xref: /openbmc/qemu/target/arm/cpu.c (revision 988fa103)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
206         /*
207          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
208          * turning on both here will produce smaller code and otherwise
209          * make no difference to the user-level emulation.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213         /* Reset into the highest available EL */
214         if (arm_feature(env, ARM_FEATURE_EL3)) {
215             env->pstate = PSTATE_MODE_EL3h;
216         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217             env->pstate = PSTATE_MODE_EL2h;
218         } else {
219             env->pstate = PSTATE_MODE_EL1h;
220         }
221         env->pc = cpu->rvbar;
222 #endif
223     } else {
224 #if defined(CONFIG_USER_ONLY)
225         /* Userspace expects access to cp10 and cp11 for FP/Neon */
226         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
228     }
229 
230 #if defined(CONFIG_USER_ONLY)
231     env->uncached_cpsr = ARM_CPU_MODE_USR;
232     /* For user mode we must enable access to coprocessors */
233     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235         env->cp15.c15_cpar = 3;
236     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237         env->cp15.c15_cpar = 1;
238     }
239 #else
240 
241     /*
242      * If the highest available EL is EL2, AArch32 will start in Hyp
243      * mode; otherwise it starts in SVC. Note that if we start in
244      * AArch64 then these values in the uncached_cpsr will be ignored.
245      */
246     if (arm_feature(env, ARM_FEATURE_EL2) &&
247         !arm_feature(env, ARM_FEATURE_EL3)) {
248         env->uncached_cpsr = ARM_CPU_MODE_HYP;
249     } else {
250         env->uncached_cpsr = ARM_CPU_MODE_SVC;
251     }
252     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 
254     if (arm_feature(env, ARM_FEATURE_M)) {
255         uint32_t initial_msp; /* Loaded from 0x0 */
256         uint32_t initial_pc; /* Loaded from 0x4 */
257         uint8_t *rom;
258         uint32_t vecbase;
259 
260         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261             env->v7m.secure = true;
262         } else {
263             /* This bit resets to 0 if security is supported, but 1 if
264              * it is not. The bit is not present in v7M, but we set it
265              * here so we can avoid having to make checks on it conditional
266              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267              */
268             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269             /*
270              * Set NSACR to indicate "NS access permitted to everything";
271              * this avoids having to have all the tests of it being
272              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
273              * v8.1M the guest-visible value of NSACR in a CPU without the
274              * Security Extension is 0xcff.
275              */
276             env->v7m.nsacr = 0xcff;
277         }
278 
279         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
280          * that it resets to 1, so QEMU always does that rather than making
281          * it dependent on CPU model. In v8M it is RES1.
282          */
283         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
284         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
285         if (arm_feature(env, ARM_FEATURE_V8)) {
286             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289         }
290         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
291             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293         }
294 
295         if (arm_feature(env, ARM_FEATURE_VFP)) {
296             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
297             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
298                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
299         }
300         /* Unlike A/R profile, M profile defines the reset LR value */
301         env->regs[14] = 0xffffffff;
302 
303         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
304 
305         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
306         vecbase = env->v7m.vecbase[env->v7m.secure];
307         rom = rom_ptr(vecbase, 8);
308         if (rom) {
309             /* Address zero is covered by ROM which hasn't yet been
310              * copied into physical memory.
311              */
312             initial_msp = ldl_p(rom);
313             initial_pc = ldl_p(rom + 4);
314         } else {
315             /* Address zero not covered by a ROM blob, or the ROM blob
316              * is in non-modifiable memory and this is a second reset after
317              * it got copied into memory. In the latter case, rom_ptr
318              * will return a NULL pointer and we should use ldl_phys instead.
319              */
320             initial_msp = ldl_phys(s->as, vecbase);
321             initial_pc = ldl_phys(s->as, vecbase + 4);
322         }
323 
324         env->regs[13] = initial_msp & 0xFFFFFFFC;
325         env->regs[15] = initial_pc & ~1;
326         env->thumb = initial_pc & 1;
327     }
328 
329     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
330      * executing as AArch32 then check if highvecs are enabled and
331      * adjust the PC accordingly.
332      */
333     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
334         env->regs[15] = 0xFFFF0000;
335     }
336 
337     /* M profile requires that reset clears the exclusive monitor;
338      * A profile does not, but clearing it makes more sense than having it
339      * set with an exclusive access on address zero.
340      */
341     arm_clear_exclusive(env);
342 
343     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
344 #endif
345 
346     if (arm_feature(env, ARM_FEATURE_PMSA)) {
347         if (cpu->pmsav7_dregion > 0) {
348             if (arm_feature(env, ARM_FEATURE_V8)) {
349                 memset(env->pmsav8.rbar[M_REG_NS], 0,
350                        sizeof(*env->pmsav8.rbar[M_REG_NS])
351                        * cpu->pmsav7_dregion);
352                 memset(env->pmsav8.rlar[M_REG_NS], 0,
353                        sizeof(*env->pmsav8.rlar[M_REG_NS])
354                        * cpu->pmsav7_dregion);
355                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
356                     memset(env->pmsav8.rbar[M_REG_S], 0,
357                            sizeof(*env->pmsav8.rbar[M_REG_S])
358                            * cpu->pmsav7_dregion);
359                     memset(env->pmsav8.rlar[M_REG_S], 0,
360                            sizeof(*env->pmsav8.rlar[M_REG_S])
361                            * cpu->pmsav7_dregion);
362                 }
363             } else if (arm_feature(env, ARM_FEATURE_V7)) {
364                 memset(env->pmsav7.drbar, 0,
365                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
366                 memset(env->pmsav7.drsr, 0,
367                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
368                 memset(env->pmsav7.dracr, 0,
369                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
370             }
371         }
372         env->pmsav7.rnr[M_REG_NS] = 0;
373         env->pmsav7.rnr[M_REG_S] = 0;
374         env->pmsav8.mair0[M_REG_NS] = 0;
375         env->pmsav8.mair0[M_REG_S] = 0;
376         env->pmsav8.mair1[M_REG_NS] = 0;
377         env->pmsav8.mair1[M_REG_S] = 0;
378     }
379 
380     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
381         if (cpu->sau_sregion > 0) {
382             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
383             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
384         }
385         env->sau.rnr = 0;
386         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
387          * the Cortex-M33 does.
388          */
389         env->sau.ctrl = 0;
390     }
391 
392     set_flush_to_zero(1, &env->vfp.standard_fp_status);
393     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
394     set_default_nan_mode(1, &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status);
397     set_float_detect_tininess(float_tininess_before_rounding,
398                               &env->vfp.standard_fp_status);
399     set_float_detect_tininess(float_tininess_before_rounding,
400                               &env->vfp.fp_status_f16);
401 #ifndef CONFIG_USER_ONLY
402     if (kvm_enabled()) {
403         kvm_arm_reset_vcpu(cpu);
404     }
405 #endif
406 
407     hw_breakpoint_update_all(cpu);
408     hw_watchpoint_update_all(cpu);
409 }
410 
411 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
412 {
413     CPUClass *cc = CPU_GET_CLASS(cs);
414     CPUARMState *env = cs->env_ptr;
415     uint32_t cur_el = arm_current_el(env);
416     bool secure = arm_is_secure(env);
417     uint32_t target_el;
418     uint32_t excp_idx;
419     bool ret = false;
420 
421     if (interrupt_request & CPU_INTERRUPT_FIQ) {
422         excp_idx = EXCP_FIQ;
423         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425             cs->exception_index = excp_idx;
426             env->exception.target_el = target_el;
427             cc->do_interrupt(cs);
428             ret = true;
429         }
430     }
431     if (interrupt_request & CPU_INTERRUPT_HARD) {
432         excp_idx = EXCP_IRQ;
433         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
434         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435             cs->exception_index = excp_idx;
436             env->exception.target_el = target_el;
437             cc->do_interrupt(cs);
438             ret = true;
439         }
440     }
441     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
442         excp_idx = EXCP_VIRQ;
443         target_el = 1;
444         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445             cs->exception_index = excp_idx;
446             env->exception.target_el = target_el;
447             cc->do_interrupt(cs);
448             ret = true;
449         }
450     }
451     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
452         excp_idx = EXCP_VFIQ;
453         target_el = 1;
454         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
455             cs->exception_index = excp_idx;
456             env->exception.target_el = target_el;
457             cc->do_interrupt(cs);
458             ret = true;
459         }
460     }
461 
462     return ret;
463 }
464 
465 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
466 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
467 {
468     CPUClass *cc = CPU_GET_CLASS(cs);
469     ARMCPU *cpu = ARM_CPU(cs);
470     CPUARMState *env = &cpu->env;
471     bool ret = false;
472 
473     /* ARMv7-M interrupt masking works differently than -A or -R.
474      * There is no FIQ/IRQ distinction. Instead of I and F bits
475      * masking FIQ and IRQ interrupts, an exception is taken only
476      * if it is higher priority than the current execution priority
477      * (which depends on state like BASEPRI, FAULTMASK and the
478      * currently active exception).
479      */
480     if (interrupt_request & CPU_INTERRUPT_HARD
481         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
482         cs->exception_index = EXCP_IRQ;
483         cc->do_interrupt(cs);
484         ret = true;
485     }
486     return ret;
487 }
488 #endif
489 
490 void arm_cpu_update_virq(ARMCPU *cpu)
491 {
492     /*
493      * Update the interrupt level for VIRQ, which is the logical OR of
494      * the HCR_EL2.VI bit and the input line level from the GIC.
495      */
496     CPUARMState *env = &cpu->env;
497     CPUState *cs = CPU(cpu);
498 
499     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
500         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
501 
502     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
503         if (new_state) {
504             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
505         } else {
506             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         }
508     }
509 }
510 
511 void arm_cpu_update_vfiq(ARMCPU *cpu)
512 {
513     /*
514      * Update the interrupt level for VFIQ, which is the logical OR of
515      * the HCR_EL2.VF bit and the input line level from the GIC.
516      */
517     CPUARMState *env = &cpu->env;
518     CPUState *cs = CPU(cpu);
519 
520     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
521         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
522 
523     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
524         if (new_state) {
525             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
526         } else {
527             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         }
529     }
530 }
531 
532 #ifndef CONFIG_USER_ONLY
533 static void arm_cpu_set_irq(void *opaque, int irq, int level)
534 {
535     ARMCPU *cpu = opaque;
536     CPUARMState *env = &cpu->env;
537     CPUState *cs = CPU(cpu);
538     static const int mask[] = {
539         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
540         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
541         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
542         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
543     };
544 
545     if (level) {
546         env->irq_line_state |= mask[irq];
547     } else {
548         env->irq_line_state &= ~mask[irq];
549     }
550 
551     switch (irq) {
552     case ARM_CPU_VIRQ:
553         assert(arm_feature(env, ARM_FEATURE_EL2));
554         arm_cpu_update_virq(cpu);
555         break;
556     case ARM_CPU_VFIQ:
557         assert(arm_feature(env, ARM_FEATURE_EL2));
558         arm_cpu_update_vfiq(cpu);
559         break;
560     case ARM_CPU_IRQ:
561     case ARM_CPU_FIQ:
562         if (level) {
563             cpu_interrupt(cs, mask[irq]);
564         } else {
565             cpu_reset_interrupt(cs, mask[irq]);
566         }
567         break;
568     default:
569         g_assert_not_reached();
570     }
571 }
572 
573 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
574 {
575 #ifdef CONFIG_KVM
576     ARMCPU *cpu = opaque;
577     CPUARMState *env = &cpu->env;
578     CPUState *cs = CPU(cpu);
579     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
580     uint32_t linestate_bit;
581 
582     switch (irq) {
583     case ARM_CPU_IRQ:
584         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
585         linestate_bit = CPU_INTERRUPT_HARD;
586         break;
587     case ARM_CPU_FIQ:
588         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
589         linestate_bit = CPU_INTERRUPT_FIQ;
590         break;
591     default:
592         g_assert_not_reached();
593     }
594 
595     if (level) {
596         env->irq_line_state |= linestate_bit;
597     } else {
598         env->irq_line_state &= ~linestate_bit;
599     }
600 
601     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
602     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
603 #endif
604 }
605 
606 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
607 {
608     ARMCPU *cpu = ARM_CPU(cs);
609     CPUARMState *env = &cpu->env;
610 
611     cpu_synchronize_state(cs);
612     return arm_cpu_data_is_big_endian(env);
613 }
614 
615 #endif
616 
617 static inline void set_feature(CPUARMState *env, int feature)
618 {
619     env->features |= 1ULL << feature;
620 }
621 
622 static inline void unset_feature(CPUARMState *env, int feature)
623 {
624     env->features &= ~(1ULL << feature);
625 }
626 
627 static int
628 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
629 {
630   return print_insn_arm(pc | 1, info);
631 }
632 
633 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
634 {
635     ARMCPU *ac = ARM_CPU(cpu);
636     CPUARMState *env = &ac->env;
637     bool sctlr_b;
638 
639     if (is_a64(env)) {
640         /* We might not be compiled with the A64 disassembler
641          * because it needs a C++ compiler. Leave print_insn
642          * unset in this case to use the caller default behaviour.
643          */
644 #if defined(CONFIG_ARM_A64_DIS)
645         info->print_insn = print_insn_arm_a64;
646 #endif
647         info->cap_arch = CS_ARCH_ARM64;
648         info->cap_insn_unit = 4;
649         info->cap_insn_split = 4;
650     } else {
651         int cap_mode;
652         if (env->thumb) {
653             info->print_insn = print_insn_thumb1;
654             info->cap_insn_unit = 2;
655             info->cap_insn_split = 4;
656             cap_mode = CS_MODE_THUMB;
657         } else {
658             info->print_insn = print_insn_arm;
659             info->cap_insn_unit = 4;
660             info->cap_insn_split = 4;
661             cap_mode = CS_MODE_ARM;
662         }
663         if (arm_feature(env, ARM_FEATURE_V8)) {
664             cap_mode |= CS_MODE_V8;
665         }
666         if (arm_feature(env, ARM_FEATURE_M)) {
667             cap_mode |= CS_MODE_MCLASS;
668         }
669         info->cap_arch = CS_ARCH_ARM;
670         info->cap_mode = cap_mode;
671     }
672 
673     sctlr_b = arm_sctlr_b(env);
674     if (bswap_code(sctlr_b)) {
675 #ifdef TARGET_WORDS_BIGENDIAN
676         info->endian = BFD_ENDIAN_LITTLE;
677 #else
678         info->endian = BFD_ENDIAN_BIG;
679 #endif
680     }
681     info->flags &= ~INSN_ARM_BE32;
682 #ifndef CONFIG_USER_ONLY
683     if (sctlr_b) {
684         info->flags |= INSN_ARM_BE32;
685     }
686 #endif
687 }
688 
689 #ifdef TARGET_AARCH64
690 
691 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
692 {
693     ARMCPU *cpu = ARM_CPU(cs);
694     CPUARMState *env = &cpu->env;
695     uint32_t psr = pstate_read(env);
696     int i;
697     int el = arm_current_el(env);
698     const char *ns_status;
699 
700     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
701     for (i = 0; i < 32; i++) {
702         if (i == 31) {
703             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
704         } else {
705             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
706                          (i + 2) % 3 ? " " : "\n");
707         }
708     }
709 
710     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
711         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
712     } else {
713         ns_status = "";
714     }
715     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
716                  psr,
717                  psr & PSTATE_N ? 'N' : '-',
718                  psr & PSTATE_Z ? 'Z' : '-',
719                  psr & PSTATE_C ? 'C' : '-',
720                  psr & PSTATE_V ? 'V' : '-',
721                  ns_status,
722                  el,
723                  psr & PSTATE_SP ? 'h' : 't');
724 
725     if (cpu_isar_feature(aa64_bti, cpu)) {
726         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
727     }
728     if (!(flags & CPU_DUMP_FPU)) {
729         qemu_fprintf(f, "\n");
730         return;
731     }
732     if (fp_exception_el(env, el) != 0) {
733         qemu_fprintf(f, "    FPU disabled\n");
734         return;
735     }
736     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
737                  vfp_get_fpcr(env), vfp_get_fpsr(env));
738 
739     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
740         int j, zcr_len = sve_zcr_len_for_el(env, el);
741 
742         for (i = 0; i <= FFR_PRED_NUM; i++) {
743             bool eol;
744             if (i == FFR_PRED_NUM) {
745                 qemu_fprintf(f, "FFR=");
746                 /* It's last, so end the line.  */
747                 eol = true;
748             } else {
749                 qemu_fprintf(f, "P%02d=", i);
750                 switch (zcr_len) {
751                 case 0:
752                     eol = i % 8 == 7;
753                     break;
754                 case 1:
755                     eol = i % 6 == 5;
756                     break;
757                 case 2:
758                 case 3:
759                     eol = i % 3 == 2;
760                     break;
761                 default:
762                     /* More than one quadword per predicate.  */
763                     eol = true;
764                     break;
765                 }
766             }
767             for (j = zcr_len / 4; j >= 0; j--) {
768                 int digits;
769                 if (j * 4 + 4 <= zcr_len + 1) {
770                     digits = 16;
771                 } else {
772                     digits = (zcr_len % 4 + 1) * 4;
773                 }
774                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
775                              env->vfp.pregs[i].p[j],
776                              j ? ":" : eol ? "\n" : " ");
777             }
778         }
779 
780         for (i = 0; i < 32; i++) {
781             if (zcr_len == 0) {
782                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
783                              i, env->vfp.zregs[i].d[1],
784                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
785             } else if (zcr_len == 1) {
786                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
787                              ":%016" PRIx64 ":%016" PRIx64 "\n",
788                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
789                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
790             } else {
791                 for (j = zcr_len; j >= 0; j--) {
792                     bool odd = (zcr_len - j) % 2 != 0;
793                     if (j == zcr_len) {
794                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
795                     } else if (!odd) {
796                         if (j > 0) {
797                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
798                         } else {
799                             qemu_fprintf(f, "     [%x]=", j);
800                         }
801                     }
802                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
803                                  env->vfp.zregs[i].d[j * 2 + 1],
804                                  env->vfp.zregs[i].d[j * 2],
805                                  odd || j == 0 ? "\n" : ":");
806                 }
807             }
808         }
809     } else {
810         for (i = 0; i < 32; i++) {
811             uint64_t *q = aa64_vfp_qreg(env, i);
812             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
813                          i, q[1], q[0], (i & 1 ? "\n" : " "));
814         }
815     }
816 }
817 
818 #else
819 
820 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 {
822     g_assert_not_reached();
823 }
824 
825 #endif
826 
827 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
828 {
829     ARMCPU *cpu = ARM_CPU(cs);
830     CPUARMState *env = &cpu->env;
831     int i;
832 
833     if (is_a64(env)) {
834         aarch64_cpu_dump_state(cs, f, flags);
835         return;
836     }
837 
838     for (i = 0; i < 16; i++) {
839         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
840         if ((i % 4) == 3) {
841             qemu_fprintf(f, "\n");
842         } else {
843             qemu_fprintf(f, " ");
844         }
845     }
846 
847     if (arm_feature(env, ARM_FEATURE_M)) {
848         uint32_t xpsr = xpsr_read(env);
849         const char *mode;
850         const char *ns_status = "";
851 
852         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
853             ns_status = env->v7m.secure ? "S " : "NS ";
854         }
855 
856         if (xpsr & XPSR_EXCP) {
857             mode = "handler";
858         } else {
859             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
860                 mode = "unpriv-thread";
861             } else {
862                 mode = "priv-thread";
863             }
864         }
865 
866         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
867                      xpsr,
868                      xpsr & XPSR_N ? 'N' : '-',
869                      xpsr & XPSR_Z ? 'Z' : '-',
870                      xpsr & XPSR_C ? 'C' : '-',
871                      xpsr & XPSR_V ? 'V' : '-',
872                      xpsr & XPSR_T ? 'T' : 'A',
873                      ns_status,
874                      mode);
875     } else {
876         uint32_t psr = cpsr_read(env);
877         const char *ns_status = "";
878 
879         if (arm_feature(env, ARM_FEATURE_EL3) &&
880             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
881             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
882         }
883 
884         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
885                      psr,
886                      psr & CPSR_N ? 'N' : '-',
887                      psr & CPSR_Z ? 'Z' : '-',
888                      psr & CPSR_C ? 'C' : '-',
889                      psr & CPSR_V ? 'V' : '-',
890                      psr & CPSR_T ? 'T' : 'A',
891                      ns_status,
892                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
893     }
894 
895     if (flags & CPU_DUMP_FPU) {
896         int numvfpregs = 0;
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             numvfpregs += 16;
899         }
900         if (arm_feature(env, ARM_FEATURE_VFP3)) {
901             numvfpregs += 16;
902         }
903         for (i = 0; i < numvfpregs; i++) {
904             uint64_t v = *aa32_vfp_dreg(env, i);
905             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
906                          i * 2, (uint32_t)v,
907                          i * 2 + 1, (uint32_t)(v >> 32),
908                          i, v);
909         }
910         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
911     }
912 }
913 
914 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
915 {
916     uint32_t Aff1 = idx / clustersz;
917     uint32_t Aff0 = idx % clustersz;
918     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
919 }
920 
921 static void cpreg_hashtable_data_destroy(gpointer data)
922 {
923     /*
924      * Destroy function for cpu->cp_regs hashtable data entries.
925      * We must free the name string because it was g_strdup()ed in
926      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
927      * from r->name because we know we definitely allocated it.
928      */
929     ARMCPRegInfo *r = data;
930 
931     g_free((void *)r->name);
932     g_free(r);
933 }
934 
935 static void arm_cpu_initfn(Object *obj)
936 {
937     ARMCPU *cpu = ARM_CPU(obj);
938 
939     cpu_set_cpustate_pointers(cpu);
940     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
941                                          g_free, cpreg_hashtable_data_destroy);
942 
943     QLIST_INIT(&cpu->pre_el_change_hooks);
944     QLIST_INIT(&cpu->el_change_hooks);
945 
946 #ifndef CONFIG_USER_ONLY
947     /* Our inbound IRQ and FIQ lines */
948     if (kvm_enabled()) {
949         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
950          * the same interface as non-KVM CPUs.
951          */
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
953     } else {
954         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
955     }
956 
957     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
958                        ARRAY_SIZE(cpu->gt_timer_outputs));
959 
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
961                              "gicv3-maintenance-interrupt", 1);
962     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
963                              "pmu-interrupt", 1);
964 #endif
965 
966     /* DTB consumers generally don't in fact care what the 'compatible'
967      * string is, so always provide some string and trust that a hypothetical
968      * picky DTB consumer will also provide a helpful error message.
969      */
970     cpu->dtb_compatible = "qemu,unknown";
971     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
972     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
973 
974     if (tcg_enabled()) {
975         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
976     }
977 }
978 
979 static Property arm_cpu_reset_cbar_property =
980             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
981 
982 static Property arm_cpu_reset_hivecs_property =
983             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
984 
985 static Property arm_cpu_rvbar_property =
986             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
987 
988 static Property arm_cpu_has_el2_property =
989             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
990 
991 static Property arm_cpu_has_el3_property =
992             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
993 
994 static Property arm_cpu_cfgend_property =
995             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
996 
997 /* use property name "pmu" to match other archs and virt tools */
998 static Property arm_cpu_has_pmu_property =
999             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
1000 
1001 static Property arm_cpu_has_vfp_property =
1002             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1003 
1004 static Property arm_cpu_has_neon_property =
1005             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1006 
1007 static Property arm_cpu_has_dsp_property =
1008             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1009 
1010 static Property arm_cpu_has_mpu_property =
1011             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1012 
1013 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1014  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1015  * the right value for that particular CPU type, and we don't want
1016  * to override that with an incorrect constant value.
1017  */
1018 static Property arm_cpu_pmsav7_dregion_property =
1019             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1020                                            pmsav7_dregion,
1021                                            qdev_prop_uint32, uint32_t);
1022 
1023 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1024                                void *opaque, Error **errp)
1025 {
1026     ARMCPU *cpu = ARM_CPU(obj);
1027 
1028     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1029 }
1030 
1031 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1032                                void *opaque, Error **errp)
1033 {
1034     ARMCPU *cpu = ARM_CPU(obj);
1035 
1036     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1037 }
1038 
1039 void arm_cpu_post_init(Object *obj)
1040 {
1041     ARMCPU *cpu = ARM_CPU(obj);
1042 
1043     /* M profile implies PMSA. We have to do this here rather than
1044      * in realize with the other feature-implication checks because
1045      * we look at the PMSA bit to see if we should add some properties.
1046      */
1047     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1048         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1049     }
1050     /* Similarly for the VFP feature bits */
1051     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1052         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1053     }
1054     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1055         set_feature(&cpu->env, ARM_FEATURE_VFP);
1056     }
1057 
1058     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1059         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1060         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1061                                  &error_abort);
1062     }
1063 
1064     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1065         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1066                                  &error_abort);
1067     }
1068 
1069     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1070         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1071                                  &error_abort);
1072     }
1073 
1074     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1075         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1076          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1077          */
1078         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1079                                  &error_abort);
1080 
1081 #ifndef CONFIG_USER_ONLY
1082         object_property_add_link(obj, "secure-memory",
1083                                  TYPE_MEMORY_REGION,
1084                                  (Object **)&cpu->secure_memory,
1085                                  qdev_prop_allow_set_link_before_realize,
1086                                  OBJ_PROP_LINK_STRONG,
1087                                  &error_abort);
1088 #endif
1089     }
1090 
1091     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1092         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1093                                  &error_abort);
1094     }
1095 
1096     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1097         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
1098                                  &error_abort);
1099     }
1100 
1101     /*
1102      * Allow user to turn off VFP and Neon support, but only for TCG --
1103      * KVM does not currently allow us to lie to the guest about its
1104      * ID/feature registers, so the guest always sees what the host has.
1105      */
1106     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1107         cpu->has_vfp = true;
1108         if (!kvm_enabled()) {
1109             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1110                                      &error_abort);
1111         }
1112     }
1113 
1114     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1115         cpu->has_neon = true;
1116         if (!kvm_enabled()) {
1117             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1118                                      &error_abort);
1119         }
1120     }
1121 
1122     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1123         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1124         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1125                                  &error_abort);
1126     }
1127 
1128     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1129         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1130                                  &error_abort);
1131         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1132             qdev_property_add_static(DEVICE(obj),
1133                                      &arm_cpu_pmsav7_dregion_property,
1134                                      &error_abort);
1135         }
1136     }
1137 
1138     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1139         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1140                                  qdev_prop_allow_set_link_before_realize,
1141                                  OBJ_PROP_LINK_STRONG,
1142                                  &error_abort);
1143         /*
1144          * M profile: initial value of the Secure VTOR. We can't just use
1145          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1146          * the property to be set after realize.
1147          */
1148         object_property_add(obj, "init-svtor", "uint32",
1149                             arm_get_init_svtor, arm_set_init_svtor,
1150                             NULL, NULL, &error_abort);
1151     }
1152 
1153     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1154                              &error_abort);
1155 }
1156 
1157 static void arm_cpu_finalizefn(Object *obj)
1158 {
1159     ARMCPU *cpu = ARM_CPU(obj);
1160     ARMELChangeHook *hook, *next;
1161 
1162     g_hash_table_destroy(cpu->cp_regs);
1163 
1164     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1165         QLIST_REMOVE(hook, node);
1166         g_free(hook);
1167     }
1168     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1169         QLIST_REMOVE(hook, node);
1170         g_free(hook);
1171     }
1172 #ifndef CONFIG_USER_ONLY
1173     if (cpu->pmu_timer) {
1174         timer_del(cpu->pmu_timer);
1175         timer_deinit(cpu->pmu_timer);
1176         timer_free(cpu->pmu_timer);
1177     }
1178 #endif
1179 }
1180 
1181 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1182 {
1183     CPUState *cs = CPU(dev);
1184     ARMCPU *cpu = ARM_CPU(dev);
1185     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1186     CPUARMState *env = &cpu->env;
1187     int pagebits;
1188     Error *local_err = NULL;
1189     bool no_aa32 = false;
1190 
1191     /* If we needed to query the host kernel for the CPU features
1192      * then it's possible that might have failed in the initfn, but
1193      * this is the first point where we can report it.
1194      */
1195     if (cpu->host_cpu_probe_failed) {
1196         if (!kvm_enabled()) {
1197             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1198         } else {
1199             error_setg(errp, "Failed to retrieve host CPU features");
1200         }
1201         return;
1202     }
1203 
1204 #ifndef CONFIG_USER_ONLY
1205     /* The NVIC and M-profile CPU are two halves of a single piece of
1206      * hardware; trying to use one without the other is a command line
1207      * error and will result in segfaults if not caught here.
1208      */
1209     if (arm_feature(env, ARM_FEATURE_M)) {
1210         if (!env->nvic) {
1211             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1212             return;
1213         }
1214     } else {
1215         if (env->nvic) {
1216             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1217             return;
1218         }
1219     }
1220 
1221     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1222                                            arm_gt_ptimer_cb, cpu);
1223     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1224                                            arm_gt_vtimer_cb, cpu);
1225     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1226                                           arm_gt_htimer_cb, cpu);
1227     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1228                                           arm_gt_stimer_cb, cpu);
1229 #endif
1230 
1231     cpu_exec_realizefn(cs, &local_err);
1232     if (local_err != NULL) {
1233         error_propagate(errp, local_err);
1234         return;
1235     }
1236 
1237     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1238         cpu->has_vfp != cpu->has_neon) {
1239         /*
1240          * This is an architectural requirement for AArch64; AArch32 is
1241          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1242          */
1243         error_setg(errp,
1244                    "AArch64 CPUs must have both VFP and Neon or neither");
1245         return;
1246     }
1247 
1248     if (!cpu->has_vfp) {
1249         uint64_t t;
1250         uint32_t u;
1251 
1252         unset_feature(env, ARM_FEATURE_VFP);
1253         unset_feature(env, ARM_FEATURE_VFP3);
1254         unset_feature(env, ARM_FEATURE_VFP4);
1255 
1256         t = cpu->isar.id_aa64isar1;
1257         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1258         cpu->isar.id_aa64isar1 = t;
1259 
1260         t = cpu->isar.id_aa64pfr0;
1261         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1262         cpu->isar.id_aa64pfr0 = t;
1263 
1264         u = cpu->isar.id_isar6;
1265         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1266         cpu->isar.id_isar6 = u;
1267 
1268         u = cpu->isar.mvfr0;
1269         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1270         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1271         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1272         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1273         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1274         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1275         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1276         cpu->isar.mvfr0 = u;
1277 
1278         u = cpu->isar.mvfr1;
1279         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1280         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1281         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1282         cpu->isar.mvfr1 = u;
1283 
1284         u = cpu->isar.mvfr2;
1285         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1286         cpu->isar.mvfr2 = u;
1287     }
1288 
1289     if (!cpu->has_neon) {
1290         uint64_t t;
1291         uint32_t u;
1292 
1293         unset_feature(env, ARM_FEATURE_NEON);
1294 
1295         t = cpu->isar.id_aa64isar0;
1296         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1297         cpu->isar.id_aa64isar0 = t;
1298 
1299         t = cpu->isar.id_aa64isar1;
1300         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1301         cpu->isar.id_aa64isar1 = t;
1302 
1303         t = cpu->isar.id_aa64pfr0;
1304         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1305         cpu->isar.id_aa64pfr0 = t;
1306 
1307         u = cpu->isar.id_isar5;
1308         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1309         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1310         cpu->isar.id_isar5 = u;
1311 
1312         u = cpu->isar.id_isar6;
1313         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1314         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1315         cpu->isar.id_isar6 = u;
1316 
1317         u = cpu->isar.mvfr1;
1318         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1319         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1320         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1321         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1322         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1323         cpu->isar.mvfr1 = u;
1324 
1325         u = cpu->isar.mvfr2;
1326         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1327         cpu->isar.mvfr2 = u;
1328     }
1329 
1330     if (!cpu->has_neon && !cpu->has_vfp) {
1331         uint64_t t;
1332         uint32_t u;
1333 
1334         t = cpu->isar.id_aa64isar0;
1335         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1336         cpu->isar.id_aa64isar0 = t;
1337 
1338         t = cpu->isar.id_aa64isar1;
1339         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1340         cpu->isar.id_aa64isar1 = t;
1341 
1342         u = cpu->isar.mvfr0;
1343         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1344         cpu->isar.mvfr0 = u;
1345     }
1346 
1347     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1348         uint32_t u;
1349 
1350         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1351 
1352         u = cpu->isar.id_isar1;
1353         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1354         cpu->isar.id_isar1 = u;
1355 
1356         u = cpu->isar.id_isar2;
1357         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1358         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1359         cpu->isar.id_isar2 = u;
1360 
1361         u = cpu->isar.id_isar3;
1362         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1363         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1364         cpu->isar.id_isar3 = u;
1365     }
1366 
1367     /* Some features automatically imply others: */
1368     if (arm_feature(env, ARM_FEATURE_V8)) {
1369         if (arm_feature(env, ARM_FEATURE_M)) {
1370             set_feature(env, ARM_FEATURE_V7);
1371         } else {
1372             set_feature(env, ARM_FEATURE_V7VE);
1373         }
1374     }
1375 
1376     /*
1377      * There exist AArch64 cpus without AArch32 support.  When KVM
1378      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1379      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1380      * As a general principle, we also do not make ID register
1381      * consistency checks anywhere unless using TCG, because only
1382      * for TCG would a consistency-check failure be a QEMU bug.
1383      */
1384     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1385         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1386     }
1387 
1388     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1389         /* v7 Virtualization Extensions. In real hardware this implies
1390          * EL2 and also the presence of the Security Extensions.
1391          * For QEMU, for backwards-compatibility we implement some
1392          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1393          * include the various other features that V7VE implies.
1394          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1395          * Security Extensions is ARM_FEATURE_EL3.
1396          */
1397         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1398         set_feature(env, ARM_FEATURE_LPAE);
1399         set_feature(env, ARM_FEATURE_V7);
1400     }
1401     if (arm_feature(env, ARM_FEATURE_V7)) {
1402         set_feature(env, ARM_FEATURE_VAPA);
1403         set_feature(env, ARM_FEATURE_THUMB2);
1404         set_feature(env, ARM_FEATURE_MPIDR);
1405         if (!arm_feature(env, ARM_FEATURE_M)) {
1406             set_feature(env, ARM_FEATURE_V6K);
1407         } else {
1408             set_feature(env, ARM_FEATURE_V6);
1409         }
1410 
1411         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1412          * non-EL3 configs. This is needed by some legacy boards.
1413          */
1414         set_feature(env, ARM_FEATURE_VBAR);
1415     }
1416     if (arm_feature(env, ARM_FEATURE_V6K)) {
1417         set_feature(env, ARM_FEATURE_V6);
1418         set_feature(env, ARM_FEATURE_MVFR);
1419     }
1420     if (arm_feature(env, ARM_FEATURE_V6)) {
1421         set_feature(env, ARM_FEATURE_V5);
1422         if (!arm_feature(env, ARM_FEATURE_M)) {
1423             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1424             set_feature(env, ARM_FEATURE_AUXCR);
1425         }
1426     }
1427     if (arm_feature(env, ARM_FEATURE_V5)) {
1428         set_feature(env, ARM_FEATURE_V4T);
1429     }
1430     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1431         set_feature(env, ARM_FEATURE_V7MP);
1432         set_feature(env, ARM_FEATURE_PXN);
1433     }
1434     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1435         set_feature(env, ARM_FEATURE_CBAR);
1436     }
1437     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1438         !arm_feature(env, ARM_FEATURE_M)) {
1439         set_feature(env, ARM_FEATURE_THUMB_DSP);
1440     }
1441 
1442     /*
1443      * We rely on no XScale CPU having VFP so we can use the same bits in the
1444      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1445      */
1446     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1447              arm_feature(env, ARM_FEATURE_XSCALE)));
1448 
1449     if (arm_feature(env, ARM_FEATURE_V7) &&
1450         !arm_feature(env, ARM_FEATURE_M) &&
1451         !arm_feature(env, ARM_FEATURE_PMSA)) {
1452         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1453          * can use 4K pages.
1454          */
1455         pagebits = 12;
1456     } else {
1457         /* For CPUs which might have tiny 1K pages, or which have an
1458          * MPU and might have small region sizes, stick with 1K pages.
1459          */
1460         pagebits = 10;
1461     }
1462     if (!set_preferred_target_page_bits(pagebits)) {
1463         /* This can only ever happen for hotplugging a CPU, or if
1464          * the board code incorrectly creates a CPU which it has
1465          * promised via minimum_page_size that it will not.
1466          */
1467         error_setg(errp, "This CPU requires a smaller page size than the "
1468                    "system is using");
1469         return;
1470     }
1471 
1472     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1473      * We don't support setting cluster ID ([16..23]) (known as Aff2
1474      * in later ARM ARM versions), or any of the higher affinity level fields,
1475      * so these bits always RAZ.
1476      */
1477     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1478         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1479                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1480     }
1481 
1482     if (cpu->reset_hivecs) {
1483             cpu->reset_sctlr |= (1 << 13);
1484     }
1485 
1486     if (cpu->cfgend) {
1487         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1488             cpu->reset_sctlr |= SCTLR_EE;
1489         } else {
1490             cpu->reset_sctlr |= SCTLR_B;
1491         }
1492     }
1493 
1494     if (!cpu->has_el3) {
1495         /* If the has_el3 CPU property is disabled then we need to disable the
1496          * feature.
1497          */
1498         unset_feature(env, ARM_FEATURE_EL3);
1499 
1500         /* Disable the security extension feature bits in the processor feature
1501          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1502          */
1503         cpu->id_pfr1 &= ~0xf0;
1504         cpu->isar.id_aa64pfr0 &= ~0xf000;
1505     }
1506 
1507     if (!cpu->has_el2) {
1508         unset_feature(env, ARM_FEATURE_EL2);
1509     }
1510 
1511     if (!cpu->has_pmu) {
1512         unset_feature(env, ARM_FEATURE_PMU);
1513     }
1514     if (arm_feature(env, ARM_FEATURE_PMU)) {
1515         pmu_init(cpu);
1516 
1517         if (!kvm_enabled()) {
1518             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1519             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1520         }
1521 
1522 #ifndef CONFIG_USER_ONLY
1523         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1524                 cpu);
1525 #endif
1526     } else {
1527         cpu->id_aa64dfr0 &= ~0xf00;
1528         cpu->id_dfr0 &= ~(0xf << 24);
1529         cpu->pmceid0 = 0;
1530         cpu->pmceid1 = 0;
1531     }
1532 
1533     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1534         /* Disable the hypervisor feature bits in the processor feature
1535          * registers if we don't have EL2. These are id_pfr1[15:12] and
1536          * id_aa64pfr0_el1[11:8].
1537          */
1538         cpu->isar.id_aa64pfr0 &= ~0xf00;
1539         cpu->id_pfr1 &= ~0xf000;
1540     }
1541 
1542     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1543      * to false or by setting pmsav7-dregion to 0.
1544      */
1545     if (!cpu->has_mpu) {
1546         cpu->pmsav7_dregion = 0;
1547     }
1548     if (cpu->pmsav7_dregion == 0) {
1549         cpu->has_mpu = false;
1550     }
1551 
1552     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1553         arm_feature(env, ARM_FEATURE_V7)) {
1554         uint32_t nr = cpu->pmsav7_dregion;
1555 
1556         if (nr > 0xff) {
1557             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1558             return;
1559         }
1560 
1561         if (nr) {
1562             if (arm_feature(env, ARM_FEATURE_V8)) {
1563                 /* PMSAv8 */
1564                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1565                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1566                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1567                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1568                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1569                 }
1570             } else {
1571                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1572                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1573                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1574             }
1575         }
1576     }
1577 
1578     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1579         uint32_t nr = cpu->sau_sregion;
1580 
1581         if (nr > 0xff) {
1582             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1583             return;
1584         }
1585 
1586         if (nr) {
1587             env->sau.rbar = g_new0(uint32_t, nr);
1588             env->sau.rlar = g_new0(uint32_t, nr);
1589         }
1590     }
1591 
1592     if (arm_feature(env, ARM_FEATURE_EL3)) {
1593         set_feature(env, ARM_FEATURE_VBAR);
1594     }
1595 
1596     register_cp_regs_for_features(cpu);
1597     arm_cpu_register_gdb_regs_for_features(cpu);
1598 
1599     init_cpreg_list(cpu);
1600 
1601 #ifndef CONFIG_USER_ONLY
1602     MachineState *ms = MACHINE(qdev_get_machine());
1603     unsigned int smp_cpus = ms->smp.cpus;
1604 
1605     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1606         cs->num_ases = 2;
1607 
1608         if (!cpu->secure_memory) {
1609             cpu->secure_memory = cs->memory;
1610         }
1611         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1612                                cpu->secure_memory);
1613     } else {
1614         cs->num_ases = 1;
1615     }
1616     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1617 
1618     /* No core_count specified, default to smp_cpus. */
1619     if (cpu->core_count == -1) {
1620         cpu->core_count = smp_cpus;
1621     }
1622 #endif
1623 
1624     qemu_init_vcpu(cs);
1625     cpu_reset(cs);
1626 
1627     acc->parent_realize(dev, errp);
1628 }
1629 
1630 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1631 {
1632     ObjectClass *oc;
1633     char *typename;
1634     char **cpuname;
1635     const char *cpunamestr;
1636 
1637     cpuname = g_strsplit(cpu_model, ",", 1);
1638     cpunamestr = cpuname[0];
1639 #ifdef CONFIG_USER_ONLY
1640     /* For backwards compatibility usermode emulation allows "-cpu any",
1641      * which has the same semantics as "-cpu max".
1642      */
1643     if (!strcmp(cpunamestr, "any")) {
1644         cpunamestr = "max";
1645     }
1646 #endif
1647     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1648     oc = object_class_by_name(typename);
1649     g_strfreev(cpuname);
1650     g_free(typename);
1651     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1652         object_class_is_abstract(oc)) {
1653         return NULL;
1654     }
1655     return oc;
1656 }
1657 
1658 /* CPU models. These are not needed for the AArch64 linux-user build. */
1659 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1660 
1661 static void arm926_initfn(Object *obj)
1662 {
1663     ARMCPU *cpu = ARM_CPU(obj);
1664 
1665     cpu->dtb_compatible = "arm,arm926";
1666     set_feature(&cpu->env, ARM_FEATURE_V5);
1667     set_feature(&cpu->env, ARM_FEATURE_VFP);
1668     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1669     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1670     cpu->midr = 0x41069265;
1671     cpu->reset_fpsid = 0x41011090;
1672     cpu->ctr = 0x1dd20d2;
1673     cpu->reset_sctlr = 0x00090078;
1674 
1675     /*
1676      * ARMv5 does not have the ID_ISAR registers, but we can still
1677      * set the field to indicate Jazelle support within QEMU.
1678      */
1679     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1680     /*
1681      * Similarly, we need to set MVFR0 fields to enable double precision
1682      * and short vector support even though ARMv5 doesn't have this register.
1683      */
1684     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1685     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1686 }
1687 
1688 static void arm946_initfn(Object *obj)
1689 {
1690     ARMCPU *cpu = ARM_CPU(obj);
1691 
1692     cpu->dtb_compatible = "arm,arm946";
1693     set_feature(&cpu->env, ARM_FEATURE_V5);
1694     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1695     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1696     cpu->midr = 0x41059461;
1697     cpu->ctr = 0x0f004006;
1698     cpu->reset_sctlr = 0x00000078;
1699 }
1700 
1701 static void arm1026_initfn(Object *obj)
1702 {
1703     ARMCPU *cpu = ARM_CPU(obj);
1704 
1705     cpu->dtb_compatible = "arm,arm1026";
1706     set_feature(&cpu->env, ARM_FEATURE_V5);
1707     set_feature(&cpu->env, ARM_FEATURE_VFP);
1708     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1709     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1710     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1711     cpu->midr = 0x4106a262;
1712     cpu->reset_fpsid = 0x410110a0;
1713     cpu->ctr = 0x1dd20d2;
1714     cpu->reset_sctlr = 0x00090078;
1715     cpu->reset_auxcr = 1;
1716 
1717     /*
1718      * ARMv5 does not have the ID_ISAR registers, but we can still
1719      * set the field to indicate Jazelle support within QEMU.
1720      */
1721     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1722     /*
1723      * Similarly, we need to set MVFR0 fields to enable double precision
1724      * and short vector support even though ARMv5 doesn't have this register.
1725      */
1726     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1727     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1728 
1729     {
1730         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1731         ARMCPRegInfo ifar = {
1732             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1733             .access = PL1_RW,
1734             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1735             .resetvalue = 0
1736         };
1737         define_one_arm_cp_reg(cpu, &ifar);
1738     }
1739 }
1740 
1741 static void arm1136_r2_initfn(Object *obj)
1742 {
1743     ARMCPU *cpu = ARM_CPU(obj);
1744     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1745      * older core than plain "arm1136". In particular this does not
1746      * have the v6K features.
1747      * These ID register values are correct for 1136 but may be wrong
1748      * for 1136_r2 (in particular r0p2 does not actually implement most
1749      * of the ID registers).
1750      */
1751 
1752     cpu->dtb_compatible = "arm,arm1136";
1753     set_feature(&cpu->env, ARM_FEATURE_V6);
1754     set_feature(&cpu->env, ARM_FEATURE_VFP);
1755     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1756     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1757     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1758     cpu->midr = 0x4107b362;
1759     cpu->reset_fpsid = 0x410120b4;
1760     cpu->isar.mvfr0 = 0x11111111;
1761     cpu->isar.mvfr1 = 0x00000000;
1762     cpu->ctr = 0x1dd20d2;
1763     cpu->reset_sctlr = 0x00050078;
1764     cpu->id_pfr0 = 0x111;
1765     cpu->id_pfr1 = 0x1;
1766     cpu->id_dfr0 = 0x2;
1767     cpu->id_afr0 = 0x3;
1768     cpu->id_mmfr0 = 0x01130003;
1769     cpu->id_mmfr1 = 0x10030302;
1770     cpu->id_mmfr2 = 0x01222110;
1771     cpu->isar.id_isar0 = 0x00140011;
1772     cpu->isar.id_isar1 = 0x12002111;
1773     cpu->isar.id_isar2 = 0x11231111;
1774     cpu->isar.id_isar3 = 0x01102131;
1775     cpu->isar.id_isar4 = 0x141;
1776     cpu->reset_auxcr = 7;
1777 }
1778 
1779 static void arm1136_initfn(Object *obj)
1780 {
1781     ARMCPU *cpu = ARM_CPU(obj);
1782 
1783     cpu->dtb_compatible = "arm,arm1136";
1784     set_feature(&cpu->env, ARM_FEATURE_V6K);
1785     set_feature(&cpu->env, ARM_FEATURE_V6);
1786     set_feature(&cpu->env, ARM_FEATURE_VFP);
1787     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1788     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1789     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1790     cpu->midr = 0x4117b363;
1791     cpu->reset_fpsid = 0x410120b4;
1792     cpu->isar.mvfr0 = 0x11111111;
1793     cpu->isar.mvfr1 = 0x00000000;
1794     cpu->ctr = 0x1dd20d2;
1795     cpu->reset_sctlr = 0x00050078;
1796     cpu->id_pfr0 = 0x111;
1797     cpu->id_pfr1 = 0x1;
1798     cpu->id_dfr0 = 0x2;
1799     cpu->id_afr0 = 0x3;
1800     cpu->id_mmfr0 = 0x01130003;
1801     cpu->id_mmfr1 = 0x10030302;
1802     cpu->id_mmfr2 = 0x01222110;
1803     cpu->isar.id_isar0 = 0x00140011;
1804     cpu->isar.id_isar1 = 0x12002111;
1805     cpu->isar.id_isar2 = 0x11231111;
1806     cpu->isar.id_isar3 = 0x01102131;
1807     cpu->isar.id_isar4 = 0x141;
1808     cpu->reset_auxcr = 7;
1809 }
1810 
1811 static void arm1176_initfn(Object *obj)
1812 {
1813     ARMCPU *cpu = ARM_CPU(obj);
1814 
1815     cpu->dtb_compatible = "arm,arm1176";
1816     set_feature(&cpu->env, ARM_FEATURE_V6K);
1817     set_feature(&cpu->env, ARM_FEATURE_VFP);
1818     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1819     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1820     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1821     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1822     set_feature(&cpu->env, ARM_FEATURE_EL3);
1823     cpu->midr = 0x410fb767;
1824     cpu->reset_fpsid = 0x410120b5;
1825     cpu->isar.mvfr0 = 0x11111111;
1826     cpu->isar.mvfr1 = 0x00000000;
1827     cpu->ctr = 0x1dd20d2;
1828     cpu->reset_sctlr = 0x00050078;
1829     cpu->id_pfr0 = 0x111;
1830     cpu->id_pfr1 = 0x11;
1831     cpu->id_dfr0 = 0x33;
1832     cpu->id_afr0 = 0;
1833     cpu->id_mmfr0 = 0x01130003;
1834     cpu->id_mmfr1 = 0x10030302;
1835     cpu->id_mmfr2 = 0x01222100;
1836     cpu->isar.id_isar0 = 0x0140011;
1837     cpu->isar.id_isar1 = 0x12002111;
1838     cpu->isar.id_isar2 = 0x11231121;
1839     cpu->isar.id_isar3 = 0x01102131;
1840     cpu->isar.id_isar4 = 0x01141;
1841     cpu->reset_auxcr = 7;
1842 }
1843 
1844 static void arm11mpcore_initfn(Object *obj)
1845 {
1846     ARMCPU *cpu = ARM_CPU(obj);
1847 
1848     cpu->dtb_compatible = "arm,arm11mpcore";
1849     set_feature(&cpu->env, ARM_FEATURE_V6K);
1850     set_feature(&cpu->env, ARM_FEATURE_VFP);
1851     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1852     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1853     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1854     cpu->midr = 0x410fb022;
1855     cpu->reset_fpsid = 0x410120b4;
1856     cpu->isar.mvfr0 = 0x11111111;
1857     cpu->isar.mvfr1 = 0x00000000;
1858     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1859     cpu->id_pfr0 = 0x111;
1860     cpu->id_pfr1 = 0x1;
1861     cpu->id_dfr0 = 0;
1862     cpu->id_afr0 = 0x2;
1863     cpu->id_mmfr0 = 0x01100103;
1864     cpu->id_mmfr1 = 0x10020302;
1865     cpu->id_mmfr2 = 0x01222000;
1866     cpu->isar.id_isar0 = 0x00100011;
1867     cpu->isar.id_isar1 = 0x12002111;
1868     cpu->isar.id_isar2 = 0x11221011;
1869     cpu->isar.id_isar3 = 0x01102131;
1870     cpu->isar.id_isar4 = 0x141;
1871     cpu->reset_auxcr = 1;
1872 }
1873 
1874 static void cortex_m0_initfn(Object *obj)
1875 {
1876     ARMCPU *cpu = ARM_CPU(obj);
1877     set_feature(&cpu->env, ARM_FEATURE_V6);
1878     set_feature(&cpu->env, ARM_FEATURE_M);
1879 
1880     cpu->midr = 0x410cc200;
1881 }
1882 
1883 static void cortex_m3_initfn(Object *obj)
1884 {
1885     ARMCPU *cpu = ARM_CPU(obj);
1886     set_feature(&cpu->env, ARM_FEATURE_V7);
1887     set_feature(&cpu->env, ARM_FEATURE_M);
1888     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1889     cpu->midr = 0x410fc231;
1890     cpu->pmsav7_dregion = 8;
1891     cpu->id_pfr0 = 0x00000030;
1892     cpu->id_pfr1 = 0x00000200;
1893     cpu->id_dfr0 = 0x00100000;
1894     cpu->id_afr0 = 0x00000000;
1895     cpu->id_mmfr0 = 0x00000030;
1896     cpu->id_mmfr1 = 0x00000000;
1897     cpu->id_mmfr2 = 0x00000000;
1898     cpu->id_mmfr3 = 0x00000000;
1899     cpu->isar.id_isar0 = 0x01141110;
1900     cpu->isar.id_isar1 = 0x02111000;
1901     cpu->isar.id_isar2 = 0x21112231;
1902     cpu->isar.id_isar3 = 0x01111110;
1903     cpu->isar.id_isar4 = 0x01310102;
1904     cpu->isar.id_isar5 = 0x00000000;
1905     cpu->isar.id_isar6 = 0x00000000;
1906 }
1907 
1908 static void cortex_m4_initfn(Object *obj)
1909 {
1910     ARMCPU *cpu = ARM_CPU(obj);
1911 
1912     set_feature(&cpu->env, ARM_FEATURE_V7);
1913     set_feature(&cpu->env, ARM_FEATURE_M);
1914     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1915     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1916     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1917     cpu->midr = 0x410fc240; /* r0p0 */
1918     cpu->pmsav7_dregion = 8;
1919     cpu->isar.mvfr0 = 0x10110021;
1920     cpu->isar.mvfr1 = 0x11000011;
1921     cpu->isar.mvfr2 = 0x00000000;
1922     cpu->id_pfr0 = 0x00000030;
1923     cpu->id_pfr1 = 0x00000200;
1924     cpu->id_dfr0 = 0x00100000;
1925     cpu->id_afr0 = 0x00000000;
1926     cpu->id_mmfr0 = 0x00000030;
1927     cpu->id_mmfr1 = 0x00000000;
1928     cpu->id_mmfr2 = 0x00000000;
1929     cpu->id_mmfr3 = 0x00000000;
1930     cpu->isar.id_isar0 = 0x01141110;
1931     cpu->isar.id_isar1 = 0x02111000;
1932     cpu->isar.id_isar2 = 0x21112231;
1933     cpu->isar.id_isar3 = 0x01111110;
1934     cpu->isar.id_isar4 = 0x01310102;
1935     cpu->isar.id_isar5 = 0x00000000;
1936     cpu->isar.id_isar6 = 0x00000000;
1937 }
1938 
1939 static void cortex_m33_initfn(Object *obj)
1940 {
1941     ARMCPU *cpu = ARM_CPU(obj);
1942 
1943     set_feature(&cpu->env, ARM_FEATURE_V8);
1944     set_feature(&cpu->env, ARM_FEATURE_M);
1945     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1946     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1947     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1948     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1949     cpu->midr = 0x410fd213; /* r0p3 */
1950     cpu->pmsav7_dregion = 16;
1951     cpu->sau_sregion = 8;
1952     cpu->isar.mvfr0 = 0x10110021;
1953     cpu->isar.mvfr1 = 0x11000011;
1954     cpu->isar.mvfr2 = 0x00000040;
1955     cpu->id_pfr0 = 0x00000030;
1956     cpu->id_pfr1 = 0x00000210;
1957     cpu->id_dfr0 = 0x00200000;
1958     cpu->id_afr0 = 0x00000000;
1959     cpu->id_mmfr0 = 0x00101F40;
1960     cpu->id_mmfr1 = 0x00000000;
1961     cpu->id_mmfr2 = 0x01000000;
1962     cpu->id_mmfr3 = 0x00000000;
1963     cpu->isar.id_isar0 = 0x01101110;
1964     cpu->isar.id_isar1 = 0x02212000;
1965     cpu->isar.id_isar2 = 0x20232232;
1966     cpu->isar.id_isar3 = 0x01111131;
1967     cpu->isar.id_isar4 = 0x01310132;
1968     cpu->isar.id_isar5 = 0x00000000;
1969     cpu->isar.id_isar6 = 0x00000000;
1970     cpu->clidr = 0x00000000;
1971     cpu->ctr = 0x8000c000;
1972 }
1973 
1974 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1975 {
1976     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1977     CPUClass *cc = CPU_CLASS(oc);
1978 
1979     acc->info = data;
1980 #ifndef CONFIG_USER_ONLY
1981     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1982 #endif
1983 
1984     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1985 }
1986 
1987 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1988     /* Dummy the TCM region regs for the moment */
1989     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1990       .access = PL1_RW, .type = ARM_CP_CONST },
1991     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1992       .access = PL1_RW, .type = ARM_CP_CONST },
1993     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1994       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1995     REGINFO_SENTINEL
1996 };
1997 
1998 static void cortex_r5_initfn(Object *obj)
1999 {
2000     ARMCPU *cpu = ARM_CPU(obj);
2001 
2002     set_feature(&cpu->env, ARM_FEATURE_V7);
2003     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2004     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2005     cpu->midr = 0x411fc153; /* r1p3 */
2006     cpu->id_pfr0 = 0x0131;
2007     cpu->id_pfr1 = 0x001;
2008     cpu->id_dfr0 = 0x010400;
2009     cpu->id_afr0 = 0x0;
2010     cpu->id_mmfr0 = 0x0210030;
2011     cpu->id_mmfr1 = 0x00000000;
2012     cpu->id_mmfr2 = 0x01200000;
2013     cpu->id_mmfr3 = 0x0211;
2014     cpu->isar.id_isar0 = 0x02101111;
2015     cpu->isar.id_isar1 = 0x13112111;
2016     cpu->isar.id_isar2 = 0x21232141;
2017     cpu->isar.id_isar3 = 0x01112131;
2018     cpu->isar.id_isar4 = 0x0010142;
2019     cpu->isar.id_isar5 = 0x0;
2020     cpu->isar.id_isar6 = 0x0;
2021     cpu->mp_is_up = true;
2022     cpu->pmsav7_dregion = 16;
2023     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2024 }
2025 
2026 static void cortex_r5f_initfn(Object *obj)
2027 {
2028     ARMCPU *cpu = ARM_CPU(obj);
2029 
2030     cortex_r5_initfn(obj);
2031     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2032     cpu->isar.mvfr0 = 0x10110221;
2033     cpu->isar.mvfr1 = 0x00000011;
2034 }
2035 
2036 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2037     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2038       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2039     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2040       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2041     REGINFO_SENTINEL
2042 };
2043 
2044 static void cortex_a8_initfn(Object *obj)
2045 {
2046     ARMCPU *cpu = ARM_CPU(obj);
2047 
2048     cpu->dtb_compatible = "arm,cortex-a8";
2049     set_feature(&cpu->env, ARM_FEATURE_V7);
2050     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2051     set_feature(&cpu->env, ARM_FEATURE_NEON);
2052     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2053     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2054     set_feature(&cpu->env, ARM_FEATURE_EL3);
2055     cpu->midr = 0x410fc080;
2056     cpu->reset_fpsid = 0x410330c0;
2057     cpu->isar.mvfr0 = 0x11110222;
2058     cpu->isar.mvfr1 = 0x00011111;
2059     cpu->ctr = 0x82048004;
2060     cpu->reset_sctlr = 0x00c50078;
2061     cpu->id_pfr0 = 0x1031;
2062     cpu->id_pfr1 = 0x11;
2063     cpu->id_dfr0 = 0x400;
2064     cpu->id_afr0 = 0;
2065     cpu->id_mmfr0 = 0x31100003;
2066     cpu->id_mmfr1 = 0x20000000;
2067     cpu->id_mmfr2 = 0x01202000;
2068     cpu->id_mmfr3 = 0x11;
2069     cpu->isar.id_isar0 = 0x00101111;
2070     cpu->isar.id_isar1 = 0x12112111;
2071     cpu->isar.id_isar2 = 0x21232031;
2072     cpu->isar.id_isar3 = 0x11112131;
2073     cpu->isar.id_isar4 = 0x00111142;
2074     cpu->dbgdidr = 0x15141000;
2075     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2076     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2077     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2078     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2079     cpu->reset_auxcr = 2;
2080     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2081 }
2082 
2083 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2084     /* power_control should be set to maximum latency. Again,
2085      * default to 0 and set by private hook
2086      */
2087     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2088       .access = PL1_RW, .resetvalue = 0,
2089       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2090     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2091       .access = PL1_RW, .resetvalue = 0,
2092       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2093     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2094       .access = PL1_RW, .resetvalue = 0,
2095       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2096     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2097       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2098     /* TLB lockdown control */
2099     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2100       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2101     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2102       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2103     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2104       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2105     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2106       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2107     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2108       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2109     REGINFO_SENTINEL
2110 };
2111 
2112 static void cortex_a9_initfn(Object *obj)
2113 {
2114     ARMCPU *cpu = ARM_CPU(obj);
2115 
2116     cpu->dtb_compatible = "arm,cortex-a9";
2117     set_feature(&cpu->env, ARM_FEATURE_V7);
2118     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2119     set_feature(&cpu->env, ARM_FEATURE_NEON);
2120     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2121     set_feature(&cpu->env, ARM_FEATURE_EL3);
2122     /* Note that A9 supports the MP extensions even for
2123      * A9UP and single-core A9MP (which are both different
2124      * and valid configurations; we don't model A9UP).
2125      */
2126     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2127     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2128     cpu->midr = 0x410fc090;
2129     cpu->reset_fpsid = 0x41033090;
2130     cpu->isar.mvfr0 = 0x11110222;
2131     cpu->isar.mvfr1 = 0x01111111;
2132     cpu->ctr = 0x80038003;
2133     cpu->reset_sctlr = 0x00c50078;
2134     cpu->id_pfr0 = 0x1031;
2135     cpu->id_pfr1 = 0x11;
2136     cpu->id_dfr0 = 0x000;
2137     cpu->id_afr0 = 0;
2138     cpu->id_mmfr0 = 0x00100103;
2139     cpu->id_mmfr1 = 0x20000000;
2140     cpu->id_mmfr2 = 0x01230000;
2141     cpu->id_mmfr3 = 0x00002111;
2142     cpu->isar.id_isar0 = 0x00101111;
2143     cpu->isar.id_isar1 = 0x13112111;
2144     cpu->isar.id_isar2 = 0x21232041;
2145     cpu->isar.id_isar3 = 0x11112131;
2146     cpu->isar.id_isar4 = 0x00111142;
2147     cpu->dbgdidr = 0x35141000;
2148     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2149     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2150     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2151     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2152 }
2153 
2154 #ifndef CONFIG_USER_ONLY
2155 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2156 {
2157     MachineState *ms = MACHINE(qdev_get_machine());
2158 
2159     /* Linux wants the number of processors from here.
2160      * Might as well set the interrupt-controller bit too.
2161      */
2162     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2163 }
2164 #endif
2165 
2166 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2167 #ifndef CONFIG_USER_ONLY
2168     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2169       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2170       .writefn = arm_cp_write_ignore, },
2171 #endif
2172     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2173       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2174     REGINFO_SENTINEL
2175 };
2176 
2177 static void cortex_a7_initfn(Object *obj)
2178 {
2179     ARMCPU *cpu = ARM_CPU(obj);
2180 
2181     cpu->dtb_compatible = "arm,cortex-a7";
2182     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2183     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2184     set_feature(&cpu->env, ARM_FEATURE_NEON);
2185     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2186     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2187     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2188     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2189     set_feature(&cpu->env, ARM_FEATURE_EL2);
2190     set_feature(&cpu->env, ARM_FEATURE_EL3);
2191     set_feature(&cpu->env, ARM_FEATURE_PMU);
2192     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2193     cpu->midr = 0x410fc075;
2194     cpu->reset_fpsid = 0x41023075;
2195     cpu->isar.mvfr0 = 0x10110222;
2196     cpu->isar.mvfr1 = 0x11111111;
2197     cpu->ctr = 0x84448003;
2198     cpu->reset_sctlr = 0x00c50078;
2199     cpu->id_pfr0 = 0x00001131;
2200     cpu->id_pfr1 = 0x00011011;
2201     cpu->id_dfr0 = 0x02010555;
2202     cpu->id_afr0 = 0x00000000;
2203     cpu->id_mmfr0 = 0x10101105;
2204     cpu->id_mmfr1 = 0x40000000;
2205     cpu->id_mmfr2 = 0x01240000;
2206     cpu->id_mmfr3 = 0x02102211;
2207     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2208      * table 4-41 gives 0x02101110, which includes the arm div insns.
2209      */
2210     cpu->isar.id_isar0 = 0x02101110;
2211     cpu->isar.id_isar1 = 0x13112111;
2212     cpu->isar.id_isar2 = 0x21232041;
2213     cpu->isar.id_isar3 = 0x11112131;
2214     cpu->isar.id_isar4 = 0x10011142;
2215     cpu->dbgdidr = 0x3515f005;
2216     cpu->clidr = 0x0a200023;
2217     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2218     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2219     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2220     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2221 }
2222 
2223 static void cortex_a15_initfn(Object *obj)
2224 {
2225     ARMCPU *cpu = ARM_CPU(obj);
2226 
2227     cpu->dtb_compatible = "arm,cortex-a15";
2228     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2229     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2230     set_feature(&cpu->env, ARM_FEATURE_NEON);
2231     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2232     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2233     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2234     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2235     set_feature(&cpu->env, ARM_FEATURE_EL2);
2236     set_feature(&cpu->env, ARM_FEATURE_EL3);
2237     set_feature(&cpu->env, ARM_FEATURE_PMU);
2238     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2239     cpu->midr = 0x412fc0f1;
2240     cpu->reset_fpsid = 0x410430f0;
2241     cpu->isar.mvfr0 = 0x10110222;
2242     cpu->isar.mvfr1 = 0x11111111;
2243     cpu->ctr = 0x8444c004;
2244     cpu->reset_sctlr = 0x00c50078;
2245     cpu->id_pfr0 = 0x00001131;
2246     cpu->id_pfr1 = 0x00011011;
2247     cpu->id_dfr0 = 0x02010555;
2248     cpu->id_afr0 = 0x00000000;
2249     cpu->id_mmfr0 = 0x10201105;
2250     cpu->id_mmfr1 = 0x20000000;
2251     cpu->id_mmfr2 = 0x01240000;
2252     cpu->id_mmfr3 = 0x02102211;
2253     cpu->isar.id_isar0 = 0x02101110;
2254     cpu->isar.id_isar1 = 0x13112111;
2255     cpu->isar.id_isar2 = 0x21232041;
2256     cpu->isar.id_isar3 = 0x11112131;
2257     cpu->isar.id_isar4 = 0x10011142;
2258     cpu->dbgdidr = 0x3515f021;
2259     cpu->clidr = 0x0a200023;
2260     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2261     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2262     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2263     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2264 }
2265 
2266 static void ti925t_initfn(Object *obj)
2267 {
2268     ARMCPU *cpu = ARM_CPU(obj);
2269     set_feature(&cpu->env, ARM_FEATURE_V4T);
2270     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2271     cpu->midr = ARM_CPUID_TI925T;
2272     cpu->ctr = 0x5109149;
2273     cpu->reset_sctlr = 0x00000070;
2274 }
2275 
2276 static void sa1100_initfn(Object *obj)
2277 {
2278     ARMCPU *cpu = ARM_CPU(obj);
2279 
2280     cpu->dtb_compatible = "intel,sa1100";
2281     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2282     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2283     cpu->midr = 0x4401A11B;
2284     cpu->reset_sctlr = 0x00000070;
2285 }
2286 
2287 static void sa1110_initfn(Object *obj)
2288 {
2289     ARMCPU *cpu = ARM_CPU(obj);
2290     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2291     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2292     cpu->midr = 0x6901B119;
2293     cpu->reset_sctlr = 0x00000070;
2294 }
2295 
2296 static void pxa250_initfn(Object *obj)
2297 {
2298     ARMCPU *cpu = ARM_CPU(obj);
2299 
2300     cpu->dtb_compatible = "marvell,xscale";
2301     set_feature(&cpu->env, ARM_FEATURE_V5);
2302     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2303     cpu->midr = 0x69052100;
2304     cpu->ctr = 0xd172172;
2305     cpu->reset_sctlr = 0x00000078;
2306 }
2307 
2308 static void pxa255_initfn(Object *obj)
2309 {
2310     ARMCPU *cpu = ARM_CPU(obj);
2311 
2312     cpu->dtb_compatible = "marvell,xscale";
2313     set_feature(&cpu->env, ARM_FEATURE_V5);
2314     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2315     cpu->midr = 0x69052d00;
2316     cpu->ctr = 0xd172172;
2317     cpu->reset_sctlr = 0x00000078;
2318 }
2319 
2320 static void pxa260_initfn(Object *obj)
2321 {
2322     ARMCPU *cpu = ARM_CPU(obj);
2323 
2324     cpu->dtb_compatible = "marvell,xscale";
2325     set_feature(&cpu->env, ARM_FEATURE_V5);
2326     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2327     cpu->midr = 0x69052903;
2328     cpu->ctr = 0xd172172;
2329     cpu->reset_sctlr = 0x00000078;
2330 }
2331 
2332 static void pxa261_initfn(Object *obj)
2333 {
2334     ARMCPU *cpu = ARM_CPU(obj);
2335 
2336     cpu->dtb_compatible = "marvell,xscale";
2337     set_feature(&cpu->env, ARM_FEATURE_V5);
2338     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2339     cpu->midr = 0x69052d05;
2340     cpu->ctr = 0xd172172;
2341     cpu->reset_sctlr = 0x00000078;
2342 }
2343 
2344 static void pxa262_initfn(Object *obj)
2345 {
2346     ARMCPU *cpu = ARM_CPU(obj);
2347 
2348     cpu->dtb_compatible = "marvell,xscale";
2349     set_feature(&cpu->env, ARM_FEATURE_V5);
2350     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2351     cpu->midr = 0x69052d06;
2352     cpu->ctr = 0xd172172;
2353     cpu->reset_sctlr = 0x00000078;
2354 }
2355 
2356 static void pxa270a0_initfn(Object *obj)
2357 {
2358     ARMCPU *cpu = ARM_CPU(obj);
2359 
2360     cpu->dtb_compatible = "marvell,xscale";
2361     set_feature(&cpu->env, ARM_FEATURE_V5);
2362     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2363     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2364     cpu->midr = 0x69054110;
2365     cpu->ctr = 0xd172172;
2366     cpu->reset_sctlr = 0x00000078;
2367 }
2368 
2369 static void pxa270a1_initfn(Object *obj)
2370 {
2371     ARMCPU *cpu = ARM_CPU(obj);
2372 
2373     cpu->dtb_compatible = "marvell,xscale";
2374     set_feature(&cpu->env, ARM_FEATURE_V5);
2375     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2376     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2377     cpu->midr = 0x69054111;
2378     cpu->ctr = 0xd172172;
2379     cpu->reset_sctlr = 0x00000078;
2380 }
2381 
2382 static void pxa270b0_initfn(Object *obj)
2383 {
2384     ARMCPU *cpu = ARM_CPU(obj);
2385 
2386     cpu->dtb_compatible = "marvell,xscale";
2387     set_feature(&cpu->env, ARM_FEATURE_V5);
2388     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2389     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2390     cpu->midr = 0x69054112;
2391     cpu->ctr = 0xd172172;
2392     cpu->reset_sctlr = 0x00000078;
2393 }
2394 
2395 static void pxa270b1_initfn(Object *obj)
2396 {
2397     ARMCPU *cpu = ARM_CPU(obj);
2398 
2399     cpu->dtb_compatible = "marvell,xscale";
2400     set_feature(&cpu->env, ARM_FEATURE_V5);
2401     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2402     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2403     cpu->midr = 0x69054113;
2404     cpu->ctr = 0xd172172;
2405     cpu->reset_sctlr = 0x00000078;
2406 }
2407 
2408 static void pxa270c0_initfn(Object *obj)
2409 {
2410     ARMCPU *cpu = ARM_CPU(obj);
2411 
2412     cpu->dtb_compatible = "marvell,xscale";
2413     set_feature(&cpu->env, ARM_FEATURE_V5);
2414     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2415     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2416     cpu->midr = 0x69054114;
2417     cpu->ctr = 0xd172172;
2418     cpu->reset_sctlr = 0x00000078;
2419 }
2420 
2421 static void pxa270c5_initfn(Object *obj)
2422 {
2423     ARMCPU *cpu = ARM_CPU(obj);
2424 
2425     cpu->dtb_compatible = "marvell,xscale";
2426     set_feature(&cpu->env, ARM_FEATURE_V5);
2427     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2428     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2429     cpu->midr = 0x69054117;
2430     cpu->ctr = 0xd172172;
2431     cpu->reset_sctlr = 0x00000078;
2432 }
2433 
2434 #ifndef TARGET_AARCH64
2435 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2436  * otherwise, a CPU with as many features enabled as our emulation supports.
2437  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2438  * this only needs to handle 32 bits.
2439  */
2440 static void arm_max_initfn(Object *obj)
2441 {
2442     ARMCPU *cpu = ARM_CPU(obj);
2443 
2444     if (kvm_enabled()) {
2445         kvm_arm_set_cpu_features_from_host(cpu);
2446     } else {
2447         cortex_a15_initfn(obj);
2448 
2449         /* old-style VFP short-vector support */
2450         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2451 
2452 #ifdef CONFIG_USER_ONLY
2453         /* We don't set these in system emulation mode for the moment,
2454          * since we don't correctly set (all of) the ID registers to
2455          * advertise them.
2456          */
2457         set_feature(&cpu->env, ARM_FEATURE_V8);
2458         {
2459             uint32_t t;
2460 
2461             t = cpu->isar.id_isar5;
2462             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2463             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2464             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2465             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2466             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2467             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2468             cpu->isar.id_isar5 = t;
2469 
2470             t = cpu->isar.id_isar6;
2471             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2472             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2473             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2474             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2475             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2476             cpu->isar.id_isar6 = t;
2477 
2478             t = cpu->isar.mvfr1;
2479             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2480             cpu->isar.mvfr1 = t;
2481 
2482             t = cpu->isar.mvfr2;
2483             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2484             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2485             cpu->isar.mvfr2 = t;
2486 
2487             t = cpu->id_mmfr4;
2488             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2489             cpu->id_mmfr4 = t;
2490         }
2491 #endif
2492     }
2493 }
2494 #endif
2495 
2496 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2497 
2498 struct ARMCPUInfo {
2499     const char *name;
2500     void (*initfn)(Object *obj);
2501     void (*class_init)(ObjectClass *oc, void *data);
2502 };
2503 
2504 static const ARMCPUInfo arm_cpus[] = {
2505 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2506     { .name = "arm926",      .initfn = arm926_initfn },
2507     { .name = "arm946",      .initfn = arm946_initfn },
2508     { .name = "arm1026",     .initfn = arm1026_initfn },
2509     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2510      * older core than plain "arm1136". In particular this does not
2511      * have the v6K features.
2512      */
2513     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2514     { .name = "arm1136",     .initfn = arm1136_initfn },
2515     { .name = "arm1176",     .initfn = arm1176_initfn },
2516     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2517     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2518                              .class_init = arm_v7m_class_init },
2519     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2520                              .class_init = arm_v7m_class_init },
2521     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2522                              .class_init = arm_v7m_class_init },
2523     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2524                              .class_init = arm_v7m_class_init },
2525     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2526     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2527     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2528     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2529     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2530     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2531     { .name = "ti925t",      .initfn = ti925t_initfn },
2532     { .name = "sa1100",      .initfn = sa1100_initfn },
2533     { .name = "sa1110",      .initfn = sa1110_initfn },
2534     { .name = "pxa250",      .initfn = pxa250_initfn },
2535     { .name = "pxa255",      .initfn = pxa255_initfn },
2536     { .name = "pxa260",      .initfn = pxa260_initfn },
2537     { .name = "pxa261",      .initfn = pxa261_initfn },
2538     { .name = "pxa262",      .initfn = pxa262_initfn },
2539     /* "pxa270" is an alias for "pxa270-a0" */
2540     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2541     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2542     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2543     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2544     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2545     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2546     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2547 #ifndef TARGET_AARCH64
2548     { .name = "max",         .initfn = arm_max_initfn },
2549 #endif
2550 #ifdef CONFIG_USER_ONLY
2551     { .name = "any",         .initfn = arm_max_initfn },
2552 #endif
2553 #endif
2554     { .name = NULL }
2555 };
2556 
2557 static Property arm_cpu_properties[] = {
2558     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2559     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2560     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2561     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2562                         mp_affinity, ARM64_AFFINITY_INVALID),
2563     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2564     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2565     DEFINE_PROP_END_OF_LIST()
2566 };
2567 
2568 static gchar *arm_gdb_arch_name(CPUState *cs)
2569 {
2570     ARMCPU *cpu = ARM_CPU(cs);
2571     CPUARMState *env = &cpu->env;
2572 
2573     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2574         return g_strdup("iwmmxt");
2575     }
2576     return g_strdup("arm");
2577 }
2578 
2579 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2580 {
2581     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2582     CPUClass *cc = CPU_CLASS(acc);
2583     DeviceClass *dc = DEVICE_CLASS(oc);
2584 
2585     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2586                                     &acc->parent_realize);
2587     dc->props = arm_cpu_properties;
2588 
2589     acc->parent_reset = cc->reset;
2590     cc->reset = arm_cpu_reset;
2591 
2592     cc->class_by_name = arm_cpu_class_by_name;
2593     cc->has_work = arm_cpu_has_work;
2594     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2595     cc->dump_state = arm_cpu_dump_state;
2596     cc->set_pc = arm_cpu_set_pc;
2597     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2598     cc->gdb_read_register = arm_cpu_gdb_read_register;
2599     cc->gdb_write_register = arm_cpu_gdb_write_register;
2600 #ifndef CONFIG_USER_ONLY
2601     cc->do_interrupt = arm_cpu_do_interrupt;
2602     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2603     cc->asidx_from_attrs = arm_asidx_from_attrs;
2604     cc->vmsd = &vmstate_arm_cpu;
2605     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2606     cc->write_elf64_note = arm_cpu_write_elf64_note;
2607     cc->write_elf32_note = arm_cpu_write_elf32_note;
2608 #endif
2609     cc->gdb_num_core_regs = 26;
2610     cc->gdb_core_xml_file = "arm-core.xml";
2611     cc->gdb_arch_name = arm_gdb_arch_name;
2612     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2613     cc->gdb_stop_before_watchpoint = true;
2614     cc->disas_set_info = arm_disas_set_info;
2615 #ifdef CONFIG_TCG
2616     cc->tcg_initialize = arm_translate_init;
2617     cc->tlb_fill = arm_cpu_tlb_fill;
2618     cc->debug_excp_handler = arm_debug_excp_handler;
2619     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2620 #if !defined(CONFIG_USER_ONLY)
2621     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2622     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2623     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2624 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2625 #endif
2626 }
2627 
2628 #ifdef CONFIG_KVM
2629 static void arm_host_initfn(Object *obj)
2630 {
2631     ARMCPU *cpu = ARM_CPU(obj);
2632 
2633     kvm_arm_set_cpu_features_from_host(cpu);
2634     arm_cpu_post_init(obj);
2635 }
2636 
2637 static const TypeInfo host_arm_cpu_type_info = {
2638     .name = TYPE_ARM_HOST_CPU,
2639 #ifdef TARGET_AARCH64
2640     .parent = TYPE_AARCH64_CPU,
2641 #else
2642     .parent = TYPE_ARM_CPU,
2643 #endif
2644     .instance_init = arm_host_initfn,
2645 };
2646 
2647 #endif
2648 
2649 static void arm_cpu_instance_init(Object *obj)
2650 {
2651     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2652 
2653     acc->info->initfn(obj);
2654     arm_cpu_post_init(obj);
2655 }
2656 
2657 static void cpu_register_class_init(ObjectClass *oc, void *data)
2658 {
2659     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2660 
2661     acc->info = data;
2662 }
2663 
2664 static void cpu_register(const ARMCPUInfo *info)
2665 {
2666     TypeInfo type_info = {
2667         .parent = TYPE_ARM_CPU,
2668         .instance_size = sizeof(ARMCPU),
2669         .instance_init = arm_cpu_instance_init,
2670         .class_size = sizeof(ARMCPUClass),
2671         .class_init = info->class_init ?: cpu_register_class_init,
2672         .class_data = (void *)info,
2673     };
2674 
2675     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2676     type_register(&type_info);
2677     g_free((void *)type_info.name);
2678 }
2679 
2680 static const TypeInfo arm_cpu_type_info = {
2681     .name = TYPE_ARM_CPU,
2682     .parent = TYPE_CPU,
2683     .instance_size = sizeof(ARMCPU),
2684     .instance_init = arm_cpu_initfn,
2685     .instance_finalize = arm_cpu_finalizefn,
2686     .abstract = true,
2687     .class_size = sizeof(ARMCPUClass),
2688     .class_init = arm_cpu_class_init,
2689 };
2690 
2691 static const TypeInfo idau_interface_type_info = {
2692     .name = TYPE_IDAU_INTERFACE,
2693     .parent = TYPE_INTERFACE,
2694     .class_size = sizeof(IDAUInterfaceClass),
2695 };
2696 
2697 static void arm_cpu_register_types(void)
2698 {
2699     const ARMCPUInfo *info = arm_cpus;
2700 
2701     type_register_static(&arm_cpu_type_info);
2702     type_register_static(&idau_interface_type_info);
2703 
2704     while (info->name) {
2705         cpu_register(info);
2706         info++;
2707     }
2708 
2709 #ifdef CONFIG_KVM
2710     type_register_static(&host_arm_cpu_type_info);
2711 #endif
2712 }
2713 
2714 type_init(arm_cpu_register_types)
2715