xref: /openbmc/qemu/target/arm/cpu.c (revision 98e56ae6)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191 
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202 
203     /*
204      * If the highest available EL is EL2, AArch32 will start in Hyp
205      * mode; otherwise it starts in SVC. Note that if we start in
206      * AArch64 then these values in the uncached_cpsr will be ignored.
207      */
208     if (arm_feature(env, ARM_FEATURE_EL2) &&
209         !arm_feature(env, ARM_FEATURE_EL3)) {
210         env->uncached_cpsr = ARM_CPU_MODE_HYP;
211     } else {
212         env->uncached_cpsr = ARM_CPU_MODE_SVC;
213     }
214     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         uint32_t initial_msp; /* Loaded from 0x0 */
218         uint32_t initial_pc; /* Loaded from 0x4 */
219         uint8_t *rom;
220         uint32_t vecbase;
221 
222         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223             env->v7m.secure = true;
224         } else {
225             /* This bit resets to 0 if security is supported, but 1 if
226              * it is not. The bit is not present in v7M, but we set it
227              * here so we can avoid having to make checks on it conditional
228              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
229              */
230             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
231         }
232 
233         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234          * that it resets to 1, so QEMU always does that rather than making
235          * it dependent on CPU model. In v8M it is RES1.
236          */
237         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239         if (arm_feature(env, ARM_FEATURE_V8)) {
240             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
243         }
244         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
247         }
248 
249         /* Unlike A/R profile, M profile defines the reset LR value */
250         env->regs[14] = 0xffffffff;
251 
252         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
253 
254         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255         vecbase = env->v7m.vecbase[env->v7m.secure];
256         rom = rom_ptr(vecbase, 8);
257         if (rom) {
258             /* Address zero is covered by ROM which hasn't yet been
259              * copied into physical memory.
260              */
261             initial_msp = ldl_p(rom);
262             initial_pc = ldl_p(rom + 4);
263         } else {
264             /* Address zero not covered by a ROM blob, or the ROM blob
265              * is in non-modifiable memory and this is a second reset after
266              * it got copied into memory. In the latter case, rom_ptr
267              * will return a NULL pointer and we should use ldl_phys instead.
268              */
269             initial_msp = ldl_phys(s->as, vecbase);
270             initial_pc = ldl_phys(s->as, vecbase + 4);
271         }
272 
273         env->regs[13] = initial_msp & 0xFFFFFFFC;
274         env->regs[15] = initial_pc & ~1;
275         env->thumb = initial_pc & 1;
276     }
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     /* M profile requires that reset clears the exclusive monitor;
287      * A profile does not, but clearing it makes more sense than having it
288      * set with an exclusive access on address zero.
289      */
290     arm_clear_exclusive(env);
291 
292     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
294 
295     if (arm_feature(env, ARM_FEATURE_PMSA)) {
296         if (cpu->pmsav7_dregion > 0) {
297             if (arm_feature(env, ARM_FEATURE_V8)) {
298                 memset(env->pmsav8.rbar[M_REG_NS], 0,
299                        sizeof(*env->pmsav8.rbar[M_REG_NS])
300                        * cpu->pmsav7_dregion);
301                 memset(env->pmsav8.rlar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rlar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305                     memset(env->pmsav8.rbar[M_REG_S], 0,
306                            sizeof(*env->pmsav8.rbar[M_REG_S])
307                            * cpu->pmsav7_dregion);
308                     memset(env->pmsav8.rlar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rlar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                 }
312             } else if (arm_feature(env, ARM_FEATURE_V7)) {
313                 memset(env->pmsav7.drbar, 0,
314                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315                 memset(env->pmsav7.drsr, 0,
316                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317                 memset(env->pmsav7.dracr, 0,
318                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
319             }
320         }
321         env->pmsav7.rnr[M_REG_NS] = 0;
322         env->pmsav7.rnr[M_REG_S] = 0;
323         env->pmsav8.mair0[M_REG_NS] = 0;
324         env->pmsav8.mair0[M_REG_S] = 0;
325         env->pmsav8.mair1[M_REG_NS] = 0;
326         env->pmsav8.mair1[M_REG_S] = 0;
327     }
328 
329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330         if (cpu->sau_sregion > 0) {
331             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
333         }
334         env->sau.rnr = 0;
335         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336          * the Cortex-M33 does.
337          */
338         env->sau.ctrl = 0;
339     }
340 
341     set_flush_to_zero(1, &env->vfp.standard_fp_status);
342     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343     set_default_nan_mode(1, &env->vfp.standard_fp_status);
344     set_float_detect_tininess(float_tininess_before_rounding,
345                               &env->vfp.fp_status);
346     set_float_detect_tininess(float_tininess_before_rounding,
347                               &env->vfp.standard_fp_status);
348     set_float_detect_tininess(float_tininess_before_rounding,
349                               &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351     if (kvm_enabled()) {
352         kvm_arm_reset_vcpu(cpu);
353     }
354 #endif
355 
356     hw_breakpoint_update_all(cpu);
357     hw_watchpoint_update_all(cpu);
358 }
359 
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     CPUARMState *env = cs->env_ptr;
364     uint32_t cur_el = arm_current_el(env);
365     bool secure = arm_is_secure(env);
366     uint32_t target_el;
367     uint32_t excp_idx;
368     bool ret = false;
369 
370     if (interrupt_request & CPU_INTERRUPT_FIQ) {
371         excp_idx = EXCP_FIQ;
372         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374             cs->exception_index = excp_idx;
375             env->exception.target_el = target_el;
376             cc->do_interrupt(cs);
377             ret = true;
378         }
379     }
380     if (interrupt_request & CPU_INTERRUPT_HARD) {
381         excp_idx = EXCP_IRQ;
382         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384             cs->exception_index = excp_idx;
385             env->exception.target_el = target_el;
386             cc->do_interrupt(cs);
387             ret = true;
388         }
389     }
390     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391         excp_idx = EXCP_VIRQ;
392         target_el = 1;
393         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394             cs->exception_index = excp_idx;
395             env->exception.target_el = target_el;
396             cc->do_interrupt(cs);
397             ret = true;
398         }
399     }
400     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401         excp_idx = EXCP_VFIQ;
402         target_el = 1;
403         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404             cs->exception_index = excp_idx;
405             env->exception.target_el = target_el;
406             cc->do_interrupt(cs);
407             ret = true;
408         }
409     }
410 
411     return ret;
412 }
413 
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
416 {
417     CPUClass *cc = CPU_GET_CLASS(cs);
418     ARMCPU *cpu = ARM_CPU(cs);
419     CPUARMState *env = &cpu->env;
420     bool ret = false;
421 
422     /* ARMv7-M interrupt masking works differently than -A or -R.
423      * There is no FIQ/IRQ distinction. Instead of I and F bits
424      * masking FIQ and IRQ interrupts, an exception is taken only
425      * if it is higher priority than the current execution priority
426      * (which depends on state like BASEPRI, FAULTMASK and the
427      * currently active exception).
428      */
429     if (interrupt_request & CPU_INTERRUPT_HARD
430         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431         cs->exception_index = EXCP_IRQ;
432         cc->do_interrupt(cs);
433         ret = true;
434     }
435     return ret;
436 }
437 #endif
438 
439 void arm_cpu_update_virq(ARMCPU *cpu)
440 {
441     /*
442      * Update the interrupt level for VIRQ, which is the logical OR of
443      * the HCR_EL2.VI bit and the input line level from the GIC.
444      */
445     CPUARMState *env = &cpu->env;
446     CPUState *cs = CPU(cpu);
447 
448     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
449         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
450 
451     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
452         if (new_state) {
453             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
454         } else {
455             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
456         }
457     }
458 }
459 
460 void arm_cpu_update_vfiq(ARMCPU *cpu)
461 {
462     /*
463      * Update the interrupt level for VFIQ, which is the logical OR of
464      * the HCR_EL2.VF bit and the input line level from the GIC.
465      */
466     CPUARMState *env = &cpu->env;
467     CPUState *cs = CPU(cpu);
468 
469     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
470         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
471 
472     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
473         if (new_state) {
474             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
475         } else {
476             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
477         }
478     }
479 }
480 
481 #ifndef CONFIG_USER_ONLY
482 static void arm_cpu_set_irq(void *opaque, int irq, int level)
483 {
484     ARMCPU *cpu = opaque;
485     CPUARMState *env = &cpu->env;
486     CPUState *cs = CPU(cpu);
487     static const int mask[] = {
488         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
489         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
490         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
491         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
492     };
493 
494     if (level) {
495         env->irq_line_state |= mask[irq];
496     } else {
497         env->irq_line_state &= ~mask[irq];
498     }
499 
500     switch (irq) {
501     case ARM_CPU_VIRQ:
502         assert(arm_feature(env, ARM_FEATURE_EL2));
503         arm_cpu_update_virq(cpu);
504         break;
505     case ARM_CPU_VFIQ:
506         assert(arm_feature(env, ARM_FEATURE_EL2));
507         arm_cpu_update_vfiq(cpu);
508         break;
509     case ARM_CPU_IRQ:
510     case ARM_CPU_FIQ:
511         if (level) {
512             cpu_interrupt(cs, mask[irq]);
513         } else {
514             cpu_reset_interrupt(cs, mask[irq]);
515         }
516         break;
517     default:
518         g_assert_not_reached();
519     }
520 }
521 
522 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
523 {
524 #ifdef CONFIG_KVM
525     ARMCPU *cpu = opaque;
526     CPUARMState *env = &cpu->env;
527     CPUState *cs = CPU(cpu);
528     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
529     uint32_t linestate_bit;
530 
531     switch (irq) {
532     case ARM_CPU_IRQ:
533         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
534         linestate_bit = CPU_INTERRUPT_HARD;
535         break;
536     case ARM_CPU_FIQ:
537         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
538         linestate_bit = CPU_INTERRUPT_FIQ;
539         break;
540     default:
541         g_assert_not_reached();
542     }
543 
544     if (level) {
545         env->irq_line_state |= linestate_bit;
546     } else {
547         env->irq_line_state &= ~linestate_bit;
548     }
549 
550     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
551     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
552 #endif
553 }
554 
555 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
556 {
557     ARMCPU *cpu = ARM_CPU(cs);
558     CPUARMState *env = &cpu->env;
559 
560     cpu_synchronize_state(cs);
561     return arm_cpu_data_is_big_endian(env);
562 }
563 
564 #endif
565 
566 static inline void set_feature(CPUARMState *env, int feature)
567 {
568     env->features |= 1ULL << feature;
569 }
570 
571 static inline void unset_feature(CPUARMState *env, int feature)
572 {
573     env->features &= ~(1ULL << feature);
574 }
575 
576 static int
577 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
578 {
579   return print_insn_arm(pc | 1, info);
580 }
581 
582 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
583 {
584     ARMCPU *ac = ARM_CPU(cpu);
585     CPUARMState *env = &ac->env;
586     bool sctlr_b;
587 
588     if (is_a64(env)) {
589         /* We might not be compiled with the A64 disassembler
590          * because it needs a C++ compiler. Leave print_insn
591          * unset in this case to use the caller default behaviour.
592          */
593 #if defined(CONFIG_ARM_A64_DIS)
594         info->print_insn = print_insn_arm_a64;
595 #endif
596         info->cap_arch = CS_ARCH_ARM64;
597         info->cap_insn_unit = 4;
598         info->cap_insn_split = 4;
599     } else {
600         int cap_mode;
601         if (env->thumb) {
602             info->print_insn = print_insn_thumb1;
603             info->cap_insn_unit = 2;
604             info->cap_insn_split = 4;
605             cap_mode = CS_MODE_THUMB;
606         } else {
607             info->print_insn = print_insn_arm;
608             info->cap_insn_unit = 4;
609             info->cap_insn_split = 4;
610             cap_mode = CS_MODE_ARM;
611         }
612         if (arm_feature(env, ARM_FEATURE_V8)) {
613             cap_mode |= CS_MODE_V8;
614         }
615         if (arm_feature(env, ARM_FEATURE_M)) {
616             cap_mode |= CS_MODE_MCLASS;
617         }
618         info->cap_arch = CS_ARCH_ARM;
619         info->cap_mode = cap_mode;
620     }
621 
622     sctlr_b = arm_sctlr_b(env);
623     if (bswap_code(sctlr_b)) {
624 #ifdef TARGET_WORDS_BIGENDIAN
625         info->endian = BFD_ENDIAN_LITTLE;
626 #else
627         info->endian = BFD_ENDIAN_BIG;
628 #endif
629     }
630     info->flags &= ~INSN_ARM_BE32;
631 #ifndef CONFIG_USER_ONLY
632     if (sctlr_b) {
633         info->flags |= INSN_ARM_BE32;
634     }
635 #endif
636 }
637 
638 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
639 {
640     uint32_t Aff1 = idx / clustersz;
641     uint32_t Aff0 = idx % clustersz;
642     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
643 }
644 
645 static void cpreg_hashtable_data_destroy(gpointer data)
646 {
647     /*
648      * Destroy function for cpu->cp_regs hashtable data entries.
649      * We must free the name string because it was g_strdup()ed in
650      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
651      * from r->name because we know we definitely allocated it.
652      */
653     ARMCPRegInfo *r = data;
654 
655     g_free((void *)r->name);
656     g_free(r);
657 }
658 
659 static void arm_cpu_initfn(Object *obj)
660 {
661     CPUState *cs = CPU(obj);
662     ARMCPU *cpu = ARM_CPU(obj);
663 
664     cs->env_ptr = &cpu->env;
665     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
666                                          g_free, cpreg_hashtable_data_destroy);
667 
668     QLIST_INIT(&cpu->pre_el_change_hooks);
669     QLIST_INIT(&cpu->el_change_hooks);
670 
671 #ifndef CONFIG_USER_ONLY
672     /* Our inbound IRQ and FIQ lines */
673     if (kvm_enabled()) {
674         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
675          * the same interface as non-KVM CPUs.
676          */
677         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
678     } else {
679         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
680     }
681 
682     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
683                        ARRAY_SIZE(cpu->gt_timer_outputs));
684 
685     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
686                              "gicv3-maintenance-interrupt", 1);
687     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
688                              "pmu-interrupt", 1);
689 #endif
690 
691     /* DTB consumers generally don't in fact care what the 'compatible'
692      * string is, so always provide some string and trust that a hypothetical
693      * picky DTB consumer will also provide a helpful error message.
694      */
695     cpu->dtb_compatible = "qemu,unknown";
696     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
697     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
698 
699     if (tcg_enabled()) {
700         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
701     }
702 }
703 
704 static Property arm_cpu_reset_cbar_property =
705             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
706 
707 static Property arm_cpu_reset_hivecs_property =
708             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
709 
710 static Property arm_cpu_rvbar_property =
711             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
712 
713 static Property arm_cpu_has_el2_property =
714             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
715 
716 static Property arm_cpu_has_el3_property =
717             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
718 
719 static Property arm_cpu_cfgend_property =
720             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
721 
722 /* use property name "pmu" to match other archs and virt tools */
723 static Property arm_cpu_has_pmu_property =
724             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
725 
726 static Property arm_cpu_has_mpu_property =
727             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
728 
729 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
730  * because the CPU initfn will have already set cpu->pmsav7_dregion to
731  * the right value for that particular CPU type, and we don't want
732  * to override that with an incorrect constant value.
733  */
734 static Property arm_cpu_pmsav7_dregion_property =
735             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
736                                            pmsav7_dregion,
737                                            qdev_prop_uint32, uint32_t);
738 
739 /* M profile: initial value of the Secure VTOR */
740 static Property arm_cpu_initsvtor_property =
741             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
742 
743 void arm_cpu_post_init(Object *obj)
744 {
745     ARMCPU *cpu = ARM_CPU(obj);
746 
747     /* M profile implies PMSA. We have to do this here rather than
748      * in realize with the other feature-implication checks because
749      * we look at the PMSA bit to see if we should add some properties.
750      */
751     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
752         set_feature(&cpu->env, ARM_FEATURE_PMSA);
753     }
754 
755     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
756         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
757         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
758                                  &error_abort);
759     }
760 
761     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
762         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
763                                  &error_abort);
764     }
765 
766     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
767         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
768                                  &error_abort);
769     }
770 
771     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
772         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
773          * prevent "has_el3" from existing on CPUs which cannot support EL3.
774          */
775         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
776                                  &error_abort);
777 
778 #ifndef CONFIG_USER_ONLY
779         object_property_add_link(obj, "secure-memory",
780                                  TYPE_MEMORY_REGION,
781                                  (Object **)&cpu->secure_memory,
782                                  qdev_prop_allow_set_link_before_realize,
783                                  OBJ_PROP_LINK_STRONG,
784                                  &error_abort);
785 #endif
786     }
787 
788     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
789         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
790                                  &error_abort);
791     }
792 
793     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
794         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
795                                  &error_abort);
796     }
797 
798     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
799         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
800                                  &error_abort);
801         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
802             qdev_property_add_static(DEVICE(obj),
803                                      &arm_cpu_pmsav7_dregion_property,
804                                      &error_abort);
805         }
806     }
807 
808     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
809         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
810                                  qdev_prop_allow_set_link_before_realize,
811                                  OBJ_PROP_LINK_STRONG,
812                                  &error_abort);
813         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
814                                  &error_abort);
815     }
816 
817     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
818                              &error_abort);
819 }
820 
821 static void arm_cpu_finalizefn(Object *obj)
822 {
823     ARMCPU *cpu = ARM_CPU(obj);
824     ARMELChangeHook *hook, *next;
825 
826     g_hash_table_destroy(cpu->cp_regs);
827 
828     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
829         QLIST_REMOVE(hook, node);
830         g_free(hook);
831     }
832     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
833         QLIST_REMOVE(hook, node);
834         g_free(hook);
835     }
836 }
837 
838 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
839 {
840     CPUState *cs = CPU(dev);
841     ARMCPU *cpu = ARM_CPU(dev);
842     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
843     CPUARMState *env = &cpu->env;
844     int pagebits;
845     Error *local_err = NULL;
846     bool no_aa32 = false;
847 
848     /* If we needed to query the host kernel for the CPU features
849      * then it's possible that might have failed in the initfn, but
850      * this is the first point where we can report it.
851      */
852     if (cpu->host_cpu_probe_failed) {
853         if (!kvm_enabled()) {
854             error_setg(errp, "The 'host' CPU type can only be used with KVM");
855         } else {
856             error_setg(errp, "Failed to retrieve host CPU features");
857         }
858         return;
859     }
860 
861 #ifndef CONFIG_USER_ONLY
862     /* The NVIC and M-profile CPU are two halves of a single piece of
863      * hardware; trying to use one without the other is a command line
864      * error and will result in segfaults if not caught here.
865      */
866     if (arm_feature(env, ARM_FEATURE_M)) {
867         if (!env->nvic) {
868             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
869             return;
870         }
871     } else {
872         if (env->nvic) {
873             error_setg(errp, "This board can only be used with Cortex-M CPUs");
874             return;
875         }
876     }
877 
878     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
879                                            arm_gt_ptimer_cb, cpu);
880     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
881                                            arm_gt_vtimer_cb, cpu);
882     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
883                                           arm_gt_htimer_cb, cpu);
884     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
885                                           arm_gt_stimer_cb, cpu);
886 #endif
887 
888     cpu_exec_realizefn(cs, &local_err);
889     if (local_err != NULL) {
890         error_propagate(errp, local_err);
891         return;
892     }
893 
894     /* Some features automatically imply others: */
895     if (arm_feature(env, ARM_FEATURE_V8)) {
896         if (arm_feature(env, ARM_FEATURE_M)) {
897             set_feature(env, ARM_FEATURE_V7);
898         } else {
899             set_feature(env, ARM_FEATURE_V7VE);
900         }
901     }
902 
903     /*
904      * There exist AArch64 cpus without AArch32 support.  When KVM
905      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
906      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
907      */
908     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
909         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
910     }
911 
912     if (arm_feature(env, ARM_FEATURE_V7VE)) {
913         /* v7 Virtualization Extensions. In real hardware this implies
914          * EL2 and also the presence of the Security Extensions.
915          * For QEMU, for backwards-compatibility we implement some
916          * CPUs or CPU configs which have no actual EL2 or EL3 but do
917          * include the various other features that V7VE implies.
918          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
919          * Security Extensions is ARM_FEATURE_EL3.
920          */
921         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
922         set_feature(env, ARM_FEATURE_LPAE);
923         set_feature(env, ARM_FEATURE_V7);
924     }
925     if (arm_feature(env, ARM_FEATURE_V7)) {
926         set_feature(env, ARM_FEATURE_VAPA);
927         set_feature(env, ARM_FEATURE_THUMB2);
928         set_feature(env, ARM_FEATURE_MPIDR);
929         if (!arm_feature(env, ARM_FEATURE_M)) {
930             set_feature(env, ARM_FEATURE_V6K);
931         } else {
932             set_feature(env, ARM_FEATURE_V6);
933         }
934 
935         /* Always define VBAR for V7 CPUs even if it doesn't exist in
936          * non-EL3 configs. This is needed by some legacy boards.
937          */
938         set_feature(env, ARM_FEATURE_VBAR);
939     }
940     if (arm_feature(env, ARM_FEATURE_V6K)) {
941         set_feature(env, ARM_FEATURE_V6);
942         set_feature(env, ARM_FEATURE_MVFR);
943     }
944     if (arm_feature(env, ARM_FEATURE_V6)) {
945         set_feature(env, ARM_FEATURE_V5);
946         if (!arm_feature(env, ARM_FEATURE_M)) {
947             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
948             set_feature(env, ARM_FEATURE_AUXCR);
949         }
950     }
951     if (arm_feature(env, ARM_FEATURE_V5)) {
952         set_feature(env, ARM_FEATURE_V4T);
953     }
954     if (arm_feature(env, ARM_FEATURE_VFP4)) {
955         set_feature(env, ARM_FEATURE_VFP3);
956         set_feature(env, ARM_FEATURE_VFP_FP16);
957     }
958     if (arm_feature(env, ARM_FEATURE_VFP3)) {
959         set_feature(env, ARM_FEATURE_VFP);
960     }
961     if (arm_feature(env, ARM_FEATURE_LPAE)) {
962         set_feature(env, ARM_FEATURE_V7MP);
963         set_feature(env, ARM_FEATURE_PXN);
964     }
965     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
966         set_feature(env, ARM_FEATURE_CBAR);
967     }
968     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
969         !arm_feature(env, ARM_FEATURE_M)) {
970         set_feature(env, ARM_FEATURE_THUMB_DSP);
971     }
972 
973     if (arm_feature(env, ARM_FEATURE_V7) &&
974         !arm_feature(env, ARM_FEATURE_M) &&
975         !arm_feature(env, ARM_FEATURE_PMSA)) {
976         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
977          * can use 4K pages.
978          */
979         pagebits = 12;
980     } else {
981         /* For CPUs which might have tiny 1K pages, or which have an
982          * MPU and might have small region sizes, stick with 1K pages.
983          */
984         pagebits = 10;
985     }
986     if (!set_preferred_target_page_bits(pagebits)) {
987         /* This can only ever happen for hotplugging a CPU, or if
988          * the board code incorrectly creates a CPU which it has
989          * promised via minimum_page_size that it will not.
990          */
991         error_setg(errp, "This CPU requires a smaller page size than the "
992                    "system is using");
993         return;
994     }
995 
996     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
997      * We don't support setting cluster ID ([16..23]) (known as Aff2
998      * in later ARM ARM versions), or any of the higher affinity level fields,
999      * so these bits always RAZ.
1000      */
1001     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1002         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1003                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1004     }
1005 
1006     if (cpu->reset_hivecs) {
1007             cpu->reset_sctlr |= (1 << 13);
1008     }
1009 
1010     if (cpu->cfgend) {
1011         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1012             cpu->reset_sctlr |= SCTLR_EE;
1013         } else {
1014             cpu->reset_sctlr |= SCTLR_B;
1015         }
1016     }
1017 
1018     if (!cpu->has_el3) {
1019         /* If the has_el3 CPU property is disabled then we need to disable the
1020          * feature.
1021          */
1022         unset_feature(env, ARM_FEATURE_EL3);
1023 
1024         /* Disable the security extension feature bits in the processor feature
1025          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1026          */
1027         cpu->id_pfr1 &= ~0xf0;
1028         cpu->isar.id_aa64pfr0 &= ~0xf000;
1029     }
1030 
1031     if (!cpu->has_el2) {
1032         unset_feature(env, ARM_FEATURE_EL2);
1033     }
1034 
1035     if (!cpu->has_pmu) {
1036         unset_feature(env, ARM_FEATURE_PMU);
1037         cpu->id_aa64dfr0 &= ~0xf00;
1038     }
1039 
1040     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1041         /* Disable the hypervisor feature bits in the processor feature
1042          * registers if we don't have EL2. These are id_pfr1[15:12] and
1043          * id_aa64pfr0_el1[11:8].
1044          */
1045         cpu->isar.id_aa64pfr0 &= ~0xf00;
1046         cpu->id_pfr1 &= ~0xf000;
1047     }
1048 
1049     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1050      * to false or by setting pmsav7-dregion to 0.
1051      */
1052     if (!cpu->has_mpu) {
1053         cpu->pmsav7_dregion = 0;
1054     }
1055     if (cpu->pmsav7_dregion == 0) {
1056         cpu->has_mpu = false;
1057     }
1058 
1059     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1060         arm_feature(env, ARM_FEATURE_V7)) {
1061         uint32_t nr = cpu->pmsav7_dregion;
1062 
1063         if (nr > 0xff) {
1064             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1065             return;
1066         }
1067 
1068         if (nr) {
1069             if (arm_feature(env, ARM_FEATURE_V8)) {
1070                 /* PMSAv8 */
1071                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1072                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1073                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1074                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1075                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1076                 }
1077             } else {
1078                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1079                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1080                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1081             }
1082         }
1083     }
1084 
1085     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1086         uint32_t nr = cpu->sau_sregion;
1087 
1088         if (nr > 0xff) {
1089             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1090             return;
1091         }
1092 
1093         if (nr) {
1094             env->sau.rbar = g_new0(uint32_t, nr);
1095             env->sau.rlar = g_new0(uint32_t, nr);
1096         }
1097     }
1098 
1099     if (arm_feature(env, ARM_FEATURE_EL3)) {
1100         set_feature(env, ARM_FEATURE_VBAR);
1101     }
1102 
1103     register_cp_regs_for_features(cpu);
1104     arm_cpu_register_gdb_regs_for_features(cpu);
1105 
1106     init_cpreg_list(cpu);
1107 
1108 #ifndef CONFIG_USER_ONLY
1109     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1110         cs->num_ases = 2;
1111 
1112         if (!cpu->secure_memory) {
1113             cpu->secure_memory = cs->memory;
1114         }
1115         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1116                                cpu->secure_memory);
1117     } else {
1118         cs->num_ases = 1;
1119     }
1120     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1121 
1122     /* No core_count specified, default to smp_cpus. */
1123     if (cpu->core_count == -1) {
1124         cpu->core_count = smp_cpus;
1125     }
1126 #endif
1127 
1128     qemu_init_vcpu(cs);
1129     cpu_reset(cs);
1130 
1131     acc->parent_realize(dev, errp);
1132 }
1133 
1134 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1135 {
1136     ObjectClass *oc;
1137     char *typename;
1138     char **cpuname;
1139     const char *cpunamestr;
1140 
1141     cpuname = g_strsplit(cpu_model, ",", 1);
1142     cpunamestr = cpuname[0];
1143 #ifdef CONFIG_USER_ONLY
1144     /* For backwards compatibility usermode emulation allows "-cpu any",
1145      * which has the same semantics as "-cpu max".
1146      */
1147     if (!strcmp(cpunamestr, "any")) {
1148         cpunamestr = "max";
1149     }
1150 #endif
1151     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1152     oc = object_class_by_name(typename);
1153     g_strfreev(cpuname);
1154     g_free(typename);
1155     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1156         object_class_is_abstract(oc)) {
1157         return NULL;
1158     }
1159     return oc;
1160 }
1161 
1162 /* CPU models. These are not needed for the AArch64 linux-user build. */
1163 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1164 
1165 static void arm926_initfn(Object *obj)
1166 {
1167     ARMCPU *cpu = ARM_CPU(obj);
1168 
1169     cpu->dtb_compatible = "arm,arm926";
1170     set_feature(&cpu->env, ARM_FEATURE_V5);
1171     set_feature(&cpu->env, ARM_FEATURE_VFP);
1172     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1173     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1174     cpu->midr = 0x41069265;
1175     cpu->reset_fpsid = 0x41011090;
1176     cpu->ctr = 0x1dd20d2;
1177     cpu->reset_sctlr = 0x00090078;
1178 
1179     /*
1180      * ARMv5 does not have the ID_ISAR registers, but we can still
1181      * set the field to indicate Jazelle support within QEMU.
1182      */
1183     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1184 }
1185 
1186 static void arm946_initfn(Object *obj)
1187 {
1188     ARMCPU *cpu = ARM_CPU(obj);
1189 
1190     cpu->dtb_compatible = "arm,arm946";
1191     set_feature(&cpu->env, ARM_FEATURE_V5);
1192     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1193     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1194     cpu->midr = 0x41059461;
1195     cpu->ctr = 0x0f004006;
1196     cpu->reset_sctlr = 0x00000078;
1197 }
1198 
1199 static void arm1026_initfn(Object *obj)
1200 {
1201     ARMCPU *cpu = ARM_CPU(obj);
1202 
1203     cpu->dtb_compatible = "arm,arm1026";
1204     set_feature(&cpu->env, ARM_FEATURE_V5);
1205     set_feature(&cpu->env, ARM_FEATURE_VFP);
1206     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1207     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1208     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1209     cpu->midr = 0x4106a262;
1210     cpu->reset_fpsid = 0x410110a0;
1211     cpu->ctr = 0x1dd20d2;
1212     cpu->reset_sctlr = 0x00090078;
1213     cpu->reset_auxcr = 1;
1214 
1215     /*
1216      * ARMv5 does not have the ID_ISAR registers, but we can still
1217      * set the field to indicate Jazelle support within QEMU.
1218      */
1219     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1220 
1221     {
1222         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1223         ARMCPRegInfo ifar = {
1224             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1225             .access = PL1_RW,
1226             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1227             .resetvalue = 0
1228         };
1229         define_one_arm_cp_reg(cpu, &ifar);
1230     }
1231 }
1232 
1233 static void arm1136_r2_initfn(Object *obj)
1234 {
1235     ARMCPU *cpu = ARM_CPU(obj);
1236     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1237      * older core than plain "arm1136". In particular this does not
1238      * have the v6K features.
1239      * These ID register values are correct for 1136 but may be wrong
1240      * for 1136_r2 (in particular r0p2 does not actually implement most
1241      * of the ID registers).
1242      */
1243 
1244     cpu->dtb_compatible = "arm,arm1136";
1245     set_feature(&cpu->env, ARM_FEATURE_V6);
1246     set_feature(&cpu->env, ARM_FEATURE_VFP);
1247     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1248     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1249     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1250     cpu->midr = 0x4107b362;
1251     cpu->reset_fpsid = 0x410120b4;
1252     cpu->isar.mvfr0 = 0x11111111;
1253     cpu->isar.mvfr1 = 0x00000000;
1254     cpu->ctr = 0x1dd20d2;
1255     cpu->reset_sctlr = 0x00050078;
1256     cpu->id_pfr0 = 0x111;
1257     cpu->id_pfr1 = 0x1;
1258     cpu->id_dfr0 = 0x2;
1259     cpu->id_afr0 = 0x3;
1260     cpu->id_mmfr0 = 0x01130003;
1261     cpu->id_mmfr1 = 0x10030302;
1262     cpu->id_mmfr2 = 0x01222110;
1263     cpu->isar.id_isar0 = 0x00140011;
1264     cpu->isar.id_isar1 = 0x12002111;
1265     cpu->isar.id_isar2 = 0x11231111;
1266     cpu->isar.id_isar3 = 0x01102131;
1267     cpu->isar.id_isar4 = 0x141;
1268     cpu->reset_auxcr = 7;
1269 }
1270 
1271 static void arm1136_initfn(Object *obj)
1272 {
1273     ARMCPU *cpu = ARM_CPU(obj);
1274 
1275     cpu->dtb_compatible = "arm,arm1136";
1276     set_feature(&cpu->env, ARM_FEATURE_V6K);
1277     set_feature(&cpu->env, ARM_FEATURE_V6);
1278     set_feature(&cpu->env, ARM_FEATURE_VFP);
1279     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1280     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1281     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1282     cpu->midr = 0x4117b363;
1283     cpu->reset_fpsid = 0x410120b4;
1284     cpu->isar.mvfr0 = 0x11111111;
1285     cpu->isar.mvfr1 = 0x00000000;
1286     cpu->ctr = 0x1dd20d2;
1287     cpu->reset_sctlr = 0x00050078;
1288     cpu->id_pfr0 = 0x111;
1289     cpu->id_pfr1 = 0x1;
1290     cpu->id_dfr0 = 0x2;
1291     cpu->id_afr0 = 0x3;
1292     cpu->id_mmfr0 = 0x01130003;
1293     cpu->id_mmfr1 = 0x10030302;
1294     cpu->id_mmfr2 = 0x01222110;
1295     cpu->isar.id_isar0 = 0x00140011;
1296     cpu->isar.id_isar1 = 0x12002111;
1297     cpu->isar.id_isar2 = 0x11231111;
1298     cpu->isar.id_isar3 = 0x01102131;
1299     cpu->isar.id_isar4 = 0x141;
1300     cpu->reset_auxcr = 7;
1301 }
1302 
1303 static void arm1176_initfn(Object *obj)
1304 {
1305     ARMCPU *cpu = ARM_CPU(obj);
1306 
1307     cpu->dtb_compatible = "arm,arm1176";
1308     set_feature(&cpu->env, ARM_FEATURE_V6K);
1309     set_feature(&cpu->env, ARM_FEATURE_VFP);
1310     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1311     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1312     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1313     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1314     set_feature(&cpu->env, ARM_FEATURE_EL3);
1315     cpu->midr = 0x410fb767;
1316     cpu->reset_fpsid = 0x410120b5;
1317     cpu->isar.mvfr0 = 0x11111111;
1318     cpu->isar.mvfr1 = 0x00000000;
1319     cpu->ctr = 0x1dd20d2;
1320     cpu->reset_sctlr = 0x00050078;
1321     cpu->id_pfr0 = 0x111;
1322     cpu->id_pfr1 = 0x11;
1323     cpu->id_dfr0 = 0x33;
1324     cpu->id_afr0 = 0;
1325     cpu->id_mmfr0 = 0x01130003;
1326     cpu->id_mmfr1 = 0x10030302;
1327     cpu->id_mmfr2 = 0x01222100;
1328     cpu->isar.id_isar0 = 0x0140011;
1329     cpu->isar.id_isar1 = 0x12002111;
1330     cpu->isar.id_isar2 = 0x11231121;
1331     cpu->isar.id_isar3 = 0x01102131;
1332     cpu->isar.id_isar4 = 0x01141;
1333     cpu->reset_auxcr = 7;
1334 }
1335 
1336 static void arm11mpcore_initfn(Object *obj)
1337 {
1338     ARMCPU *cpu = ARM_CPU(obj);
1339 
1340     cpu->dtb_compatible = "arm,arm11mpcore";
1341     set_feature(&cpu->env, ARM_FEATURE_V6K);
1342     set_feature(&cpu->env, ARM_FEATURE_VFP);
1343     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1344     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1345     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1346     cpu->midr = 0x410fb022;
1347     cpu->reset_fpsid = 0x410120b4;
1348     cpu->isar.mvfr0 = 0x11111111;
1349     cpu->isar.mvfr1 = 0x00000000;
1350     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1351     cpu->id_pfr0 = 0x111;
1352     cpu->id_pfr1 = 0x1;
1353     cpu->id_dfr0 = 0;
1354     cpu->id_afr0 = 0x2;
1355     cpu->id_mmfr0 = 0x01100103;
1356     cpu->id_mmfr1 = 0x10020302;
1357     cpu->id_mmfr2 = 0x01222000;
1358     cpu->isar.id_isar0 = 0x00100011;
1359     cpu->isar.id_isar1 = 0x12002111;
1360     cpu->isar.id_isar2 = 0x11221011;
1361     cpu->isar.id_isar3 = 0x01102131;
1362     cpu->isar.id_isar4 = 0x141;
1363     cpu->reset_auxcr = 1;
1364 }
1365 
1366 static void cortex_m0_initfn(Object *obj)
1367 {
1368     ARMCPU *cpu = ARM_CPU(obj);
1369     set_feature(&cpu->env, ARM_FEATURE_V6);
1370     set_feature(&cpu->env, ARM_FEATURE_M);
1371 
1372     cpu->midr = 0x410cc200;
1373 }
1374 
1375 static void cortex_m3_initfn(Object *obj)
1376 {
1377     ARMCPU *cpu = ARM_CPU(obj);
1378     set_feature(&cpu->env, ARM_FEATURE_V7);
1379     set_feature(&cpu->env, ARM_FEATURE_M);
1380     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1381     cpu->midr = 0x410fc231;
1382     cpu->pmsav7_dregion = 8;
1383     cpu->id_pfr0 = 0x00000030;
1384     cpu->id_pfr1 = 0x00000200;
1385     cpu->id_dfr0 = 0x00100000;
1386     cpu->id_afr0 = 0x00000000;
1387     cpu->id_mmfr0 = 0x00000030;
1388     cpu->id_mmfr1 = 0x00000000;
1389     cpu->id_mmfr2 = 0x00000000;
1390     cpu->id_mmfr3 = 0x00000000;
1391     cpu->isar.id_isar0 = 0x01141110;
1392     cpu->isar.id_isar1 = 0x02111000;
1393     cpu->isar.id_isar2 = 0x21112231;
1394     cpu->isar.id_isar3 = 0x01111110;
1395     cpu->isar.id_isar4 = 0x01310102;
1396     cpu->isar.id_isar5 = 0x00000000;
1397     cpu->isar.id_isar6 = 0x00000000;
1398 }
1399 
1400 static void cortex_m4_initfn(Object *obj)
1401 {
1402     ARMCPU *cpu = ARM_CPU(obj);
1403 
1404     set_feature(&cpu->env, ARM_FEATURE_V7);
1405     set_feature(&cpu->env, ARM_FEATURE_M);
1406     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1407     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1408     cpu->midr = 0x410fc240; /* r0p0 */
1409     cpu->pmsav7_dregion = 8;
1410     cpu->id_pfr0 = 0x00000030;
1411     cpu->id_pfr1 = 0x00000200;
1412     cpu->id_dfr0 = 0x00100000;
1413     cpu->id_afr0 = 0x00000000;
1414     cpu->id_mmfr0 = 0x00000030;
1415     cpu->id_mmfr1 = 0x00000000;
1416     cpu->id_mmfr2 = 0x00000000;
1417     cpu->id_mmfr3 = 0x00000000;
1418     cpu->isar.id_isar0 = 0x01141110;
1419     cpu->isar.id_isar1 = 0x02111000;
1420     cpu->isar.id_isar2 = 0x21112231;
1421     cpu->isar.id_isar3 = 0x01111110;
1422     cpu->isar.id_isar4 = 0x01310102;
1423     cpu->isar.id_isar5 = 0x00000000;
1424     cpu->isar.id_isar6 = 0x00000000;
1425 }
1426 
1427 static void cortex_m33_initfn(Object *obj)
1428 {
1429     ARMCPU *cpu = ARM_CPU(obj);
1430 
1431     set_feature(&cpu->env, ARM_FEATURE_V8);
1432     set_feature(&cpu->env, ARM_FEATURE_M);
1433     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1434     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1435     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1436     cpu->midr = 0x410fd213; /* r0p3 */
1437     cpu->pmsav7_dregion = 16;
1438     cpu->sau_sregion = 8;
1439     cpu->id_pfr0 = 0x00000030;
1440     cpu->id_pfr1 = 0x00000210;
1441     cpu->id_dfr0 = 0x00200000;
1442     cpu->id_afr0 = 0x00000000;
1443     cpu->id_mmfr0 = 0x00101F40;
1444     cpu->id_mmfr1 = 0x00000000;
1445     cpu->id_mmfr2 = 0x01000000;
1446     cpu->id_mmfr3 = 0x00000000;
1447     cpu->isar.id_isar0 = 0x01101110;
1448     cpu->isar.id_isar1 = 0x02212000;
1449     cpu->isar.id_isar2 = 0x20232232;
1450     cpu->isar.id_isar3 = 0x01111131;
1451     cpu->isar.id_isar4 = 0x01310132;
1452     cpu->isar.id_isar5 = 0x00000000;
1453     cpu->isar.id_isar6 = 0x00000000;
1454     cpu->clidr = 0x00000000;
1455     cpu->ctr = 0x8000c000;
1456 }
1457 
1458 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1459 {
1460     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1461     CPUClass *cc = CPU_CLASS(oc);
1462 
1463     acc->info = data;
1464 #ifndef CONFIG_USER_ONLY
1465     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1466 #endif
1467 
1468     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1469 }
1470 
1471 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1472     /* Dummy the TCM region regs for the moment */
1473     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1474       .access = PL1_RW, .type = ARM_CP_CONST },
1475     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1476       .access = PL1_RW, .type = ARM_CP_CONST },
1477     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1478       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1479     REGINFO_SENTINEL
1480 };
1481 
1482 static void cortex_r5_initfn(Object *obj)
1483 {
1484     ARMCPU *cpu = ARM_CPU(obj);
1485 
1486     set_feature(&cpu->env, ARM_FEATURE_V7);
1487     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1488     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1489     cpu->midr = 0x411fc153; /* r1p3 */
1490     cpu->id_pfr0 = 0x0131;
1491     cpu->id_pfr1 = 0x001;
1492     cpu->id_dfr0 = 0x010400;
1493     cpu->id_afr0 = 0x0;
1494     cpu->id_mmfr0 = 0x0210030;
1495     cpu->id_mmfr1 = 0x00000000;
1496     cpu->id_mmfr2 = 0x01200000;
1497     cpu->id_mmfr3 = 0x0211;
1498     cpu->isar.id_isar0 = 0x02101111;
1499     cpu->isar.id_isar1 = 0x13112111;
1500     cpu->isar.id_isar2 = 0x21232141;
1501     cpu->isar.id_isar3 = 0x01112131;
1502     cpu->isar.id_isar4 = 0x0010142;
1503     cpu->isar.id_isar5 = 0x0;
1504     cpu->isar.id_isar6 = 0x0;
1505     cpu->mp_is_up = true;
1506     cpu->pmsav7_dregion = 16;
1507     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1508 }
1509 
1510 static void cortex_r5f_initfn(Object *obj)
1511 {
1512     ARMCPU *cpu = ARM_CPU(obj);
1513 
1514     cortex_r5_initfn(obj);
1515     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1516 }
1517 
1518 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1519     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1520       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1521     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1522       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1523     REGINFO_SENTINEL
1524 };
1525 
1526 static void cortex_a8_initfn(Object *obj)
1527 {
1528     ARMCPU *cpu = ARM_CPU(obj);
1529 
1530     cpu->dtb_compatible = "arm,cortex-a8";
1531     set_feature(&cpu->env, ARM_FEATURE_V7);
1532     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1533     set_feature(&cpu->env, ARM_FEATURE_NEON);
1534     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1535     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1536     set_feature(&cpu->env, ARM_FEATURE_EL3);
1537     cpu->midr = 0x410fc080;
1538     cpu->reset_fpsid = 0x410330c0;
1539     cpu->isar.mvfr0 = 0x11110222;
1540     cpu->isar.mvfr1 = 0x00011111;
1541     cpu->ctr = 0x82048004;
1542     cpu->reset_sctlr = 0x00c50078;
1543     cpu->id_pfr0 = 0x1031;
1544     cpu->id_pfr1 = 0x11;
1545     cpu->id_dfr0 = 0x400;
1546     cpu->id_afr0 = 0;
1547     cpu->id_mmfr0 = 0x31100003;
1548     cpu->id_mmfr1 = 0x20000000;
1549     cpu->id_mmfr2 = 0x01202000;
1550     cpu->id_mmfr3 = 0x11;
1551     cpu->isar.id_isar0 = 0x00101111;
1552     cpu->isar.id_isar1 = 0x12112111;
1553     cpu->isar.id_isar2 = 0x21232031;
1554     cpu->isar.id_isar3 = 0x11112131;
1555     cpu->isar.id_isar4 = 0x00111142;
1556     cpu->dbgdidr = 0x15141000;
1557     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1558     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1559     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1560     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1561     cpu->reset_auxcr = 2;
1562     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1563 }
1564 
1565 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1566     /* power_control should be set to maximum latency. Again,
1567      * default to 0 and set by private hook
1568      */
1569     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1570       .access = PL1_RW, .resetvalue = 0,
1571       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1572     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1573       .access = PL1_RW, .resetvalue = 0,
1574       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1575     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1576       .access = PL1_RW, .resetvalue = 0,
1577       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1578     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1579       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1580     /* TLB lockdown control */
1581     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1582       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1583     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1584       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1585     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1586       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1587     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1588       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1589     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1590       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1591     REGINFO_SENTINEL
1592 };
1593 
1594 static void cortex_a9_initfn(Object *obj)
1595 {
1596     ARMCPU *cpu = ARM_CPU(obj);
1597 
1598     cpu->dtb_compatible = "arm,cortex-a9";
1599     set_feature(&cpu->env, ARM_FEATURE_V7);
1600     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1601     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1602     set_feature(&cpu->env, ARM_FEATURE_NEON);
1603     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1604     set_feature(&cpu->env, ARM_FEATURE_EL3);
1605     /* Note that A9 supports the MP extensions even for
1606      * A9UP and single-core A9MP (which are both different
1607      * and valid configurations; we don't model A9UP).
1608      */
1609     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1610     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1611     cpu->midr = 0x410fc090;
1612     cpu->reset_fpsid = 0x41033090;
1613     cpu->isar.mvfr0 = 0x11110222;
1614     cpu->isar.mvfr1 = 0x01111111;
1615     cpu->ctr = 0x80038003;
1616     cpu->reset_sctlr = 0x00c50078;
1617     cpu->id_pfr0 = 0x1031;
1618     cpu->id_pfr1 = 0x11;
1619     cpu->id_dfr0 = 0x000;
1620     cpu->id_afr0 = 0;
1621     cpu->id_mmfr0 = 0x00100103;
1622     cpu->id_mmfr1 = 0x20000000;
1623     cpu->id_mmfr2 = 0x01230000;
1624     cpu->id_mmfr3 = 0x00002111;
1625     cpu->isar.id_isar0 = 0x00101111;
1626     cpu->isar.id_isar1 = 0x13112111;
1627     cpu->isar.id_isar2 = 0x21232041;
1628     cpu->isar.id_isar3 = 0x11112131;
1629     cpu->isar.id_isar4 = 0x00111142;
1630     cpu->dbgdidr = 0x35141000;
1631     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1632     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1633     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1634     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1635 }
1636 
1637 #ifndef CONFIG_USER_ONLY
1638 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1639 {
1640     /* Linux wants the number of processors from here.
1641      * Might as well set the interrupt-controller bit too.
1642      */
1643     return ((smp_cpus - 1) << 24) | (1 << 23);
1644 }
1645 #endif
1646 
1647 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1648 #ifndef CONFIG_USER_ONLY
1649     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1650       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1651       .writefn = arm_cp_write_ignore, },
1652 #endif
1653     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1654       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1655     REGINFO_SENTINEL
1656 };
1657 
1658 static void cortex_a7_initfn(Object *obj)
1659 {
1660     ARMCPU *cpu = ARM_CPU(obj);
1661 
1662     cpu->dtb_compatible = "arm,cortex-a7";
1663     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1664     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1665     set_feature(&cpu->env, ARM_FEATURE_NEON);
1666     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1667     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1668     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1669     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1670     set_feature(&cpu->env, ARM_FEATURE_EL2);
1671     set_feature(&cpu->env, ARM_FEATURE_EL3);
1672     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1673     cpu->midr = 0x410fc075;
1674     cpu->reset_fpsid = 0x41023075;
1675     cpu->isar.mvfr0 = 0x10110222;
1676     cpu->isar.mvfr1 = 0x11111111;
1677     cpu->ctr = 0x84448003;
1678     cpu->reset_sctlr = 0x00c50078;
1679     cpu->id_pfr0 = 0x00001131;
1680     cpu->id_pfr1 = 0x00011011;
1681     cpu->id_dfr0 = 0x02010555;
1682     cpu->pmceid0 = 0x00000000;
1683     cpu->pmceid1 = 0x00000000;
1684     cpu->id_afr0 = 0x00000000;
1685     cpu->id_mmfr0 = 0x10101105;
1686     cpu->id_mmfr1 = 0x40000000;
1687     cpu->id_mmfr2 = 0x01240000;
1688     cpu->id_mmfr3 = 0x02102211;
1689     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1690      * table 4-41 gives 0x02101110, which includes the arm div insns.
1691      */
1692     cpu->isar.id_isar0 = 0x02101110;
1693     cpu->isar.id_isar1 = 0x13112111;
1694     cpu->isar.id_isar2 = 0x21232041;
1695     cpu->isar.id_isar3 = 0x11112131;
1696     cpu->isar.id_isar4 = 0x10011142;
1697     cpu->dbgdidr = 0x3515f005;
1698     cpu->clidr = 0x0a200023;
1699     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1700     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1701     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1702     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1703 }
1704 
1705 static void cortex_a15_initfn(Object *obj)
1706 {
1707     ARMCPU *cpu = ARM_CPU(obj);
1708 
1709     cpu->dtb_compatible = "arm,cortex-a15";
1710     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1711     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1712     set_feature(&cpu->env, ARM_FEATURE_NEON);
1713     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1714     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1715     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1716     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1717     set_feature(&cpu->env, ARM_FEATURE_EL2);
1718     set_feature(&cpu->env, ARM_FEATURE_EL3);
1719     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1720     cpu->midr = 0x412fc0f1;
1721     cpu->reset_fpsid = 0x410430f0;
1722     cpu->isar.mvfr0 = 0x10110222;
1723     cpu->isar.mvfr1 = 0x11111111;
1724     cpu->ctr = 0x8444c004;
1725     cpu->reset_sctlr = 0x00c50078;
1726     cpu->id_pfr0 = 0x00001131;
1727     cpu->id_pfr1 = 0x00011011;
1728     cpu->id_dfr0 = 0x02010555;
1729     cpu->pmceid0 = 0x0000000;
1730     cpu->pmceid1 = 0x00000000;
1731     cpu->id_afr0 = 0x00000000;
1732     cpu->id_mmfr0 = 0x10201105;
1733     cpu->id_mmfr1 = 0x20000000;
1734     cpu->id_mmfr2 = 0x01240000;
1735     cpu->id_mmfr3 = 0x02102211;
1736     cpu->isar.id_isar0 = 0x02101110;
1737     cpu->isar.id_isar1 = 0x13112111;
1738     cpu->isar.id_isar2 = 0x21232041;
1739     cpu->isar.id_isar3 = 0x11112131;
1740     cpu->isar.id_isar4 = 0x10011142;
1741     cpu->dbgdidr = 0x3515f021;
1742     cpu->clidr = 0x0a200023;
1743     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1744     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1745     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1746     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1747 }
1748 
1749 static void ti925t_initfn(Object *obj)
1750 {
1751     ARMCPU *cpu = ARM_CPU(obj);
1752     set_feature(&cpu->env, ARM_FEATURE_V4T);
1753     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1754     cpu->midr = ARM_CPUID_TI925T;
1755     cpu->ctr = 0x5109149;
1756     cpu->reset_sctlr = 0x00000070;
1757 }
1758 
1759 static void sa1100_initfn(Object *obj)
1760 {
1761     ARMCPU *cpu = ARM_CPU(obj);
1762 
1763     cpu->dtb_compatible = "intel,sa1100";
1764     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1765     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1766     cpu->midr = 0x4401A11B;
1767     cpu->reset_sctlr = 0x00000070;
1768 }
1769 
1770 static void sa1110_initfn(Object *obj)
1771 {
1772     ARMCPU *cpu = ARM_CPU(obj);
1773     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1774     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1775     cpu->midr = 0x6901B119;
1776     cpu->reset_sctlr = 0x00000070;
1777 }
1778 
1779 static void pxa250_initfn(Object *obj)
1780 {
1781     ARMCPU *cpu = ARM_CPU(obj);
1782 
1783     cpu->dtb_compatible = "marvell,xscale";
1784     set_feature(&cpu->env, ARM_FEATURE_V5);
1785     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1786     cpu->midr = 0x69052100;
1787     cpu->ctr = 0xd172172;
1788     cpu->reset_sctlr = 0x00000078;
1789 }
1790 
1791 static void pxa255_initfn(Object *obj)
1792 {
1793     ARMCPU *cpu = ARM_CPU(obj);
1794 
1795     cpu->dtb_compatible = "marvell,xscale";
1796     set_feature(&cpu->env, ARM_FEATURE_V5);
1797     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1798     cpu->midr = 0x69052d00;
1799     cpu->ctr = 0xd172172;
1800     cpu->reset_sctlr = 0x00000078;
1801 }
1802 
1803 static void pxa260_initfn(Object *obj)
1804 {
1805     ARMCPU *cpu = ARM_CPU(obj);
1806 
1807     cpu->dtb_compatible = "marvell,xscale";
1808     set_feature(&cpu->env, ARM_FEATURE_V5);
1809     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1810     cpu->midr = 0x69052903;
1811     cpu->ctr = 0xd172172;
1812     cpu->reset_sctlr = 0x00000078;
1813 }
1814 
1815 static void pxa261_initfn(Object *obj)
1816 {
1817     ARMCPU *cpu = ARM_CPU(obj);
1818 
1819     cpu->dtb_compatible = "marvell,xscale";
1820     set_feature(&cpu->env, ARM_FEATURE_V5);
1821     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1822     cpu->midr = 0x69052d05;
1823     cpu->ctr = 0xd172172;
1824     cpu->reset_sctlr = 0x00000078;
1825 }
1826 
1827 static void pxa262_initfn(Object *obj)
1828 {
1829     ARMCPU *cpu = ARM_CPU(obj);
1830 
1831     cpu->dtb_compatible = "marvell,xscale";
1832     set_feature(&cpu->env, ARM_FEATURE_V5);
1833     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1834     cpu->midr = 0x69052d06;
1835     cpu->ctr = 0xd172172;
1836     cpu->reset_sctlr = 0x00000078;
1837 }
1838 
1839 static void pxa270a0_initfn(Object *obj)
1840 {
1841     ARMCPU *cpu = ARM_CPU(obj);
1842 
1843     cpu->dtb_compatible = "marvell,xscale";
1844     set_feature(&cpu->env, ARM_FEATURE_V5);
1845     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1846     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1847     cpu->midr = 0x69054110;
1848     cpu->ctr = 0xd172172;
1849     cpu->reset_sctlr = 0x00000078;
1850 }
1851 
1852 static void pxa270a1_initfn(Object *obj)
1853 {
1854     ARMCPU *cpu = ARM_CPU(obj);
1855 
1856     cpu->dtb_compatible = "marvell,xscale";
1857     set_feature(&cpu->env, ARM_FEATURE_V5);
1858     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1859     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1860     cpu->midr = 0x69054111;
1861     cpu->ctr = 0xd172172;
1862     cpu->reset_sctlr = 0x00000078;
1863 }
1864 
1865 static void pxa270b0_initfn(Object *obj)
1866 {
1867     ARMCPU *cpu = ARM_CPU(obj);
1868 
1869     cpu->dtb_compatible = "marvell,xscale";
1870     set_feature(&cpu->env, ARM_FEATURE_V5);
1871     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1872     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1873     cpu->midr = 0x69054112;
1874     cpu->ctr = 0xd172172;
1875     cpu->reset_sctlr = 0x00000078;
1876 }
1877 
1878 static void pxa270b1_initfn(Object *obj)
1879 {
1880     ARMCPU *cpu = ARM_CPU(obj);
1881 
1882     cpu->dtb_compatible = "marvell,xscale";
1883     set_feature(&cpu->env, ARM_FEATURE_V5);
1884     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1885     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1886     cpu->midr = 0x69054113;
1887     cpu->ctr = 0xd172172;
1888     cpu->reset_sctlr = 0x00000078;
1889 }
1890 
1891 static void pxa270c0_initfn(Object *obj)
1892 {
1893     ARMCPU *cpu = ARM_CPU(obj);
1894 
1895     cpu->dtb_compatible = "marvell,xscale";
1896     set_feature(&cpu->env, ARM_FEATURE_V5);
1897     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1898     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1899     cpu->midr = 0x69054114;
1900     cpu->ctr = 0xd172172;
1901     cpu->reset_sctlr = 0x00000078;
1902 }
1903 
1904 static void pxa270c5_initfn(Object *obj)
1905 {
1906     ARMCPU *cpu = ARM_CPU(obj);
1907 
1908     cpu->dtb_compatible = "marvell,xscale";
1909     set_feature(&cpu->env, ARM_FEATURE_V5);
1910     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1911     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1912     cpu->midr = 0x69054117;
1913     cpu->ctr = 0xd172172;
1914     cpu->reset_sctlr = 0x00000078;
1915 }
1916 
1917 #ifndef TARGET_AARCH64
1918 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1919  * otherwise, a CPU with as many features enabled as our emulation supports.
1920  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1921  * this only needs to handle 32 bits.
1922  */
1923 static void arm_max_initfn(Object *obj)
1924 {
1925     ARMCPU *cpu = ARM_CPU(obj);
1926 
1927     if (kvm_enabled()) {
1928         kvm_arm_set_cpu_features_from_host(cpu);
1929     } else {
1930         cortex_a15_initfn(obj);
1931 #ifdef CONFIG_USER_ONLY
1932         /* We don't set these in system emulation mode for the moment,
1933          * since we don't correctly set (all of) the ID registers to
1934          * advertise them.
1935          */
1936         set_feature(&cpu->env, ARM_FEATURE_V8);
1937         {
1938             uint32_t t;
1939 
1940             t = cpu->isar.id_isar5;
1941             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1942             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1943             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1944             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1945             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1946             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1947             cpu->isar.id_isar5 = t;
1948 
1949             t = cpu->isar.id_isar6;
1950             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1951             cpu->isar.id_isar6 = t;
1952 
1953             t = cpu->id_mmfr4;
1954             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
1955             cpu->id_mmfr4 = t;
1956         }
1957 #endif
1958     }
1959 }
1960 #endif
1961 
1962 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1963 
1964 struct ARMCPUInfo {
1965     const char *name;
1966     void (*initfn)(Object *obj);
1967     void (*class_init)(ObjectClass *oc, void *data);
1968 };
1969 
1970 static const ARMCPUInfo arm_cpus[] = {
1971 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1972     { .name = "arm926",      .initfn = arm926_initfn },
1973     { .name = "arm946",      .initfn = arm946_initfn },
1974     { .name = "arm1026",     .initfn = arm1026_initfn },
1975     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1976      * older core than plain "arm1136". In particular this does not
1977      * have the v6K features.
1978      */
1979     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1980     { .name = "arm1136",     .initfn = arm1136_initfn },
1981     { .name = "arm1176",     .initfn = arm1176_initfn },
1982     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1983     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1984                              .class_init = arm_v7m_class_init },
1985     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1986                              .class_init = arm_v7m_class_init },
1987     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1988                              .class_init = arm_v7m_class_init },
1989     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1990                              .class_init = arm_v7m_class_init },
1991     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1992     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1993     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1994     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1995     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1996     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1997     { .name = "ti925t",      .initfn = ti925t_initfn },
1998     { .name = "sa1100",      .initfn = sa1100_initfn },
1999     { .name = "sa1110",      .initfn = sa1110_initfn },
2000     { .name = "pxa250",      .initfn = pxa250_initfn },
2001     { .name = "pxa255",      .initfn = pxa255_initfn },
2002     { .name = "pxa260",      .initfn = pxa260_initfn },
2003     { .name = "pxa261",      .initfn = pxa261_initfn },
2004     { .name = "pxa262",      .initfn = pxa262_initfn },
2005     /* "pxa270" is an alias for "pxa270-a0" */
2006     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2007     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2008     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2009     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2010     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2011     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2012     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2013 #ifndef TARGET_AARCH64
2014     { .name = "max",         .initfn = arm_max_initfn },
2015 #endif
2016 #ifdef CONFIG_USER_ONLY
2017     { .name = "any",         .initfn = arm_max_initfn },
2018 #endif
2019 #endif
2020     { .name = NULL }
2021 };
2022 
2023 static Property arm_cpu_properties[] = {
2024     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2025     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2026     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2027     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2028                         mp_affinity, ARM64_AFFINITY_INVALID),
2029     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2030     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2031     DEFINE_PROP_END_OF_LIST()
2032 };
2033 
2034 #ifdef CONFIG_USER_ONLY
2035 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2036                                     int rw, int mmu_idx)
2037 {
2038     ARMCPU *cpu = ARM_CPU(cs);
2039     CPUARMState *env = &cpu->env;
2040 
2041     env->exception.vaddress = address;
2042     if (rw == 2) {
2043         cs->exception_index = EXCP_PREFETCH_ABORT;
2044     } else {
2045         cs->exception_index = EXCP_DATA_ABORT;
2046     }
2047     return 1;
2048 }
2049 #endif
2050 
2051 static gchar *arm_gdb_arch_name(CPUState *cs)
2052 {
2053     ARMCPU *cpu = ARM_CPU(cs);
2054     CPUARMState *env = &cpu->env;
2055 
2056     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2057         return g_strdup("iwmmxt");
2058     }
2059     return g_strdup("arm");
2060 }
2061 
2062 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2063 {
2064     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2065     CPUClass *cc = CPU_CLASS(acc);
2066     DeviceClass *dc = DEVICE_CLASS(oc);
2067 
2068     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2069                                     &acc->parent_realize);
2070     dc->props = arm_cpu_properties;
2071 
2072     acc->parent_reset = cc->reset;
2073     cc->reset = arm_cpu_reset;
2074 
2075     cc->class_by_name = arm_cpu_class_by_name;
2076     cc->has_work = arm_cpu_has_work;
2077     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2078     cc->dump_state = arm_cpu_dump_state;
2079     cc->set_pc = arm_cpu_set_pc;
2080     cc->gdb_read_register = arm_cpu_gdb_read_register;
2081     cc->gdb_write_register = arm_cpu_gdb_write_register;
2082 #ifdef CONFIG_USER_ONLY
2083     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2084 #else
2085     cc->do_interrupt = arm_cpu_do_interrupt;
2086     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2087     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2088     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2089     cc->asidx_from_attrs = arm_asidx_from_attrs;
2090     cc->vmsd = &vmstate_arm_cpu;
2091     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2092     cc->write_elf64_note = arm_cpu_write_elf64_note;
2093     cc->write_elf32_note = arm_cpu_write_elf32_note;
2094 #endif
2095     cc->gdb_num_core_regs = 26;
2096     cc->gdb_core_xml_file = "arm-core.xml";
2097     cc->gdb_arch_name = arm_gdb_arch_name;
2098     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2099     cc->gdb_stop_before_watchpoint = true;
2100     cc->debug_excp_handler = arm_debug_excp_handler;
2101     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2102 #if !defined(CONFIG_USER_ONLY)
2103     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2104 #endif
2105 
2106     cc->disas_set_info = arm_disas_set_info;
2107 #ifdef CONFIG_TCG
2108     cc->tcg_initialize = arm_translate_init;
2109 #endif
2110 }
2111 
2112 #ifdef CONFIG_KVM
2113 static void arm_host_initfn(Object *obj)
2114 {
2115     ARMCPU *cpu = ARM_CPU(obj);
2116 
2117     kvm_arm_set_cpu_features_from_host(cpu);
2118     arm_cpu_post_init(obj);
2119 }
2120 
2121 static const TypeInfo host_arm_cpu_type_info = {
2122     .name = TYPE_ARM_HOST_CPU,
2123 #ifdef TARGET_AARCH64
2124     .parent = TYPE_AARCH64_CPU,
2125 #else
2126     .parent = TYPE_ARM_CPU,
2127 #endif
2128     .instance_init = arm_host_initfn,
2129 };
2130 
2131 #endif
2132 
2133 static void arm_cpu_instance_init(Object *obj)
2134 {
2135     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2136 
2137     acc->info->initfn(obj);
2138     arm_cpu_post_init(obj);
2139 }
2140 
2141 static void cpu_register_class_init(ObjectClass *oc, void *data)
2142 {
2143     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2144 
2145     acc->info = data;
2146 }
2147 
2148 static void cpu_register(const ARMCPUInfo *info)
2149 {
2150     TypeInfo type_info = {
2151         .parent = TYPE_ARM_CPU,
2152         .instance_size = sizeof(ARMCPU),
2153         .instance_init = arm_cpu_instance_init,
2154         .class_size = sizeof(ARMCPUClass),
2155         .class_init = info->class_init ?: cpu_register_class_init,
2156         .class_data = (void *)info,
2157     };
2158 
2159     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2160     type_register(&type_info);
2161     g_free((void *)type_info.name);
2162 }
2163 
2164 static const TypeInfo arm_cpu_type_info = {
2165     .name = TYPE_ARM_CPU,
2166     .parent = TYPE_CPU,
2167     .instance_size = sizeof(ARMCPU),
2168     .instance_init = arm_cpu_initfn,
2169     .instance_finalize = arm_cpu_finalizefn,
2170     .abstract = true,
2171     .class_size = sizeof(ARMCPUClass),
2172     .class_init = arm_cpu_class_init,
2173 };
2174 
2175 static const TypeInfo idau_interface_type_info = {
2176     .name = TYPE_IDAU_INTERFACE,
2177     .parent = TYPE_INTERFACE,
2178     .class_size = sizeof(IDAUInterfaceClass),
2179 };
2180 
2181 static void arm_cpu_register_types(void)
2182 {
2183     const ARMCPUInfo *info = arm_cpus;
2184 
2185     type_register_static(&arm_cpu_type_info);
2186     type_register_static(&idau_interface_type_info);
2187 
2188     while (info->name) {
2189         cpu_register(info);
2190         info++;
2191     }
2192 
2193 #ifdef CONFIG_KVM
2194     type_register_static(&host_arm_cpu_type_info);
2195 #endif
2196 }
2197 
2198 type_init(arm_cpu_register_types)
2199