONLY
283     if (kvm_enabled()) {
284         kvm_arm_reset_vcpu(cpu);
285     }
286 #endif
287 
288     hw_breakpoint_update_all(cpu);
289     hw_watchpoint_update_all(cpu);
290 }
291 
292 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
293 {
294     CPUClass *cc = CPU_GET_CLASS(cs);
295     CPUARMState *env = cs->env_ptr;
296     uint32_t cur_el = arm_current_el(env);
297     bool secure = arm_is_secure(env);
298     uint32_t target_el;
299     uint32_t excp_idx;
300     bool ret = false;
301 
302     if (interrupt_request & CPU_INTERRUPT_FIQ) {
303         excp_idx = EXCP_FIQ;
304         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
305         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
306             cs->exception_index = excp_idx;
307             env->exception.target_el = target_el;
308             cc->do_interrupt(cs);
309             ret = true;
310         }
311     }
312     if (interrupt_request & CPU_INTERRUPT_HARD) {
313         excp_idx = EXCP_IRQ;
314         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
315         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
316             cs->exception_index = excp_idx;
317             env->exception.target_el = target_el;
318             cc->do_interrupt(cs);
319             ret = true;
320         }
321     }
322     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
323         excp_idx = EXCP_VIRQ;
324         target_el = 1;
325         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
326             cs->exception_index = excp_idx;
327             env->exception.target_el = target_el;
328             cc->do_interrupt(cs);
329             ret = true;
330         }
331     }
332     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
333         excp_idx = EXCP_VFIQ;
334         target_el = 1;
335         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
336             cs->exception_index = excp_idx;
337             env->exception.target_el = target_el;
338             cc->do_interrupt(cs);
339             ret = true;
340         }
341     }
342 
343     return ret;
344 }
345 
346 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
347 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
348 {
349     CPUClass *cc = CPU_GET_CLASS(cs);
350     ARMCPU *cpu = ARM_CPU(cs);
351     CPUARMState *env = &cpu->env;
352     bool ret = false;
353 
354     /* ARMv7-M interrupt masking works differently than -A or -R.
355      * There is no FIQ/IRQ distinction. Instead of I and F bits
356      * masking FIQ and IRQ interrupts, an exception is taken only
357      * if it is higher priority than the current execution priority
358      * (which depends on state like BASEPRI, FAULTMASK and the
359      * currently active exception).
360      */
361     if (interrupt_request & CPU_INTERRUPT_HARD
362         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
363         cs->exception_index = EXCP_IRQ;
364         cc->do_interrupt(cs);
365         ret = true;
366     }
367     return ret;
368 }
369 #endif
370 
371 #ifndef CONFIG_USER_ONLY
372 static void arm_cpu_set_irq(void *opaque, int irq, int level)
373 {
374     ARMCPU *cpu = opaque;
375     CPUARMState *env = &cpu->env;
376     CPUState *cs = CPU(cpu);
377     static const int mask[] = {
378         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
379         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
380         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
381         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
382     };
383 
384     switch (irq) {
385     case ARM_CPU_VIRQ:
386     case ARM_CPU_VFIQ:
387         assert(arm_feature(env, ARM_FEATURE_EL2));
388         /* fall through */
389     case ARM_CPU_IRQ:
390     case ARM_CPU_FIQ:
391         if (level) {
392             cpu_interrupt(cs, mask[irq]);
393         } else {
394             cpu_reset_interrupt(cs, mask[irq]);
395         }
396         break;
397     default:
398         g_assert_not_reached();
399     }
400 }
401 
402 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
403 {
404 #ifdef CONFIG_KVM
405     ARMCPU *cpu = opaque;
406     CPUState *cs = CPU(cpu);
407     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
408 
409     switch (irq) {
410     case ARM_CPU_IRQ:
411         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
412         break;
413     case ARM_CPU_FIQ:
414         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
415         break;
416     default:
417         g_assert_not_reached();
418     }
419     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
420     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
421 #endif
422 }
423 
424 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
425 {
426     ARMCPU *cpu = ARM_CPU(cs);
427     CPUARMState *env = &cpu->env;
428 
429     cpu_synchronize_state(cs);
430     return arm_cpu_data_is_big_endian(env);
431 }
432 
433 #endif
434 
435 static inline void set_feature(CPUARMState *env, int feature)
436 {
437     env->features |= 1ULL << feature;
438 }
439 
440 static inline void unset_feature(CPUARMState *env, int feature)
441 {
442     env->features &= ~(1ULL << feature);
443 }
444 
445 static int
446 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
447 {
448   return print_insn_arm(pc | 1, info);
449 }
450 
451 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
452                                 int length, struct disassemble_info *info)
453 {
454     assert(info->read_memory_inner_func);
455     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
456 
457     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
458         assert(info->endian == BFD_ENDIAN_LITTLE);
459         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
460                                             info);
461     } else {
462         return info->read_memory_inner_func(memaddr, b, length, info);
463     }
464 }
465 
466 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
467 {
468     ARMCPU *ac = ARM_CPU(cpu);
469     CPUARMState *env = &ac->env;
470 
471     if (is_a64(env)) {
472         /* We might not be compiled with the A64 disassembler
473          * because it needs a C++ compiler. Leave print_insn
474          * unset in this case to use the caller default behaviour.
475          */
476 #if defined(CONFIG_ARM_A64_DIS)
477         info->print_insn = print_insn_arm_a64;
478 #endif
479     } else if (env->thumb) {
480         info->print_insn = print_insn_thumb1;
481     } else {
482         info->print_insn = print_insn_arm;
483     }
484     if (bswap_code(arm_sctlr_b(env))) {
485 #ifdef TARGET_WORDS_BIGENDIAN
486         info->endian = BFD_ENDIAN_LITTLE;
487 #else
488         info->endian = BFD_ENDIAN_BIG;
489 #endif
490     }
491     if (info->read_memory_inner_func == NULL) {
492         info->read_memory_inner_func = info->read_memory_func;
493         info->read_memory_func = arm_read_memory_func;
494     }
495     info->flags &= ~INSN_ARM_BE32;
496     if (arm_sctlr_b(env)) {
497         info->flags |= INSN_ARM_BE32;
498     }
499 }
500 
501 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
502 {
503     uint32_t Aff1 = idx / clustersz;
504     uint32_t Aff0 = idx % clustersz;
505     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
506 }
507 
508 static void arm_cpu_initfn(Object *obj)
509 {
510     CPUState *cs = CPU(obj);
511     ARMCPU *cpu = ARM_CPU(obj);
512     static bool inited;
513 
514     cs->env_ptr = &cpu->env;
515     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
516                                          g_free, g_free);
517 
518 #ifndef CONFIG_USER_ONLY
519     /* Our inbound IRQ and FIQ lines */
520     if (kvm_enabled()) {
521         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
522          * the same interface as non-KVM CPUs.
523          */
524         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
525     } else {
526         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
527     }
528 
529     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
530                                                 arm_gt_ptimer_cb, cpu);
531     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
532                                                 arm_gt_vtimer_cb, cpu);
533     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
534                                                 arm_gt_htimer_cb, cpu);
535     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
536                                                 arm_gt_stimer_cb, cpu);
537     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
538                        ARRAY_SIZE(cpu->gt_timer_outputs));
539 
540     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
541                              "gicv3-maintenance-interrupt", 1);
542     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
543                              "pmu-interrupt", 1);
544 #endif
545 
546     /* DTB consumers generally don't in fact care what the 'compatible'
547      * string is, so always provide some string and trust that a hypothetical
548      * picky DTB consumer will also provide a helpful error message.
549      */
550     cpu->dtb_compatible = "qemu,unknown";
551     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
552     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
553 
554     if (tcg_enabled()) {
555         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
556         if (!inited) {
557             inited = true;
558             arm_translate_init();
559         }
560     }
561 }
562 
563 static Property arm_cpu_reset_cbar_property =
564             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
565 
566 static Property arm_cpu_reset_hivecs_property =
567             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
568 
569 static Property arm_cpu_rvbar_property =
570             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
571 
572 static Property arm_cpu_has_el2_property =
573             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
574 
575 static Property arm_cpu_has_el3_property =
576             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
577 
578 static Property arm_cpu_cfgend_property =
579             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
580 
581 /* use property name "pmu" to match other archs and virt tools */
582 static Property arm_cpu_has_pmu_property =
583             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
584 
585 static Property arm_cpu_has_mpu_property =
586             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
587 
588 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
589  * because the CPU initfn will have already set cpu->pmsav7_dregion to
590  * the right value for that particular CPU type, and we don't want
591  * to override that with an incorrect constant value.
592  */
593 static Property arm_cpu_pmsav7_dregion_property =
594             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
595                                            pmsav7_dregion,
596                                            qdev_prop_uint32, uint32_t);
597 
598 static void arm_cpu_post_init(Object *obj)
599 {
600     ARMCPU *cpu = ARM_CPU(obj);
601 
602     /* M profile implies PMSA. We have to do this here rather than
603      * in realize with the other feature-implication checks because
604      * we look at the PMSA bit to see if we should add some properties.
605      */
606     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
607         set_feature(&cpu->env, ARM_FEATURE_PMSA);
608     }
609 
610     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
611         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
612         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
613                                  &error_abort);
614     }
615 
616     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
617         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
618                                  &error_abort);
619     }
620 
621     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
622         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
623                                  &error_abort);
624     }
625 
626     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
627         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
628          * prevent "has_el3" from existing on CPUs which cannot support EL3.
629          */
630         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
631                                  &error_abort);
632 
633 #ifndef CONFIG_USER_ONLY
634         object_property_add_link(obj, "secure-memory",
635                                  TYPE_MEMORY_REGION,
636                                  (Object **)&cpu->secure_memory,
637                                  qdev_prop_allow_set_link_before_realize,
638                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
639                                  &error_abort);
640 #endif
641     }
642 
643     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
644         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
645                                  &error_abort);
646     }
647 
648     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
649         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
650                                  &error_abort);
651     }
652 
653     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
654         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
655                                  &error_abort);
656         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
657             qdev_property_add_static(DEVICE(obj),
658                                      &arm_cpu_pmsav7_dregion_property,
659                                      &error_abort);
660         }
661     }
662 
663     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
664                              &error_abort);
665 }
666 
667 static void arm_cpu_finalizefn(Object *obj)
668 {
669     ARMCPU *cpu = ARM_CPU(obj);
670     g_hash_table_destroy(cpu->cp_regs);
671 }
672 
673 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
674 {
675     CPUState *cs = CPU(dev);
676     ARMCPU *cpu = ARM_CPU(dev);
677     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
678     CPUARMState *env = &cpu->env;
679     int pagebits;
680     Error *local_err = NULL;
681 
682     cpu_exec_realizefn(cs, &local_err);
683     if (local_err != NULL) {
684         error_propagate(errp, local_err);
685         return;
686     }
687 
688     /* Some features automatically imply others: */
689     if (arm_feature(env, ARM_FEATURE_V8)) {
690         set_feature(env, ARM_FEATURE_V7);
691         set_feature(env, ARM_FEATURE_ARM_DIV);
692         set_feature(env, ARM_FEATURE_LPAE);
693     }
694     if (arm_feature(env, ARM_FEATURE_V7)) {
695         set_feature(env, ARM_FEATURE_VAPA);
696         set_feature(env, ARM_FEATURE_THUMB2);
697         set_feature(env, ARM_FEATURE_MPIDR);
698         if (!arm_feature(env, ARM_FEATURE_M)) {
699             set_feature(env, ARM_FEATURE_V6K);
700         } else {
701             set_feature(env, ARM_FEATURE_V6);
702         }
703 
704         /* Always define VBAR for V7 CPUs even if it doesn't exist in
705          * non-EL3 configs. This is needed by some legacy boards.
706          */
707         set_feature(env, ARM_FEATURE_VBAR);
708     }
709     if (arm_feature(env, ARM_FEATURE_V6K)) {
710         set_feature(env, ARM_FEATURE_V6);
711         set_feature(env, ARM_FEATURE_MVFR);
712     }
713     if (arm_feature(env, ARM_FEATURE_V6)) {
714         set_feature(env, ARM_FEATURE_V5);
715         set_feature(env, ARM_FEATURE_JAZELLE);
716         if (!arm_feature(env, ARM_FEATURE_M)) {
717             set_feature(env, ARM_FEATURE_AUXCR);
718         }
719     }
720     if (arm_feature(env, ARM_FEATURE_V5)) {
721         set_feature(env, ARM_FEATURE_V4T);
722     }
723     if (arm_feature(env, ARM_FEATURE_M)) {
724         set_feature(env, ARM_FEATURE_THUMB_DIV);
725     }
726     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
727         set_feature(env, ARM_FEATURE_THUMB_DIV);
728     }
729     if (arm_feature(env, ARM_FEATURE_VFP4)) {
730         set_feature(env, ARM_FEATURE_VFP3);
731         set_feature(env, ARM_FEATURE_VFP_FP16);
732     }
733     if (arm_feature(env, ARM_FEATURE_VFP3)) {
734         set_feature(env, ARM_FEATURE_VFP);
735     }
736     if (arm_feature(env, ARM_FEATURE_LPAE)) {
737         set_feature(env, ARM_FEATURE_V7MP);
738         set_feature(env, ARM_FEATURE_PXN);
739     }
740     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
741         set_feature(env, ARM_FEATURE_CBAR);
742     }
743     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
744         !arm_feature(env, ARM_FEATURE_M)) {
745         set_feature(env, ARM_FEATURE_THUMB_DSP);
746     }
747 
748     if (arm_feature(env, ARM_FEATURE_V7) &&
749         !arm_feature(env, ARM_FEATURE_M) &&
750         !arm_feature(env, ARM_FEATURE_PMSA)) {
751         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
752          * can use 4K pages.
753          */
754         pagebits = 12;
755     } else {
756         /* For CPUs which might have tiny 1K pages, or which have an
757          * MPU and might have small region sizes, stick with 1K pages.
758          */
759         pagebits = 10;
760     }
761     if (!set_preferred_target_page_bits(pagebits)) {
762         /* This can only ever happen for hotplugging a CPU, or if
763          * the board code incorrectly creates a CPU which it has
764          * promised via minimum_page_size that it will not.
765          */
766         error_setg(errp, "This CPU requires a smaller page size than the "
767                    "system is using");
768         return;
769     }
770 
771     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
772      * We don't support setting cluster ID ([16..23]) (known as Aff2
773      * in later ARM ARM versions), or any of the higher affinity level fields,
774      * so these bits always RAZ.
775      */
776     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
777         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
778                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
779     }
780 
781     if (cpu->reset_hivecs) {
782             cpu->reset_sctlr |= (1 << 13);
783     }
784 
785     if (cpu->cfgend) {
786         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
787             cpu->reset_sctlr |= SCTLR_EE;
788         } else {
789             cpu->reset_sctlr |= SCTLR_B;
790         }
791     }
792 
793     if (!cpu->has_el3) {
794         /* If the has_el3 CPU property is disabled then we need to disable the
795          * feature.
796          */
797         unset_feature(env, ARM_FEATURE_EL3);
798 
799         /* Disable the security extension feature bits in the processor feature
800          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
801          */
802         cpu->id_pfr1 &= ~0xf0;
803         cpu->id_aa64pfr0 &= ~0xf000;
804     }
805 
806     if (!cpu->has_el2) {
807         unset_feature(env, ARM_FEATURE_EL2);
808     }
809 
810     if (!cpu->has_pmu) {
811         unset_feature(env, ARM_FEATURE_PMU);
812         cpu->id_aa64dfr0 &= ~0xf00;
813     }
814 
815     if (!arm_feature(env, ARM_FEATURE_EL2)) {
816         /* Disable the hypervisor feature bits in the processor feature
817          * registers if we don't have EL2. These are id_pfr1[15:12] and
818          * id_aa64pfr0_el1[11:8].
819          */
820         cpu->id_aa64pfr0 &= ~0xf00;
821         cpu->id_pfr1 &= ~0xf000;
822     }
823 
824     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
825      * to false or by setting pmsav7-dregion to 0.
826      */
827     if (!cpu->has_mpu) {
828         cpu->pmsav7_dregion = 0;
829     }
830     if (cpu->pmsav7_dregion == 0) {
831         cpu->has_mpu = false;
832     }
833 
834     if (arm_feature(env, ARM_FEATURE_PMSA) &&
835         arm_feature(env, ARM_FEATURE_V7)) {
836         uint32_t nr = cpu->pmsav7_dregion;
837 
838         if (nr > 0xff) {
839             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
840             return;
841         }
842 
843         if (nr) {
844             if (arm_feature(env, ARM_FEATURE_V8)) {
845                 /* PMSAv8 */
846                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
847                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
848                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
849                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
850                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
851                 }
852             } else {
853                 env->pmsav7.drbar = g_new0(uint32_t, nr);
854                 env->pmsav7.drsr = g_new0(uint32_t, nr);
855                 env->pmsav7.dracr = g_new0(uint32_t, nr);
856             }
857         }
858     }
859 
860     if (arm_feature(env, ARM_FEATURE_EL3)) {
861         set_feature(env, ARM_FEATURE_VBAR);
862     }
863 
864     register_cp_regs_for_features(cpu);
865     arm_cpu_register_gdb_regs_for_features(cpu);
866 
867     init_cpreg_list(cpu);
868 
869 #ifndef CONFIG_USER_ONLY
870     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
871         AddressSpace *as;
872 
873         cs->num_ases = 2;
874 
875         if (!cpu->secure_memory) {
876             cpu->secure_memory = cs->memory;
877         }
878         as = address_space_init_shareable(cpu->secure_memory,
879                                           "cpu-secure-memory");
880         cpu_address_space_init(cs, as, ARMASIdx_S);
881     } else {
882         cs->num_ases = 1;
883     }
884 
885     cpu_address_space_init(cs,
886                            address_space_init_shareable(cs->memory,
887                                                         "cpu-memory"),
888                            ARMASIdx_NS);
889 #endif
890 
891     qemu_init_vcpu(cs);
892     cpu_reset(cs);
893 
894     acc->parent_realize(dev, errp);
895 }
896 
897 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
898 {
899     ObjectClass *oc;
900     char *typename;
901     char **cpuname;
902 
903     if (!cpu_model) {
904         return NULL;
905     }
906 
907     cpuname = g_strsplit(cpu_model, ",", 1);
908     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
909     oc = object_class_by_name(typename);
910     g_strfreev(cpuname);
911     g_free(typename);
912     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
913         object_class_is_abstract(oc)) {
914         return NULL;
915     }
916     return oc;
917 }
918 
919 /* CPU models. These are not needed for the AArch64 linux-user build. */
920 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
921 
922 static void arm926_initfn(Object *obj)
923 {
924     ARMCPU *cpu = ARM_CPU(obj);
925 
926     cpu->dtb_compatible = "arm,arm926";
927     set_feature(&cpu->env, ARM_FEATURE_V5);
928     set_feature(&cpu->env, ARM_FEATURE_VFP);
929     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
930     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
931     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
932     cpu->midr = 0x41069265;
933     cpu->reset_fpsid = 0x41011090;
934     cpu->ctr = 0x1dd20d2;
935     cpu->reset_sctlr = 0x00090078;
936 }
937 
938 static void arm946_initfn(Object *obj)
939 {
940     ARMCPU *cpu = ARM_CPU(obj);
941 
942     cpu->dtb_compatible = "arm,arm946";
943     set_feature(&cpu->env, ARM_FEATURE_V5);
944     set_feature(&cpu->env, ARM_FEATURE_PMSA);
945     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
946     cpu->midr = 0x41059461;
947     cpu->ctr = 0x0f004006;
948     cpu->reset_sctlr = 0x00000078;
949 }
950 
951 static void arm1026_initfn(Object *obj)
952 {
953     ARMCPU *cpu = ARM_CPU(obj);
954 
955     cpu->dtb_compatible = "arm,arm1026";
956     set_feature(&cpu->env, ARM_FEATURE_V5);
957     set_feature(&cpu->env, ARM_FEATURE_VFP);
958     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
959     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
960     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
961     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
962     cpu->midr = 0x4106a262;
963     cpu->reset_fpsid = 0x410110a0;
964     cpu->ctr = 0x1dd20d2;
965     cpu->reset_sctlr = 0x00090078;
966     cpu->reset_auxcr = 1;
967     {
968         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
969         ARMCPRegInfo ifar = {
970             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
971             .access = PL1_RW,
972             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
973             .resetvalue = 0
974         };
975         define_one_arm_cp_reg(cpu, &ifar);
976     }
977 }
978 
979 static void arm1136_r2_initfn(Object *obj)
980 {
981     ARMCPU *cpu = ARM_CPU(obj);
982     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
983      * older core than plain "arm1136". In particular this does not
984      * have the v6K features.
985      * These ID register values are correct for 1136 but may be wrong
986      * for 1136_r2 (in particular r0p2 does not actually implement most
987      * of the ID registers).
988      */
989 
990     cpu->dtb_compatible = "arm,arm1136";
991     set_feature(&cpu->env, ARM_FEATURE_V6);
992     set_feature(&cpu->env, ARM_FEATURE_VFP);
993     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
994     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
995     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
996     cpu->midr = 0x4107b362;
997     cpu->reset_fpsid = 0x410120b4;
998     cpu->mvfr0 = 0x11111111;
999     cpu->mvfr1 = 0x00000000;
1000     cpu->ctr = 0x1dd20d2;
1001     cpu->reset_sctlr = 0x00050078;
1002     cpu->id_pfr0 = 0x111;
1003     cpu->id_pfr1 = 0x1;
1004     cpu->id_dfr0 = 0x2;
1005     cpu->id_afr0 = 0x3;
1006     cpu->id_mmfr0 = 0x01130003;
1007     cpu->id_mmfr1 = 0x10030302;
1008     cpu->id_mmfr2 = 0x01222110;
1009     cpu->id_isar0 = 0x00140011;
1010     cpu->id_isar1 = 0x12002111;
1011     cpu->id_isar2 = 0x11231111;
1012     cpu->id_isar3 = 0x01102131;
1013     cpu->id_isar4 = 0x141;
1014     cpu->reset_auxcr = 7;
1015 }
1016 
1017 static void arm1136_initfn(Object *obj)
1018 {
1019     ARMCPU *cpu = ARM_CPU(obj);
1020 
1021     cpu->dtb_compatible = "arm,arm1136";
1022     set_feature(&cpu->env, ARM_FEATURE_V6K);
1023     set_feature(&cpu->env, ARM_FEATURE_V6);
1024     set_feature(&cpu->env, ARM_FEATURE_VFP);
1025     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1026     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1027     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1028     cpu->midr = 0x4117b363;
1029     cpu->reset_fpsid = 0x410120b4;
1030     cpu->mvfr0 = 0x11111111;
1031     cpu->mvfr1 = 0x00000000;
1032     cpu->ctr = 0x1dd20d2;
1033     cpu->reset_sctlr = 0x00050078;
1034     cpu->id_pfr0 = 0x111;
1035     cpu->id_pfr1 = 0x1;
1036     cpu->id_dfr0 = 0x2;
1037     cpu->id_afr0 = 0x3;
1038     cpu->id_mmfr0 = 0x01130003;
1039     cpu->id_mmfr1 = 0x10030302;
1040     cpu->id_mmfr2 = 0x01222110;
1041     cpu->id_isar0 = 0x00140011;
1042     cpu->id_isar1 = 0x12002111;
1043     cpu->id_isar2 = 0x11231111;
1044     cpu->id_isar3 = 0x01102131;
1045     cpu->id_isar4 = 0x141;
1046     cpu->reset_auxcr = 7;
1047 }
1048 
1049 static void arm1176_initfn(Object *obj)
1050 {
1051     ARMCPU *cpu = ARM_CPU(obj);
1052 
1053     cpu->dtb_compatible = "arm,arm1176";
1054     set_feature(&cpu->env, ARM_FEATURE_V6K);
1055     set_feature(&cpu->env, ARM_FEATURE_VFP);
1056     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1057     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1058     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1059     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1060     set_feature(&cpu->env, ARM_FEATURE_EL3);
1061     cpu->midr = 0x410fb767;
1062     cpu->reset_fpsid = 0x410120b5;
1063     cpu->mvfr0 = 0x11111111;
1064     cpu->mvfr1 = 0x00000000;
1065     cpu->ctr = 0x1dd20d2;
1066     cpu->reset_sctlr = 0x00050078;
1067     cpu->id_pfr0 = 0x111;
1068     cpu->id_pfr1 = 0x11;
1069     cpu->id_dfr0 = 0x33;
1070     cpu->id_afr0 = 0;
1071     cpu->id_mmfr0 = 0x01130003;
1072     cpu->id_mmfr1 = 0x10030302;
1073     cpu->id_mmfr2 = 0x01222100;
1074     cpu->id_isar0 = 0x0140011;
1075     cpu->id_isar1 = 0x12002111;
1076     cpu->id_isar2 = 0x11231121;
1077     cpu->id_isar3 = 0x01102131;
1078     cpu->id_isar4 = 0x01141;
1079     cpu->reset_auxcr = 7;
1080 }
1081 
1082 static void arm11mpcore_initfn(Object *obj)
1083 {
1084     ARMCPU *cpu = ARM_CPU(obj);
1085 
1086     cpu->dtb_compatible = "arm,arm11mpcore";
1087     set_feature(&cpu->env, ARM_FEATURE_V6K);
1088     set_feature(&cpu->env, ARM_FEATURE_VFP);
1089     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1090     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1091     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1092     cpu->midr = 0x410fb022;
1093     cpu->reset_fpsid = 0x410120b4;
1094     cpu->mvfr0 = 0x11111111;
1095     cpu->mvfr1 = 0x00000000;
1096     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1097     cpu->id_pfr0 = 0x111;
1098     cpu->id_pfr1 = 0x1;
1099     cpu->id_dfr0 = 0;
1100     cpu->id_afr0 = 0x2;
1101     cpu->id_mmfr0 = 0x01100103;
1102     cpu->id_mmfr1 = 0x10020302;
1103     cpu->id_mmfr2 = 0x01222000;
1104     cpu->id_isar0 = 0x00100011;
1105     cpu->id_isar1 = 0x12002111;
1106     cpu->id_isar2 = 0x11221011;
1107     cpu->id_isar3 = 0x01102131;
1108     cpu->id_isar4 = 0x141;
1109     cpu->reset_auxcr = 1;
1110 }
1111 
1112 static void cortex_m3_initfn(Object *obj)
1113 {
1114     ARMCPU *cpu = ARM_CPU(obj);
1115     set_feature(&cpu->env, ARM_FEATURE_V7);
1116     set_feature(&cpu->env, ARM_FEATURE_M);
1117     cpu->midr = 0x410fc231;
1118     cpu->pmsav7_dregion = 8;
1119 }
1120 
1121 static void cortex_m4_initfn(Object *obj)
1122 {
1123     ARMCPU *cpu = ARM_CPU(obj);
1124 
1125     set_feature(&cpu->env, ARM_FEATURE_V7);
1126     set_feature(&cpu->env, ARM_FEATURE_M);
1127     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1128     cpu->midr = 0x410fc240; /* r0p0 */
1129     cpu->pmsav7_dregion = 8;
1130 }
1131 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1132 {
1133     CPUClass *cc = CPU_CLASS(oc);
1134 
1135 #ifndef CONFIG_USER_ONLY
1136     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1137 #endif
1138 
1139     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1140 }
1141 
1142 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1143     /* Dummy the TCM region regs for the moment */
1144     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1145       .access = PL1_RW, .type = ARM_CP_CONST },
1146     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1147       .access = PL1_RW, .type = ARM_CP_CONST },
1148     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1149       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1150     REGINFO_SENTINEL
1151 };
1152 
1153 static void cortex_r5_initfn(Object *obj)
1154 {
1155     ARMCPU *cpu = ARM_CPU(obj);
1156 
1157     set_feature(&cpu->env, ARM_FEATURE_V7);
1158     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1159     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1160     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1161     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1162     cpu->midr = 0x411fc153; /* r1p3 */
1163     cpu->id_pfr0 = 0x0131;
1164     cpu->id_pfr1 = 0x001;
1165     cpu->id_dfr0 = 0x010400;
1166     cpu->id_afr0 = 0x0;
1167     cpu->id_mmfr0 = 0x0210030;
1168     cpu->id_mmfr1 = 0x00000000;
1169     cpu->id_mmfr2 = 0x01200000;
1170     cpu->id_mmfr3 = 0x0211;
1171     cpu->id_isar0 = 0x2101111;
1172     cpu->id_isar1 = 0x13112111;
1173     cpu->id_isar2 = 0x21232141;
1174     cpu->id_isar3 = 0x01112131;
1175     cpu->id_isar4 = 0x0010142;
1176     cpu->id_isar5 = 0x0;
1177     cpu->mp_is_up = true;
1178     cpu->pmsav7_dregion = 16;
1179     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1180 }
1181 
1182 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1183     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1184       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1185     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1186       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1187     REGINFO_SENTINEL
1188 };
1189 
1190 static void cortex_a8_initfn(Object *obj)
1191 {
1192     ARMCPU *cpu = ARM_CPU(obj);
1193 
1194     cpu->dtb_compatible = "arm,cortex-a8";
1195     set_feature(&cpu->env, ARM_FEATURE_V7);
1196     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1197     set_feature(&cpu->env, ARM_FEATURE_NEON);
1198     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1199     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1200     set_feature(&cpu->env, ARM_FEATURE_EL3);
1201     cpu->midr = 0x410fc080;
1202     cpu->reset_fpsid = 0x410330c0;
1203     cpu->mvfr0 = 0x11110222;
1204     cpu->mvfr1 = 0x00011111;
1205     cpu->ctr = 0x82048004;
1206     cpu->reset_sctlr = 0x00c50078;
1207     cpu->id_pfr0 = 0x1031;
1208     cpu->id_pfr1 = 0x11;
1209     cpu->id_dfr0 = 0x400;
1210     cpu->id_afr0 = 0;
1211     cpu->id_mmfr0 = 0x31100003;
1212     cpu->id_mmfr1 = 0x20000000;
1213     cpu->id_mmfr2 = 0x01202000;
1214     cpu->id_mmfr3 = 0x11;
1215     cpu->id_isar0 = 0x00101111;
1216     cpu->id_isar1 = 0x12112111;
1217     cpu->id_isar2 = 0x21232031;
1218     cpu->id_isar3 = 0x11112131;
1219     cpu->id_isar4 = 0x00111142;
1220     cpu->dbgdidr = 0x15141000;
1221     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1222     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1223     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1224     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1225     cpu->reset_auxcr = 2;
1226     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1227 }
1228 
1229 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1230     /* power_control should be set to maximum latency. Again,
1231      * default to 0 and set by private hook
1232      */
1233     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1234       .access = PL1_RW, .resetvalue = 0,
1235       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1236     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1237       .access = PL1_RW, .resetvalue = 0,
1238       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1239     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1240       .access = PL1_RW, .resetvalue = 0,
1241       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1242     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1243       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1244     /* TLB lockdown control */
1245     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1246       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1247     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1248       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1249     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1250       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1251     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1252       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1253     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1254       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1255     REGINFO_SENTINEL
1256 };
1257 
1258 static void cortex_a9_initfn(Object *obj)
1259 {
1260     ARMCPU *cpu = ARM_CPU(obj);
1261 
1262     cpu->dtb_compatible = "arm,cortex-a9";
1263     set_feature(&cpu->env, ARM_FEATURE_V7);
1264     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1265     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1266     set_feature(&cpu->env, ARM_FEATURE_NEON);
1267     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1268     set_feature(&cpu->env, ARM_FEATURE_EL3);
1269     /* Note that A9 supports the MP extensions even for
1270      * A9UP and single-core A9MP (which are both different
1271      * and valid configurations; we don't model A9UP).
1272      */
1273     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1274     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1275     cpu->midr = 0x410fc090;
1276     cpu->reset_fpsid = 0x41033090;
1277     cpu->mvfr0 = 0x11110222;
1278     cpu->mvfr1 = 0x01111111;
1279     cpu->ctr = 0x80038003;
1280     cpu->reset_sctlr = 0x00c50078;
1281     cpu->id_pfr0 = 0x1031;
1282     cpu->id_pfr1 = 0x11;
1283     cpu->id_dfr0 = 0x000;
1284     cpu->id_afr0 = 0;
1285     cpu->id_mmfr0 = 0x00100103;
1286     cpu->id_mmfr1 = 0x20000000;
1287     cpu->id_mmfr2 = 0x01230000;
1288     cpu->id_mmfr3 = 0x00002111;
1289     cpu->id_isar0 = 0x00101111;
1290     cpu->id_isar1 = 0x13112111;
1291     cpu->id_isar2 = 0x21232041;
1292     cpu->id_isar3 = 0x11112131;
1293     cpu->id_isar4 = 0x00111142;
1294     cpu->dbgdidr = 0x35141000;
1295     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1296     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1297     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1298     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1299 }
1300 
1301 #ifndef CONFIG_USER_ONLY
1302 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1303 {
1304     /* Linux wants the number of processors from here.
1305      * Might as well set the interrupt-controller bit too.
1306      */
1307     return ((smp_cpus - 1) << 24) | (1 << 23);
1308 }
1309 #endif
1310 
1311 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1312 #ifndef CONFIG_USER_ONLY
1313     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1314       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1315       .writefn = arm_cp_write_ignore, },
1316 #endif
1317     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1318       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1319     REGINFO_SENTINEL
1320 };
1321 
1322 static void cortex_a7_initfn(Object *obj)
1323 {
1324     ARMCPU *cpu = ARM_CPU(obj);
1325 
1326     cpu->dtb_compatible = "arm,cortex-a7";
1327     set_feature(&cpu->env, ARM_FEATURE_V7);
1328     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1329     set_feature(&cpu->env, ARM_FEATURE_NEON);
1330     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1331     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1332     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1333     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1334     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1335     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1336     set_feature(&cpu->env, ARM_FEATURE_EL3);
1337     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1338     cpu->midr = 0x410fc075;
1339     cpu->reset_fpsid = 0x41023075;
1340     cpu->mvfr0 = 0x10110222;
1341     cpu->mvfr1 = 0x11111111;
1342     cpu->ctr = 0x84448003;
1343     cpu->reset_sctlr = 0x00c50078;
1344     cpu->id_pfr0 = 0x00001131;
1345     cpu->id_pfr1 = 0x00011011;
1346     cpu->id_dfr0 = 0x02010555;
1347     cpu->pmceid0 = 0x00000000;
1348     cpu->pmceid1 = 0x00000000;
1349     cpu->id_afr0 = 0x00000000;
1350     cpu->id_mmfr0 = 0x10101105;
1351     cpu->id_mmfr1 = 0x40000000;
1352     cpu->id_mmfr2 = 0x01240000;
1353     cpu->id_mmfr3 = 0x02102211;
1354     cpu->id_isar0 = 0x01101110;
1355     cpu->id_isar1 = 0x13112111;
1356     cpu->id_isar2 = 0x21232041;
1357     cpu->id_isar3 = 0x11112131;
1358     cpu->id_isar4 = 0x10011142;
1359     cpu->dbgdidr = 0x3515f005;
1360     cpu->clidr = 0x0a200023;
1361     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1362     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1363     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1364     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1365 }
1366 
1367 static void cortex_a15_initfn(Object *obj)
1368 {
1369     ARMCPU *cpu = ARM_CPU(obj);
1370 
1371     cpu->dtb_compatible = "arm,cortex-a15";
1372     set_feature(&cpu->env, ARM_FEATURE_V7);
1373     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1374     set_feature(&cpu->env, ARM_FEATURE_NEON);
1375     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1376     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1377     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1378     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1379     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1380     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1381     set_feature(&cpu->env, ARM_FEATURE_EL3);
1382     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1383     cpu->midr = 0x412fc0f1;
1384     cpu->reset_fpsid = 0x410430f0;
1385     cpu->mvfr0 = 0x10110222;
1386     cpu->mvfr1 = 0x11111111;
1387     cpu->ctr = 0x8444c004;
1388     cpu->reset_sctlr = 0x00c50078;
1389     cpu->id_pfr0 = 0x00001131;
1390     cpu->id_pfr1 = 0x00011011;
1391     cpu->id_dfr0 = 0x02010555;
1392     cpu->pmceid0 = 0x0000000;
1393     cpu->pmceid1 = 0x00000000;
1394     cpu->id_afr0 = 0x00000000;
1395     cpu->id_mmfr0 = 0x10201105;
1396     cpu->id_mmfr1 = 0x20000000;
1397     cpu->id_mmfr2 = 0x01240000;
1398     cpu->id_mmfr3 = 0x02102211;
1399     cpu->id_isar0 = 0x02101110;
1400     cpu->id_isar1 = 0x13112111;
1401     cpu->id_isar2 = 0x21232041;
1402     cpu->id_isar3 = 0x11112131;
1403     cpu->id_isar4 = 0x10011142;
1404     cpu->dbgdidr = 0x3515f021;
1405     cpu->clidr = 0x0a200023;
1406     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1407     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1408     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1409     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1410 }
1411 
1412 static void ti925t_initfn(Object *obj)
1413 {
1414     ARMCPU *cpu = ARM_CPU(obj);
1415     set_feature(&cpu->env, ARM_FEATURE_V4T);
1416     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1417     cpu->midr = ARM_CPUID_TI925T;
1418     cpu->ctr = 0x5109149;
1419     cpu->reset_sctlr = 0x00000070;
1420 }
1421 
1422 static void sa1100_initfn(Object *obj)
1423 {
1424     ARMCPU *cpu = ARM_CPU(obj);
1425 
1426     cpu->dtb_compatible = "intel,sa1100";
1427     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1428     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1429     cpu->midr = 0x4401A11B;
1430     cpu->reset_sctlr = 0x00000070;
1431 }
1432 
1433 static void sa1110_initfn(Object *obj)
1434 {
1435     ARMCPU *cpu = ARM_CPU(obj);
1436     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1437     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1438     cpu->midr = 0x6901B119;
1439     cpu->reset_sctlr = 0x00000070;
1440 }
1441 
1442 static void pxa250_initfn(Object *obj)
1443 {
1444     ARMCPU *cpu = ARM_CPU(obj);
1445 
1446     cpu->dtb_compatible = "marvell,xscale";
1447     set_feature(&cpu->env, ARM_FEATURE_V5);
1448     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1449     cpu->midr = 0x69052100;
1450     cpu->ctr = 0xd172172;
1451     cpu->reset_sctlr = 0x00000078;
1452 }
1453 
1454 static void pxa255_initfn(Object *obj)
1455 {
1456     ARMCPU *cpu = ARM_CPU(obj);
1457 
1458     cpu->dtb_compatible = "marvell,xscale";
1459     set_feature(&cpu->env, ARM_FEATURE_V5);
1460     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1461     cpu->midr = 0x69052d00;
1462     cpu->ctr = 0xd172172;
1463     cpu->reset_sctlr = 0x00000078;
1464 }
1465 
1466 static void pxa260_initfn(Object *obj)
1467 {
1468     ARMCPU *cpu = ARM_CPU(obj);
1469 
1470     cpu->dtb_compatible = "marvell,xscale";
1471     set_feature(&cpu->env, ARM_FEATURE_V5);
1472     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1473     cpu->midr = 0x69052903;
1474     cpu->ctr = 0xd172172;
1475     cpu->reset_sctlr = 0x00000078;
1476 }
1477 
1478 static void pxa261_initfn(Object *obj)
1479 {
1480     ARMCPU *cpu = ARM_CPU(obj);
1481 
1482     cpu->dtb_compatible = "marvell,xscale";
1483     set_feature(&cpu->env, ARM_FEATURE_V5);
1484     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1485     cpu->midr = 0x69052d05;
1486     cpu->ctr = 0xd172172;
1487     cpu->reset_sctlr = 0x00000078;
1488 }
1489 
1490 static void pxa262_initfn(Object *obj)
1491 {
1492     ARMCPU *cpu = ARM_CPU(obj);
1493 
1494     cpu->dtb_compatible = "marvell,xscale";
1495     set_feature(&cpu->env, ARM_FEATURE_V5);
1496     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1497     cpu->midr = 0x69052d06;
1498     cpu->ctr = 0xd172172;
1499     cpu->reset_sctlr = 0x00000078;
1500 }
1501 
1502 static void pxa270a0_initfn(Object *obj)
1503 {
1504     ARMCPU *cpu = ARM_CPU(obj);
1505 
1506     cpu->dtb_compatible = "marvell,xscale";
1507     set_feature(&cpu->env, ARM_FEATURE_V5);
1508     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1509     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1510     cpu->midr = 0x69054110;
1511     cpu->ctr = 0xd172172;
1512     cpu->reset_sctlr = 0x00000078;
1513 }
1514 
1515 static void pxa270a1_initfn(Object *obj)
1516 {
1517     ARMCPU *cpu = ARM_CPU(obj);
1518 
1519     cpu->dtb_compatible = "marvell,xscale";
1520     set_feature(&cpu->env, ARM_FEATURE_V5);
1521     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1522     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1523     cpu->midr = 0x69054111;
1524     cpu->ctr = 0xd172172;
1525     cpu->reset_sctlr = 0x00000078;
1526 }
1527 
1528 static void pxa270b0_initfn(Object *obj)
1529 {
1530     ARMCPU *cpu = ARM_CPU(obj);
1531 
1532     cpu->dtb_compatible = "marvell,xscale";
1533     set_feature(&cpu->env, ARM_FEATURE_V5);
1534     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1535     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1536     cpu->midr = 0x69054112;
1537     cpu->ctr = 0xd172172;
1538     cpu->reset_sctlr = 0x00000078;
1539 }
1540 
1541 static void pxa270b1_initfn(Object *obj)
1542 {
1543     ARMCPU *cpu = ARM_CPU(obj);
1544 
1545     cpu->dtb_compatible = "marvell,xscale";
1546     set_feature(&cpu->env, ARM_FEATURE_V5);
1547     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1548     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1549     cpu->midr = 0x69054113;
1550     cpu->ctr = 0xd172172;
1551     cpu->reset_sctlr = 0x00000078;
1552 }
1553 
1554 static void pxa270c0_initfn(Object *obj)
1555 {
1556     ARMCPU *cpu = ARM_CPU(obj);
1557 
1558     cpu->dtb_compatible = "marvell,xscale";
1559     set_feature(&cpu->env, ARM_FEATURE_V5);
1560     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1561     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1562     cpu->midr = 0x69054114;
1563     cpu->ctr = 0xd172172;
1564     cpu->reset_sctlr = 0x00000078;
1565 }
1566 
1567 static void pxa270c5_initfn(Object *obj)
1568 {
1569     ARMCPU *cpu = ARM_CPU(obj);
1570 
1571     cpu->dtb_compatible = "marvell,xscale";
1572     set_feature(&cpu->env, ARM_FEATURE_V5);
1573     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1574     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1575     cpu->midr = 0x69054117;
1576     cpu->ctr = 0xd172172;
1577     cpu->reset_sctlr = 0x00000078;
1578 }
1579 
1580 #ifdef CONFIG_USER_ONLY
1581 static void arm_any_initfn(Object *obj)
1582 {
1583     ARMCPU *cpu = ARM_CPU(obj);
1584     set_feature(&cpu->env, ARM_FEATURE_V8);
1585     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1586     set_feature(&cpu->env, ARM_FEATURE_NEON);
1587     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1588     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1589     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1590     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1591     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1592     set_feature(&cpu->env, ARM_FEATURE_CRC);
1593     cpu->midr = 0xffffffff;
1594 }
1595 #endif
1596 
1597 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1598 
1599 typedef struct ARMCPUInfo {
1600     const char *name;
1601     void (*initfn)(Object *obj);
1602     void (*class_init)(ObjectClass *oc, void *data);
1603 } ARMCPUInfo;
1604 
1605 static const ARMCPUInfo arm_cpus[] = {
1606 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1607     { .name = "arm926",      .initfn = arm926_initfn },
1608     { .name = "arm946",      .initfn = arm946_initfn },
1609     { .name = "arm1026",     .initfn = arm1026_initfn },
1610     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1611      * older core than plain "arm1136". In particular this does not
1612      * have the v6K features.
1613      */
1614     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1615     { .name = "arm1136",     .initfn = arm1136_initfn },
1616     { .name = "arm1176",     .initfn = arm1176_initfn },
1617     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1618     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1619                              .class_init = arm_v7m_class_init },
1620     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1621                              .class_init = arm_v7m_class_init },
1622     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1623     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1624     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1625     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1626     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1627     { .name = "ti925t",      .initfn = ti925t_initfn },
1628     { .name = "sa1100",      .initfn = sa1100_initfn },
1629     { .name = "sa1110",      .initfn = sa1110_initfn },
1630     { .name = "pxa250",      .initfn = pxa250_initfn },
1631     { .name = "pxa255",      .initfn = pxa255_initfn },
1632     { .name = "pxa260",      .initfn = pxa260_initfn },
1633     { .name = "pxa261",      .initfn = pxa261_initfn },
1634     { .name = "pxa262",      .initfn = pxa262_initfn },
1635     /* "pxa270" is an alias for "pxa270-a0" */
1636     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1637     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1638     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1639     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1640     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1641     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1642     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1643 #ifdef CONFIG_USER_ONLY
1644     { .name = "any",         .initfn = arm_any_initfn },
1645 #endif
1646 #endif
1647     { .name = NULL }
1648 };
1649 
1650 static Property arm_cpu_properties[] = {
1651     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1652     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1653     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1654     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1655                         mp_affinity, ARM64_AFFINITY_INVALID),
1656     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1657     DEFINE_PROP_END_OF_LIST()
1658 };
1659 
1660 #ifdef CONFIG_USER_ONLY
1661 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1662                                     int mmu_idx)
1663 {
1664     ARMCPU *cpu = ARM_CPU(cs);
1665     CPUARMState *env = &cpu->env;
1666 
1667     env->exception.vaddress = address;
1668     if (rw == 2) {
1669         cs->exception_index = EXCP_PREFETCH_ABORT;
1670     } else {
1671         cs->exception_index = EXCP_DATA_ABORT;
1672     }
1673     return 1;
1674 }
1675 #endif
1676 
1677 static gchar *arm_gdb_arch_name(CPUState *cs)
1678 {
1679     ARMCPU *cpu = ARM_CPU(cs);
1680     CPUARMState *env = &cpu->env;
1681 
1682     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1683         return g_strdup("iwmmxt");
1684     }
1685     return g_strdup("arm");
1686 }
1687 
1688 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1689 {
1690     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1691     CPUClass *cc = CPU_CLASS(acc);
1692     DeviceClass *dc = DEVICE_CLASS(oc);
1693 
1694     acc->parent_realize = dc->realize;
1695     dc->realize = arm_cpu_realizefn;
1696     dc->props = arm_cpu_properties;
1697 
1698     acc->parent_reset = cc->reset;
1699     cc->reset = arm_cpu_reset;
1700 
1701     cc->class_by_name = arm_cpu_class_by_name;
1702     cc->has_work = arm_cpu_has_work;
1703     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1704     cc->dump_state = arm_cpu_dump_state;
1705     cc->set_pc = arm_cpu_set_pc;
1706     cc->gdb_read_register = arm_cpu_gdb_read_register;
1707     cc->gdb_write_register = arm_cpu_gdb_write_register;
1708 #ifdef CONFIG_USER_ONLY
1709     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1710 #else
1711     cc->do_interrupt = arm_cpu_do_interrupt;
1712     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1713     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1714     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1715     cc->asidx_from_attrs = arm_asidx_from_attrs;
1716     cc->vmsd = &vmstate_arm_cpu;
1717     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1718     cc->write_elf64_note = arm_cpu_write_elf64_note;
1719     cc->write_elf32_note = arm_cpu_write_elf32_note;
1720 #endif
1721     cc->gdb_num_core_regs = 26;
1722     cc->gdb_core_xml_file = "arm-core.xml";
1723     cc->gdb_arch_name = arm_gdb_arch_name;
1724     cc->gdb_stop_before_watchpoint = true;
1725     cc->debug_excp_handler = arm_debug_excp_handler;
1726     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1727 #if !defined(CONFIG_USER_ONLY)
1728     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1729 #endif
1730 
1731     cc->disas_set_info = arm_disas_set_info;
1732 }
1733 
1734 static void cpu_register(const ARMCPUInfo *info)
1735 {
1736     TypeInfo type_info = {
1737         .parent = TYPE_ARM_CPU,
1738         .instance_size = sizeof(ARMCPU),
1739         .instance_init = info->initfn,
1740         .class_size = sizeof(ARMCPUClass),
1741         .class_init = info->class_init,
1742     };
1743 
1744     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1745     type_register(&type_info);
1746     g_free((void *)type_info.name);
1747 }
1748 
1749 static const TypeInfo arm_cpu_type_info = {
1750     .name = TYPE_ARM_CPU,
1751     .parent = TYPE_CPU,
1752     .instance_size = sizeof(ARMCPU),
1753     .instance_init = arm_cpu_initfn,
1754     .instance_post_init = arm_cpu_post_init,
1755     .instance_finalize = arm_cpu_finalizefn,
1756     .abstract = true,
1757     .class_size = sizeof(ARMCPUClass),
1758     .class_init = arm_cpu_class_init,
1759 };
1760 
1761 static void arm_cpu_register_types(void)
1762 {
1763     const ARMCPUInfo *info = arm_cpus;
1764 
1765     type_register_static(&arm_cpu_type_info);
1766 
1767     while (info->name) {
1768         cpu_register(info);
1769         info++;
1770     }
1771 }
1772 
1773 type_init(arm_cpu_register_types)
1774