1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu-common.h" 24 #include "target/arm/idau.h" 25 #include "qemu/module.h" 26 #include "qapi/error.h" 27 #include "qapi/visitor.h" 28 #include "cpu.h" 29 #include "internals.h" 30 #include "exec/exec-all.h" 31 #include "hw/qdev-properties.h" 32 #if !defined(CONFIG_USER_ONLY) 33 #include "hw/loader.h" 34 #include "hw/boards.h" 35 #endif 36 #include "sysemu/sysemu.h" 37 #include "sysemu/tcg.h" 38 #include "sysemu/hw_accel.h" 39 #include "kvm_arm.h" 40 #include "disas/capstone.h" 41 #include "fpu/softfloat.h" 42 43 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 CPUARMState *env = &cpu->env; 47 48 if (is_a64(env)) { 49 env->pc = value; 50 env->thumb = 0; 51 } else { 52 env->regs[15] = value & ~1; 53 env->thumb = value & 1; 54 } 55 } 56 57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) 58 { 59 ARMCPU *cpu = ARM_CPU(cs); 60 CPUARMState *env = &cpu->env; 61 62 /* 63 * It's OK to look at env for the current mode here, because it's 64 * never possible for an AArch64 TB to chain to an AArch32 TB. 65 */ 66 if (is_a64(env)) { 67 env->pc = tb->pc; 68 } else { 69 env->regs[15] = tb->pc; 70 } 71 } 72 73 static bool arm_cpu_has_work(CPUState *cs) 74 { 75 ARMCPU *cpu = ARM_CPU(cs); 76 77 return (cpu->power_state != PSCI_OFF) 78 && cs->interrupt_request & 79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 81 | CPU_INTERRUPT_EXITTB); 82 } 83 84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 85 void *opaque) 86 { 87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 88 89 entry->hook = hook; 90 entry->opaque = opaque; 91 92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 93 } 94 95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 96 void *opaque) 97 { 98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 99 100 entry->hook = hook; 101 entry->opaque = opaque; 102 103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 104 } 105 106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 107 { 108 /* Reset a single ARMCPRegInfo register */ 109 ARMCPRegInfo *ri = value; 110 ARMCPU *cpu = opaque; 111 112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 113 return; 114 } 115 116 if (ri->resetfn) { 117 ri->resetfn(&cpu->env, ri); 118 return; 119 } 120 121 /* A zero offset is never possible as it would be regs[0] 122 * so we use it to indicate that reset is being handled elsewhere. 123 * This is basically only used for fields in non-core coprocessors 124 * (like the pxa2xx ones). 125 */ 126 if (!ri->fieldoffset) { 127 return; 128 } 129 130 if (cpreg_field_is_64bit(ri)) { 131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 132 } else { 133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 134 } 135 } 136 137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 138 { 139 /* Purely an assertion check: we've already done reset once, 140 * so now check that running the reset for the cpreg doesn't 141 * change its value. This traps bugs where two different cpregs 142 * both try to reset the same state field but to different values. 143 */ 144 ARMCPRegInfo *ri = value; 145 ARMCPU *cpu = opaque; 146 uint64_t oldvalue, newvalue; 147 148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 149 return; 150 } 151 152 oldvalue = read_raw_cp_reg(&cpu->env, ri); 153 cp_reg_reset(key, value, opaque); 154 newvalue = read_raw_cp_reg(&cpu->env, ri); 155 assert(oldvalue == newvalue); 156 } 157 158 /* CPUClass::reset() */ 159 static void arm_cpu_reset(CPUState *s) 160 { 161 ARMCPU *cpu = ARM_CPU(s); 162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 163 CPUARMState *env = &cpu->env; 164 165 acc->parent_reset(s); 166 167 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 168 169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 171 172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 176 177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON; 178 s->halted = cpu->start_powered_off; 179 180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 182 } 183 184 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 185 /* 64 bit CPUs always start in 64 bit mode */ 186 env->aarch64 = 1; 187 #if defined(CONFIG_USER_ONLY) 188 env->pstate = PSTATE_MODE_EL0t; 189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 191 /* Enable all PAC keys. */ 192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 193 SCTLR_EnDA | SCTLR_EnDB); 194 /* Enable all PAC instructions */ 195 env->cp15.hcr_el2 |= HCR_API; 196 env->cp15.scr_el3 |= SCR_API; 197 /* and to the FP/Neon instructions */ 198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 199 /* and to the SVE instructions */ 200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 201 env->cp15.cptr_el[3] |= CPTR_EZ; 202 /* with maximum vector length */ 203 env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ? 204 cpu->sve_max_vq - 1 : 0; 205 env->vfp.zcr_el[2] = env->vfp.zcr_el[1]; 206 env->vfp.zcr_el[3] = env->vfp.zcr_el[1]; 207 /* 208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 209 * turning on both here will produce smaller code and otherwise 210 * make no difference to the user-level emulation. 211 */ 212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 213 #else 214 /* Reset into the highest available EL */ 215 if (arm_feature(env, ARM_FEATURE_EL3)) { 216 env->pstate = PSTATE_MODE_EL3h; 217 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 218 env->pstate = PSTATE_MODE_EL2h; 219 } else { 220 env->pstate = PSTATE_MODE_EL1h; 221 } 222 env->pc = cpu->rvbar; 223 #endif 224 } else { 225 #if defined(CONFIG_USER_ONLY) 226 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 228 #endif 229 } 230 231 #if defined(CONFIG_USER_ONLY) 232 env->uncached_cpsr = ARM_CPU_MODE_USR; 233 /* For user mode we must enable access to coprocessors */ 234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 236 env->cp15.c15_cpar = 3; 237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 238 env->cp15.c15_cpar = 1; 239 } 240 #else 241 242 /* 243 * If the highest available EL is EL2, AArch32 will start in Hyp 244 * mode; otherwise it starts in SVC. Note that if we start in 245 * AArch64 then these values in the uncached_cpsr will be ignored. 246 */ 247 if (arm_feature(env, ARM_FEATURE_EL2) && 248 !arm_feature(env, ARM_FEATURE_EL3)) { 249 env->uncached_cpsr = ARM_CPU_MODE_HYP; 250 } else { 251 env->uncached_cpsr = ARM_CPU_MODE_SVC; 252 } 253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 254 255 if (arm_feature(env, ARM_FEATURE_M)) { 256 uint32_t initial_msp; /* Loaded from 0x0 */ 257 uint32_t initial_pc; /* Loaded from 0x4 */ 258 uint8_t *rom; 259 uint32_t vecbase; 260 261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 262 env->v7m.secure = true; 263 } else { 264 /* This bit resets to 0 if security is supported, but 1 if 265 * it is not. The bit is not present in v7M, but we set it 266 * here so we can avoid having to make checks on it conditional 267 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 268 */ 269 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 270 /* 271 * Set NSACR to indicate "NS access permitted to everything"; 272 * this avoids having to have all the tests of it being 273 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 274 * v8.1M the guest-visible value of NSACR in a CPU without the 275 * Security Extension is 0xcff. 276 */ 277 env->v7m.nsacr = 0xcff; 278 } 279 280 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 281 * that it resets to 1, so QEMU always does that rather than making 282 * it dependent on CPU model. In v8M it is RES1. 283 */ 284 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 285 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 286 if (arm_feature(env, ARM_FEATURE_V8)) { 287 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 288 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 289 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 290 } 291 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 292 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 293 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 294 } 295 296 if (arm_feature(env, ARM_FEATURE_VFP)) { 297 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 298 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 299 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 300 } 301 /* Unlike A/R profile, M profile defines the reset LR value */ 302 env->regs[14] = 0xffffffff; 303 304 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 305 306 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 307 vecbase = env->v7m.vecbase[env->v7m.secure]; 308 rom = rom_ptr(vecbase, 8); 309 if (rom) { 310 /* Address zero is covered by ROM which hasn't yet been 311 * copied into physical memory. 312 */ 313 initial_msp = ldl_p(rom); 314 initial_pc = ldl_p(rom + 4); 315 } else { 316 /* Address zero not covered by a ROM blob, or the ROM blob 317 * is in non-modifiable memory and this is a second reset after 318 * it got copied into memory. In the latter case, rom_ptr 319 * will return a NULL pointer and we should use ldl_phys instead. 320 */ 321 initial_msp = ldl_phys(s->as, vecbase); 322 initial_pc = ldl_phys(s->as, vecbase + 4); 323 } 324 325 env->regs[13] = initial_msp & 0xFFFFFFFC; 326 env->regs[15] = initial_pc & ~1; 327 env->thumb = initial_pc & 1; 328 } 329 330 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 331 * executing as AArch32 then check if highvecs are enabled and 332 * adjust the PC accordingly. 333 */ 334 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 335 env->regs[15] = 0xFFFF0000; 336 } 337 338 /* M profile requires that reset clears the exclusive monitor; 339 * A profile does not, but clearing it makes more sense than having it 340 * set with an exclusive access on address zero. 341 */ 342 arm_clear_exclusive(env); 343 344 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 345 #endif 346 347 if (arm_feature(env, ARM_FEATURE_PMSA)) { 348 if (cpu->pmsav7_dregion > 0) { 349 if (arm_feature(env, ARM_FEATURE_V8)) { 350 memset(env->pmsav8.rbar[M_REG_NS], 0, 351 sizeof(*env->pmsav8.rbar[M_REG_NS]) 352 * cpu->pmsav7_dregion); 353 memset(env->pmsav8.rlar[M_REG_NS], 0, 354 sizeof(*env->pmsav8.rlar[M_REG_NS]) 355 * cpu->pmsav7_dregion); 356 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 357 memset(env->pmsav8.rbar[M_REG_S], 0, 358 sizeof(*env->pmsav8.rbar[M_REG_S]) 359 * cpu->pmsav7_dregion); 360 memset(env->pmsav8.rlar[M_REG_S], 0, 361 sizeof(*env->pmsav8.rlar[M_REG_S]) 362 * cpu->pmsav7_dregion); 363 } 364 } else if (arm_feature(env, ARM_FEATURE_V7)) { 365 memset(env->pmsav7.drbar, 0, 366 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 367 memset(env->pmsav7.drsr, 0, 368 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 369 memset(env->pmsav7.dracr, 0, 370 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 371 } 372 } 373 env->pmsav7.rnr[M_REG_NS] = 0; 374 env->pmsav7.rnr[M_REG_S] = 0; 375 env->pmsav8.mair0[M_REG_NS] = 0; 376 env->pmsav8.mair0[M_REG_S] = 0; 377 env->pmsav8.mair1[M_REG_NS] = 0; 378 env->pmsav8.mair1[M_REG_S] = 0; 379 } 380 381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 382 if (cpu->sau_sregion > 0) { 383 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 384 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 385 } 386 env->sau.rnr = 0; 387 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 388 * the Cortex-M33 does. 389 */ 390 env->sau.ctrl = 0; 391 } 392 393 set_flush_to_zero(1, &env->vfp.standard_fp_status); 394 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 395 set_default_nan_mode(1, &env->vfp.standard_fp_status); 396 set_float_detect_tininess(float_tininess_before_rounding, 397 &env->vfp.fp_status); 398 set_float_detect_tininess(float_tininess_before_rounding, 399 &env->vfp.standard_fp_status); 400 set_float_detect_tininess(float_tininess_before_rounding, 401 &env->vfp.fp_status_f16); 402 #ifndef CONFIG_USER_ONLY 403 if (kvm_enabled()) { 404 kvm_arm_reset_vcpu(cpu); 405 } 406 #endif 407 408 hw_breakpoint_update_all(cpu); 409 hw_watchpoint_update_all(cpu); 410 arm_rebuild_hflags(env); 411 } 412 413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 414 unsigned int target_el, 415 unsigned int cur_el, bool secure, 416 uint64_t hcr_el2) 417 { 418 CPUARMState *env = cs->env_ptr; 419 bool pstate_unmasked; 420 bool unmasked = false; 421 422 /* 423 * Don't take exceptions if they target a lower EL. 424 * This check should catch any exceptions that would not be taken 425 * but left pending. 426 */ 427 if (cur_el > target_el) { 428 return false; 429 } 430 431 switch (excp_idx) { 432 case EXCP_FIQ: 433 pstate_unmasked = !(env->daif & PSTATE_F); 434 break; 435 436 case EXCP_IRQ: 437 pstate_unmasked = !(env->daif & PSTATE_I); 438 break; 439 440 case EXCP_VFIQ: 441 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 442 /* VFIQs are only taken when hypervized and non-secure. */ 443 return false; 444 } 445 return !(env->daif & PSTATE_F); 446 case EXCP_VIRQ: 447 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 448 /* VIRQs are only taken when hypervized and non-secure. */ 449 return false; 450 } 451 return !(env->daif & PSTATE_I); 452 default: 453 g_assert_not_reached(); 454 } 455 456 /* 457 * Use the target EL, current execution state and SCR/HCR settings to 458 * determine whether the corresponding CPSR bit is used to mask the 459 * interrupt. 460 */ 461 if ((target_el > cur_el) && (target_el != 1)) { 462 /* Exceptions targeting a higher EL may not be maskable */ 463 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 464 /* 465 * 64-bit masking rules are simple: exceptions to EL3 466 * can't be masked, and exceptions to EL2 can only be 467 * masked from Secure state. The HCR and SCR settings 468 * don't affect the masking logic, only the interrupt routing. 469 */ 470 if (target_el == 3 || !secure) { 471 unmasked = true; 472 } 473 } else { 474 /* 475 * The old 32-bit-only environment has a more complicated 476 * masking setup. HCR and SCR bits not only affect interrupt 477 * routing but also change the behaviour of masking. 478 */ 479 bool hcr, scr; 480 481 switch (excp_idx) { 482 case EXCP_FIQ: 483 /* 484 * If FIQs are routed to EL3 or EL2 then there are cases where 485 * we override the CPSR.F in determining if the exception is 486 * masked or not. If neither of these are set then we fall back 487 * to the CPSR.F setting otherwise we further assess the state 488 * below. 489 */ 490 hcr = hcr_el2 & HCR_FMO; 491 scr = (env->cp15.scr_el3 & SCR_FIQ); 492 493 /* 494 * When EL3 is 32-bit, the SCR.FW bit controls whether the 495 * CPSR.F bit masks FIQ interrupts when taken in non-secure 496 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 497 * when non-secure but only when FIQs are only routed to EL3. 498 */ 499 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 500 break; 501 case EXCP_IRQ: 502 /* 503 * When EL3 execution state is 32-bit, if HCR.IMO is set then 504 * we may override the CPSR.I masking when in non-secure state. 505 * The SCR.IRQ setting has already been taken into consideration 506 * when setting the target EL, so it does not have a further 507 * affect here. 508 */ 509 hcr = hcr_el2 & HCR_IMO; 510 scr = false; 511 break; 512 default: 513 g_assert_not_reached(); 514 } 515 516 if ((scr || hcr) && !secure) { 517 unmasked = true; 518 } 519 } 520 } 521 522 /* 523 * The PSTATE bits only mask the interrupt if we have not overriden the 524 * ability above. 525 */ 526 return unmasked || pstate_unmasked; 527 } 528 529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 530 { 531 CPUClass *cc = CPU_GET_CLASS(cs); 532 CPUARMState *env = cs->env_ptr; 533 uint32_t cur_el = arm_current_el(env); 534 bool secure = arm_is_secure(env); 535 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 536 uint32_t target_el; 537 uint32_t excp_idx; 538 539 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 540 541 if (interrupt_request & CPU_INTERRUPT_FIQ) { 542 excp_idx = EXCP_FIQ; 543 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 544 if (arm_excp_unmasked(cs, excp_idx, target_el, 545 cur_el, secure, hcr_el2)) { 546 goto found; 547 } 548 } 549 if (interrupt_request & CPU_INTERRUPT_HARD) { 550 excp_idx = EXCP_IRQ; 551 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 552 if (arm_excp_unmasked(cs, excp_idx, target_el, 553 cur_el, secure, hcr_el2)) { 554 goto found; 555 } 556 } 557 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 558 excp_idx = EXCP_VIRQ; 559 target_el = 1; 560 if (arm_excp_unmasked(cs, excp_idx, target_el, 561 cur_el, secure, hcr_el2)) { 562 goto found; 563 } 564 } 565 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 566 excp_idx = EXCP_VFIQ; 567 target_el = 1; 568 if (arm_excp_unmasked(cs, excp_idx, target_el, 569 cur_el, secure, hcr_el2)) { 570 goto found; 571 } 572 } 573 return false; 574 575 found: 576 cs->exception_index = excp_idx; 577 env->exception.target_el = target_el; 578 cc->do_interrupt(cs); 579 return true; 580 } 581 582 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 583 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 584 { 585 CPUClass *cc = CPU_GET_CLASS(cs); 586 ARMCPU *cpu = ARM_CPU(cs); 587 CPUARMState *env = &cpu->env; 588 bool ret = false; 589 590 /* ARMv7-M interrupt masking works differently than -A or -R. 591 * There is no FIQ/IRQ distinction. Instead of I and F bits 592 * masking FIQ and IRQ interrupts, an exception is taken only 593 * if it is higher priority than the current execution priority 594 * (which depends on state like BASEPRI, FAULTMASK and the 595 * currently active exception). 596 */ 597 if (interrupt_request & CPU_INTERRUPT_HARD 598 && (armv7m_nvic_can_take_pending_exception(env->nvic))) { 599 cs->exception_index = EXCP_IRQ; 600 cc->do_interrupt(cs); 601 ret = true; 602 } 603 return ret; 604 } 605 #endif 606 607 void arm_cpu_update_virq(ARMCPU *cpu) 608 { 609 /* 610 * Update the interrupt level for VIRQ, which is the logical OR of 611 * the HCR_EL2.VI bit and the input line level from the GIC. 612 */ 613 CPUARMState *env = &cpu->env; 614 CPUState *cs = CPU(cpu); 615 616 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 617 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 618 619 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 620 if (new_state) { 621 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 622 } else { 623 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 624 } 625 } 626 } 627 628 void arm_cpu_update_vfiq(ARMCPU *cpu) 629 { 630 /* 631 * Update the interrupt level for VFIQ, which is the logical OR of 632 * the HCR_EL2.VF bit and the input line level from the GIC. 633 */ 634 CPUARMState *env = &cpu->env; 635 CPUState *cs = CPU(cpu); 636 637 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 638 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 639 640 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 641 if (new_state) { 642 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 643 } else { 644 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 645 } 646 } 647 } 648 649 #ifndef CONFIG_USER_ONLY 650 static void arm_cpu_set_irq(void *opaque, int irq, int level) 651 { 652 ARMCPU *cpu = opaque; 653 CPUARMState *env = &cpu->env; 654 CPUState *cs = CPU(cpu); 655 static const int mask[] = { 656 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 657 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 658 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 659 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 660 }; 661 662 if (level) { 663 env->irq_line_state |= mask[irq]; 664 } else { 665 env->irq_line_state &= ~mask[irq]; 666 } 667 668 switch (irq) { 669 case ARM_CPU_VIRQ: 670 assert(arm_feature(env, ARM_FEATURE_EL2)); 671 arm_cpu_update_virq(cpu); 672 break; 673 case ARM_CPU_VFIQ: 674 assert(arm_feature(env, ARM_FEATURE_EL2)); 675 arm_cpu_update_vfiq(cpu); 676 break; 677 case ARM_CPU_IRQ: 678 case ARM_CPU_FIQ: 679 if (level) { 680 cpu_interrupt(cs, mask[irq]); 681 } else { 682 cpu_reset_interrupt(cs, mask[irq]); 683 } 684 break; 685 default: 686 g_assert_not_reached(); 687 } 688 } 689 690 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 691 { 692 #ifdef CONFIG_KVM 693 ARMCPU *cpu = opaque; 694 CPUARMState *env = &cpu->env; 695 CPUState *cs = CPU(cpu); 696 uint32_t linestate_bit; 697 int irq_id; 698 699 switch (irq) { 700 case ARM_CPU_IRQ: 701 irq_id = KVM_ARM_IRQ_CPU_IRQ; 702 linestate_bit = CPU_INTERRUPT_HARD; 703 break; 704 case ARM_CPU_FIQ: 705 irq_id = KVM_ARM_IRQ_CPU_FIQ; 706 linestate_bit = CPU_INTERRUPT_FIQ; 707 break; 708 default: 709 g_assert_not_reached(); 710 } 711 712 if (level) { 713 env->irq_line_state |= linestate_bit; 714 } else { 715 env->irq_line_state &= ~linestate_bit; 716 } 717 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 718 #endif 719 } 720 721 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 722 { 723 ARMCPU *cpu = ARM_CPU(cs); 724 CPUARMState *env = &cpu->env; 725 726 cpu_synchronize_state(cs); 727 return arm_cpu_data_is_big_endian(env); 728 } 729 730 #endif 731 732 static inline void set_feature(CPUARMState *env, int feature) 733 { 734 env->features |= 1ULL << feature; 735 } 736 737 static inline void unset_feature(CPUARMState *env, int feature) 738 { 739 env->features &= ~(1ULL << feature); 740 } 741 742 static int 743 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 744 { 745 return print_insn_arm(pc | 1, info); 746 } 747 748 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 749 { 750 ARMCPU *ac = ARM_CPU(cpu); 751 CPUARMState *env = &ac->env; 752 bool sctlr_b; 753 754 if (is_a64(env)) { 755 /* We might not be compiled with the A64 disassembler 756 * because it needs a C++ compiler. Leave print_insn 757 * unset in this case to use the caller default behaviour. 758 */ 759 #if defined(CONFIG_ARM_A64_DIS) 760 info->print_insn = print_insn_arm_a64; 761 #endif 762 info->cap_arch = CS_ARCH_ARM64; 763 info->cap_insn_unit = 4; 764 info->cap_insn_split = 4; 765 } else { 766 int cap_mode; 767 if (env->thumb) { 768 info->print_insn = print_insn_thumb1; 769 info->cap_insn_unit = 2; 770 info->cap_insn_split = 4; 771 cap_mode = CS_MODE_THUMB; 772 } else { 773 info->print_insn = print_insn_arm; 774 info->cap_insn_unit = 4; 775 info->cap_insn_split = 4; 776 cap_mode = CS_MODE_ARM; 777 } 778 if (arm_feature(env, ARM_FEATURE_V8)) { 779 cap_mode |= CS_MODE_V8; 780 } 781 if (arm_feature(env, ARM_FEATURE_M)) { 782 cap_mode |= CS_MODE_MCLASS; 783 } 784 info->cap_arch = CS_ARCH_ARM; 785 info->cap_mode = cap_mode; 786 } 787 788 sctlr_b = arm_sctlr_b(env); 789 if (bswap_code(sctlr_b)) { 790 #ifdef TARGET_WORDS_BIGENDIAN 791 info->endian = BFD_ENDIAN_LITTLE; 792 #else 793 info->endian = BFD_ENDIAN_BIG; 794 #endif 795 } 796 info->flags &= ~INSN_ARM_BE32; 797 #ifndef CONFIG_USER_ONLY 798 if (sctlr_b) { 799 info->flags |= INSN_ARM_BE32; 800 } 801 #endif 802 } 803 804 #ifdef TARGET_AARCH64 805 806 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 807 { 808 ARMCPU *cpu = ARM_CPU(cs); 809 CPUARMState *env = &cpu->env; 810 uint32_t psr = pstate_read(env); 811 int i; 812 int el = arm_current_el(env); 813 const char *ns_status; 814 815 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 816 for (i = 0; i < 32; i++) { 817 if (i == 31) { 818 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 819 } else { 820 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 821 (i + 2) % 3 ? " " : "\n"); 822 } 823 } 824 825 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 826 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 827 } else { 828 ns_status = ""; 829 } 830 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 831 psr, 832 psr & PSTATE_N ? 'N' : '-', 833 psr & PSTATE_Z ? 'Z' : '-', 834 psr & PSTATE_C ? 'C' : '-', 835 psr & PSTATE_V ? 'V' : '-', 836 ns_status, 837 el, 838 psr & PSTATE_SP ? 'h' : 't'); 839 840 if (cpu_isar_feature(aa64_bti, cpu)) { 841 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 842 } 843 if (!(flags & CPU_DUMP_FPU)) { 844 qemu_fprintf(f, "\n"); 845 return; 846 } 847 if (fp_exception_el(env, el) != 0) { 848 qemu_fprintf(f, " FPU disabled\n"); 849 return; 850 } 851 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 852 vfp_get_fpcr(env), vfp_get_fpsr(env)); 853 854 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { 855 int j, zcr_len = sve_zcr_len_for_el(env, el); 856 857 for (i = 0; i <= FFR_PRED_NUM; i++) { 858 bool eol; 859 if (i == FFR_PRED_NUM) { 860 qemu_fprintf(f, "FFR="); 861 /* It's last, so end the line. */ 862 eol = true; 863 } else { 864 qemu_fprintf(f, "P%02d=", i); 865 switch (zcr_len) { 866 case 0: 867 eol = i % 8 == 7; 868 break; 869 case 1: 870 eol = i % 6 == 5; 871 break; 872 case 2: 873 case 3: 874 eol = i % 3 == 2; 875 break; 876 default: 877 /* More than one quadword per predicate. */ 878 eol = true; 879 break; 880 } 881 } 882 for (j = zcr_len / 4; j >= 0; j--) { 883 int digits; 884 if (j * 4 + 4 <= zcr_len + 1) { 885 digits = 16; 886 } else { 887 digits = (zcr_len % 4 + 1) * 4; 888 } 889 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 890 env->vfp.pregs[i].p[j], 891 j ? ":" : eol ? "\n" : " "); 892 } 893 } 894 895 for (i = 0; i < 32; i++) { 896 if (zcr_len == 0) { 897 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 898 i, env->vfp.zregs[i].d[1], 899 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 900 } else if (zcr_len == 1) { 901 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 902 ":%016" PRIx64 ":%016" PRIx64 "\n", 903 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 904 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 905 } else { 906 for (j = zcr_len; j >= 0; j--) { 907 bool odd = (zcr_len - j) % 2 != 0; 908 if (j == zcr_len) { 909 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 910 } else if (!odd) { 911 if (j > 0) { 912 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 913 } else { 914 qemu_fprintf(f, " [%x]=", j); 915 } 916 } 917 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 918 env->vfp.zregs[i].d[j * 2 + 1], 919 env->vfp.zregs[i].d[j * 2], 920 odd || j == 0 ? "\n" : ":"); 921 } 922 } 923 } 924 } else { 925 for (i = 0; i < 32; i++) { 926 uint64_t *q = aa64_vfp_qreg(env, i); 927 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 928 i, q[1], q[0], (i & 1 ? "\n" : " ")); 929 } 930 } 931 } 932 933 #else 934 935 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 936 { 937 g_assert_not_reached(); 938 } 939 940 #endif 941 942 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 943 { 944 ARMCPU *cpu = ARM_CPU(cs); 945 CPUARMState *env = &cpu->env; 946 int i; 947 948 if (is_a64(env)) { 949 aarch64_cpu_dump_state(cs, f, flags); 950 return; 951 } 952 953 for (i = 0; i < 16; i++) { 954 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 955 if ((i % 4) == 3) { 956 qemu_fprintf(f, "\n"); 957 } else { 958 qemu_fprintf(f, " "); 959 } 960 } 961 962 if (arm_feature(env, ARM_FEATURE_M)) { 963 uint32_t xpsr = xpsr_read(env); 964 const char *mode; 965 const char *ns_status = ""; 966 967 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 968 ns_status = env->v7m.secure ? "S " : "NS "; 969 } 970 971 if (xpsr & XPSR_EXCP) { 972 mode = "handler"; 973 } else { 974 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 975 mode = "unpriv-thread"; 976 } else { 977 mode = "priv-thread"; 978 } 979 } 980 981 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 982 xpsr, 983 xpsr & XPSR_N ? 'N' : '-', 984 xpsr & XPSR_Z ? 'Z' : '-', 985 xpsr & XPSR_C ? 'C' : '-', 986 xpsr & XPSR_V ? 'V' : '-', 987 xpsr & XPSR_T ? 'T' : 'A', 988 ns_status, 989 mode); 990 } else { 991 uint32_t psr = cpsr_read(env); 992 const char *ns_status = ""; 993 994 if (arm_feature(env, ARM_FEATURE_EL3) && 995 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 996 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 997 } 998 999 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1000 psr, 1001 psr & CPSR_N ? 'N' : '-', 1002 psr & CPSR_Z ? 'Z' : '-', 1003 psr & CPSR_C ? 'C' : '-', 1004 psr & CPSR_V ? 'V' : '-', 1005 psr & CPSR_T ? 'T' : 'A', 1006 ns_status, 1007 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1008 } 1009 1010 if (flags & CPU_DUMP_FPU) { 1011 int numvfpregs = 0; 1012 if (arm_feature(env, ARM_FEATURE_VFP)) { 1013 numvfpregs += 16; 1014 } 1015 if (arm_feature(env, ARM_FEATURE_VFP3)) { 1016 numvfpregs += 16; 1017 } 1018 for (i = 0; i < numvfpregs; i++) { 1019 uint64_t v = *aa32_vfp_dreg(env, i); 1020 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1021 i * 2, (uint32_t)v, 1022 i * 2 + 1, (uint32_t)(v >> 32), 1023 i, v); 1024 } 1025 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1026 } 1027 } 1028 1029 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 1030 { 1031 uint32_t Aff1 = idx / clustersz; 1032 uint32_t Aff0 = idx % clustersz; 1033 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1034 } 1035 1036 static void cpreg_hashtable_data_destroy(gpointer data) 1037 { 1038 /* 1039 * Destroy function for cpu->cp_regs hashtable data entries. 1040 * We must free the name string because it was g_strdup()ed in 1041 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 1042 * from r->name because we know we definitely allocated it. 1043 */ 1044 ARMCPRegInfo *r = data; 1045 1046 g_free((void *)r->name); 1047 g_free(r); 1048 } 1049 1050 static void arm_cpu_initfn(Object *obj) 1051 { 1052 ARMCPU *cpu = ARM_CPU(obj); 1053 1054 cpu_set_cpustate_pointers(cpu); 1055 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 1056 g_free, cpreg_hashtable_data_destroy); 1057 1058 QLIST_INIT(&cpu->pre_el_change_hooks); 1059 QLIST_INIT(&cpu->el_change_hooks); 1060 1061 #ifndef CONFIG_USER_ONLY 1062 /* Our inbound IRQ and FIQ lines */ 1063 if (kvm_enabled()) { 1064 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1065 * the same interface as non-KVM CPUs. 1066 */ 1067 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1068 } else { 1069 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1070 } 1071 1072 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1073 ARRAY_SIZE(cpu->gt_timer_outputs)); 1074 1075 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1076 "gicv3-maintenance-interrupt", 1); 1077 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1078 "pmu-interrupt", 1); 1079 #endif 1080 1081 /* DTB consumers generally don't in fact care what the 'compatible' 1082 * string is, so always provide some string and trust that a hypothetical 1083 * picky DTB consumer will also provide a helpful error message. 1084 */ 1085 cpu->dtb_compatible = "qemu,unknown"; 1086 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 1087 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1088 1089 if (tcg_enabled()) { 1090 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 1091 } 1092 } 1093 1094 static Property arm_cpu_gt_cntfrq_property = 1095 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1096 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1097 1098 static Property arm_cpu_reset_cbar_property = 1099 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1100 1101 static Property arm_cpu_reset_hivecs_property = 1102 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1103 1104 static Property arm_cpu_rvbar_property = 1105 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 1106 1107 static Property arm_cpu_has_el2_property = 1108 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1109 1110 static Property arm_cpu_has_el3_property = 1111 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1112 1113 static Property arm_cpu_cfgend_property = 1114 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1115 1116 static Property arm_cpu_has_vfp_property = 1117 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1118 1119 static Property arm_cpu_has_neon_property = 1120 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1121 1122 static Property arm_cpu_has_dsp_property = 1123 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1124 1125 static Property arm_cpu_has_mpu_property = 1126 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1127 1128 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1129 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1130 * the right value for that particular CPU type, and we don't want 1131 * to override that with an incorrect constant value. 1132 */ 1133 static Property arm_cpu_pmsav7_dregion_property = 1134 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1135 pmsav7_dregion, 1136 qdev_prop_uint32, uint32_t); 1137 1138 static bool arm_get_pmu(Object *obj, Error **errp) 1139 { 1140 ARMCPU *cpu = ARM_CPU(obj); 1141 1142 return cpu->has_pmu; 1143 } 1144 1145 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1146 { 1147 ARMCPU *cpu = ARM_CPU(obj); 1148 1149 if (value) { 1150 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) { 1151 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1152 return; 1153 } 1154 set_feature(&cpu->env, ARM_FEATURE_PMU); 1155 } else { 1156 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1157 } 1158 cpu->has_pmu = value; 1159 } 1160 1161 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name, 1162 void *opaque, Error **errp) 1163 { 1164 ARMCPU *cpu = ARM_CPU(obj); 1165 1166 visit_type_uint32(v, name, &cpu->init_svtor, errp); 1167 } 1168 1169 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name, 1170 void *opaque, Error **errp) 1171 { 1172 ARMCPU *cpu = ARM_CPU(obj); 1173 1174 visit_type_uint32(v, name, &cpu->init_svtor, errp); 1175 } 1176 1177 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1178 { 1179 /* 1180 * The exact approach to calculating guest ticks is: 1181 * 1182 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1183 * NANOSECONDS_PER_SECOND); 1184 * 1185 * We don't do that. Rather we intentionally use integer division 1186 * truncation below and in the caller for the conversion of host monotonic 1187 * time to guest ticks to provide the exact inverse for the semantics of 1188 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1189 * it loses precision when representing frequencies where 1190 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1191 * provide an exact inverse leads to scheduling timers with negative 1192 * periods, which in turn leads to sticky behaviour in the guest. 1193 * 1194 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1195 * cannot become zero. 1196 */ 1197 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1198 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1199 } 1200 1201 void arm_cpu_post_init(Object *obj) 1202 { 1203 ARMCPU *cpu = ARM_CPU(obj); 1204 1205 /* M profile implies PMSA. We have to do this here rather than 1206 * in realize with the other feature-implication checks because 1207 * we look at the PMSA bit to see if we should add some properties. 1208 */ 1209 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1210 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1211 } 1212 /* Similarly for the VFP feature bits */ 1213 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) { 1214 set_feature(&cpu->env, ARM_FEATURE_VFP3); 1215 } 1216 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) { 1217 set_feature(&cpu->env, ARM_FEATURE_VFP); 1218 } 1219 1220 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1221 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1222 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1223 } 1224 1225 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1226 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1227 } 1228 1229 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1230 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property); 1231 } 1232 1233 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1234 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1235 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1236 */ 1237 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1238 1239 #ifndef CONFIG_USER_ONLY 1240 object_property_add_link(obj, "secure-memory", 1241 TYPE_MEMORY_REGION, 1242 (Object **)&cpu->secure_memory, 1243 qdev_prop_allow_set_link_before_realize, 1244 OBJ_PROP_LINK_STRONG, 1245 &error_abort); 1246 #endif 1247 } 1248 1249 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1250 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1251 } 1252 1253 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1254 cpu->has_pmu = true; 1255 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu, 1256 &error_abort); 1257 } 1258 1259 /* 1260 * Allow user to turn off VFP and Neon support, but only for TCG -- 1261 * KVM does not currently allow us to lie to the guest about its 1262 * ID/feature registers, so the guest always sees what the host has. 1263 */ 1264 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1265 cpu->has_vfp = true; 1266 if (!kvm_enabled()) { 1267 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1268 } 1269 } 1270 1271 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1272 cpu->has_neon = true; 1273 if (!kvm_enabled()) { 1274 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1275 } 1276 } 1277 1278 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1279 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1280 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1281 } 1282 1283 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1284 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1285 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1286 qdev_property_add_static(DEVICE(obj), 1287 &arm_cpu_pmsav7_dregion_property); 1288 } 1289 } 1290 1291 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1292 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1293 qdev_prop_allow_set_link_before_realize, 1294 OBJ_PROP_LINK_STRONG, 1295 &error_abort); 1296 /* 1297 * M profile: initial value of the Secure VTOR. We can't just use 1298 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1299 * the property to be set after realize. 1300 */ 1301 object_property_add(obj, "init-svtor", "uint32", 1302 arm_get_init_svtor, arm_set_init_svtor, 1303 NULL, NULL, &error_abort); 1304 } 1305 1306 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1307 1308 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1309 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1310 } 1311 } 1312 1313 static void arm_cpu_finalizefn(Object *obj) 1314 { 1315 ARMCPU *cpu = ARM_CPU(obj); 1316 ARMELChangeHook *hook, *next; 1317 1318 g_hash_table_destroy(cpu->cp_regs); 1319 1320 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1321 QLIST_REMOVE(hook, node); 1322 g_free(hook); 1323 } 1324 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1325 QLIST_REMOVE(hook, node); 1326 g_free(hook); 1327 } 1328 #ifndef CONFIG_USER_ONLY 1329 if (cpu->pmu_timer) { 1330 timer_del(cpu->pmu_timer); 1331 timer_deinit(cpu->pmu_timer); 1332 timer_free(cpu->pmu_timer); 1333 } 1334 #endif 1335 } 1336 1337 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1338 { 1339 Error *local_err = NULL; 1340 1341 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1342 arm_cpu_sve_finalize(cpu, &local_err); 1343 if (local_err != NULL) { 1344 error_propagate(errp, local_err); 1345 return; 1346 } 1347 } 1348 } 1349 1350 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1351 { 1352 CPUState *cs = CPU(dev); 1353 ARMCPU *cpu = ARM_CPU(dev); 1354 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1355 CPUARMState *env = &cpu->env; 1356 int pagebits; 1357 Error *local_err = NULL; 1358 bool no_aa32 = false; 1359 1360 /* If we needed to query the host kernel for the CPU features 1361 * then it's possible that might have failed in the initfn, but 1362 * this is the first point where we can report it. 1363 */ 1364 if (cpu->host_cpu_probe_failed) { 1365 if (!kvm_enabled()) { 1366 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 1367 } else { 1368 error_setg(errp, "Failed to retrieve host CPU features"); 1369 } 1370 return; 1371 } 1372 1373 #ifndef CONFIG_USER_ONLY 1374 /* The NVIC and M-profile CPU are two halves of a single piece of 1375 * hardware; trying to use one without the other is a command line 1376 * error and will result in segfaults if not caught here. 1377 */ 1378 if (arm_feature(env, ARM_FEATURE_M)) { 1379 if (!env->nvic) { 1380 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1381 return; 1382 } 1383 } else { 1384 if (env->nvic) { 1385 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1386 return; 1387 } 1388 } 1389 1390 { 1391 uint64_t scale; 1392 1393 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1394 if (!cpu->gt_cntfrq_hz) { 1395 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1396 cpu->gt_cntfrq_hz); 1397 return; 1398 } 1399 scale = gt_cntfrq_period_ns(cpu); 1400 } else { 1401 scale = GTIMER_SCALE; 1402 } 1403 1404 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1405 arm_gt_ptimer_cb, cpu); 1406 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1407 arm_gt_vtimer_cb, cpu); 1408 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1409 arm_gt_htimer_cb, cpu); 1410 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1411 arm_gt_stimer_cb, cpu); 1412 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1413 arm_gt_hvtimer_cb, cpu); 1414 } 1415 #endif 1416 1417 cpu_exec_realizefn(cs, &local_err); 1418 if (local_err != NULL) { 1419 error_propagate(errp, local_err); 1420 return; 1421 } 1422 1423 arm_cpu_finalize_features(cpu, &local_err); 1424 if (local_err != NULL) { 1425 error_propagate(errp, local_err); 1426 return; 1427 } 1428 1429 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1430 cpu->has_vfp != cpu->has_neon) { 1431 /* 1432 * This is an architectural requirement for AArch64; AArch32 is 1433 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1434 */ 1435 error_setg(errp, 1436 "AArch64 CPUs must have both VFP and Neon or neither"); 1437 return; 1438 } 1439 1440 if (!cpu->has_vfp) { 1441 uint64_t t; 1442 uint32_t u; 1443 1444 unset_feature(env, ARM_FEATURE_VFP); 1445 unset_feature(env, ARM_FEATURE_VFP3); 1446 unset_feature(env, ARM_FEATURE_VFP4); 1447 1448 t = cpu->isar.id_aa64isar1; 1449 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1450 cpu->isar.id_aa64isar1 = t; 1451 1452 t = cpu->isar.id_aa64pfr0; 1453 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1454 cpu->isar.id_aa64pfr0 = t; 1455 1456 u = cpu->isar.id_isar6; 1457 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1458 cpu->isar.id_isar6 = u; 1459 1460 u = cpu->isar.mvfr0; 1461 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1462 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1463 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1464 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1465 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1466 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1467 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1468 cpu->isar.mvfr0 = u; 1469 1470 u = cpu->isar.mvfr1; 1471 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1472 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1473 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1474 cpu->isar.mvfr1 = u; 1475 1476 u = cpu->isar.mvfr2; 1477 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1478 cpu->isar.mvfr2 = u; 1479 } 1480 1481 if (!cpu->has_neon) { 1482 uint64_t t; 1483 uint32_t u; 1484 1485 unset_feature(env, ARM_FEATURE_NEON); 1486 1487 t = cpu->isar.id_aa64isar0; 1488 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1489 cpu->isar.id_aa64isar0 = t; 1490 1491 t = cpu->isar.id_aa64isar1; 1492 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1493 cpu->isar.id_aa64isar1 = t; 1494 1495 t = cpu->isar.id_aa64pfr0; 1496 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1497 cpu->isar.id_aa64pfr0 = t; 1498 1499 u = cpu->isar.id_isar5; 1500 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1501 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1502 cpu->isar.id_isar5 = u; 1503 1504 u = cpu->isar.id_isar6; 1505 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1506 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1507 cpu->isar.id_isar6 = u; 1508 1509 u = cpu->isar.mvfr1; 1510 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1511 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1512 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1513 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1514 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1515 cpu->isar.mvfr1 = u; 1516 1517 u = cpu->isar.mvfr2; 1518 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1519 cpu->isar.mvfr2 = u; 1520 } 1521 1522 if (!cpu->has_neon && !cpu->has_vfp) { 1523 uint64_t t; 1524 uint32_t u; 1525 1526 t = cpu->isar.id_aa64isar0; 1527 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1528 cpu->isar.id_aa64isar0 = t; 1529 1530 t = cpu->isar.id_aa64isar1; 1531 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1532 cpu->isar.id_aa64isar1 = t; 1533 1534 u = cpu->isar.mvfr0; 1535 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1536 cpu->isar.mvfr0 = u; 1537 } 1538 1539 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1540 uint32_t u; 1541 1542 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1543 1544 u = cpu->isar.id_isar1; 1545 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1546 cpu->isar.id_isar1 = u; 1547 1548 u = cpu->isar.id_isar2; 1549 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1550 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1551 cpu->isar.id_isar2 = u; 1552 1553 u = cpu->isar.id_isar3; 1554 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1555 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1556 cpu->isar.id_isar3 = u; 1557 } 1558 1559 /* Some features automatically imply others: */ 1560 if (arm_feature(env, ARM_FEATURE_V8)) { 1561 if (arm_feature(env, ARM_FEATURE_M)) { 1562 set_feature(env, ARM_FEATURE_V7); 1563 } else { 1564 set_feature(env, ARM_FEATURE_V7VE); 1565 } 1566 } 1567 1568 /* 1569 * There exist AArch64 cpus without AArch32 support. When KVM 1570 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1571 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1572 * As a general principle, we also do not make ID register 1573 * consistency checks anywhere unless using TCG, because only 1574 * for TCG would a consistency-check failure be a QEMU bug. 1575 */ 1576 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1577 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1578 } 1579 1580 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1581 /* v7 Virtualization Extensions. In real hardware this implies 1582 * EL2 and also the presence of the Security Extensions. 1583 * For QEMU, for backwards-compatibility we implement some 1584 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1585 * include the various other features that V7VE implies. 1586 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1587 * Security Extensions is ARM_FEATURE_EL3. 1588 */ 1589 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu)); 1590 set_feature(env, ARM_FEATURE_LPAE); 1591 set_feature(env, ARM_FEATURE_V7); 1592 } 1593 if (arm_feature(env, ARM_FEATURE_V7)) { 1594 set_feature(env, ARM_FEATURE_VAPA); 1595 set_feature(env, ARM_FEATURE_THUMB2); 1596 set_feature(env, ARM_FEATURE_MPIDR); 1597 if (!arm_feature(env, ARM_FEATURE_M)) { 1598 set_feature(env, ARM_FEATURE_V6K); 1599 } else { 1600 set_feature(env, ARM_FEATURE_V6); 1601 } 1602 1603 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1604 * non-EL3 configs. This is needed by some legacy boards. 1605 */ 1606 set_feature(env, ARM_FEATURE_VBAR); 1607 } 1608 if (arm_feature(env, ARM_FEATURE_V6K)) { 1609 set_feature(env, ARM_FEATURE_V6); 1610 set_feature(env, ARM_FEATURE_MVFR); 1611 } 1612 if (arm_feature(env, ARM_FEATURE_V6)) { 1613 set_feature(env, ARM_FEATURE_V5); 1614 if (!arm_feature(env, ARM_FEATURE_M)) { 1615 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu)); 1616 set_feature(env, ARM_FEATURE_AUXCR); 1617 } 1618 } 1619 if (arm_feature(env, ARM_FEATURE_V5)) { 1620 set_feature(env, ARM_FEATURE_V4T); 1621 } 1622 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1623 set_feature(env, ARM_FEATURE_V7MP); 1624 set_feature(env, ARM_FEATURE_PXN); 1625 } 1626 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1627 set_feature(env, ARM_FEATURE_CBAR); 1628 } 1629 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1630 !arm_feature(env, ARM_FEATURE_M)) { 1631 set_feature(env, ARM_FEATURE_THUMB_DSP); 1632 } 1633 1634 /* 1635 * We rely on no XScale CPU having VFP so we can use the same bits in the 1636 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1637 */ 1638 assert(!(arm_feature(env, ARM_FEATURE_VFP) && 1639 arm_feature(env, ARM_FEATURE_XSCALE))); 1640 1641 if (arm_feature(env, ARM_FEATURE_V7) && 1642 !arm_feature(env, ARM_FEATURE_M) && 1643 !arm_feature(env, ARM_FEATURE_PMSA)) { 1644 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1645 * can use 4K pages. 1646 */ 1647 pagebits = 12; 1648 } else { 1649 /* For CPUs which might have tiny 1K pages, or which have an 1650 * MPU and might have small region sizes, stick with 1K pages. 1651 */ 1652 pagebits = 10; 1653 } 1654 if (!set_preferred_target_page_bits(pagebits)) { 1655 /* This can only ever happen for hotplugging a CPU, or if 1656 * the board code incorrectly creates a CPU which it has 1657 * promised via minimum_page_size that it will not. 1658 */ 1659 error_setg(errp, "This CPU requires a smaller page size than the " 1660 "system is using"); 1661 return; 1662 } 1663 1664 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1665 * We don't support setting cluster ID ([16..23]) (known as Aff2 1666 * in later ARM ARM versions), or any of the higher affinity level fields, 1667 * so these bits always RAZ. 1668 */ 1669 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1670 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1671 ARM_DEFAULT_CPUS_PER_CLUSTER); 1672 } 1673 1674 if (cpu->reset_hivecs) { 1675 cpu->reset_sctlr |= (1 << 13); 1676 } 1677 1678 if (cpu->cfgend) { 1679 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1680 cpu->reset_sctlr |= SCTLR_EE; 1681 } else { 1682 cpu->reset_sctlr |= SCTLR_B; 1683 } 1684 } 1685 1686 if (!cpu->has_el3) { 1687 /* If the has_el3 CPU property is disabled then we need to disable the 1688 * feature. 1689 */ 1690 unset_feature(env, ARM_FEATURE_EL3); 1691 1692 /* Disable the security extension feature bits in the processor feature 1693 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1694 */ 1695 cpu->id_pfr1 &= ~0xf0; 1696 cpu->isar.id_aa64pfr0 &= ~0xf000; 1697 } 1698 1699 if (!cpu->has_el2) { 1700 unset_feature(env, ARM_FEATURE_EL2); 1701 } 1702 1703 if (!cpu->has_pmu) { 1704 unset_feature(env, ARM_FEATURE_PMU); 1705 } 1706 if (arm_feature(env, ARM_FEATURE_PMU)) { 1707 pmu_init(cpu); 1708 1709 if (!kvm_enabled()) { 1710 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1711 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1712 } 1713 1714 #ifndef CONFIG_USER_ONLY 1715 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1716 cpu); 1717 #endif 1718 } else { 1719 cpu->id_aa64dfr0 &= ~0xf00; 1720 cpu->id_dfr0 &= ~(0xf << 24); 1721 cpu->pmceid0 = 0; 1722 cpu->pmceid1 = 0; 1723 } 1724 1725 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1726 /* Disable the hypervisor feature bits in the processor feature 1727 * registers if we don't have EL2. These are id_pfr1[15:12] and 1728 * id_aa64pfr0_el1[11:8]. 1729 */ 1730 cpu->isar.id_aa64pfr0 &= ~0xf00; 1731 cpu->id_pfr1 &= ~0xf000; 1732 } 1733 1734 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1735 * to false or by setting pmsav7-dregion to 0. 1736 */ 1737 if (!cpu->has_mpu) { 1738 cpu->pmsav7_dregion = 0; 1739 } 1740 if (cpu->pmsav7_dregion == 0) { 1741 cpu->has_mpu = false; 1742 } 1743 1744 if (arm_feature(env, ARM_FEATURE_PMSA) && 1745 arm_feature(env, ARM_FEATURE_V7)) { 1746 uint32_t nr = cpu->pmsav7_dregion; 1747 1748 if (nr > 0xff) { 1749 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1750 return; 1751 } 1752 1753 if (nr) { 1754 if (arm_feature(env, ARM_FEATURE_V8)) { 1755 /* PMSAv8 */ 1756 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1757 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1758 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1759 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1760 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1761 } 1762 } else { 1763 env->pmsav7.drbar = g_new0(uint32_t, nr); 1764 env->pmsav7.drsr = g_new0(uint32_t, nr); 1765 env->pmsav7.dracr = g_new0(uint32_t, nr); 1766 } 1767 } 1768 } 1769 1770 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1771 uint32_t nr = cpu->sau_sregion; 1772 1773 if (nr > 0xff) { 1774 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1775 return; 1776 } 1777 1778 if (nr) { 1779 env->sau.rbar = g_new0(uint32_t, nr); 1780 env->sau.rlar = g_new0(uint32_t, nr); 1781 } 1782 } 1783 1784 if (arm_feature(env, ARM_FEATURE_EL3)) { 1785 set_feature(env, ARM_FEATURE_VBAR); 1786 } 1787 1788 register_cp_regs_for_features(cpu); 1789 arm_cpu_register_gdb_regs_for_features(cpu); 1790 1791 init_cpreg_list(cpu); 1792 1793 #ifndef CONFIG_USER_ONLY 1794 MachineState *ms = MACHINE(qdev_get_machine()); 1795 unsigned int smp_cpus = ms->smp.cpus; 1796 1797 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1798 cs->num_ases = 2; 1799 1800 if (!cpu->secure_memory) { 1801 cpu->secure_memory = cs->memory; 1802 } 1803 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1804 cpu->secure_memory); 1805 } else { 1806 cs->num_ases = 1; 1807 } 1808 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1809 1810 /* No core_count specified, default to smp_cpus. */ 1811 if (cpu->core_count == -1) { 1812 cpu->core_count = smp_cpus; 1813 } 1814 #endif 1815 1816 qemu_init_vcpu(cs); 1817 cpu_reset(cs); 1818 1819 acc->parent_realize(dev, errp); 1820 } 1821 1822 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1823 { 1824 ObjectClass *oc; 1825 char *typename; 1826 char **cpuname; 1827 const char *cpunamestr; 1828 1829 cpuname = g_strsplit(cpu_model, ",", 1); 1830 cpunamestr = cpuname[0]; 1831 #ifdef CONFIG_USER_ONLY 1832 /* For backwards compatibility usermode emulation allows "-cpu any", 1833 * which has the same semantics as "-cpu max". 1834 */ 1835 if (!strcmp(cpunamestr, "any")) { 1836 cpunamestr = "max"; 1837 } 1838 #endif 1839 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1840 oc = object_class_by_name(typename); 1841 g_strfreev(cpuname); 1842 g_free(typename); 1843 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1844 object_class_is_abstract(oc)) { 1845 return NULL; 1846 } 1847 return oc; 1848 } 1849 1850 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1851 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1852 1853 static void arm926_initfn(Object *obj) 1854 { 1855 ARMCPU *cpu = ARM_CPU(obj); 1856 1857 cpu->dtb_compatible = "arm,arm926"; 1858 set_feature(&cpu->env, ARM_FEATURE_V5); 1859 set_feature(&cpu->env, ARM_FEATURE_VFP); 1860 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1861 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1862 cpu->midr = 0x41069265; 1863 cpu->reset_fpsid = 0x41011090; 1864 cpu->ctr = 0x1dd20d2; 1865 cpu->reset_sctlr = 0x00090078; 1866 1867 /* 1868 * ARMv5 does not have the ID_ISAR registers, but we can still 1869 * set the field to indicate Jazelle support within QEMU. 1870 */ 1871 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1872 /* 1873 * Similarly, we need to set MVFR0 fields to enable double precision 1874 * and short vector support even though ARMv5 doesn't have this register. 1875 */ 1876 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 1877 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1); 1878 } 1879 1880 static void arm946_initfn(Object *obj) 1881 { 1882 ARMCPU *cpu = ARM_CPU(obj); 1883 1884 cpu->dtb_compatible = "arm,arm946"; 1885 set_feature(&cpu->env, ARM_FEATURE_V5); 1886 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1887 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1888 cpu->midr = 0x41059461; 1889 cpu->ctr = 0x0f004006; 1890 cpu->reset_sctlr = 0x00000078; 1891 } 1892 1893 static void arm1026_initfn(Object *obj) 1894 { 1895 ARMCPU *cpu = ARM_CPU(obj); 1896 1897 cpu->dtb_compatible = "arm,arm1026"; 1898 set_feature(&cpu->env, ARM_FEATURE_V5); 1899 set_feature(&cpu->env, ARM_FEATURE_VFP); 1900 set_feature(&cpu->env, ARM_FEATURE_AUXCR); 1901 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1902 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); 1903 cpu->midr = 0x4106a262; 1904 cpu->reset_fpsid = 0x410110a0; 1905 cpu->ctr = 0x1dd20d2; 1906 cpu->reset_sctlr = 0x00090078; 1907 cpu->reset_auxcr = 1; 1908 1909 /* 1910 * ARMv5 does not have the ID_ISAR registers, but we can still 1911 * set the field to indicate Jazelle support within QEMU. 1912 */ 1913 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1); 1914 /* 1915 * Similarly, we need to set MVFR0 fields to enable double precision 1916 * and short vector support even though ARMv5 doesn't have this register. 1917 */ 1918 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 1919 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1); 1920 1921 { 1922 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ 1923 ARMCPRegInfo ifar = { 1924 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1925 .access = PL1_RW, 1926 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), 1927 .resetvalue = 0 1928 }; 1929 define_one_arm_cp_reg(cpu, &ifar); 1930 } 1931 } 1932 1933 static void arm1136_r2_initfn(Object *obj) 1934 { 1935 ARMCPU *cpu = ARM_CPU(obj); 1936 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an 1937 * older core than plain "arm1136". In particular this does not 1938 * have the v6K features. 1939 * These ID register values are correct for 1136 but may be wrong 1940 * for 1136_r2 (in particular r0p2 does not actually implement most 1941 * of the ID registers). 1942 */ 1943 1944 cpu->dtb_compatible = "arm,arm1136"; 1945 set_feature(&cpu->env, ARM_FEATURE_V6); 1946 set_feature(&cpu->env, ARM_FEATURE_VFP); 1947 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1948 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1949 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1950 cpu->midr = 0x4107b362; 1951 cpu->reset_fpsid = 0x410120b4; 1952 cpu->isar.mvfr0 = 0x11111111; 1953 cpu->isar.mvfr1 = 0x00000000; 1954 cpu->ctr = 0x1dd20d2; 1955 cpu->reset_sctlr = 0x00050078; 1956 cpu->id_pfr0 = 0x111; 1957 cpu->id_pfr1 = 0x1; 1958 cpu->id_dfr0 = 0x2; 1959 cpu->id_afr0 = 0x3; 1960 cpu->id_mmfr0 = 0x01130003; 1961 cpu->id_mmfr1 = 0x10030302; 1962 cpu->id_mmfr2 = 0x01222110; 1963 cpu->isar.id_isar0 = 0x00140011; 1964 cpu->isar.id_isar1 = 0x12002111; 1965 cpu->isar.id_isar2 = 0x11231111; 1966 cpu->isar.id_isar3 = 0x01102131; 1967 cpu->isar.id_isar4 = 0x141; 1968 cpu->reset_auxcr = 7; 1969 } 1970 1971 static void arm1136_initfn(Object *obj) 1972 { 1973 ARMCPU *cpu = ARM_CPU(obj); 1974 1975 cpu->dtb_compatible = "arm,arm1136"; 1976 set_feature(&cpu->env, ARM_FEATURE_V6K); 1977 set_feature(&cpu->env, ARM_FEATURE_V6); 1978 set_feature(&cpu->env, ARM_FEATURE_VFP); 1979 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1980 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 1981 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 1982 cpu->midr = 0x4117b363; 1983 cpu->reset_fpsid = 0x410120b4; 1984 cpu->isar.mvfr0 = 0x11111111; 1985 cpu->isar.mvfr1 = 0x00000000; 1986 cpu->ctr = 0x1dd20d2; 1987 cpu->reset_sctlr = 0x00050078; 1988 cpu->id_pfr0 = 0x111; 1989 cpu->id_pfr1 = 0x1; 1990 cpu->id_dfr0 = 0x2; 1991 cpu->id_afr0 = 0x3; 1992 cpu->id_mmfr0 = 0x01130003; 1993 cpu->id_mmfr1 = 0x10030302; 1994 cpu->id_mmfr2 = 0x01222110; 1995 cpu->isar.id_isar0 = 0x00140011; 1996 cpu->isar.id_isar1 = 0x12002111; 1997 cpu->isar.id_isar2 = 0x11231111; 1998 cpu->isar.id_isar3 = 0x01102131; 1999 cpu->isar.id_isar4 = 0x141; 2000 cpu->reset_auxcr = 7; 2001 } 2002 2003 static void arm1176_initfn(Object *obj) 2004 { 2005 ARMCPU *cpu = ARM_CPU(obj); 2006 2007 cpu->dtb_compatible = "arm,arm1176"; 2008 set_feature(&cpu->env, ARM_FEATURE_V6K); 2009 set_feature(&cpu->env, ARM_FEATURE_VFP); 2010 set_feature(&cpu->env, ARM_FEATURE_VAPA); 2011 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2012 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG); 2013 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS); 2014 set_feature(&cpu->env, ARM_FEATURE_EL3); 2015 cpu->midr = 0x410fb767; 2016 cpu->reset_fpsid = 0x410120b5; 2017 cpu->isar.mvfr0 = 0x11111111; 2018 cpu->isar.mvfr1 = 0x00000000; 2019 cpu->ctr = 0x1dd20d2; 2020 cpu->reset_sctlr = 0x00050078; 2021 cpu->id_pfr0 = 0x111; 2022 cpu->id_pfr1 = 0x11; 2023 cpu->id_dfr0 = 0x33; 2024 cpu->id_afr0 = 0; 2025 cpu->id_mmfr0 = 0x01130003; 2026 cpu->id_mmfr1 = 0x10030302; 2027 cpu->id_mmfr2 = 0x01222100; 2028 cpu->isar.id_isar0 = 0x0140011; 2029 cpu->isar.id_isar1 = 0x12002111; 2030 cpu->isar.id_isar2 = 0x11231121; 2031 cpu->isar.id_isar3 = 0x01102131; 2032 cpu->isar.id_isar4 = 0x01141; 2033 cpu->reset_auxcr = 7; 2034 } 2035 2036 static void arm11mpcore_initfn(Object *obj) 2037 { 2038 ARMCPU *cpu = ARM_CPU(obj); 2039 2040 cpu->dtb_compatible = "arm,arm11mpcore"; 2041 set_feature(&cpu->env, ARM_FEATURE_V6K); 2042 set_feature(&cpu->env, ARM_FEATURE_VFP); 2043 set_feature(&cpu->env, ARM_FEATURE_VAPA); 2044 set_feature(&cpu->env, ARM_FEATURE_MPIDR); 2045 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2046 cpu->midr = 0x410fb022; 2047 cpu->reset_fpsid = 0x410120b4; 2048 cpu->isar.mvfr0 = 0x11111111; 2049 cpu->isar.mvfr1 = 0x00000000; 2050 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */ 2051 cpu->id_pfr0 = 0x111; 2052 cpu->id_pfr1 = 0x1; 2053 cpu->id_dfr0 = 0; 2054 cpu->id_afr0 = 0x2; 2055 cpu->id_mmfr0 = 0x01100103; 2056 cpu->id_mmfr1 = 0x10020302; 2057 cpu->id_mmfr2 = 0x01222000; 2058 cpu->isar.id_isar0 = 0x00100011; 2059 cpu->isar.id_isar1 = 0x12002111; 2060 cpu->isar.id_isar2 = 0x11221011; 2061 cpu->isar.id_isar3 = 0x01102131; 2062 cpu->isar.id_isar4 = 0x141; 2063 cpu->reset_auxcr = 1; 2064 } 2065 2066 static void cortex_m0_initfn(Object *obj) 2067 { 2068 ARMCPU *cpu = ARM_CPU(obj); 2069 set_feature(&cpu->env, ARM_FEATURE_V6); 2070 set_feature(&cpu->env, ARM_FEATURE_M); 2071 2072 cpu->midr = 0x410cc200; 2073 } 2074 2075 static void cortex_m3_initfn(Object *obj) 2076 { 2077 ARMCPU *cpu = ARM_CPU(obj); 2078 set_feature(&cpu->env, ARM_FEATURE_V7); 2079 set_feature(&cpu->env, ARM_FEATURE_M); 2080 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 2081 cpu->midr = 0x410fc231; 2082 cpu->pmsav7_dregion = 8; 2083 cpu->id_pfr0 = 0x00000030; 2084 cpu->id_pfr1 = 0x00000200; 2085 cpu->id_dfr0 = 0x00100000; 2086 cpu->id_afr0 = 0x00000000; 2087 cpu->id_mmfr0 = 0x00000030; 2088 cpu->id_mmfr1 = 0x00000000; 2089 cpu->id_mmfr2 = 0x00000000; 2090 cpu->id_mmfr3 = 0x00000000; 2091 cpu->isar.id_isar0 = 0x01141110; 2092 cpu->isar.id_isar1 = 0x02111000; 2093 cpu->isar.id_isar2 = 0x21112231; 2094 cpu->isar.id_isar3 = 0x01111110; 2095 cpu->isar.id_isar4 = 0x01310102; 2096 cpu->isar.id_isar5 = 0x00000000; 2097 cpu->isar.id_isar6 = 0x00000000; 2098 } 2099 2100 static void cortex_m4_initfn(Object *obj) 2101 { 2102 ARMCPU *cpu = ARM_CPU(obj); 2103 2104 set_feature(&cpu->env, ARM_FEATURE_V7); 2105 set_feature(&cpu->env, ARM_FEATURE_M); 2106 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 2107 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 2108 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2109 cpu->midr = 0x410fc240; /* r0p0 */ 2110 cpu->pmsav7_dregion = 8; 2111 cpu->isar.mvfr0 = 0x10110021; 2112 cpu->isar.mvfr1 = 0x11000011; 2113 cpu->isar.mvfr2 = 0x00000000; 2114 cpu->id_pfr0 = 0x00000030; 2115 cpu->id_pfr1 = 0x00000200; 2116 cpu->id_dfr0 = 0x00100000; 2117 cpu->id_afr0 = 0x00000000; 2118 cpu->id_mmfr0 = 0x00000030; 2119 cpu->id_mmfr1 = 0x00000000; 2120 cpu->id_mmfr2 = 0x00000000; 2121 cpu->id_mmfr3 = 0x00000000; 2122 cpu->isar.id_isar0 = 0x01141110; 2123 cpu->isar.id_isar1 = 0x02111000; 2124 cpu->isar.id_isar2 = 0x21112231; 2125 cpu->isar.id_isar3 = 0x01111110; 2126 cpu->isar.id_isar4 = 0x01310102; 2127 cpu->isar.id_isar5 = 0x00000000; 2128 cpu->isar.id_isar6 = 0x00000000; 2129 } 2130 2131 static void cortex_m7_initfn(Object *obj) 2132 { 2133 ARMCPU *cpu = ARM_CPU(obj); 2134 2135 set_feature(&cpu->env, ARM_FEATURE_V7); 2136 set_feature(&cpu->env, ARM_FEATURE_M); 2137 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 2138 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 2139 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2140 cpu->midr = 0x411fc272; /* r1p2 */ 2141 cpu->pmsav7_dregion = 8; 2142 cpu->isar.mvfr0 = 0x10110221; 2143 cpu->isar.mvfr1 = 0x12000011; 2144 cpu->isar.mvfr2 = 0x00000040; 2145 cpu->id_pfr0 = 0x00000030; 2146 cpu->id_pfr1 = 0x00000200; 2147 cpu->id_dfr0 = 0x00100000; 2148 cpu->id_afr0 = 0x00000000; 2149 cpu->id_mmfr0 = 0x00100030; 2150 cpu->id_mmfr1 = 0x00000000; 2151 cpu->id_mmfr2 = 0x01000000; 2152 cpu->id_mmfr3 = 0x00000000; 2153 cpu->isar.id_isar0 = 0x01101110; 2154 cpu->isar.id_isar1 = 0x02112000; 2155 cpu->isar.id_isar2 = 0x20232231; 2156 cpu->isar.id_isar3 = 0x01111131; 2157 cpu->isar.id_isar4 = 0x01310132; 2158 cpu->isar.id_isar5 = 0x00000000; 2159 cpu->isar.id_isar6 = 0x00000000; 2160 } 2161 2162 static void cortex_m33_initfn(Object *obj) 2163 { 2164 ARMCPU *cpu = ARM_CPU(obj); 2165 2166 set_feature(&cpu->env, ARM_FEATURE_V8); 2167 set_feature(&cpu->env, ARM_FEATURE_M); 2168 set_feature(&cpu->env, ARM_FEATURE_M_MAIN); 2169 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY); 2170 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP); 2171 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2172 cpu->midr = 0x410fd213; /* r0p3 */ 2173 cpu->pmsav7_dregion = 16; 2174 cpu->sau_sregion = 8; 2175 cpu->isar.mvfr0 = 0x10110021; 2176 cpu->isar.mvfr1 = 0x11000011; 2177 cpu->isar.mvfr2 = 0x00000040; 2178 cpu->id_pfr0 = 0x00000030; 2179 cpu->id_pfr1 = 0x00000210; 2180 cpu->id_dfr0 = 0x00200000; 2181 cpu->id_afr0 = 0x00000000; 2182 cpu->id_mmfr0 = 0x00101F40; 2183 cpu->id_mmfr1 = 0x00000000; 2184 cpu->id_mmfr2 = 0x01000000; 2185 cpu->id_mmfr3 = 0x00000000; 2186 cpu->isar.id_isar0 = 0x01101110; 2187 cpu->isar.id_isar1 = 0x02212000; 2188 cpu->isar.id_isar2 = 0x20232232; 2189 cpu->isar.id_isar3 = 0x01111131; 2190 cpu->isar.id_isar4 = 0x01310132; 2191 cpu->isar.id_isar5 = 0x00000000; 2192 cpu->isar.id_isar6 = 0x00000000; 2193 cpu->clidr = 0x00000000; 2194 cpu->ctr = 0x8000c000; 2195 } 2196 2197 static void arm_v7m_class_init(ObjectClass *oc, void *data) 2198 { 2199 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2200 CPUClass *cc = CPU_CLASS(oc); 2201 2202 acc->info = data; 2203 #ifndef CONFIG_USER_ONLY 2204 cc->do_interrupt = arm_v7m_cpu_do_interrupt; 2205 #endif 2206 2207 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt; 2208 } 2209 2210 static const ARMCPRegInfo cortexr5_cp_reginfo[] = { 2211 /* Dummy the TCM region regs for the moment */ 2212 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2213 .access = PL1_RW, .type = ARM_CP_CONST }, 2214 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2215 .access = PL1_RW, .type = ARM_CP_CONST }, 2216 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5, 2217 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, 2218 REGINFO_SENTINEL 2219 }; 2220 2221 static void cortex_r5_initfn(Object *obj) 2222 { 2223 ARMCPU *cpu = ARM_CPU(obj); 2224 2225 set_feature(&cpu->env, ARM_FEATURE_V7); 2226 set_feature(&cpu->env, ARM_FEATURE_V7MP); 2227 set_feature(&cpu->env, ARM_FEATURE_PMSA); 2228 set_feature(&cpu->env, ARM_FEATURE_PMU); 2229 cpu->midr = 0x411fc153; /* r1p3 */ 2230 cpu->id_pfr0 = 0x0131; 2231 cpu->id_pfr1 = 0x001; 2232 cpu->id_dfr0 = 0x010400; 2233 cpu->id_afr0 = 0x0; 2234 cpu->id_mmfr0 = 0x0210030; 2235 cpu->id_mmfr1 = 0x00000000; 2236 cpu->id_mmfr2 = 0x01200000; 2237 cpu->id_mmfr3 = 0x0211; 2238 cpu->isar.id_isar0 = 0x02101111; 2239 cpu->isar.id_isar1 = 0x13112111; 2240 cpu->isar.id_isar2 = 0x21232141; 2241 cpu->isar.id_isar3 = 0x01112131; 2242 cpu->isar.id_isar4 = 0x0010142; 2243 cpu->isar.id_isar5 = 0x0; 2244 cpu->isar.id_isar6 = 0x0; 2245 cpu->mp_is_up = true; 2246 cpu->pmsav7_dregion = 16; 2247 define_arm_cp_regs(cpu, cortexr5_cp_reginfo); 2248 } 2249 2250 static void cortex_r5f_initfn(Object *obj) 2251 { 2252 ARMCPU *cpu = ARM_CPU(obj); 2253 2254 cortex_r5_initfn(obj); 2255 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2256 cpu->isar.mvfr0 = 0x10110221; 2257 cpu->isar.mvfr1 = 0x00000011; 2258 } 2259 2260 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 2261 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 2262 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2263 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2264 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2265 REGINFO_SENTINEL 2266 }; 2267 2268 static void cortex_a8_initfn(Object *obj) 2269 { 2270 ARMCPU *cpu = ARM_CPU(obj); 2271 2272 cpu->dtb_compatible = "arm,cortex-a8"; 2273 set_feature(&cpu->env, ARM_FEATURE_V7); 2274 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2275 set_feature(&cpu->env, ARM_FEATURE_NEON); 2276 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2277 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2278 set_feature(&cpu->env, ARM_FEATURE_EL3); 2279 cpu->midr = 0x410fc080; 2280 cpu->reset_fpsid = 0x410330c0; 2281 cpu->isar.mvfr0 = 0x11110222; 2282 cpu->isar.mvfr1 = 0x00011111; 2283 cpu->ctr = 0x82048004; 2284 cpu->reset_sctlr = 0x00c50078; 2285 cpu->id_pfr0 = 0x1031; 2286 cpu->id_pfr1 = 0x11; 2287 cpu->id_dfr0 = 0x400; 2288 cpu->id_afr0 = 0; 2289 cpu->id_mmfr0 = 0x31100003; 2290 cpu->id_mmfr1 = 0x20000000; 2291 cpu->id_mmfr2 = 0x01202000; 2292 cpu->id_mmfr3 = 0x11; 2293 cpu->isar.id_isar0 = 0x00101111; 2294 cpu->isar.id_isar1 = 0x12112111; 2295 cpu->isar.id_isar2 = 0x21232031; 2296 cpu->isar.id_isar3 = 0x11112131; 2297 cpu->isar.id_isar4 = 0x00111142; 2298 cpu->dbgdidr = 0x15141000; 2299 cpu->clidr = (1 << 27) | (2 << 24) | 3; 2300 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 2301 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 2302 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 2303 cpu->reset_auxcr = 2; 2304 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 2305 } 2306 2307 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 2308 /* power_control should be set to maximum latency. Again, 2309 * default to 0 and set by private hook 2310 */ 2311 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2312 .access = PL1_RW, .resetvalue = 0, 2313 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 2314 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 2315 .access = PL1_RW, .resetvalue = 0, 2316 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 2317 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 2318 .access = PL1_RW, .resetvalue = 0, 2319 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 2320 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2321 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2322 /* TLB lockdown control */ 2323 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 2324 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 2325 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 2326 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 2327 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 2328 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2329 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 2330 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2331 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 2332 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 2333 REGINFO_SENTINEL 2334 }; 2335 2336 static void cortex_a9_initfn(Object *obj) 2337 { 2338 ARMCPU *cpu = ARM_CPU(obj); 2339 2340 cpu->dtb_compatible = "arm,cortex-a9"; 2341 set_feature(&cpu->env, ARM_FEATURE_V7); 2342 set_feature(&cpu->env, ARM_FEATURE_VFP3); 2343 set_feature(&cpu->env, ARM_FEATURE_NEON); 2344 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2345 set_feature(&cpu->env, ARM_FEATURE_EL3); 2346 /* Note that A9 supports the MP extensions even for 2347 * A9UP and single-core A9MP (which are both different 2348 * and valid configurations; we don't model A9UP). 2349 */ 2350 set_feature(&cpu->env, ARM_FEATURE_V7MP); 2351 set_feature(&cpu->env, ARM_FEATURE_CBAR); 2352 cpu->midr = 0x410fc090; 2353 cpu->reset_fpsid = 0x41033090; 2354 cpu->isar.mvfr0 = 0x11110222; 2355 cpu->isar.mvfr1 = 0x01111111; 2356 cpu->ctr = 0x80038003; 2357 cpu->reset_sctlr = 0x00c50078; 2358 cpu->id_pfr0 = 0x1031; 2359 cpu->id_pfr1 = 0x11; 2360 cpu->id_dfr0 = 0x000; 2361 cpu->id_afr0 = 0; 2362 cpu->id_mmfr0 = 0x00100103; 2363 cpu->id_mmfr1 = 0x20000000; 2364 cpu->id_mmfr2 = 0x01230000; 2365 cpu->id_mmfr3 = 0x00002111; 2366 cpu->isar.id_isar0 = 0x00101111; 2367 cpu->isar.id_isar1 = 0x13112111; 2368 cpu->isar.id_isar2 = 0x21232041; 2369 cpu->isar.id_isar3 = 0x11112131; 2370 cpu->isar.id_isar4 = 0x00111142; 2371 cpu->dbgdidr = 0x35141000; 2372 cpu->clidr = (1 << 27) | (1 << 24) | 3; 2373 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 2374 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 2375 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 2376 } 2377 2378 #ifndef CONFIG_USER_ONLY 2379 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2380 { 2381 MachineState *ms = MACHINE(qdev_get_machine()); 2382 2383 /* Linux wants the number of processors from here. 2384 * Might as well set the interrupt-controller bit too. 2385 */ 2386 return ((ms->smp.cpus - 1) << 24) | (1 << 23); 2387 } 2388 #endif 2389 2390 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 2391 #ifndef CONFIG_USER_ONLY 2392 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2393 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 2394 .writefn = arm_cp_write_ignore, }, 2395 #endif 2396 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 2397 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2398 REGINFO_SENTINEL 2399 }; 2400 2401 static void cortex_a7_initfn(Object *obj) 2402 { 2403 ARMCPU *cpu = ARM_CPU(obj); 2404 2405 cpu->dtb_compatible = "arm,cortex-a7"; 2406 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2407 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2408 set_feature(&cpu->env, ARM_FEATURE_NEON); 2409 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2410 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2411 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2412 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2413 set_feature(&cpu->env, ARM_FEATURE_EL2); 2414 set_feature(&cpu->env, ARM_FEATURE_EL3); 2415 set_feature(&cpu->env, ARM_FEATURE_PMU); 2416 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 2417 cpu->midr = 0x410fc075; 2418 cpu->reset_fpsid = 0x41023075; 2419 cpu->isar.mvfr0 = 0x10110222; 2420 cpu->isar.mvfr1 = 0x11111111; 2421 cpu->ctr = 0x84448003; 2422 cpu->reset_sctlr = 0x00c50078; 2423 cpu->id_pfr0 = 0x00001131; 2424 cpu->id_pfr1 = 0x00011011; 2425 cpu->id_dfr0 = 0x02010555; 2426 cpu->id_afr0 = 0x00000000; 2427 cpu->id_mmfr0 = 0x10101105; 2428 cpu->id_mmfr1 = 0x40000000; 2429 cpu->id_mmfr2 = 0x01240000; 2430 cpu->id_mmfr3 = 0x02102211; 2431 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 2432 * table 4-41 gives 0x02101110, which includes the arm div insns. 2433 */ 2434 cpu->isar.id_isar0 = 0x02101110; 2435 cpu->isar.id_isar1 = 0x13112111; 2436 cpu->isar.id_isar2 = 0x21232041; 2437 cpu->isar.id_isar3 = 0x11112131; 2438 cpu->isar.id_isar4 = 0x10011142; 2439 cpu->dbgdidr = 0x3515f005; 2440 cpu->clidr = 0x0a200023; 2441 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2442 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2443 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2444 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 2445 } 2446 2447 static void cortex_a15_initfn(Object *obj) 2448 { 2449 ARMCPU *cpu = ARM_CPU(obj); 2450 2451 cpu->dtb_compatible = "arm,cortex-a15"; 2452 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2453 set_feature(&cpu->env, ARM_FEATURE_VFP4); 2454 set_feature(&cpu->env, ARM_FEATURE_NEON); 2455 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2456 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2457 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2458 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2459 set_feature(&cpu->env, ARM_FEATURE_EL2); 2460 set_feature(&cpu->env, ARM_FEATURE_EL3); 2461 set_feature(&cpu->env, ARM_FEATURE_PMU); 2462 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 2463 cpu->midr = 0x412fc0f1; 2464 cpu->reset_fpsid = 0x410430f0; 2465 cpu->isar.mvfr0 = 0x10110222; 2466 cpu->isar.mvfr1 = 0x11111111; 2467 cpu->ctr = 0x8444c004; 2468 cpu->reset_sctlr = 0x00c50078; 2469 cpu->id_pfr0 = 0x00001131; 2470 cpu->id_pfr1 = 0x00011011; 2471 cpu->id_dfr0 = 0x02010555; 2472 cpu->id_afr0 = 0x00000000; 2473 cpu->id_mmfr0 = 0x10201105; 2474 cpu->id_mmfr1 = 0x20000000; 2475 cpu->id_mmfr2 = 0x01240000; 2476 cpu->id_mmfr3 = 0x02102211; 2477 cpu->isar.id_isar0 = 0x02101110; 2478 cpu->isar.id_isar1 = 0x13112111; 2479 cpu->isar.id_isar2 = 0x21232041; 2480 cpu->isar.id_isar3 = 0x11112131; 2481 cpu->isar.id_isar4 = 0x10011142; 2482 cpu->dbgdidr = 0x3515f021; 2483 cpu->clidr = 0x0a200023; 2484 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2485 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2486 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2487 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 2488 } 2489 2490 static void ti925t_initfn(Object *obj) 2491 { 2492 ARMCPU *cpu = ARM_CPU(obj); 2493 set_feature(&cpu->env, ARM_FEATURE_V4T); 2494 set_feature(&cpu->env, ARM_FEATURE_OMAPCP); 2495 cpu->midr = ARM_CPUID_TI925T; 2496 cpu->ctr = 0x5109149; 2497 cpu->reset_sctlr = 0x00000070; 2498 } 2499 2500 static void sa1100_initfn(Object *obj) 2501 { 2502 ARMCPU *cpu = ARM_CPU(obj); 2503 2504 cpu->dtb_compatible = "intel,sa1100"; 2505 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 2506 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2507 cpu->midr = 0x4401A11B; 2508 cpu->reset_sctlr = 0x00000070; 2509 } 2510 2511 static void sa1110_initfn(Object *obj) 2512 { 2513 ARMCPU *cpu = ARM_CPU(obj); 2514 set_feature(&cpu->env, ARM_FEATURE_STRONGARM); 2515 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2516 cpu->midr = 0x6901B119; 2517 cpu->reset_sctlr = 0x00000070; 2518 } 2519 2520 static void pxa250_initfn(Object *obj) 2521 { 2522 ARMCPU *cpu = ARM_CPU(obj); 2523 2524 cpu->dtb_compatible = "marvell,xscale"; 2525 set_feature(&cpu->env, ARM_FEATURE_V5); 2526 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2527 cpu->midr = 0x69052100; 2528 cpu->ctr = 0xd172172; 2529 cpu->reset_sctlr = 0x00000078; 2530 } 2531 2532 static void pxa255_initfn(Object *obj) 2533 { 2534 ARMCPU *cpu = ARM_CPU(obj); 2535 2536 cpu->dtb_compatible = "marvell,xscale"; 2537 set_feature(&cpu->env, ARM_FEATURE_V5); 2538 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2539 cpu->midr = 0x69052d00; 2540 cpu->ctr = 0xd172172; 2541 cpu->reset_sctlr = 0x00000078; 2542 } 2543 2544 static void pxa260_initfn(Object *obj) 2545 { 2546 ARMCPU *cpu = ARM_CPU(obj); 2547 2548 cpu->dtb_compatible = "marvell,xscale"; 2549 set_feature(&cpu->env, ARM_FEATURE_V5); 2550 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2551 cpu->midr = 0x69052903; 2552 cpu->ctr = 0xd172172; 2553 cpu->reset_sctlr = 0x00000078; 2554 } 2555 2556 static void pxa261_initfn(Object *obj) 2557 { 2558 ARMCPU *cpu = ARM_CPU(obj); 2559 2560 cpu->dtb_compatible = "marvell,xscale"; 2561 set_feature(&cpu->env, ARM_FEATURE_V5); 2562 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2563 cpu->midr = 0x69052d05; 2564 cpu->ctr = 0xd172172; 2565 cpu->reset_sctlr = 0x00000078; 2566 } 2567 2568 static void pxa262_initfn(Object *obj) 2569 { 2570 ARMCPU *cpu = ARM_CPU(obj); 2571 2572 cpu->dtb_compatible = "marvell,xscale"; 2573 set_feature(&cpu->env, ARM_FEATURE_V5); 2574 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2575 cpu->midr = 0x69052d06; 2576 cpu->ctr = 0xd172172; 2577 cpu->reset_sctlr = 0x00000078; 2578 } 2579 2580 static void pxa270a0_initfn(Object *obj) 2581 { 2582 ARMCPU *cpu = ARM_CPU(obj); 2583 2584 cpu->dtb_compatible = "marvell,xscale"; 2585 set_feature(&cpu->env, ARM_FEATURE_V5); 2586 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2587 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2588 cpu->midr = 0x69054110; 2589 cpu->ctr = 0xd172172; 2590 cpu->reset_sctlr = 0x00000078; 2591 } 2592 2593 static void pxa270a1_initfn(Object *obj) 2594 { 2595 ARMCPU *cpu = ARM_CPU(obj); 2596 2597 cpu->dtb_compatible = "marvell,xscale"; 2598 set_feature(&cpu->env, ARM_FEATURE_V5); 2599 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2600 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2601 cpu->midr = 0x69054111; 2602 cpu->ctr = 0xd172172; 2603 cpu->reset_sctlr = 0x00000078; 2604 } 2605 2606 static void pxa270b0_initfn(Object *obj) 2607 { 2608 ARMCPU *cpu = ARM_CPU(obj); 2609 2610 cpu->dtb_compatible = "marvell,xscale"; 2611 set_feature(&cpu->env, ARM_FEATURE_V5); 2612 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2613 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2614 cpu->midr = 0x69054112; 2615 cpu->ctr = 0xd172172; 2616 cpu->reset_sctlr = 0x00000078; 2617 } 2618 2619 static void pxa270b1_initfn(Object *obj) 2620 { 2621 ARMCPU *cpu = ARM_CPU(obj); 2622 2623 cpu->dtb_compatible = "marvell,xscale"; 2624 set_feature(&cpu->env, ARM_FEATURE_V5); 2625 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2626 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2627 cpu->midr = 0x69054113; 2628 cpu->ctr = 0xd172172; 2629 cpu->reset_sctlr = 0x00000078; 2630 } 2631 2632 static void pxa270c0_initfn(Object *obj) 2633 { 2634 ARMCPU *cpu = ARM_CPU(obj); 2635 2636 cpu->dtb_compatible = "marvell,xscale"; 2637 set_feature(&cpu->env, ARM_FEATURE_V5); 2638 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2639 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2640 cpu->midr = 0x69054114; 2641 cpu->ctr = 0xd172172; 2642 cpu->reset_sctlr = 0x00000078; 2643 } 2644 2645 static void pxa270c5_initfn(Object *obj) 2646 { 2647 ARMCPU *cpu = ARM_CPU(obj); 2648 2649 cpu->dtb_compatible = "marvell,xscale"; 2650 set_feature(&cpu->env, ARM_FEATURE_V5); 2651 set_feature(&cpu->env, ARM_FEATURE_XSCALE); 2652 set_feature(&cpu->env, ARM_FEATURE_IWMMXT); 2653 cpu->midr = 0x69054117; 2654 cpu->ctr = 0xd172172; 2655 cpu->reset_sctlr = 0x00000078; 2656 } 2657 2658 #ifndef TARGET_AARCH64 2659 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host); 2660 * otherwise, a CPU with as many features enabled as our emulation supports. 2661 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 2662 * this only needs to handle 32 bits. 2663 */ 2664 static void arm_max_initfn(Object *obj) 2665 { 2666 ARMCPU *cpu = ARM_CPU(obj); 2667 2668 if (kvm_enabled()) { 2669 kvm_arm_set_cpu_features_from_host(cpu); 2670 kvm_arm_add_vcpu_properties(obj); 2671 } else { 2672 cortex_a15_initfn(obj); 2673 2674 /* old-style VFP short-vector support */ 2675 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 2676 2677 #ifdef CONFIG_USER_ONLY 2678 /* We don't set these in system emulation mode for the moment, 2679 * since we don't correctly set (all of) the ID registers to 2680 * advertise them. 2681 */ 2682 set_feature(&cpu->env, ARM_FEATURE_V8); 2683 { 2684 uint32_t t; 2685 2686 t = cpu->isar.id_isar5; 2687 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2688 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2689 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2690 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2691 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2692 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2693 cpu->isar.id_isar5 = t; 2694 2695 t = cpu->isar.id_isar6; 2696 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2697 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2698 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2699 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2700 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2701 cpu->isar.id_isar6 = t; 2702 2703 t = cpu->isar.mvfr1; 2704 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */ 2705 cpu->isar.mvfr1 = t; 2706 2707 t = cpu->isar.mvfr2; 2708 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */ 2709 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */ 2710 cpu->isar.mvfr2 = t; 2711 2712 t = cpu->id_mmfr4; 2713 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2714 cpu->id_mmfr4 = t; 2715 } 2716 #endif 2717 } 2718 } 2719 #endif 2720 2721 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2722 2723 struct ARMCPUInfo { 2724 const char *name; 2725 void (*initfn)(Object *obj); 2726 void (*class_init)(ObjectClass *oc, void *data); 2727 }; 2728 2729 static const ARMCPUInfo arm_cpus[] = { 2730 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2731 { .name = "arm926", .initfn = arm926_initfn }, 2732 { .name = "arm946", .initfn = arm946_initfn }, 2733 { .name = "arm1026", .initfn = arm1026_initfn }, 2734 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an 2735 * older core than plain "arm1136". In particular this does not 2736 * have the v6K features. 2737 */ 2738 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn }, 2739 { .name = "arm1136", .initfn = arm1136_initfn }, 2740 { .name = "arm1176", .initfn = arm1176_initfn }, 2741 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn }, 2742 { .name = "cortex-m0", .initfn = cortex_m0_initfn, 2743 .class_init = arm_v7m_class_init }, 2744 { .name = "cortex-m3", .initfn = cortex_m3_initfn, 2745 .class_init = arm_v7m_class_init }, 2746 { .name = "cortex-m4", .initfn = cortex_m4_initfn, 2747 .class_init = arm_v7m_class_init }, 2748 { .name = "cortex-m7", .initfn = cortex_m7_initfn, 2749 .class_init = arm_v7m_class_init }, 2750 { .name = "cortex-m33", .initfn = cortex_m33_initfn, 2751 .class_init = arm_v7m_class_init }, 2752 { .name = "cortex-r5", .initfn = cortex_r5_initfn }, 2753 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn }, 2754 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2755 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2756 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2757 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2758 { .name = "ti925t", .initfn = ti925t_initfn }, 2759 { .name = "sa1100", .initfn = sa1100_initfn }, 2760 { .name = "sa1110", .initfn = sa1110_initfn }, 2761 { .name = "pxa250", .initfn = pxa250_initfn }, 2762 { .name = "pxa255", .initfn = pxa255_initfn }, 2763 { .name = "pxa260", .initfn = pxa260_initfn }, 2764 { .name = "pxa261", .initfn = pxa261_initfn }, 2765 { .name = "pxa262", .initfn = pxa262_initfn }, 2766 /* "pxa270" is an alias for "pxa270-a0" */ 2767 { .name = "pxa270", .initfn = pxa270a0_initfn }, 2768 { .name = "pxa270-a0", .initfn = pxa270a0_initfn }, 2769 { .name = "pxa270-a1", .initfn = pxa270a1_initfn }, 2770 { .name = "pxa270-b0", .initfn = pxa270b0_initfn }, 2771 { .name = "pxa270-b1", .initfn = pxa270b1_initfn }, 2772 { .name = "pxa270-c0", .initfn = pxa270c0_initfn }, 2773 { .name = "pxa270-c5", .initfn = pxa270c5_initfn }, 2774 #ifndef TARGET_AARCH64 2775 { .name = "max", .initfn = arm_max_initfn }, 2776 #endif 2777 #ifdef CONFIG_USER_ONLY 2778 { .name = "any", .initfn = arm_max_initfn }, 2779 #endif 2780 #endif 2781 { .name = NULL } 2782 }; 2783 2784 static Property arm_cpu_properties[] = { 2785 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false), 2786 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2787 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0), 2788 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2789 mp_affinity, ARM64_AFFINITY_INVALID), 2790 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2791 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2792 DEFINE_PROP_END_OF_LIST() 2793 }; 2794 2795 static gchar *arm_gdb_arch_name(CPUState *cs) 2796 { 2797 ARMCPU *cpu = ARM_CPU(cs); 2798 CPUARMState *env = &cpu->env; 2799 2800 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2801 return g_strdup("iwmmxt"); 2802 } 2803 return g_strdup("arm"); 2804 } 2805 2806 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2807 { 2808 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2809 CPUClass *cc = CPU_CLASS(acc); 2810 DeviceClass *dc = DEVICE_CLASS(oc); 2811 2812 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2813 &acc->parent_realize); 2814 2815 device_class_set_props(dc, arm_cpu_properties); 2816 cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset); 2817 2818 cc->class_by_name = arm_cpu_class_by_name; 2819 cc->has_work = arm_cpu_has_work; 2820 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 2821 cc->dump_state = arm_cpu_dump_state; 2822 cc->set_pc = arm_cpu_set_pc; 2823 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; 2824 cc->gdb_read_register = arm_cpu_gdb_read_register; 2825 cc->gdb_write_register = arm_cpu_gdb_write_register; 2826 #ifndef CONFIG_USER_ONLY 2827 cc->do_interrupt = arm_cpu_do_interrupt; 2828 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2829 cc->asidx_from_attrs = arm_asidx_from_attrs; 2830 cc->vmsd = &vmstate_arm_cpu; 2831 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2832 cc->write_elf64_note = arm_cpu_write_elf64_note; 2833 cc->write_elf32_note = arm_cpu_write_elf32_note; 2834 #endif 2835 cc->gdb_num_core_regs = 26; 2836 cc->gdb_core_xml_file = "arm-core.xml"; 2837 cc->gdb_arch_name = arm_gdb_arch_name; 2838 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2839 cc->gdb_stop_before_watchpoint = true; 2840 cc->disas_set_info = arm_disas_set_info; 2841 #ifdef CONFIG_TCG 2842 cc->tcg_initialize = arm_translate_init; 2843 cc->tlb_fill = arm_cpu_tlb_fill; 2844 cc->debug_excp_handler = arm_debug_excp_handler; 2845 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2846 #if !defined(CONFIG_USER_ONLY) 2847 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2848 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 2849 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2850 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 2851 #endif 2852 } 2853 2854 #ifdef CONFIG_KVM 2855 static void arm_host_initfn(Object *obj) 2856 { 2857 ARMCPU *cpu = ARM_CPU(obj); 2858 2859 kvm_arm_set_cpu_features_from_host(cpu); 2860 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 2861 aarch64_add_sve_properties(obj); 2862 } 2863 kvm_arm_add_vcpu_properties(obj); 2864 arm_cpu_post_init(obj); 2865 } 2866 2867 static const TypeInfo host_arm_cpu_type_info = { 2868 .name = TYPE_ARM_HOST_CPU, 2869 #ifdef TARGET_AARCH64 2870 .parent = TYPE_AARCH64_CPU, 2871 #else 2872 .parent = TYPE_ARM_CPU, 2873 #endif 2874 .instance_init = arm_host_initfn, 2875 }; 2876 2877 #endif 2878 2879 static void arm_cpu_instance_init(Object *obj) 2880 { 2881 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2882 2883 acc->info->initfn(obj); 2884 arm_cpu_post_init(obj); 2885 } 2886 2887 static void cpu_register_class_init(ObjectClass *oc, void *data) 2888 { 2889 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2890 2891 acc->info = data; 2892 } 2893 2894 static void cpu_register(const ARMCPUInfo *info) 2895 { 2896 TypeInfo type_info = { 2897 .parent = TYPE_ARM_CPU, 2898 .instance_size = sizeof(ARMCPU), 2899 .instance_init = arm_cpu_instance_init, 2900 .class_size = sizeof(ARMCPUClass), 2901 .class_init = info->class_init ?: cpu_register_class_init, 2902 .class_data = (void *)info, 2903 }; 2904 2905 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2906 type_register(&type_info); 2907 g_free((void *)type_info.name); 2908 } 2909 2910 static const TypeInfo arm_cpu_type_info = { 2911 .name = TYPE_ARM_CPU, 2912 .parent = TYPE_CPU, 2913 .instance_size = sizeof(ARMCPU), 2914 .instance_init = arm_cpu_initfn, 2915 .instance_finalize = arm_cpu_finalizefn, 2916 .abstract = true, 2917 .class_size = sizeof(ARMCPUClass), 2918 .class_init = arm_cpu_class_init, 2919 }; 2920 2921 static const TypeInfo idau_interface_type_info = { 2922 .name = TYPE_IDAU_INTERFACE, 2923 .parent = TYPE_INTERFACE, 2924 .class_size = sizeof(IDAUInterfaceClass), 2925 }; 2926 2927 static void arm_cpu_register_types(void) 2928 { 2929 const ARMCPUInfo *info = arm_cpus; 2930 2931 type_register_static(&arm_cpu_type_info); 2932 type_register_static(&idau_interface_type_info); 2933 2934 while (info->name) { 2935 cpu_register(info); 2936 info++; 2937 } 2938 2939 #ifdef CONFIG_KVM 2940 type_register_static(&host_arm_cpu_type_info); 2941 #endif 2942 } 2943 2944 type_init(arm_cpu_register_types) 2945