xref: /openbmc/qemu/target/arm/cpu.c (revision 8f4e07c9d1e8cf58ab196148e0c179e95f70201e)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #include "hw/intc/armv7m_nvic.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 static vaddr arm_cpu_get_pc(CPUState *cs)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     if (is_a64(env)) {
69         return env->pc;
70     } else {
71         return env->regs[15];
72     }
73 }
74 
75 #ifdef CONFIG_TCG
76 void arm_cpu_synchronize_from_tb(CPUState *cs,
77                                  const TranslationBlock *tb)
78 {
79     /* The program counter is always up to date with TARGET_TB_PCREL. */
80     if (!TARGET_TB_PCREL) {
81         CPUARMState *env = cs->env_ptr;
82         /*
83          * It's OK to look at env for the current mode here, because it's
84          * never possible for an AArch64 TB to chain to an AArch32 TB.
85          */
86         if (is_a64(env)) {
87             env->pc = tb_pc(tb);
88         } else {
89             env->regs[15] = tb_pc(tb);
90         }
91     }
92 }
93 
94 void arm_restore_state_to_opc(CPUState *cs,
95                               const TranslationBlock *tb,
96                               const uint64_t *data)
97 {
98     CPUARMState *env = cs->env_ptr;
99 
100     if (is_a64(env)) {
101         if (TARGET_TB_PCREL) {
102             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
103         } else {
104             env->pc = data[0];
105         }
106         env->condexec_bits = 0;
107         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
108     } else {
109         if (TARGET_TB_PCREL) {
110             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
111         } else {
112             env->regs[15] = data[0];
113         }
114         env->condexec_bits = data[1];
115         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
116     }
117 }
118 #endif /* CONFIG_TCG */
119 
120 static bool arm_cpu_has_work(CPUState *cs)
121 {
122     ARMCPU *cpu = ARM_CPU(cs);
123 
124     return (cpu->power_state != PSCI_OFF)
125         && cs->interrupt_request &
126         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
127          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
128          | CPU_INTERRUPT_EXITTB);
129 }
130 
131 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
132                                  void *opaque)
133 {
134     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
135 
136     entry->hook = hook;
137     entry->opaque = opaque;
138 
139     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
140 }
141 
142 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
143                                  void *opaque)
144 {
145     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
146 
147     entry->hook = hook;
148     entry->opaque = opaque;
149 
150     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
151 }
152 
153 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
154 {
155     /* Reset a single ARMCPRegInfo register */
156     ARMCPRegInfo *ri = value;
157     ARMCPU *cpu = opaque;
158 
159     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
160         return;
161     }
162 
163     if (ri->resetfn) {
164         ri->resetfn(&cpu->env, ri);
165         return;
166     }
167 
168     /* A zero offset is never possible as it would be regs[0]
169      * so we use it to indicate that reset is being handled elsewhere.
170      * This is basically only used for fields in non-core coprocessors
171      * (like the pxa2xx ones).
172      */
173     if (!ri->fieldoffset) {
174         return;
175     }
176 
177     if (cpreg_field_is_64bit(ri)) {
178         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
179     } else {
180         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
181     }
182 }
183 
184 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
185 {
186     /* Purely an assertion check: we've already done reset once,
187      * so now check that running the reset for the cpreg doesn't
188      * change its value. This traps bugs where two different cpregs
189      * both try to reset the same state field but to different values.
190      */
191     ARMCPRegInfo *ri = value;
192     ARMCPU *cpu = opaque;
193     uint64_t oldvalue, newvalue;
194 
195     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
196         return;
197     }
198 
199     oldvalue = read_raw_cp_reg(&cpu->env, ri);
200     cp_reg_reset(key, value, opaque);
201     newvalue = read_raw_cp_reg(&cpu->env, ri);
202     assert(oldvalue == newvalue);
203 }
204 
205 static void arm_cpu_reset_hold(Object *obj)
206 {
207     CPUState *s = CPU(obj);
208     ARMCPU *cpu = ARM_CPU(s);
209     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
210     CPUARMState *env = &cpu->env;
211 
212     if (acc->parent_phases.hold) {
213         acc->parent_phases.hold(obj);
214     }
215 
216     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
217 
218     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
219     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
220 
221     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
222     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
223     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
224     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
225 
226     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
227 
228     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
229         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
230     }
231 
232     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
233         /* 64 bit CPUs always start in 64 bit mode */
234         env->aarch64 = true;
235 #if defined(CONFIG_USER_ONLY)
236         env->pstate = PSTATE_MODE_EL0t;
237         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
238         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
239         /* Enable all PAC keys.  */
240         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
241                                   SCTLR_EnDA | SCTLR_EnDB);
242         /* Trap on btype=3 for PACIxSP. */
243         env->cp15.sctlr_el[1] |= SCTLR_BT0;
244         /* and to the FP/Neon instructions */
245         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
246                                          CPACR_EL1, FPEN, 3);
247         /* and to the SVE instructions, with default vector length */
248         if (cpu_isar_feature(aa64_sve, cpu)) {
249             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
250                                              CPACR_EL1, ZEN, 3);
251             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
252         }
253         /* and for SME instructions, with default vector length, and TPIDR2 */
254         if (cpu_isar_feature(aa64_sme, cpu)) {
255             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
256             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257                                              CPACR_EL1, SMEN, 3);
258             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
259             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
260                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
261                                                  SMCR, FA64, 1);
262             }
263         }
264         /*
265          * Enable 48-bit address space (TODO: take reserved_va into account).
266          * Enable TBI0 but not TBI1.
267          * Note that this must match useronly_clean_ptr.
268          */
269         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
270 
271         /* Enable MTE */
272         if (cpu_isar_feature(aa64_mte, cpu)) {
273             /* Enable tag access, but leave TCF0 as No Effect (0). */
274             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
275             /*
276              * Exclude all tags, so that tag 0 is always used.
277              * This corresponds to Linux current->thread.gcr_incl = 0.
278              *
279              * Set RRND, so that helper_irg() will generate a seed later.
280              * Here in cpu_reset(), the crypto subsystem has not yet been
281              * initialized.
282              */
283             env->cp15.gcr_el1 = 0x1ffff;
284         }
285         /*
286          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
287          * This is not yet exposed from the Linux kernel in any way.
288          */
289         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
290 #else
291         /* Reset into the highest available EL */
292         if (arm_feature(env, ARM_FEATURE_EL3)) {
293             env->pstate = PSTATE_MODE_EL3h;
294         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
295             env->pstate = PSTATE_MODE_EL2h;
296         } else {
297             env->pstate = PSTATE_MODE_EL1h;
298         }
299 
300         /* Sample rvbar at reset.  */
301         env->cp15.rvbar = cpu->rvbar_prop;
302         env->pc = env->cp15.rvbar;
303 #endif
304     } else {
305 #if defined(CONFIG_USER_ONLY)
306         /* Userspace expects access to cp10 and cp11 for FP/Neon */
307         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
308                                          CPACR, CP10, 3);
309         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
310                                          CPACR, CP11, 3);
311 #endif
312         if (arm_feature(env, ARM_FEATURE_V8)) {
313             env->cp15.rvbar = cpu->rvbar_prop;
314             env->regs[15] = cpu->rvbar_prop;
315         }
316     }
317 
318 #if defined(CONFIG_USER_ONLY)
319     env->uncached_cpsr = ARM_CPU_MODE_USR;
320     /* For user mode we must enable access to coprocessors */
321     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
322     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
323         env->cp15.c15_cpar = 3;
324     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
325         env->cp15.c15_cpar = 1;
326     }
327 #else
328 
329     /*
330      * If the highest available EL is EL2, AArch32 will start in Hyp
331      * mode; otherwise it starts in SVC. Note that if we start in
332      * AArch64 then these values in the uncached_cpsr will be ignored.
333      */
334     if (arm_feature(env, ARM_FEATURE_EL2) &&
335         !arm_feature(env, ARM_FEATURE_EL3)) {
336         env->uncached_cpsr = ARM_CPU_MODE_HYP;
337     } else {
338         env->uncached_cpsr = ARM_CPU_MODE_SVC;
339     }
340     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
341 
342     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
343      * executing as AArch32 then check if highvecs are enabled and
344      * adjust the PC accordingly.
345      */
346     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
347         env->regs[15] = 0xFFFF0000;
348     }
349 
350     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
351 #endif
352 
353     if (arm_feature(env, ARM_FEATURE_M)) {
354 #ifndef CONFIG_USER_ONLY
355         uint32_t initial_msp; /* Loaded from 0x0 */
356         uint32_t initial_pc; /* Loaded from 0x4 */
357         uint8_t *rom;
358         uint32_t vecbase;
359 #endif
360 
361         if (cpu_isar_feature(aa32_lob, cpu)) {
362             /*
363              * LTPSIZE is constant 4 if MVE not implemented, and resets
364              * to an UNKNOWN value if MVE is implemented. We choose to
365              * always reset to 4.
366              */
367             env->v7m.ltpsize = 4;
368             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
369             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
370             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
371         }
372 
373         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
374             env->v7m.secure = true;
375         } else {
376             /* This bit resets to 0 if security is supported, but 1 if
377              * it is not. The bit is not present in v7M, but we set it
378              * here so we can avoid having to make checks on it conditional
379              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
380              */
381             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
382             /*
383              * Set NSACR to indicate "NS access permitted to everything";
384              * this avoids having to have all the tests of it being
385              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
386              * v8.1M the guest-visible value of NSACR in a CPU without the
387              * Security Extension is 0xcff.
388              */
389             env->v7m.nsacr = 0xcff;
390         }
391 
392         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
393          * that it resets to 1, so QEMU always does that rather than making
394          * it dependent on CPU model. In v8M it is RES1.
395          */
396         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
397         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
398         if (arm_feature(env, ARM_FEATURE_V8)) {
399             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
400             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
401             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
402         }
403         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
404             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
405             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
406         }
407 
408         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
409             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
410             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
411                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
412         }
413 
414 #ifndef CONFIG_USER_ONLY
415         /* Unlike A/R profile, M profile defines the reset LR value */
416         env->regs[14] = 0xffffffff;
417 
418         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
419         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
420 
421         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
422         vecbase = env->v7m.vecbase[env->v7m.secure];
423         rom = rom_ptr_for_as(s->as, vecbase, 8);
424         if (rom) {
425             /* Address zero is covered by ROM which hasn't yet been
426              * copied into physical memory.
427              */
428             initial_msp = ldl_p(rom);
429             initial_pc = ldl_p(rom + 4);
430         } else {
431             /* Address zero not covered by a ROM blob, or the ROM blob
432              * is in non-modifiable memory and this is a second reset after
433              * it got copied into memory. In the latter case, rom_ptr
434              * will return a NULL pointer and we should use ldl_phys instead.
435              */
436             initial_msp = ldl_phys(s->as, vecbase);
437             initial_pc = ldl_phys(s->as, vecbase + 4);
438         }
439 
440         qemu_log_mask(CPU_LOG_INT,
441                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
442                       initial_msp, initial_pc);
443 
444         env->regs[13] = initial_msp & 0xFFFFFFFC;
445         env->regs[15] = initial_pc & ~1;
446         env->thumb = initial_pc & 1;
447 #else
448         /*
449          * For user mode we run non-secure and with access to the FPU.
450          * The FPU context is active (ie does not need further setup)
451          * and is owned by non-secure.
452          */
453         env->v7m.secure = false;
454         env->v7m.nsacr = 0xcff;
455         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
456         env->v7m.fpccr[M_REG_S] &=
457             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
458         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
459 #endif
460     }
461 
462     /* M profile requires that reset clears the exclusive monitor;
463      * A profile does not, but clearing it makes more sense than having it
464      * set with an exclusive access on address zero.
465      */
466     arm_clear_exclusive(env);
467 
468     if (arm_feature(env, ARM_FEATURE_PMSA)) {
469         if (cpu->pmsav7_dregion > 0) {
470             if (arm_feature(env, ARM_FEATURE_V8)) {
471                 memset(env->pmsav8.rbar[M_REG_NS], 0,
472                        sizeof(*env->pmsav8.rbar[M_REG_NS])
473                        * cpu->pmsav7_dregion);
474                 memset(env->pmsav8.rlar[M_REG_NS], 0,
475                        sizeof(*env->pmsav8.rlar[M_REG_NS])
476                        * cpu->pmsav7_dregion);
477                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
478                     memset(env->pmsav8.rbar[M_REG_S], 0,
479                            sizeof(*env->pmsav8.rbar[M_REG_S])
480                            * cpu->pmsav7_dregion);
481                     memset(env->pmsav8.rlar[M_REG_S], 0,
482                            sizeof(*env->pmsav8.rlar[M_REG_S])
483                            * cpu->pmsav7_dregion);
484                 }
485             } else if (arm_feature(env, ARM_FEATURE_V7)) {
486                 memset(env->pmsav7.drbar, 0,
487                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
488                 memset(env->pmsav7.drsr, 0,
489                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
490                 memset(env->pmsav7.dracr, 0,
491                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
492             }
493         }
494 
495         if (cpu->pmsav8r_hdregion > 0) {
496             memset(env->pmsav8.hprbar, 0,
497                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
498             memset(env->pmsav8.hprlar, 0,
499                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
500         }
501 
502         env->pmsav7.rnr[M_REG_NS] = 0;
503         env->pmsav7.rnr[M_REG_S] = 0;
504         env->pmsav8.mair0[M_REG_NS] = 0;
505         env->pmsav8.mair0[M_REG_S] = 0;
506         env->pmsav8.mair1[M_REG_NS] = 0;
507         env->pmsav8.mair1[M_REG_S] = 0;
508     }
509 
510     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
511         if (cpu->sau_sregion > 0) {
512             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
513             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
514         }
515         env->sau.rnr = 0;
516         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
517          * the Cortex-M33 does.
518          */
519         env->sau.ctrl = 0;
520     }
521 
522     set_flush_to_zero(1, &env->vfp.standard_fp_status);
523     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
524     set_default_nan_mode(1, &env->vfp.standard_fp_status);
525     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
526     set_float_detect_tininess(float_tininess_before_rounding,
527                               &env->vfp.fp_status);
528     set_float_detect_tininess(float_tininess_before_rounding,
529                               &env->vfp.standard_fp_status);
530     set_float_detect_tininess(float_tininess_before_rounding,
531                               &env->vfp.fp_status_f16);
532     set_float_detect_tininess(float_tininess_before_rounding,
533                               &env->vfp.standard_fp_status_f16);
534 #ifndef CONFIG_USER_ONLY
535     if (kvm_enabled()) {
536         kvm_arm_reset_vcpu(cpu);
537     }
538 #endif
539 
540     hw_breakpoint_update_all(cpu);
541     hw_watchpoint_update_all(cpu);
542     arm_rebuild_hflags(env);
543 }
544 
545 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
546 
547 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
548                                      unsigned int target_el,
549                                      unsigned int cur_el, bool secure,
550                                      uint64_t hcr_el2)
551 {
552     CPUARMState *env = cs->env_ptr;
553     bool pstate_unmasked;
554     bool unmasked = false;
555 
556     /*
557      * Don't take exceptions if they target a lower EL.
558      * This check should catch any exceptions that would not be taken
559      * but left pending.
560      */
561     if (cur_el > target_el) {
562         return false;
563     }
564 
565     switch (excp_idx) {
566     case EXCP_FIQ:
567         pstate_unmasked = !(env->daif & PSTATE_F);
568         break;
569 
570     case EXCP_IRQ:
571         pstate_unmasked = !(env->daif & PSTATE_I);
572         break;
573 
574     case EXCP_VFIQ:
575         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
576             /* VFIQs are only taken when hypervized.  */
577             return false;
578         }
579         return !(env->daif & PSTATE_F);
580     case EXCP_VIRQ:
581         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
582             /* VIRQs are only taken when hypervized.  */
583             return false;
584         }
585         return !(env->daif & PSTATE_I);
586     case EXCP_VSERR:
587         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
588             /* VIRQs are only taken when hypervized.  */
589             return false;
590         }
591         return !(env->daif & PSTATE_A);
592     default:
593         g_assert_not_reached();
594     }
595 
596     /*
597      * Use the target EL, current execution state and SCR/HCR settings to
598      * determine whether the corresponding CPSR bit is used to mask the
599      * interrupt.
600      */
601     if ((target_el > cur_el) && (target_el != 1)) {
602         /* Exceptions targeting a higher EL may not be maskable */
603         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
604             switch (target_el) {
605             case 2:
606                 /*
607                  * According to ARM DDI 0487H.a, an interrupt can be masked
608                  * when HCR_E2H and HCR_TGE are both set regardless of the
609                  * current Security state. Note that we need to revisit this
610                  * part again once we need to support NMI.
611                  */
612                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
613                         unmasked = true;
614                 }
615                 break;
616             case 3:
617                 /* Interrupt cannot be masked when the target EL is 3 */
618                 unmasked = true;
619                 break;
620             default:
621                 g_assert_not_reached();
622             }
623         } else {
624             /*
625              * The old 32-bit-only environment has a more complicated
626              * masking setup. HCR and SCR bits not only affect interrupt
627              * routing but also change the behaviour of masking.
628              */
629             bool hcr, scr;
630 
631             switch (excp_idx) {
632             case EXCP_FIQ:
633                 /*
634                  * If FIQs are routed to EL3 or EL2 then there are cases where
635                  * we override the CPSR.F in determining if the exception is
636                  * masked or not. If neither of these are set then we fall back
637                  * to the CPSR.F setting otherwise we further assess the state
638                  * below.
639                  */
640                 hcr = hcr_el2 & HCR_FMO;
641                 scr = (env->cp15.scr_el3 & SCR_FIQ);
642 
643                 /*
644                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
645                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
646                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
647                  * when non-secure but only when FIQs are only routed to EL3.
648                  */
649                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
650                 break;
651             case EXCP_IRQ:
652                 /*
653                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
654                  * we may override the CPSR.I masking when in non-secure state.
655                  * The SCR.IRQ setting has already been taken into consideration
656                  * when setting the target EL, so it does not have a further
657                  * affect here.
658                  */
659                 hcr = hcr_el2 & HCR_IMO;
660                 scr = false;
661                 break;
662             default:
663                 g_assert_not_reached();
664             }
665 
666             if ((scr || hcr) && !secure) {
667                 unmasked = true;
668             }
669         }
670     }
671 
672     /*
673      * The PSTATE bits only mask the interrupt if we have not overriden the
674      * ability above.
675      */
676     return unmasked || pstate_unmasked;
677 }
678 
679 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
680 {
681     CPUClass *cc = CPU_GET_CLASS(cs);
682     CPUARMState *env = cs->env_ptr;
683     uint32_t cur_el = arm_current_el(env);
684     bool secure = arm_is_secure(env);
685     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
686     uint32_t target_el;
687     uint32_t excp_idx;
688 
689     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
690 
691     if (interrupt_request & CPU_INTERRUPT_FIQ) {
692         excp_idx = EXCP_FIQ;
693         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
694         if (arm_excp_unmasked(cs, excp_idx, target_el,
695                               cur_el, secure, hcr_el2)) {
696             goto found;
697         }
698     }
699     if (interrupt_request & CPU_INTERRUPT_HARD) {
700         excp_idx = EXCP_IRQ;
701         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
702         if (arm_excp_unmasked(cs, excp_idx, target_el,
703                               cur_el, secure, hcr_el2)) {
704             goto found;
705         }
706     }
707     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
708         excp_idx = EXCP_VIRQ;
709         target_el = 1;
710         if (arm_excp_unmasked(cs, excp_idx, target_el,
711                               cur_el, secure, hcr_el2)) {
712             goto found;
713         }
714     }
715     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
716         excp_idx = EXCP_VFIQ;
717         target_el = 1;
718         if (arm_excp_unmasked(cs, excp_idx, target_el,
719                               cur_el, secure, hcr_el2)) {
720             goto found;
721         }
722     }
723     if (interrupt_request & CPU_INTERRUPT_VSERR) {
724         excp_idx = EXCP_VSERR;
725         target_el = 1;
726         if (arm_excp_unmasked(cs, excp_idx, target_el,
727                               cur_el, secure, hcr_el2)) {
728             /* Taking a virtual abort clears HCR_EL2.VSE */
729             env->cp15.hcr_el2 &= ~HCR_VSE;
730             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
731             goto found;
732         }
733     }
734     return false;
735 
736  found:
737     cs->exception_index = excp_idx;
738     env->exception.target_el = target_el;
739     cc->tcg_ops->do_interrupt(cs);
740     return true;
741 }
742 
743 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
744 
745 void arm_cpu_update_virq(ARMCPU *cpu)
746 {
747     /*
748      * Update the interrupt level for VIRQ, which is the logical OR of
749      * the HCR_EL2.VI bit and the input line level from the GIC.
750      */
751     CPUARMState *env = &cpu->env;
752     CPUState *cs = CPU(cpu);
753 
754     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
755         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
756 
757     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
758         if (new_state) {
759             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
760         } else {
761             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
762         }
763     }
764 }
765 
766 void arm_cpu_update_vfiq(ARMCPU *cpu)
767 {
768     /*
769      * Update the interrupt level for VFIQ, which is the logical OR of
770      * the HCR_EL2.VF bit and the input line level from the GIC.
771      */
772     CPUARMState *env = &cpu->env;
773     CPUState *cs = CPU(cpu);
774 
775     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
776         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
777 
778     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
779         if (new_state) {
780             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
781         } else {
782             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
783         }
784     }
785 }
786 
787 void arm_cpu_update_vserr(ARMCPU *cpu)
788 {
789     /*
790      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
791      */
792     CPUARMState *env = &cpu->env;
793     CPUState *cs = CPU(cpu);
794 
795     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
796 
797     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
798         if (new_state) {
799             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
800         } else {
801             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
802         }
803     }
804 }
805 
806 #ifndef CONFIG_USER_ONLY
807 static void arm_cpu_set_irq(void *opaque, int irq, int level)
808 {
809     ARMCPU *cpu = opaque;
810     CPUARMState *env = &cpu->env;
811     CPUState *cs = CPU(cpu);
812     static const int mask[] = {
813         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
814         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
815         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
816         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
817     };
818 
819     if (!arm_feature(env, ARM_FEATURE_EL2) &&
820         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
821         /*
822          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
823          * have EL2 support we don't care. (Unless the guest is doing something
824          * silly this will only be calls saying "level is still 0".)
825          */
826         return;
827     }
828 
829     if (level) {
830         env->irq_line_state |= mask[irq];
831     } else {
832         env->irq_line_state &= ~mask[irq];
833     }
834 
835     switch (irq) {
836     case ARM_CPU_VIRQ:
837         arm_cpu_update_virq(cpu);
838         break;
839     case ARM_CPU_VFIQ:
840         arm_cpu_update_vfiq(cpu);
841         break;
842     case ARM_CPU_IRQ:
843     case ARM_CPU_FIQ:
844         if (level) {
845             cpu_interrupt(cs, mask[irq]);
846         } else {
847             cpu_reset_interrupt(cs, mask[irq]);
848         }
849         break;
850     default:
851         g_assert_not_reached();
852     }
853 }
854 
855 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
856 {
857 #ifdef CONFIG_KVM
858     ARMCPU *cpu = opaque;
859     CPUARMState *env = &cpu->env;
860     CPUState *cs = CPU(cpu);
861     uint32_t linestate_bit;
862     int irq_id;
863 
864     switch (irq) {
865     case ARM_CPU_IRQ:
866         irq_id = KVM_ARM_IRQ_CPU_IRQ;
867         linestate_bit = CPU_INTERRUPT_HARD;
868         break;
869     case ARM_CPU_FIQ:
870         irq_id = KVM_ARM_IRQ_CPU_FIQ;
871         linestate_bit = CPU_INTERRUPT_FIQ;
872         break;
873     default:
874         g_assert_not_reached();
875     }
876 
877     if (level) {
878         env->irq_line_state |= linestate_bit;
879     } else {
880         env->irq_line_state &= ~linestate_bit;
881     }
882     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
883 #endif
884 }
885 
886 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
887 {
888     ARMCPU *cpu = ARM_CPU(cs);
889     CPUARMState *env = &cpu->env;
890 
891     cpu_synchronize_state(cs);
892     return arm_cpu_data_is_big_endian(env);
893 }
894 
895 #endif
896 
897 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
898 {
899     ARMCPU *ac = ARM_CPU(cpu);
900     CPUARMState *env = &ac->env;
901     bool sctlr_b;
902 
903     if (is_a64(env)) {
904         info->cap_arch = CS_ARCH_ARM64;
905         info->cap_insn_unit = 4;
906         info->cap_insn_split = 4;
907     } else {
908         int cap_mode;
909         if (env->thumb) {
910             info->cap_insn_unit = 2;
911             info->cap_insn_split = 4;
912             cap_mode = CS_MODE_THUMB;
913         } else {
914             info->cap_insn_unit = 4;
915             info->cap_insn_split = 4;
916             cap_mode = CS_MODE_ARM;
917         }
918         if (arm_feature(env, ARM_FEATURE_V8)) {
919             cap_mode |= CS_MODE_V8;
920         }
921         if (arm_feature(env, ARM_FEATURE_M)) {
922             cap_mode |= CS_MODE_MCLASS;
923         }
924         info->cap_arch = CS_ARCH_ARM;
925         info->cap_mode = cap_mode;
926     }
927 
928     sctlr_b = arm_sctlr_b(env);
929     if (bswap_code(sctlr_b)) {
930 #if TARGET_BIG_ENDIAN
931         info->endian = BFD_ENDIAN_LITTLE;
932 #else
933         info->endian = BFD_ENDIAN_BIG;
934 #endif
935     }
936     info->flags &= ~INSN_ARM_BE32;
937 #ifndef CONFIG_USER_ONLY
938     if (sctlr_b) {
939         info->flags |= INSN_ARM_BE32;
940     }
941 #endif
942 }
943 
944 #ifdef TARGET_AARCH64
945 
946 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
947 {
948     ARMCPU *cpu = ARM_CPU(cs);
949     CPUARMState *env = &cpu->env;
950     uint32_t psr = pstate_read(env);
951     int i;
952     int el = arm_current_el(env);
953     const char *ns_status;
954     bool sve;
955 
956     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
957     for (i = 0; i < 32; i++) {
958         if (i == 31) {
959             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
960         } else {
961             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
962                          (i + 2) % 3 ? " " : "\n");
963         }
964     }
965 
966     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
967         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
968     } else {
969         ns_status = "";
970     }
971     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
972                  psr,
973                  psr & PSTATE_N ? 'N' : '-',
974                  psr & PSTATE_Z ? 'Z' : '-',
975                  psr & PSTATE_C ? 'C' : '-',
976                  psr & PSTATE_V ? 'V' : '-',
977                  ns_status,
978                  el,
979                  psr & PSTATE_SP ? 'h' : 't');
980 
981     if (cpu_isar_feature(aa64_sme, cpu)) {
982         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
983                      env->svcr,
984                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
985                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
986     }
987     if (cpu_isar_feature(aa64_bti, cpu)) {
988         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
989     }
990     if (!(flags & CPU_DUMP_FPU)) {
991         qemu_fprintf(f, "\n");
992         return;
993     }
994     if (fp_exception_el(env, el) != 0) {
995         qemu_fprintf(f, "    FPU disabled\n");
996         return;
997     }
998     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
999                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1000 
1001     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1002         sve = sme_exception_el(env, el) == 0;
1003     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1004         sve = sve_exception_el(env, el) == 0;
1005     } else {
1006         sve = false;
1007     }
1008 
1009     if (sve) {
1010         int j, zcr_len = sve_vqm1_for_el(env, el);
1011 
1012         for (i = 0; i <= FFR_PRED_NUM; i++) {
1013             bool eol;
1014             if (i == FFR_PRED_NUM) {
1015                 qemu_fprintf(f, "FFR=");
1016                 /* It's last, so end the line.  */
1017                 eol = true;
1018             } else {
1019                 qemu_fprintf(f, "P%02d=", i);
1020                 switch (zcr_len) {
1021                 case 0:
1022                     eol = i % 8 == 7;
1023                     break;
1024                 case 1:
1025                     eol = i % 6 == 5;
1026                     break;
1027                 case 2:
1028                 case 3:
1029                     eol = i % 3 == 2;
1030                     break;
1031                 default:
1032                     /* More than one quadword per predicate.  */
1033                     eol = true;
1034                     break;
1035                 }
1036             }
1037             for (j = zcr_len / 4; j >= 0; j--) {
1038                 int digits;
1039                 if (j * 4 + 4 <= zcr_len + 1) {
1040                     digits = 16;
1041                 } else {
1042                     digits = (zcr_len % 4 + 1) * 4;
1043                 }
1044                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1045                              env->vfp.pregs[i].p[j],
1046                              j ? ":" : eol ? "\n" : " ");
1047             }
1048         }
1049 
1050         for (i = 0; i < 32; i++) {
1051             if (zcr_len == 0) {
1052                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1053                              i, env->vfp.zregs[i].d[1],
1054                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1055             } else if (zcr_len == 1) {
1056                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1057                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1058                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1059                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1060             } else {
1061                 for (j = zcr_len; j >= 0; j--) {
1062                     bool odd = (zcr_len - j) % 2 != 0;
1063                     if (j == zcr_len) {
1064                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1065                     } else if (!odd) {
1066                         if (j > 0) {
1067                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1068                         } else {
1069                             qemu_fprintf(f, "     [%x]=", j);
1070                         }
1071                     }
1072                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1073                                  env->vfp.zregs[i].d[j * 2 + 1],
1074                                  env->vfp.zregs[i].d[j * 2],
1075                                  odd || j == 0 ? "\n" : ":");
1076                 }
1077             }
1078         }
1079     } else {
1080         for (i = 0; i < 32; i++) {
1081             uint64_t *q = aa64_vfp_qreg(env, i);
1082             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1083                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1084         }
1085     }
1086 }
1087 
1088 #else
1089 
1090 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1091 {
1092     g_assert_not_reached();
1093 }
1094 
1095 #endif
1096 
1097 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1098 {
1099     ARMCPU *cpu = ARM_CPU(cs);
1100     CPUARMState *env = &cpu->env;
1101     int i;
1102 
1103     if (is_a64(env)) {
1104         aarch64_cpu_dump_state(cs, f, flags);
1105         return;
1106     }
1107 
1108     for (i = 0; i < 16; i++) {
1109         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1110         if ((i % 4) == 3) {
1111             qemu_fprintf(f, "\n");
1112         } else {
1113             qemu_fprintf(f, " ");
1114         }
1115     }
1116 
1117     if (arm_feature(env, ARM_FEATURE_M)) {
1118         uint32_t xpsr = xpsr_read(env);
1119         const char *mode;
1120         const char *ns_status = "";
1121 
1122         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1123             ns_status = env->v7m.secure ? "S " : "NS ";
1124         }
1125 
1126         if (xpsr & XPSR_EXCP) {
1127             mode = "handler";
1128         } else {
1129             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1130                 mode = "unpriv-thread";
1131             } else {
1132                 mode = "priv-thread";
1133             }
1134         }
1135 
1136         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1137                      xpsr,
1138                      xpsr & XPSR_N ? 'N' : '-',
1139                      xpsr & XPSR_Z ? 'Z' : '-',
1140                      xpsr & XPSR_C ? 'C' : '-',
1141                      xpsr & XPSR_V ? 'V' : '-',
1142                      xpsr & XPSR_T ? 'T' : 'A',
1143                      ns_status,
1144                      mode);
1145     } else {
1146         uint32_t psr = cpsr_read(env);
1147         const char *ns_status = "";
1148 
1149         if (arm_feature(env, ARM_FEATURE_EL3) &&
1150             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1151             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1152         }
1153 
1154         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1155                      psr,
1156                      psr & CPSR_N ? 'N' : '-',
1157                      psr & CPSR_Z ? 'Z' : '-',
1158                      psr & CPSR_C ? 'C' : '-',
1159                      psr & CPSR_V ? 'V' : '-',
1160                      psr & CPSR_T ? 'T' : 'A',
1161                      ns_status,
1162                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1163     }
1164 
1165     if (flags & CPU_DUMP_FPU) {
1166         int numvfpregs = 0;
1167         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1168             numvfpregs = 32;
1169         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1170             numvfpregs = 16;
1171         }
1172         for (i = 0; i < numvfpregs; i++) {
1173             uint64_t v = *aa32_vfp_dreg(env, i);
1174             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1175                          i * 2, (uint32_t)v,
1176                          i * 2 + 1, (uint32_t)(v >> 32),
1177                          i, v);
1178         }
1179         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1180         if (cpu_isar_feature(aa32_mve, cpu)) {
1181             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1182         }
1183     }
1184 }
1185 
1186 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1187 {
1188     uint32_t Aff1 = idx / clustersz;
1189     uint32_t Aff0 = idx % clustersz;
1190     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1191 }
1192 
1193 static void arm_cpu_initfn(Object *obj)
1194 {
1195     ARMCPU *cpu = ARM_CPU(obj);
1196 
1197     cpu_set_cpustate_pointers(cpu);
1198     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1199                                          NULL, g_free);
1200 
1201     QLIST_INIT(&cpu->pre_el_change_hooks);
1202     QLIST_INIT(&cpu->el_change_hooks);
1203 
1204 #ifdef CONFIG_USER_ONLY
1205 # ifdef TARGET_AARCH64
1206     /*
1207      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1208      * These values were chosen to fit within the default signal frame.
1209      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1210      * and our corresponding cpu property.
1211      */
1212     cpu->sve_default_vq = 4;
1213     cpu->sme_default_vq = 2;
1214 # endif
1215 #else
1216     /* Our inbound IRQ and FIQ lines */
1217     if (kvm_enabled()) {
1218         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1219          * the same interface as non-KVM CPUs.
1220          */
1221         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1222     } else {
1223         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1224     }
1225 
1226     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1227                        ARRAY_SIZE(cpu->gt_timer_outputs));
1228 
1229     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1230                              "gicv3-maintenance-interrupt", 1);
1231     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1232                              "pmu-interrupt", 1);
1233 #endif
1234 
1235     /* DTB consumers generally don't in fact care what the 'compatible'
1236      * string is, so always provide some string and trust that a hypothetical
1237      * picky DTB consumer will also provide a helpful error message.
1238      */
1239     cpu->dtb_compatible = "qemu,unknown";
1240     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1241     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1242 
1243     if (tcg_enabled() || hvf_enabled()) {
1244         /* TCG and HVF implement PSCI 1.1 */
1245         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1246     }
1247 }
1248 
1249 static Property arm_cpu_gt_cntfrq_property =
1250             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1251                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1252 
1253 static Property arm_cpu_reset_cbar_property =
1254             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1255 
1256 static Property arm_cpu_reset_hivecs_property =
1257             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1258 
1259 #ifndef CONFIG_USER_ONLY
1260 static Property arm_cpu_has_el2_property =
1261             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1262 
1263 static Property arm_cpu_has_el3_property =
1264             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1265 #endif
1266 
1267 static Property arm_cpu_cfgend_property =
1268             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1269 
1270 static Property arm_cpu_has_vfp_property =
1271             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1272 
1273 static Property arm_cpu_has_neon_property =
1274             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1275 
1276 static Property arm_cpu_has_dsp_property =
1277             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1278 
1279 static Property arm_cpu_has_mpu_property =
1280             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1281 
1282 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1283  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1284  * the right value for that particular CPU type, and we don't want
1285  * to override that with an incorrect constant value.
1286  */
1287 static Property arm_cpu_pmsav7_dregion_property =
1288             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1289                                            pmsav7_dregion,
1290                                            qdev_prop_uint32, uint32_t);
1291 
1292 static bool arm_get_pmu(Object *obj, Error **errp)
1293 {
1294     ARMCPU *cpu = ARM_CPU(obj);
1295 
1296     return cpu->has_pmu;
1297 }
1298 
1299 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1300 {
1301     ARMCPU *cpu = ARM_CPU(obj);
1302 
1303     if (value) {
1304         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1305             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1306             return;
1307         }
1308         set_feature(&cpu->env, ARM_FEATURE_PMU);
1309     } else {
1310         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1311     }
1312     cpu->has_pmu = value;
1313 }
1314 
1315 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1316 {
1317     /*
1318      * The exact approach to calculating guest ticks is:
1319      *
1320      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1321      *              NANOSECONDS_PER_SECOND);
1322      *
1323      * We don't do that. Rather we intentionally use integer division
1324      * truncation below and in the caller for the conversion of host monotonic
1325      * time to guest ticks to provide the exact inverse for the semantics of
1326      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1327      * it loses precision when representing frequencies where
1328      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1329      * provide an exact inverse leads to scheduling timers with negative
1330      * periods, which in turn leads to sticky behaviour in the guest.
1331      *
1332      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1333      * cannot become zero.
1334      */
1335     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1336       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1337 }
1338 
1339 void arm_cpu_post_init(Object *obj)
1340 {
1341     ARMCPU *cpu = ARM_CPU(obj);
1342 
1343     /* M profile implies PMSA. We have to do this here rather than
1344      * in realize with the other feature-implication checks because
1345      * we look at the PMSA bit to see if we should add some properties.
1346      */
1347     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1348         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1349     }
1350 
1351     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1352         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1353         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1354     }
1355 
1356     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1357         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1358     }
1359 
1360     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1361         object_property_add_uint64_ptr(obj, "rvbar",
1362                                        &cpu->rvbar_prop,
1363                                        OBJ_PROP_FLAG_READWRITE);
1364     }
1365 
1366 #ifndef CONFIG_USER_ONLY
1367     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1368         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1369          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1370          */
1371         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1372 
1373         object_property_add_link(obj, "secure-memory",
1374                                  TYPE_MEMORY_REGION,
1375                                  (Object **)&cpu->secure_memory,
1376                                  qdev_prop_allow_set_link_before_realize,
1377                                  OBJ_PROP_LINK_STRONG);
1378     }
1379 
1380     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1381         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1382     }
1383 #endif
1384 
1385     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1386         cpu->has_pmu = true;
1387         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1388     }
1389 
1390     /*
1391      * Allow user to turn off VFP and Neon support, but only for TCG --
1392      * KVM does not currently allow us to lie to the guest about its
1393      * ID/feature registers, so the guest always sees what the host has.
1394      */
1395     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1396         ? cpu_isar_feature(aa64_fp_simd, cpu)
1397         : cpu_isar_feature(aa32_vfp, cpu)) {
1398         cpu->has_vfp = true;
1399         if (!kvm_enabled()) {
1400             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1401         }
1402     }
1403 
1404     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1405         cpu->has_neon = true;
1406         if (!kvm_enabled()) {
1407             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1408         }
1409     }
1410 
1411     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1412         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1413         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1414     }
1415 
1416     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1417         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1418         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1419             qdev_property_add_static(DEVICE(obj),
1420                                      &arm_cpu_pmsav7_dregion_property);
1421         }
1422     }
1423 
1424     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1425         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1426                                  qdev_prop_allow_set_link_before_realize,
1427                                  OBJ_PROP_LINK_STRONG);
1428         /*
1429          * M profile: initial value of the Secure VTOR. We can't just use
1430          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1431          * the property to be set after realize.
1432          */
1433         object_property_add_uint32_ptr(obj, "init-svtor",
1434                                        &cpu->init_svtor,
1435                                        OBJ_PROP_FLAG_READWRITE);
1436     }
1437     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1438         /*
1439          * Initial value of the NS VTOR (for cores without the Security
1440          * extension, this is the only VTOR)
1441          */
1442         object_property_add_uint32_ptr(obj, "init-nsvtor",
1443                                        &cpu->init_nsvtor,
1444                                        OBJ_PROP_FLAG_READWRITE);
1445     }
1446 
1447     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1448     object_property_add_uint32_ptr(obj, "psci-conduit",
1449                                    &cpu->psci_conduit,
1450                                    OBJ_PROP_FLAG_READWRITE);
1451 
1452     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1453 
1454     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1455         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1456     }
1457 
1458     if (kvm_enabled()) {
1459         kvm_arm_add_vcpu_properties(obj);
1460     }
1461 
1462 #ifndef CONFIG_USER_ONLY
1463     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1464         cpu_isar_feature(aa64_mte, cpu)) {
1465         object_property_add_link(obj, "tag-memory",
1466                                  TYPE_MEMORY_REGION,
1467                                  (Object **)&cpu->tag_memory,
1468                                  qdev_prop_allow_set_link_before_realize,
1469                                  OBJ_PROP_LINK_STRONG);
1470 
1471         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1472             object_property_add_link(obj, "secure-tag-memory",
1473                                      TYPE_MEMORY_REGION,
1474                                      (Object **)&cpu->secure_tag_memory,
1475                                      qdev_prop_allow_set_link_before_realize,
1476                                      OBJ_PROP_LINK_STRONG);
1477         }
1478     }
1479 #endif
1480 }
1481 
1482 static void arm_cpu_finalizefn(Object *obj)
1483 {
1484     ARMCPU *cpu = ARM_CPU(obj);
1485     ARMELChangeHook *hook, *next;
1486 
1487     g_hash_table_destroy(cpu->cp_regs);
1488 
1489     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1490         QLIST_REMOVE(hook, node);
1491         g_free(hook);
1492     }
1493     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1494         QLIST_REMOVE(hook, node);
1495         g_free(hook);
1496     }
1497 #ifndef CONFIG_USER_ONLY
1498     if (cpu->pmu_timer) {
1499         timer_free(cpu->pmu_timer);
1500     }
1501 #endif
1502 }
1503 
1504 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1505 {
1506     Error *local_err = NULL;
1507 
1508 #ifdef TARGET_AARCH64
1509     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1510         arm_cpu_sve_finalize(cpu, &local_err);
1511         if (local_err != NULL) {
1512             error_propagate(errp, local_err);
1513             return;
1514         }
1515 
1516         arm_cpu_sme_finalize(cpu, &local_err);
1517         if (local_err != NULL) {
1518             error_propagate(errp, local_err);
1519             return;
1520         }
1521 
1522         arm_cpu_pauth_finalize(cpu, &local_err);
1523         if (local_err != NULL) {
1524             error_propagate(errp, local_err);
1525             return;
1526         }
1527 
1528         arm_cpu_lpa2_finalize(cpu, &local_err);
1529         if (local_err != NULL) {
1530             error_propagate(errp, local_err);
1531             return;
1532         }
1533     }
1534 #endif
1535 
1536     if (kvm_enabled()) {
1537         kvm_arm_steal_time_finalize(cpu, &local_err);
1538         if (local_err != NULL) {
1539             error_propagate(errp, local_err);
1540             return;
1541         }
1542     }
1543 }
1544 
1545 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1546 {
1547     CPUState *cs = CPU(dev);
1548     ARMCPU *cpu = ARM_CPU(dev);
1549     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1550     CPUARMState *env = &cpu->env;
1551     int pagebits;
1552     Error *local_err = NULL;
1553     bool no_aa32 = false;
1554 
1555     /* If we needed to query the host kernel for the CPU features
1556      * then it's possible that might have failed in the initfn, but
1557      * this is the first point where we can report it.
1558      */
1559     if (cpu->host_cpu_probe_failed) {
1560         if (!kvm_enabled() && !hvf_enabled()) {
1561             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1562         } else {
1563             error_setg(errp, "Failed to retrieve host CPU features");
1564         }
1565         return;
1566     }
1567 
1568 #ifndef CONFIG_USER_ONLY
1569     /* The NVIC and M-profile CPU are two halves of a single piece of
1570      * hardware; trying to use one without the other is a command line
1571      * error and will result in segfaults if not caught here.
1572      */
1573     if (arm_feature(env, ARM_FEATURE_M)) {
1574         if (!env->nvic) {
1575             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1576             return;
1577         }
1578     } else {
1579         if (env->nvic) {
1580             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1581             return;
1582         }
1583     }
1584 
1585     if (!tcg_enabled() && !qtest_enabled()) {
1586         /*
1587          * We assume that no accelerator except TCG (and the "not really an
1588          * accelerator" qtest) can handle these features, because Arm hardware
1589          * virtualization can't virtualize them.
1590          *
1591          * Catch all the cases which might cause us to create more than one
1592          * address space for the CPU (otherwise we will assert() later in
1593          * cpu_address_space_init()).
1594          */
1595         if (arm_feature(env, ARM_FEATURE_M)) {
1596             error_setg(errp,
1597                        "Cannot enable %s when using an M-profile guest CPU",
1598                        current_accel_name());
1599             return;
1600         }
1601         if (cpu->has_el3) {
1602             error_setg(errp,
1603                        "Cannot enable %s when guest CPU has EL3 enabled",
1604                        current_accel_name());
1605             return;
1606         }
1607         if (cpu->tag_memory) {
1608             error_setg(errp,
1609                        "Cannot enable %s when guest CPUs has MTE enabled",
1610                        current_accel_name());
1611             return;
1612         }
1613     }
1614 
1615     {
1616         uint64_t scale;
1617 
1618         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1619             if (!cpu->gt_cntfrq_hz) {
1620                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1621                            cpu->gt_cntfrq_hz);
1622                 return;
1623             }
1624             scale = gt_cntfrq_period_ns(cpu);
1625         } else {
1626             scale = GTIMER_SCALE;
1627         }
1628 
1629         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1630                                                arm_gt_ptimer_cb, cpu);
1631         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1632                                                arm_gt_vtimer_cb, cpu);
1633         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1634                                               arm_gt_htimer_cb, cpu);
1635         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1636                                               arm_gt_stimer_cb, cpu);
1637         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1638                                                   arm_gt_hvtimer_cb, cpu);
1639     }
1640 #endif
1641 
1642     cpu_exec_realizefn(cs, &local_err);
1643     if (local_err != NULL) {
1644         error_propagate(errp, local_err);
1645         return;
1646     }
1647 
1648     arm_cpu_finalize_features(cpu, &local_err);
1649     if (local_err != NULL) {
1650         error_propagate(errp, local_err);
1651         return;
1652     }
1653 
1654     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1655         cpu->has_vfp != cpu->has_neon) {
1656         /*
1657          * This is an architectural requirement for AArch64; AArch32 is
1658          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1659          */
1660         error_setg(errp,
1661                    "AArch64 CPUs must have both VFP and Neon or neither");
1662         return;
1663     }
1664 
1665     if (!cpu->has_vfp) {
1666         uint64_t t;
1667         uint32_t u;
1668 
1669         t = cpu->isar.id_aa64isar1;
1670         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1671         cpu->isar.id_aa64isar1 = t;
1672 
1673         t = cpu->isar.id_aa64pfr0;
1674         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1675         cpu->isar.id_aa64pfr0 = t;
1676 
1677         u = cpu->isar.id_isar6;
1678         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1679         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1680         cpu->isar.id_isar6 = u;
1681 
1682         u = cpu->isar.mvfr0;
1683         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1684         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1685         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1686         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1687         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1688         if (!arm_feature(env, ARM_FEATURE_M)) {
1689             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1690             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1691         }
1692         cpu->isar.mvfr0 = u;
1693 
1694         u = cpu->isar.mvfr1;
1695         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1696         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1697         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1698         if (arm_feature(env, ARM_FEATURE_M)) {
1699             u = FIELD_DP32(u, MVFR1, FP16, 0);
1700         }
1701         cpu->isar.mvfr1 = u;
1702 
1703         u = cpu->isar.mvfr2;
1704         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1705         cpu->isar.mvfr2 = u;
1706     }
1707 
1708     if (!cpu->has_neon) {
1709         uint64_t t;
1710         uint32_t u;
1711 
1712         unset_feature(env, ARM_FEATURE_NEON);
1713 
1714         t = cpu->isar.id_aa64isar0;
1715         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1716         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1717         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1718         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1719         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1720         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1721         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1722         cpu->isar.id_aa64isar0 = t;
1723 
1724         t = cpu->isar.id_aa64isar1;
1725         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1726         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1727         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1728         cpu->isar.id_aa64isar1 = t;
1729 
1730         t = cpu->isar.id_aa64pfr0;
1731         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1732         cpu->isar.id_aa64pfr0 = t;
1733 
1734         u = cpu->isar.id_isar5;
1735         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1736         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1737         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1738         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1739         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1740         cpu->isar.id_isar5 = u;
1741 
1742         u = cpu->isar.id_isar6;
1743         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1744         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1745         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1746         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1747         cpu->isar.id_isar6 = u;
1748 
1749         if (!arm_feature(env, ARM_FEATURE_M)) {
1750             u = cpu->isar.mvfr1;
1751             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1752             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1753             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1754             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1755             cpu->isar.mvfr1 = u;
1756 
1757             u = cpu->isar.mvfr2;
1758             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1759             cpu->isar.mvfr2 = u;
1760         }
1761     }
1762 
1763     if (!cpu->has_neon && !cpu->has_vfp) {
1764         uint64_t t;
1765         uint32_t u;
1766 
1767         t = cpu->isar.id_aa64isar0;
1768         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1769         cpu->isar.id_aa64isar0 = t;
1770 
1771         t = cpu->isar.id_aa64isar1;
1772         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1773         cpu->isar.id_aa64isar1 = t;
1774 
1775         u = cpu->isar.mvfr0;
1776         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1777         cpu->isar.mvfr0 = u;
1778 
1779         /* Despite the name, this field covers both VFP and Neon */
1780         u = cpu->isar.mvfr1;
1781         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1782         cpu->isar.mvfr1 = u;
1783     }
1784 
1785     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1786         uint32_t u;
1787 
1788         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1789 
1790         u = cpu->isar.id_isar1;
1791         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1792         cpu->isar.id_isar1 = u;
1793 
1794         u = cpu->isar.id_isar2;
1795         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1796         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1797         cpu->isar.id_isar2 = u;
1798 
1799         u = cpu->isar.id_isar3;
1800         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1801         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1802         cpu->isar.id_isar3 = u;
1803     }
1804 
1805     /* Some features automatically imply others: */
1806     if (arm_feature(env, ARM_FEATURE_V8)) {
1807         if (arm_feature(env, ARM_FEATURE_M)) {
1808             set_feature(env, ARM_FEATURE_V7);
1809         } else {
1810             set_feature(env, ARM_FEATURE_V7VE);
1811         }
1812     }
1813 
1814     /*
1815      * There exist AArch64 cpus without AArch32 support.  When KVM
1816      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1817      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1818      * As a general principle, we also do not make ID register
1819      * consistency checks anywhere unless using TCG, because only
1820      * for TCG would a consistency-check failure be a QEMU bug.
1821      */
1822     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1823         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1824     }
1825 
1826     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1827         /* v7 Virtualization Extensions. In real hardware this implies
1828          * EL2 and also the presence of the Security Extensions.
1829          * For QEMU, for backwards-compatibility we implement some
1830          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1831          * include the various other features that V7VE implies.
1832          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1833          * Security Extensions is ARM_FEATURE_EL3.
1834          */
1835         assert(!tcg_enabled() || no_aa32 ||
1836                cpu_isar_feature(aa32_arm_div, cpu));
1837         set_feature(env, ARM_FEATURE_LPAE);
1838         set_feature(env, ARM_FEATURE_V7);
1839     }
1840     if (arm_feature(env, ARM_FEATURE_V7)) {
1841         set_feature(env, ARM_FEATURE_VAPA);
1842         set_feature(env, ARM_FEATURE_THUMB2);
1843         set_feature(env, ARM_FEATURE_MPIDR);
1844         if (!arm_feature(env, ARM_FEATURE_M)) {
1845             set_feature(env, ARM_FEATURE_V6K);
1846         } else {
1847             set_feature(env, ARM_FEATURE_V6);
1848         }
1849 
1850         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1851          * non-EL3 configs. This is needed by some legacy boards.
1852          */
1853         set_feature(env, ARM_FEATURE_VBAR);
1854     }
1855     if (arm_feature(env, ARM_FEATURE_V6K)) {
1856         set_feature(env, ARM_FEATURE_V6);
1857         set_feature(env, ARM_FEATURE_MVFR);
1858     }
1859     if (arm_feature(env, ARM_FEATURE_V6)) {
1860         set_feature(env, ARM_FEATURE_V5);
1861         if (!arm_feature(env, ARM_FEATURE_M)) {
1862             assert(!tcg_enabled() || no_aa32 ||
1863                    cpu_isar_feature(aa32_jazelle, cpu));
1864             set_feature(env, ARM_FEATURE_AUXCR);
1865         }
1866     }
1867     if (arm_feature(env, ARM_FEATURE_V5)) {
1868         set_feature(env, ARM_FEATURE_V4T);
1869     }
1870     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1871         set_feature(env, ARM_FEATURE_V7MP);
1872     }
1873     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1874         set_feature(env, ARM_FEATURE_CBAR);
1875     }
1876     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1877         !arm_feature(env, ARM_FEATURE_M)) {
1878         set_feature(env, ARM_FEATURE_THUMB_DSP);
1879     }
1880 
1881     /*
1882      * We rely on no XScale CPU having VFP so we can use the same bits in the
1883      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1884      */
1885     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1886            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1887            !arm_feature(env, ARM_FEATURE_XSCALE));
1888 
1889     if (arm_feature(env, ARM_FEATURE_V7) &&
1890         !arm_feature(env, ARM_FEATURE_M) &&
1891         !arm_feature(env, ARM_FEATURE_PMSA)) {
1892         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1893          * can use 4K pages.
1894          */
1895         pagebits = 12;
1896     } else {
1897         /* For CPUs which might have tiny 1K pages, or which have an
1898          * MPU and might have small region sizes, stick with 1K pages.
1899          */
1900         pagebits = 10;
1901     }
1902     if (!set_preferred_target_page_bits(pagebits)) {
1903         /* This can only ever happen for hotplugging a CPU, or if
1904          * the board code incorrectly creates a CPU which it has
1905          * promised via minimum_page_size that it will not.
1906          */
1907         error_setg(errp, "This CPU requires a smaller page size than the "
1908                    "system is using");
1909         return;
1910     }
1911 
1912     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1913      * We don't support setting cluster ID ([16..23]) (known as Aff2
1914      * in later ARM ARM versions), or any of the higher affinity level fields,
1915      * so these bits always RAZ.
1916      */
1917     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1918         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1919                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1920     }
1921 
1922     if (cpu->reset_hivecs) {
1923             cpu->reset_sctlr |= (1 << 13);
1924     }
1925 
1926     if (cpu->cfgend) {
1927         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1928             cpu->reset_sctlr |= SCTLR_EE;
1929         } else {
1930             cpu->reset_sctlr |= SCTLR_B;
1931         }
1932     }
1933 
1934     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1935         /* If the has_el3 CPU property is disabled then we need to disable the
1936          * feature.
1937          */
1938         unset_feature(env, ARM_FEATURE_EL3);
1939 
1940         /*
1941          * Disable the security extension feature bits in the processor
1942          * feature registers as well.
1943          */
1944         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1945         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1946         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1947                                            ID_AA64PFR0, EL3, 0);
1948     }
1949 
1950     if (!cpu->has_el2) {
1951         unset_feature(env, ARM_FEATURE_EL2);
1952     }
1953 
1954     if (!cpu->has_pmu) {
1955         unset_feature(env, ARM_FEATURE_PMU);
1956     }
1957     if (arm_feature(env, ARM_FEATURE_PMU)) {
1958         pmu_init(cpu);
1959 
1960         if (!kvm_enabled()) {
1961             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1962             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1963         }
1964 
1965 #ifndef CONFIG_USER_ONLY
1966         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1967                 cpu);
1968 #endif
1969     } else {
1970         cpu->isar.id_aa64dfr0 =
1971             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1972         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1973         cpu->pmceid0 = 0;
1974         cpu->pmceid1 = 0;
1975     }
1976 
1977     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1978         /*
1979          * Disable the hypervisor feature bits in the processor feature
1980          * registers if we don't have EL2.
1981          */
1982         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1983                                            ID_AA64PFR0, EL2, 0);
1984         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1985                                        ID_PFR1, VIRTUALIZATION, 0);
1986     }
1987 
1988 #ifndef CONFIG_USER_ONLY
1989     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1990         /*
1991          * Disable the MTE feature bits if we do not have tag-memory
1992          * provided by the machine.
1993          */
1994         cpu->isar.id_aa64pfr1 =
1995             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1996     }
1997 #endif
1998 
1999     if (tcg_enabled()) {
2000         /*
2001          * Don't report the Statistical Profiling Extension in the ID
2002          * registers, because TCG doesn't implement it yet (not even a
2003          * minimal stub version) and guests will fall over when they
2004          * try to access the non-existent system registers for it.
2005          */
2006         cpu->isar.id_aa64dfr0 =
2007             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2008     }
2009 
2010     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2011      * to false or by setting pmsav7-dregion to 0.
2012      */
2013     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2014         cpu->has_mpu = false;
2015         cpu->pmsav7_dregion = 0;
2016         cpu->pmsav8r_hdregion = 0;
2017     }
2018 
2019     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2020         arm_feature(env, ARM_FEATURE_V7)) {
2021         uint32_t nr = cpu->pmsav7_dregion;
2022 
2023         if (nr > 0xff) {
2024             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2025             return;
2026         }
2027 
2028         if (nr) {
2029             if (arm_feature(env, ARM_FEATURE_V8)) {
2030                 /* PMSAv8 */
2031                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2032                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2033                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2034                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2035                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2036                 }
2037             } else {
2038                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2039                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2040                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2041             }
2042         }
2043 
2044         if (cpu->pmsav8r_hdregion > 0xff) {
2045             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2046                               cpu->pmsav8r_hdregion);
2047             return;
2048         }
2049 
2050         if (cpu->pmsav8r_hdregion) {
2051             env->pmsav8.hprbar = g_new0(uint32_t,
2052                                         cpu->pmsav8r_hdregion);
2053             env->pmsav8.hprlar = g_new0(uint32_t,
2054                                         cpu->pmsav8r_hdregion);
2055         }
2056     }
2057 
2058     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2059         uint32_t nr = cpu->sau_sregion;
2060 
2061         if (nr > 0xff) {
2062             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2063             return;
2064         }
2065 
2066         if (nr) {
2067             env->sau.rbar = g_new0(uint32_t, nr);
2068             env->sau.rlar = g_new0(uint32_t, nr);
2069         }
2070     }
2071 
2072     if (arm_feature(env, ARM_FEATURE_EL3)) {
2073         set_feature(env, ARM_FEATURE_VBAR);
2074     }
2075 
2076     register_cp_regs_for_features(cpu);
2077     arm_cpu_register_gdb_regs_for_features(cpu);
2078 
2079     init_cpreg_list(cpu);
2080 
2081 #ifndef CONFIG_USER_ONLY
2082     MachineState *ms = MACHINE(qdev_get_machine());
2083     unsigned int smp_cpus = ms->smp.cpus;
2084     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2085 
2086     /*
2087      * We must set cs->num_ases to the final value before
2088      * the first call to cpu_address_space_init.
2089      */
2090     if (cpu->tag_memory != NULL) {
2091         cs->num_ases = 3 + has_secure;
2092     } else {
2093         cs->num_ases = 1 + has_secure;
2094     }
2095 
2096     if (has_secure) {
2097         if (!cpu->secure_memory) {
2098             cpu->secure_memory = cs->memory;
2099         }
2100         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2101                                cpu->secure_memory);
2102     }
2103 
2104     if (cpu->tag_memory != NULL) {
2105         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2106                                cpu->tag_memory);
2107         if (has_secure) {
2108             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2109                                    cpu->secure_tag_memory);
2110         }
2111     }
2112 
2113     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2114 
2115     /* No core_count specified, default to smp_cpus. */
2116     if (cpu->core_count == -1) {
2117         cpu->core_count = smp_cpus;
2118     }
2119 #endif
2120 
2121     if (tcg_enabled()) {
2122         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2123 
2124         /*
2125          * We only support DCZ blocklen that fits on one page.
2126          *
2127          * Architectually this is always true.  However TARGET_PAGE_SIZE
2128          * is variable and, for compatibility with -machine virt-2.7,
2129          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2130          * But even then, while the largest architectural DCZ blocklen
2131          * is 2KiB, no cpu actually uses such a large blocklen.
2132          */
2133         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2134 
2135         /*
2136          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2137          * both nibbles of each byte storing tag data may be written at once.
2138          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2139          */
2140         if (cpu_isar_feature(aa64_mte, cpu)) {
2141             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2142         }
2143     }
2144 
2145     qemu_init_vcpu(cs);
2146     cpu_reset(cs);
2147 
2148     acc->parent_realize(dev, errp);
2149 }
2150 
2151 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2152 {
2153     ObjectClass *oc;
2154     char *typename;
2155     char **cpuname;
2156     const char *cpunamestr;
2157 
2158     cpuname = g_strsplit(cpu_model, ",", 1);
2159     cpunamestr = cpuname[0];
2160 #ifdef CONFIG_USER_ONLY
2161     /* For backwards compatibility usermode emulation allows "-cpu any",
2162      * which has the same semantics as "-cpu max".
2163      */
2164     if (!strcmp(cpunamestr, "any")) {
2165         cpunamestr = "max";
2166     }
2167 #endif
2168     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2169     oc = object_class_by_name(typename);
2170     g_strfreev(cpuname);
2171     g_free(typename);
2172     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2173         object_class_is_abstract(oc)) {
2174         return NULL;
2175     }
2176     return oc;
2177 }
2178 
2179 static Property arm_cpu_properties[] = {
2180     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2181     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2182                         mp_affinity, ARM64_AFFINITY_INVALID),
2183     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2184     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2185     DEFINE_PROP_END_OF_LIST()
2186 };
2187 
2188 static gchar *arm_gdb_arch_name(CPUState *cs)
2189 {
2190     ARMCPU *cpu = ARM_CPU(cs);
2191     CPUARMState *env = &cpu->env;
2192 
2193     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2194         return g_strdup("iwmmxt");
2195     }
2196     return g_strdup("arm");
2197 }
2198 
2199 #ifndef CONFIG_USER_ONLY
2200 #include "hw/core/sysemu-cpu-ops.h"
2201 
2202 static const struct SysemuCPUOps arm_sysemu_ops = {
2203     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2204     .asidx_from_attrs = arm_asidx_from_attrs,
2205     .write_elf32_note = arm_cpu_write_elf32_note,
2206     .write_elf64_note = arm_cpu_write_elf64_note,
2207     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2208     .legacy_vmsd = &vmstate_arm_cpu,
2209 };
2210 #endif
2211 
2212 #ifdef CONFIG_TCG
2213 static const struct TCGCPUOps arm_tcg_ops = {
2214     .initialize = arm_translate_init,
2215     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2216     .debug_excp_handler = arm_debug_excp_handler,
2217     .restore_state_to_opc = arm_restore_state_to_opc,
2218 
2219 #ifdef CONFIG_USER_ONLY
2220     .record_sigsegv = arm_cpu_record_sigsegv,
2221     .record_sigbus = arm_cpu_record_sigbus,
2222 #else
2223     .tlb_fill = arm_cpu_tlb_fill,
2224     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2225     .do_interrupt = arm_cpu_do_interrupt,
2226     .do_transaction_failed = arm_cpu_do_transaction_failed,
2227     .do_unaligned_access = arm_cpu_do_unaligned_access,
2228     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2229     .debug_check_watchpoint = arm_debug_check_watchpoint,
2230     .debug_check_breakpoint = arm_debug_check_breakpoint,
2231 #endif /* !CONFIG_USER_ONLY */
2232 };
2233 #endif /* CONFIG_TCG */
2234 
2235 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2236 {
2237     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2238     CPUClass *cc = CPU_CLASS(acc);
2239     DeviceClass *dc = DEVICE_CLASS(oc);
2240     ResettableClass *rc = RESETTABLE_CLASS(oc);
2241 
2242     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2243                                     &acc->parent_realize);
2244 
2245     device_class_set_props(dc, arm_cpu_properties);
2246 
2247     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2248                                        &acc->parent_phases);
2249 
2250     cc->class_by_name = arm_cpu_class_by_name;
2251     cc->has_work = arm_cpu_has_work;
2252     cc->dump_state = arm_cpu_dump_state;
2253     cc->set_pc = arm_cpu_set_pc;
2254     cc->get_pc = arm_cpu_get_pc;
2255     cc->gdb_read_register = arm_cpu_gdb_read_register;
2256     cc->gdb_write_register = arm_cpu_gdb_write_register;
2257 #ifndef CONFIG_USER_ONLY
2258     cc->sysemu_ops = &arm_sysemu_ops;
2259 #endif
2260     cc->gdb_num_core_regs = 26;
2261     cc->gdb_core_xml_file = "arm-core.xml";
2262     cc->gdb_arch_name = arm_gdb_arch_name;
2263     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2264     cc->gdb_stop_before_watchpoint = true;
2265     cc->disas_set_info = arm_disas_set_info;
2266 
2267 #ifdef CONFIG_TCG
2268     cc->tcg_ops = &arm_tcg_ops;
2269 #endif /* CONFIG_TCG */
2270 }
2271 
2272 static void arm_cpu_instance_init(Object *obj)
2273 {
2274     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2275 
2276     acc->info->initfn(obj);
2277     arm_cpu_post_init(obj);
2278 }
2279 
2280 static void cpu_register_class_init(ObjectClass *oc, void *data)
2281 {
2282     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2283 
2284     acc->info = data;
2285 }
2286 
2287 void arm_cpu_register(const ARMCPUInfo *info)
2288 {
2289     TypeInfo type_info = {
2290         .parent = TYPE_ARM_CPU,
2291         .instance_size = sizeof(ARMCPU),
2292         .instance_align = __alignof__(ARMCPU),
2293         .instance_init = arm_cpu_instance_init,
2294         .class_size = sizeof(ARMCPUClass),
2295         .class_init = info->class_init ?: cpu_register_class_init,
2296         .class_data = (void *)info,
2297     };
2298 
2299     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2300     type_register(&type_info);
2301     g_free((void *)type_info.name);
2302 }
2303 
2304 static const TypeInfo arm_cpu_type_info = {
2305     .name = TYPE_ARM_CPU,
2306     .parent = TYPE_CPU,
2307     .instance_size = sizeof(ARMCPU),
2308     .instance_align = __alignof__(ARMCPU),
2309     .instance_init = arm_cpu_initfn,
2310     .instance_finalize = arm_cpu_finalizefn,
2311     .abstract = true,
2312     .class_size = sizeof(ARMCPUClass),
2313     .class_init = arm_cpu_class_init,
2314 };
2315 
2316 static void arm_cpu_register_types(void)
2317 {
2318     type_register_static(&arm_cpu_type_info);
2319 }
2320 
2321 type_init(arm_cpu_register_types)
2322