xref: /openbmc/qemu/target/arm/cpu.c (revision 8bb49995)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 #ifdef CONFIG_TCG
64 void arm_cpu_synchronize_from_tb(CPUState *cs,
65                                  const TranslationBlock *tb)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     /*
71      * It's OK to look at env for the current mode here, because it's
72      * never possible for an AArch64 TB to chain to an AArch32 TB.
73      */
74     if (is_a64(env)) {
75         env->pc = tb->pc;
76     } else {
77         env->regs[15] = tb->pc;
78     }
79 }
80 #endif /* CONFIG_TCG */
81 
82 static bool arm_cpu_has_work(CPUState *cs)
83 {
84     ARMCPU *cpu = ARM_CPU(cs);
85 
86     return (cpu->power_state != PSCI_OFF)
87         && cs->interrupt_request &
88         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
89          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
90          | CPU_INTERRUPT_EXITTB);
91 }
92 
93 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
102 }
103 
104 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
105                                  void *opaque)
106 {
107     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
108 
109     entry->hook = hook;
110     entry->opaque = opaque;
111 
112     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
113 }
114 
115 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
116 {
117     /* Reset a single ARMCPRegInfo register */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120 
121     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
122         return;
123     }
124 
125     if (ri->resetfn) {
126         ri->resetfn(&cpu->env, ri);
127         return;
128     }
129 
130     /* A zero offset is never possible as it would be regs[0]
131      * so we use it to indicate that reset is being handled elsewhere.
132      * This is basically only used for fields in non-core coprocessors
133      * (like the pxa2xx ones).
134      */
135     if (!ri->fieldoffset) {
136         return;
137     }
138 
139     if (cpreg_field_is_64bit(ri)) {
140         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
141     } else {
142         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
143     }
144 }
145 
146 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
147 {
148     /* Purely an assertion check: we've already done reset once,
149      * so now check that running the reset for the cpreg doesn't
150      * change its value. This traps bugs where two different cpregs
151      * both try to reset the same state field but to different values.
152      */
153     ARMCPRegInfo *ri = value;
154     ARMCPU *cpu = opaque;
155     uint64_t oldvalue, newvalue;
156 
157     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
158         return;
159     }
160 
161     oldvalue = read_raw_cp_reg(&cpu->env, ri);
162     cp_reg_reset(key, value, opaque);
163     newvalue = read_raw_cp_reg(&cpu->env, ri);
164     assert(oldvalue == newvalue);
165 }
166 
167 static void arm_cpu_reset(DeviceState *dev)
168 {
169     CPUState *s = CPU(dev);
170     ARMCPU *cpu = ARM_CPU(s);
171     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
172     CPUARMState *env = &cpu->env;
173 
174     acc->parent_reset(dev);
175 
176     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
177 
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
179     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
180 
181     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
182     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
183     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
184     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
185 
186     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
187 
188     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
189         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
190     }
191 
192     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
193         /* 64 bit CPUs always start in 64 bit mode */
194         env->aarch64 = true;
195 #if defined(CONFIG_USER_ONLY)
196         env->pstate = PSTATE_MODE_EL0t;
197         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
198         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
199         /* Enable all PAC keys.  */
200         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
201                                   SCTLR_EnDA | SCTLR_EnDB);
202         /* Trap on btype=3 for PACIxSP. */
203         env->cp15.sctlr_el[1] |= SCTLR_BT0;
204         /* and to the FP/Neon instructions */
205         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
206                                          CPACR_EL1, FPEN, 3);
207         /* and to the SVE instructions, with default vector length */
208         if (cpu_isar_feature(aa64_sve, cpu)) {
209             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
210                                              CPACR_EL1, ZEN, 3);
211             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
212         }
213         /* and for SME instructions, with default vector length, and TPIDR2 */
214         if (cpu_isar_feature(aa64_sme, cpu)) {
215             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
216             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
217                                              CPACR_EL1, SMEN, 3);
218             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
219             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
220                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
221                                                  SMCR, FA64, 1);
222             }
223         }
224         /*
225          * Enable 48-bit address space (TODO: take reserved_va into account).
226          * Enable TBI0 but not TBI1.
227          * Note that this must match useronly_clean_ptr.
228          */
229         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
230 
231         /* Enable MTE */
232         if (cpu_isar_feature(aa64_mte, cpu)) {
233             /* Enable tag access, but leave TCF0 as No Effect (0). */
234             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
235             /*
236              * Exclude all tags, so that tag 0 is always used.
237              * This corresponds to Linux current->thread.gcr_incl = 0.
238              *
239              * Set RRND, so that helper_irg() will generate a seed later.
240              * Here in cpu_reset(), the crypto subsystem has not yet been
241              * initialized.
242              */
243             env->cp15.gcr_el1 = 0x1ffff;
244         }
245         /*
246          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
247          * This is not yet exposed from the Linux kernel in any way.
248          */
249         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
250 #else
251         /* Reset into the highest available EL */
252         if (arm_feature(env, ARM_FEATURE_EL3)) {
253             env->pstate = PSTATE_MODE_EL3h;
254         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
255             env->pstate = PSTATE_MODE_EL2h;
256         } else {
257             env->pstate = PSTATE_MODE_EL1h;
258         }
259 
260         /* Sample rvbar at reset.  */
261         env->cp15.rvbar = cpu->rvbar_prop;
262         env->pc = env->cp15.rvbar;
263 #endif
264     } else {
265 #if defined(CONFIG_USER_ONLY)
266         /* Userspace expects access to cp10 and cp11 for FP/Neon */
267         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
268                                          CPACR, CP10, 3);
269         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
270                                          CPACR, CP11, 3);
271 #endif
272     }
273 
274 #if defined(CONFIG_USER_ONLY)
275     env->uncached_cpsr = ARM_CPU_MODE_USR;
276     /* For user mode we must enable access to coprocessors */
277     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
278     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
279         env->cp15.c15_cpar = 3;
280     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
281         env->cp15.c15_cpar = 1;
282     }
283 #else
284 
285     /*
286      * If the highest available EL is EL2, AArch32 will start in Hyp
287      * mode; otherwise it starts in SVC. Note that if we start in
288      * AArch64 then these values in the uncached_cpsr will be ignored.
289      */
290     if (arm_feature(env, ARM_FEATURE_EL2) &&
291         !arm_feature(env, ARM_FEATURE_EL3)) {
292         env->uncached_cpsr = ARM_CPU_MODE_HYP;
293     } else {
294         env->uncached_cpsr = ARM_CPU_MODE_SVC;
295     }
296     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
297 
298     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
299      * executing as AArch32 then check if highvecs are enabled and
300      * adjust the PC accordingly.
301      */
302     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
303         env->regs[15] = 0xFFFF0000;
304     }
305 
306     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
307 #endif
308 
309     if (arm_feature(env, ARM_FEATURE_M)) {
310 #ifndef CONFIG_USER_ONLY
311         uint32_t initial_msp; /* Loaded from 0x0 */
312         uint32_t initial_pc; /* Loaded from 0x4 */
313         uint8_t *rom;
314         uint32_t vecbase;
315 #endif
316 
317         if (cpu_isar_feature(aa32_lob, cpu)) {
318             /*
319              * LTPSIZE is constant 4 if MVE not implemented, and resets
320              * to an UNKNOWN value if MVE is implemented. We choose to
321              * always reset to 4.
322              */
323             env->v7m.ltpsize = 4;
324             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
325             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
326             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
327         }
328 
329         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330             env->v7m.secure = true;
331         } else {
332             /* This bit resets to 0 if security is supported, but 1 if
333              * it is not. The bit is not present in v7M, but we set it
334              * here so we can avoid having to make checks on it conditional
335              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
336              */
337             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
338             /*
339              * Set NSACR to indicate "NS access permitted to everything";
340              * this avoids having to have all the tests of it being
341              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
342              * v8.1M the guest-visible value of NSACR in a CPU without the
343              * Security Extension is 0xcff.
344              */
345             env->v7m.nsacr = 0xcff;
346         }
347 
348         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
349          * that it resets to 1, so QEMU always does that rather than making
350          * it dependent on CPU model. In v8M it is RES1.
351          */
352         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
353         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
354         if (arm_feature(env, ARM_FEATURE_V8)) {
355             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
356             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
357             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
358         }
359         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
360             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
361             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
362         }
363 
364         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
365             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
366             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
367                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
368         }
369 
370 #ifndef CONFIG_USER_ONLY
371         /* Unlike A/R profile, M profile defines the reset LR value */
372         env->regs[14] = 0xffffffff;
373 
374         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
375         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
376 
377         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
378         vecbase = env->v7m.vecbase[env->v7m.secure];
379         rom = rom_ptr_for_as(s->as, vecbase, 8);
380         if (rom) {
381             /* Address zero is covered by ROM which hasn't yet been
382              * copied into physical memory.
383              */
384             initial_msp = ldl_p(rom);
385             initial_pc = ldl_p(rom + 4);
386         } else {
387             /* Address zero not covered by a ROM blob, or the ROM blob
388              * is in non-modifiable memory and this is a second reset after
389              * it got copied into memory. In the latter case, rom_ptr
390              * will return a NULL pointer and we should use ldl_phys instead.
391              */
392             initial_msp = ldl_phys(s->as, vecbase);
393             initial_pc = ldl_phys(s->as, vecbase + 4);
394         }
395 
396         qemu_log_mask(CPU_LOG_INT,
397                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
398                       initial_msp, initial_pc);
399 
400         env->regs[13] = initial_msp & 0xFFFFFFFC;
401         env->regs[15] = initial_pc & ~1;
402         env->thumb = initial_pc & 1;
403 #else
404         /*
405          * For user mode we run non-secure and with access to the FPU.
406          * The FPU context is active (ie does not need further setup)
407          * and is owned by non-secure.
408          */
409         env->v7m.secure = false;
410         env->v7m.nsacr = 0xcff;
411         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
412         env->v7m.fpccr[M_REG_S] &=
413             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
414         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
415 #endif
416     }
417 
418     /* M profile requires that reset clears the exclusive monitor;
419      * A profile does not, but clearing it makes more sense than having it
420      * set with an exclusive access on address zero.
421      */
422     arm_clear_exclusive(env);
423 
424     if (arm_feature(env, ARM_FEATURE_PMSA)) {
425         if (cpu->pmsav7_dregion > 0) {
426             if (arm_feature(env, ARM_FEATURE_V8)) {
427                 memset(env->pmsav8.rbar[M_REG_NS], 0,
428                        sizeof(*env->pmsav8.rbar[M_REG_NS])
429                        * cpu->pmsav7_dregion);
430                 memset(env->pmsav8.rlar[M_REG_NS], 0,
431                        sizeof(*env->pmsav8.rlar[M_REG_NS])
432                        * cpu->pmsav7_dregion);
433                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
434                     memset(env->pmsav8.rbar[M_REG_S], 0,
435                            sizeof(*env->pmsav8.rbar[M_REG_S])
436                            * cpu->pmsav7_dregion);
437                     memset(env->pmsav8.rlar[M_REG_S], 0,
438                            sizeof(*env->pmsav8.rlar[M_REG_S])
439                            * cpu->pmsav7_dregion);
440                 }
441             } else if (arm_feature(env, ARM_FEATURE_V7)) {
442                 memset(env->pmsav7.drbar, 0,
443                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
444                 memset(env->pmsav7.drsr, 0,
445                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
446                 memset(env->pmsav7.dracr, 0,
447                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
448             }
449         }
450         env->pmsav7.rnr[M_REG_NS] = 0;
451         env->pmsav7.rnr[M_REG_S] = 0;
452         env->pmsav8.mair0[M_REG_NS] = 0;
453         env->pmsav8.mair0[M_REG_S] = 0;
454         env->pmsav8.mair1[M_REG_NS] = 0;
455         env->pmsav8.mair1[M_REG_S] = 0;
456     }
457 
458     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
459         if (cpu->sau_sregion > 0) {
460             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
461             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
462         }
463         env->sau.rnr = 0;
464         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
465          * the Cortex-M33 does.
466          */
467         env->sau.ctrl = 0;
468     }
469 
470     set_flush_to_zero(1, &env->vfp.standard_fp_status);
471     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
472     set_default_nan_mode(1, &env->vfp.standard_fp_status);
473     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
474     set_float_detect_tininess(float_tininess_before_rounding,
475                               &env->vfp.fp_status);
476     set_float_detect_tininess(float_tininess_before_rounding,
477                               &env->vfp.standard_fp_status);
478     set_float_detect_tininess(float_tininess_before_rounding,
479                               &env->vfp.fp_status_f16);
480     set_float_detect_tininess(float_tininess_before_rounding,
481                               &env->vfp.standard_fp_status_f16);
482 #ifndef CONFIG_USER_ONLY
483     if (kvm_enabled()) {
484         kvm_arm_reset_vcpu(cpu);
485     }
486 #endif
487 
488     hw_breakpoint_update_all(cpu);
489     hw_watchpoint_update_all(cpu);
490     arm_rebuild_hflags(env);
491 }
492 
493 #ifndef CONFIG_USER_ONLY
494 
495 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
496                                      unsigned int target_el,
497                                      unsigned int cur_el, bool secure,
498                                      uint64_t hcr_el2)
499 {
500     CPUARMState *env = cs->env_ptr;
501     bool pstate_unmasked;
502     bool unmasked = false;
503 
504     /*
505      * Don't take exceptions if they target a lower EL.
506      * This check should catch any exceptions that would not be taken
507      * but left pending.
508      */
509     if (cur_el > target_el) {
510         return false;
511     }
512 
513     switch (excp_idx) {
514     case EXCP_FIQ:
515         pstate_unmasked = !(env->daif & PSTATE_F);
516         break;
517 
518     case EXCP_IRQ:
519         pstate_unmasked = !(env->daif & PSTATE_I);
520         break;
521 
522     case EXCP_VFIQ:
523         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
524             /* VFIQs are only taken when hypervized.  */
525             return false;
526         }
527         return !(env->daif & PSTATE_F);
528     case EXCP_VIRQ:
529         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
530             /* VIRQs are only taken when hypervized.  */
531             return false;
532         }
533         return !(env->daif & PSTATE_I);
534     case EXCP_VSERR:
535         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
536             /* VIRQs are only taken when hypervized.  */
537             return false;
538         }
539         return !(env->daif & PSTATE_A);
540     default:
541         g_assert_not_reached();
542     }
543 
544     /*
545      * Use the target EL, current execution state and SCR/HCR settings to
546      * determine whether the corresponding CPSR bit is used to mask the
547      * interrupt.
548      */
549     if ((target_el > cur_el) && (target_el != 1)) {
550         /* Exceptions targeting a higher EL may not be maskable */
551         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
552             /*
553              * 64-bit masking rules are simple: exceptions to EL3
554              * can't be masked, and exceptions to EL2 can only be
555              * masked from Secure state. The HCR and SCR settings
556              * don't affect the masking logic, only the interrupt routing.
557              */
558             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
559                 unmasked = true;
560             }
561         } else {
562             /*
563              * The old 32-bit-only environment has a more complicated
564              * masking setup. HCR and SCR bits not only affect interrupt
565              * routing but also change the behaviour of masking.
566              */
567             bool hcr, scr;
568 
569             switch (excp_idx) {
570             case EXCP_FIQ:
571                 /*
572                  * If FIQs are routed to EL3 or EL2 then there are cases where
573                  * we override the CPSR.F in determining if the exception is
574                  * masked or not. If neither of these are set then we fall back
575                  * to the CPSR.F setting otherwise we further assess the state
576                  * below.
577                  */
578                 hcr = hcr_el2 & HCR_FMO;
579                 scr = (env->cp15.scr_el3 & SCR_FIQ);
580 
581                 /*
582                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
583                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
584                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
585                  * when non-secure but only when FIQs are only routed to EL3.
586                  */
587                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
588                 break;
589             case EXCP_IRQ:
590                 /*
591                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
592                  * we may override the CPSR.I masking when in non-secure state.
593                  * The SCR.IRQ setting has already been taken into consideration
594                  * when setting the target EL, so it does not have a further
595                  * affect here.
596                  */
597                 hcr = hcr_el2 & HCR_IMO;
598                 scr = false;
599                 break;
600             default:
601                 g_assert_not_reached();
602             }
603 
604             if ((scr || hcr) && !secure) {
605                 unmasked = true;
606             }
607         }
608     }
609 
610     /*
611      * The PSTATE bits only mask the interrupt if we have not overriden the
612      * ability above.
613      */
614     return unmasked || pstate_unmasked;
615 }
616 
617 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
618 {
619     CPUClass *cc = CPU_GET_CLASS(cs);
620     CPUARMState *env = cs->env_ptr;
621     uint32_t cur_el = arm_current_el(env);
622     bool secure = arm_is_secure(env);
623     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
624     uint32_t target_el;
625     uint32_t excp_idx;
626 
627     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
628 
629     if (interrupt_request & CPU_INTERRUPT_FIQ) {
630         excp_idx = EXCP_FIQ;
631         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
632         if (arm_excp_unmasked(cs, excp_idx, target_el,
633                               cur_el, secure, hcr_el2)) {
634             goto found;
635         }
636     }
637     if (interrupt_request & CPU_INTERRUPT_HARD) {
638         excp_idx = EXCP_IRQ;
639         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
640         if (arm_excp_unmasked(cs, excp_idx, target_el,
641                               cur_el, secure, hcr_el2)) {
642             goto found;
643         }
644     }
645     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
646         excp_idx = EXCP_VIRQ;
647         target_el = 1;
648         if (arm_excp_unmasked(cs, excp_idx, target_el,
649                               cur_el, secure, hcr_el2)) {
650             goto found;
651         }
652     }
653     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
654         excp_idx = EXCP_VFIQ;
655         target_el = 1;
656         if (arm_excp_unmasked(cs, excp_idx, target_el,
657                               cur_el, secure, hcr_el2)) {
658             goto found;
659         }
660     }
661     if (interrupt_request & CPU_INTERRUPT_VSERR) {
662         excp_idx = EXCP_VSERR;
663         target_el = 1;
664         if (arm_excp_unmasked(cs, excp_idx, target_el,
665                               cur_el, secure, hcr_el2)) {
666             /* Taking a virtual abort clears HCR_EL2.VSE */
667             env->cp15.hcr_el2 &= ~HCR_VSE;
668             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
669             goto found;
670         }
671     }
672     return false;
673 
674  found:
675     cs->exception_index = excp_idx;
676     env->exception.target_el = target_el;
677     cc->tcg_ops->do_interrupt(cs);
678     return true;
679 }
680 #endif /* !CONFIG_USER_ONLY */
681 
682 void arm_cpu_update_virq(ARMCPU *cpu)
683 {
684     /*
685      * Update the interrupt level for VIRQ, which is the logical OR of
686      * the HCR_EL2.VI bit and the input line level from the GIC.
687      */
688     CPUARMState *env = &cpu->env;
689     CPUState *cs = CPU(cpu);
690 
691     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
692         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
693 
694     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
695         if (new_state) {
696             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
697         } else {
698             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
699         }
700     }
701 }
702 
703 void arm_cpu_update_vfiq(ARMCPU *cpu)
704 {
705     /*
706      * Update the interrupt level for VFIQ, which is the logical OR of
707      * the HCR_EL2.VF bit and the input line level from the GIC.
708      */
709     CPUARMState *env = &cpu->env;
710     CPUState *cs = CPU(cpu);
711 
712     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
713         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
714 
715     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
716         if (new_state) {
717             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
718         } else {
719             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
720         }
721     }
722 }
723 
724 void arm_cpu_update_vserr(ARMCPU *cpu)
725 {
726     /*
727      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
728      */
729     CPUARMState *env = &cpu->env;
730     CPUState *cs = CPU(cpu);
731 
732     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
733 
734     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
735         if (new_state) {
736             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
737         } else {
738             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
739         }
740     }
741 }
742 
743 #ifndef CONFIG_USER_ONLY
744 static void arm_cpu_set_irq(void *opaque, int irq, int level)
745 {
746     ARMCPU *cpu = opaque;
747     CPUARMState *env = &cpu->env;
748     CPUState *cs = CPU(cpu);
749     static const int mask[] = {
750         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
751         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
752         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
753         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
754     };
755 
756     if (!arm_feature(env, ARM_FEATURE_EL2) &&
757         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
758         /*
759          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
760          * have EL2 support we don't care. (Unless the guest is doing something
761          * silly this will only be calls saying "level is still 0".)
762          */
763         return;
764     }
765 
766     if (level) {
767         env->irq_line_state |= mask[irq];
768     } else {
769         env->irq_line_state &= ~mask[irq];
770     }
771 
772     switch (irq) {
773     case ARM_CPU_VIRQ:
774         arm_cpu_update_virq(cpu);
775         break;
776     case ARM_CPU_VFIQ:
777         arm_cpu_update_vfiq(cpu);
778         break;
779     case ARM_CPU_IRQ:
780     case ARM_CPU_FIQ:
781         if (level) {
782             cpu_interrupt(cs, mask[irq]);
783         } else {
784             cpu_reset_interrupt(cs, mask[irq]);
785         }
786         break;
787     default:
788         g_assert_not_reached();
789     }
790 }
791 
792 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
793 {
794 #ifdef CONFIG_KVM
795     ARMCPU *cpu = opaque;
796     CPUARMState *env = &cpu->env;
797     CPUState *cs = CPU(cpu);
798     uint32_t linestate_bit;
799     int irq_id;
800 
801     switch (irq) {
802     case ARM_CPU_IRQ:
803         irq_id = KVM_ARM_IRQ_CPU_IRQ;
804         linestate_bit = CPU_INTERRUPT_HARD;
805         break;
806     case ARM_CPU_FIQ:
807         irq_id = KVM_ARM_IRQ_CPU_FIQ;
808         linestate_bit = CPU_INTERRUPT_FIQ;
809         break;
810     default:
811         g_assert_not_reached();
812     }
813 
814     if (level) {
815         env->irq_line_state |= linestate_bit;
816     } else {
817         env->irq_line_state &= ~linestate_bit;
818     }
819     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
820 #endif
821 }
822 
823 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
824 {
825     ARMCPU *cpu = ARM_CPU(cs);
826     CPUARMState *env = &cpu->env;
827 
828     cpu_synchronize_state(cs);
829     return arm_cpu_data_is_big_endian(env);
830 }
831 
832 #endif
833 
834 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
835 {
836     ARMCPU *ac = ARM_CPU(cpu);
837     CPUARMState *env = &ac->env;
838     bool sctlr_b;
839 
840     if (is_a64(env)) {
841         info->cap_arch = CS_ARCH_ARM64;
842         info->cap_insn_unit = 4;
843         info->cap_insn_split = 4;
844     } else {
845         int cap_mode;
846         if (env->thumb) {
847             info->cap_insn_unit = 2;
848             info->cap_insn_split = 4;
849             cap_mode = CS_MODE_THUMB;
850         } else {
851             info->cap_insn_unit = 4;
852             info->cap_insn_split = 4;
853             cap_mode = CS_MODE_ARM;
854         }
855         if (arm_feature(env, ARM_FEATURE_V8)) {
856             cap_mode |= CS_MODE_V8;
857         }
858         if (arm_feature(env, ARM_FEATURE_M)) {
859             cap_mode |= CS_MODE_MCLASS;
860         }
861         info->cap_arch = CS_ARCH_ARM;
862         info->cap_mode = cap_mode;
863     }
864 
865     sctlr_b = arm_sctlr_b(env);
866     if (bswap_code(sctlr_b)) {
867 #if TARGET_BIG_ENDIAN
868         info->endian = BFD_ENDIAN_LITTLE;
869 #else
870         info->endian = BFD_ENDIAN_BIG;
871 #endif
872     }
873     info->flags &= ~INSN_ARM_BE32;
874 #ifndef CONFIG_USER_ONLY
875     if (sctlr_b) {
876         info->flags |= INSN_ARM_BE32;
877     }
878 #endif
879 }
880 
881 #ifdef TARGET_AARCH64
882 
883 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
884 {
885     ARMCPU *cpu = ARM_CPU(cs);
886     CPUARMState *env = &cpu->env;
887     uint32_t psr = pstate_read(env);
888     int i;
889     int el = arm_current_el(env);
890     const char *ns_status;
891     bool sve;
892 
893     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
894     for (i = 0; i < 32; i++) {
895         if (i == 31) {
896             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
897         } else {
898             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
899                          (i + 2) % 3 ? " " : "\n");
900         }
901     }
902 
903     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
904         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
905     } else {
906         ns_status = "";
907     }
908     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
909                  psr,
910                  psr & PSTATE_N ? 'N' : '-',
911                  psr & PSTATE_Z ? 'Z' : '-',
912                  psr & PSTATE_C ? 'C' : '-',
913                  psr & PSTATE_V ? 'V' : '-',
914                  ns_status,
915                  el,
916                  psr & PSTATE_SP ? 'h' : 't');
917 
918     if (cpu_isar_feature(aa64_sme, cpu)) {
919         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
920                      env->svcr,
921                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
922                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
923     }
924     if (cpu_isar_feature(aa64_bti, cpu)) {
925         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
926     }
927     if (!(flags & CPU_DUMP_FPU)) {
928         qemu_fprintf(f, "\n");
929         return;
930     }
931     if (fp_exception_el(env, el) != 0) {
932         qemu_fprintf(f, "    FPU disabled\n");
933         return;
934     }
935     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
936                  vfp_get_fpcr(env), vfp_get_fpsr(env));
937 
938     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
939         sve = sme_exception_el(env, el) == 0;
940     } else if (cpu_isar_feature(aa64_sve, cpu)) {
941         sve = sve_exception_el(env, el) == 0;
942     } else {
943         sve = false;
944     }
945 
946     if (sve) {
947         int j, zcr_len = sve_vqm1_for_el(env, el);
948 
949         for (i = 0; i <= FFR_PRED_NUM; i++) {
950             bool eol;
951             if (i == FFR_PRED_NUM) {
952                 qemu_fprintf(f, "FFR=");
953                 /* It's last, so end the line.  */
954                 eol = true;
955             } else {
956                 qemu_fprintf(f, "P%02d=", i);
957                 switch (zcr_len) {
958                 case 0:
959                     eol = i % 8 == 7;
960                     break;
961                 case 1:
962                     eol = i % 6 == 5;
963                     break;
964                 case 2:
965                 case 3:
966                     eol = i % 3 == 2;
967                     break;
968                 default:
969                     /* More than one quadword per predicate.  */
970                     eol = true;
971                     break;
972                 }
973             }
974             for (j = zcr_len / 4; j >= 0; j--) {
975                 int digits;
976                 if (j * 4 + 4 <= zcr_len + 1) {
977                     digits = 16;
978                 } else {
979                     digits = (zcr_len % 4 + 1) * 4;
980                 }
981                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
982                              env->vfp.pregs[i].p[j],
983                              j ? ":" : eol ? "\n" : " ");
984             }
985         }
986 
987         for (i = 0; i < 32; i++) {
988             if (zcr_len == 0) {
989                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
990                              i, env->vfp.zregs[i].d[1],
991                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
992             } else if (zcr_len == 1) {
993                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
994                              ":%016" PRIx64 ":%016" PRIx64 "\n",
995                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
996                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
997             } else {
998                 for (j = zcr_len; j >= 0; j--) {
999                     bool odd = (zcr_len - j) % 2 != 0;
1000                     if (j == zcr_len) {
1001                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1002                     } else if (!odd) {
1003                         if (j > 0) {
1004                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1005                         } else {
1006                             qemu_fprintf(f, "     [%x]=", j);
1007                         }
1008                     }
1009                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1010                                  env->vfp.zregs[i].d[j * 2 + 1],
1011                                  env->vfp.zregs[i].d[j * 2],
1012                                  odd || j == 0 ? "\n" : ":");
1013                 }
1014             }
1015         }
1016     } else {
1017         for (i = 0; i < 32; i++) {
1018             uint64_t *q = aa64_vfp_qreg(env, i);
1019             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1020                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1021         }
1022     }
1023 }
1024 
1025 #else
1026 
1027 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1028 {
1029     g_assert_not_reached();
1030 }
1031 
1032 #endif
1033 
1034 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1035 {
1036     ARMCPU *cpu = ARM_CPU(cs);
1037     CPUARMState *env = &cpu->env;
1038     int i;
1039 
1040     if (is_a64(env)) {
1041         aarch64_cpu_dump_state(cs, f, flags);
1042         return;
1043     }
1044 
1045     for (i = 0; i < 16; i++) {
1046         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1047         if ((i % 4) == 3) {
1048             qemu_fprintf(f, "\n");
1049         } else {
1050             qemu_fprintf(f, " ");
1051         }
1052     }
1053 
1054     if (arm_feature(env, ARM_FEATURE_M)) {
1055         uint32_t xpsr = xpsr_read(env);
1056         const char *mode;
1057         const char *ns_status = "";
1058 
1059         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1060             ns_status = env->v7m.secure ? "S " : "NS ";
1061         }
1062 
1063         if (xpsr & XPSR_EXCP) {
1064             mode = "handler";
1065         } else {
1066             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1067                 mode = "unpriv-thread";
1068             } else {
1069                 mode = "priv-thread";
1070             }
1071         }
1072 
1073         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1074                      xpsr,
1075                      xpsr & XPSR_N ? 'N' : '-',
1076                      xpsr & XPSR_Z ? 'Z' : '-',
1077                      xpsr & XPSR_C ? 'C' : '-',
1078                      xpsr & XPSR_V ? 'V' : '-',
1079                      xpsr & XPSR_T ? 'T' : 'A',
1080                      ns_status,
1081                      mode);
1082     } else {
1083         uint32_t psr = cpsr_read(env);
1084         const char *ns_status = "";
1085 
1086         if (arm_feature(env, ARM_FEATURE_EL3) &&
1087             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1088             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1089         }
1090 
1091         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1092                      psr,
1093                      psr & CPSR_N ? 'N' : '-',
1094                      psr & CPSR_Z ? 'Z' : '-',
1095                      psr & CPSR_C ? 'C' : '-',
1096                      psr & CPSR_V ? 'V' : '-',
1097                      psr & CPSR_T ? 'T' : 'A',
1098                      ns_status,
1099                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1100     }
1101 
1102     if (flags & CPU_DUMP_FPU) {
1103         int numvfpregs = 0;
1104         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1105             numvfpregs = 32;
1106         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1107             numvfpregs = 16;
1108         }
1109         for (i = 0; i < numvfpregs; i++) {
1110             uint64_t v = *aa32_vfp_dreg(env, i);
1111             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1112                          i * 2, (uint32_t)v,
1113                          i * 2 + 1, (uint32_t)(v >> 32),
1114                          i, v);
1115         }
1116         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1117         if (cpu_isar_feature(aa32_mve, cpu)) {
1118             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1119         }
1120     }
1121 }
1122 
1123 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1124 {
1125     uint32_t Aff1 = idx / clustersz;
1126     uint32_t Aff0 = idx % clustersz;
1127     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1128 }
1129 
1130 static void arm_cpu_initfn(Object *obj)
1131 {
1132     ARMCPU *cpu = ARM_CPU(obj);
1133 
1134     cpu_set_cpustate_pointers(cpu);
1135     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1136                                          NULL, g_free);
1137 
1138     QLIST_INIT(&cpu->pre_el_change_hooks);
1139     QLIST_INIT(&cpu->el_change_hooks);
1140 
1141 #ifdef CONFIG_USER_ONLY
1142 # ifdef TARGET_AARCH64
1143     /*
1144      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1145      * These values were chosen to fit within the default signal frame.
1146      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1147      * and our corresponding cpu property.
1148      */
1149     cpu->sve_default_vq = 4;
1150     cpu->sme_default_vq = 2;
1151 # endif
1152 #else
1153     /* Our inbound IRQ and FIQ lines */
1154     if (kvm_enabled()) {
1155         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1156          * the same interface as non-KVM CPUs.
1157          */
1158         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1159     } else {
1160         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1161     }
1162 
1163     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1164                        ARRAY_SIZE(cpu->gt_timer_outputs));
1165 
1166     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1167                              "gicv3-maintenance-interrupt", 1);
1168     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1169                              "pmu-interrupt", 1);
1170 #endif
1171 
1172     /* DTB consumers generally don't in fact care what the 'compatible'
1173      * string is, so always provide some string and trust that a hypothetical
1174      * picky DTB consumer will also provide a helpful error message.
1175      */
1176     cpu->dtb_compatible = "qemu,unknown";
1177     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1178     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1179 
1180     if (tcg_enabled() || hvf_enabled()) {
1181         /* TCG and HVF implement PSCI 1.1 */
1182         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1183     }
1184 }
1185 
1186 static Property arm_cpu_gt_cntfrq_property =
1187             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1188                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1189 
1190 static Property arm_cpu_reset_cbar_property =
1191             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1192 
1193 static Property arm_cpu_reset_hivecs_property =
1194             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1195 
1196 #ifndef CONFIG_USER_ONLY
1197 static Property arm_cpu_has_el2_property =
1198             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1199 
1200 static Property arm_cpu_has_el3_property =
1201             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1202 #endif
1203 
1204 static Property arm_cpu_cfgend_property =
1205             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1206 
1207 static Property arm_cpu_has_vfp_property =
1208             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1209 
1210 static Property arm_cpu_has_neon_property =
1211             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1212 
1213 static Property arm_cpu_has_dsp_property =
1214             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1215 
1216 static Property arm_cpu_has_mpu_property =
1217             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1218 
1219 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1220  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1221  * the right value for that particular CPU type, and we don't want
1222  * to override that with an incorrect constant value.
1223  */
1224 static Property arm_cpu_pmsav7_dregion_property =
1225             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1226                                            pmsav7_dregion,
1227                                            qdev_prop_uint32, uint32_t);
1228 
1229 static bool arm_get_pmu(Object *obj, Error **errp)
1230 {
1231     ARMCPU *cpu = ARM_CPU(obj);
1232 
1233     return cpu->has_pmu;
1234 }
1235 
1236 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1237 {
1238     ARMCPU *cpu = ARM_CPU(obj);
1239 
1240     if (value) {
1241         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1242             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1243             return;
1244         }
1245         set_feature(&cpu->env, ARM_FEATURE_PMU);
1246     } else {
1247         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1248     }
1249     cpu->has_pmu = value;
1250 }
1251 
1252 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1253 {
1254     /*
1255      * The exact approach to calculating guest ticks is:
1256      *
1257      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1258      *              NANOSECONDS_PER_SECOND);
1259      *
1260      * We don't do that. Rather we intentionally use integer division
1261      * truncation below and in the caller for the conversion of host monotonic
1262      * time to guest ticks to provide the exact inverse for the semantics of
1263      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1264      * it loses precision when representing frequencies where
1265      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1266      * provide an exact inverse leads to scheduling timers with negative
1267      * periods, which in turn leads to sticky behaviour in the guest.
1268      *
1269      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1270      * cannot become zero.
1271      */
1272     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1273       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1274 }
1275 
1276 void arm_cpu_post_init(Object *obj)
1277 {
1278     ARMCPU *cpu = ARM_CPU(obj);
1279 
1280     /* M profile implies PMSA. We have to do this here rather than
1281      * in realize with the other feature-implication checks because
1282      * we look at the PMSA bit to see if we should add some properties.
1283      */
1284     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1285         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1286     }
1287 
1288     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1289         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1290         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1291     }
1292 
1293     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1294         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1295     }
1296 
1297     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1298         object_property_add_uint64_ptr(obj, "rvbar",
1299                                        &cpu->rvbar_prop,
1300                                        OBJ_PROP_FLAG_READWRITE);
1301     }
1302 
1303 #ifndef CONFIG_USER_ONLY
1304     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1305         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1306          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1307          */
1308         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1309 
1310         object_property_add_link(obj, "secure-memory",
1311                                  TYPE_MEMORY_REGION,
1312                                  (Object **)&cpu->secure_memory,
1313                                  qdev_prop_allow_set_link_before_realize,
1314                                  OBJ_PROP_LINK_STRONG);
1315     }
1316 
1317     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1318         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1319     }
1320 #endif
1321 
1322     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1323         cpu->has_pmu = true;
1324         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1325     }
1326 
1327     /*
1328      * Allow user to turn off VFP and Neon support, but only for TCG --
1329      * KVM does not currently allow us to lie to the guest about its
1330      * ID/feature registers, so the guest always sees what the host has.
1331      */
1332     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1333         ? cpu_isar_feature(aa64_fp_simd, cpu)
1334         : cpu_isar_feature(aa32_vfp, cpu)) {
1335         cpu->has_vfp = true;
1336         if (!kvm_enabled()) {
1337             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1338         }
1339     }
1340 
1341     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1342         cpu->has_neon = true;
1343         if (!kvm_enabled()) {
1344             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1345         }
1346     }
1347 
1348     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1349         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1350         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1351     }
1352 
1353     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1354         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1355         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1356             qdev_property_add_static(DEVICE(obj),
1357                                      &arm_cpu_pmsav7_dregion_property);
1358         }
1359     }
1360 
1361     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1362         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1363                                  qdev_prop_allow_set_link_before_realize,
1364                                  OBJ_PROP_LINK_STRONG);
1365         /*
1366          * M profile: initial value of the Secure VTOR. We can't just use
1367          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1368          * the property to be set after realize.
1369          */
1370         object_property_add_uint32_ptr(obj, "init-svtor",
1371                                        &cpu->init_svtor,
1372                                        OBJ_PROP_FLAG_READWRITE);
1373     }
1374     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1375         /*
1376          * Initial value of the NS VTOR (for cores without the Security
1377          * extension, this is the only VTOR)
1378          */
1379         object_property_add_uint32_ptr(obj, "init-nsvtor",
1380                                        &cpu->init_nsvtor,
1381                                        OBJ_PROP_FLAG_READWRITE);
1382     }
1383 
1384     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1385     object_property_add_uint32_ptr(obj, "psci-conduit",
1386                                    &cpu->psci_conduit,
1387                                    OBJ_PROP_FLAG_READWRITE);
1388 
1389     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1390 
1391     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1392         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1393     }
1394 
1395     if (kvm_enabled()) {
1396         kvm_arm_add_vcpu_properties(obj);
1397     }
1398 
1399 #ifndef CONFIG_USER_ONLY
1400     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1401         cpu_isar_feature(aa64_mte, cpu)) {
1402         object_property_add_link(obj, "tag-memory",
1403                                  TYPE_MEMORY_REGION,
1404                                  (Object **)&cpu->tag_memory,
1405                                  qdev_prop_allow_set_link_before_realize,
1406                                  OBJ_PROP_LINK_STRONG);
1407 
1408         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1409             object_property_add_link(obj, "secure-tag-memory",
1410                                      TYPE_MEMORY_REGION,
1411                                      (Object **)&cpu->secure_tag_memory,
1412                                      qdev_prop_allow_set_link_before_realize,
1413                                      OBJ_PROP_LINK_STRONG);
1414         }
1415     }
1416 #endif
1417 }
1418 
1419 static void arm_cpu_finalizefn(Object *obj)
1420 {
1421     ARMCPU *cpu = ARM_CPU(obj);
1422     ARMELChangeHook *hook, *next;
1423 
1424     g_hash_table_destroy(cpu->cp_regs);
1425 
1426     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1427         QLIST_REMOVE(hook, node);
1428         g_free(hook);
1429     }
1430     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1431         QLIST_REMOVE(hook, node);
1432         g_free(hook);
1433     }
1434 #ifndef CONFIG_USER_ONLY
1435     if (cpu->pmu_timer) {
1436         timer_free(cpu->pmu_timer);
1437     }
1438 #endif
1439 }
1440 
1441 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1442 {
1443     Error *local_err = NULL;
1444 
1445 #ifdef TARGET_AARCH64
1446     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1447         arm_cpu_sve_finalize(cpu, &local_err);
1448         if (local_err != NULL) {
1449             error_propagate(errp, local_err);
1450             return;
1451         }
1452 
1453         arm_cpu_sme_finalize(cpu, &local_err);
1454         if (local_err != NULL) {
1455             error_propagate(errp, local_err);
1456             return;
1457         }
1458 
1459         arm_cpu_pauth_finalize(cpu, &local_err);
1460         if (local_err != NULL) {
1461             error_propagate(errp, local_err);
1462             return;
1463         }
1464 
1465         arm_cpu_lpa2_finalize(cpu, &local_err);
1466         if (local_err != NULL) {
1467             error_propagate(errp, local_err);
1468             return;
1469         }
1470     }
1471 #endif
1472 
1473     if (kvm_enabled()) {
1474         kvm_arm_steal_time_finalize(cpu, &local_err);
1475         if (local_err != NULL) {
1476             error_propagate(errp, local_err);
1477             return;
1478         }
1479     }
1480 }
1481 
1482 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1483 {
1484     CPUState *cs = CPU(dev);
1485     ARMCPU *cpu = ARM_CPU(dev);
1486     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1487     CPUARMState *env = &cpu->env;
1488     int pagebits;
1489     Error *local_err = NULL;
1490     bool no_aa32 = false;
1491 
1492     /* If we needed to query the host kernel for the CPU features
1493      * then it's possible that might have failed in the initfn, but
1494      * this is the first point where we can report it.
1495      */
1496     if (cpu->host_cpu_probe_failed) {
1497         if (!kvm_enabled() && !hvf_enabled()) {
1498             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1499         } else {
1500             error_setg(errp, "Failed to retrieve host CPU features");
1501         }
1502         return;
1503     }
1504 
1505 #ifndef CONFIG_USER_ONLY
1506     /* The NVIC and M-profile CPU are two halves of a single piece of
1507      * hardware; trying to use one without the other is a command line
1508      * error and will result in segfaults if not caught here.
1509      */
1510     if (arm_feature(env, ARM_FEATURE_M)) {
1511         if (!env->nvic) {
1512             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1513             return;
1514         }
1515     } else {
1516         if (env->nvic) {
1517             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1518             return;
1519         }
1520     }
1521 
1522     if (!tcg_enabled() && !qtest_enabled()) {
1523         /*
1524          * We assume that no accelerator except TCG (and the "not really an
1525          * accelerator" qtest) can handle these features, because Arm hardware
1526          * virtualization can't virtualize them.
1527          *
1528          * Catch all the cases which might cause us to create more than one
1529          * address space for the CPU (otherwise we will assert() later in
1530          * cpu_address_space_init()).
1531          */
1532         if (arm_feature(env, ARM_FEATURE_M)) {
1533             error_setg(errp,
1534                        "Cannot enable %s when using an M-profile guest CPU",
1535                        current_accel_name());
1536             return;
1537         }
1538         if (cpu->has_el3) {
1539             error_setg(errp,
1540                        "Cannot enable %s when guest CPU has EL3 enabled",
1541                        current_accel_name());
1542             return;
1543         }
1544         if (cpu->tag_memory) {
1545             error_setg(errp,
1546                        "Cannot enable %s when guest CPUs has MTE enabled",
1547                        current_accel_name());
1548             return;
1549         }
1550     }
1551 
1552     {
1553         uint64_t scale;
1554 
1555         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1556             if (!cpu->gt_cntfrq_hz) {
1557                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1558                            cpu->gt_cntfrq_hz);
1559                 return;
1560             }
1561             scale = gt_cntfrq_period_ns(cpu);
1562         } else {
1563             scale = GTIMER_SCALE;
1564         }
1565 
1566         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1567                                                arm_gt_ptimer_cb, cpu);
1568         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1569                                                arm_gt_vtimer_cb, cpu);
1570         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1571                                               arm_gt_htimer_cb, cpu);
1572         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1573                                               arm_gt_stimer_cb, cpu);
1574         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1575                                                   arm_gt_hvtimer_cb, cpu);
1576     }
1577 #endif
1578 
1579     cpu_exec_realizefn(cs, &local_err);
1580     if (local_err != NULL) {
1581         error_propagate(errp, local_err);
1582         return;
1583     }
1584 
1585     arm_cpu_finalize_features(cpu, &local_err);
1586     if (local_err != NULL) {
1587         error_propagate(errp, local_err);
1588         return;
1589     }
1590 
1591     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1592         cpu->has_vfp != cpu->has_neon) {
1593         /*
1594          * This is an architectural requirement for AArch64; AArch32 is
1595          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1596          */
1597         error_setg(errp,
1598                    "AArch64 CPUs must have both VFP and Neon or neither");
1599         return;
1600     }
1601 
1602     if (!cpu->has_vfp) {
1603         uint64_t t;
1604         uint32_t u;
1605 
1606         t = cpu->isar.id_aa64isar1;
1607         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1608         cpu->isar.id_aa64isar1 = t;
1609 
1610         t = cpu->isar.id_aa64pfr0;
1611         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1612         cpu->isar.id_aa64pfr0 = t;
1613 
1614         u = cpu->isar.id_isar6;
1615         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1616         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1617         cpu->isar.id_isar6 = u;
1618 
1619         u = cpu->isar.mvfr0;
1620         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1621         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1622         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1623         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1624         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1625         if (!arm_feature(env, ARM_FEATURE_M)) {
1626             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1627             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1628         }
1629         cpu->isar.mvfr0 = u;
1630 
1631         u = cpu->isar.mvfr1;
1632         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1633         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1634         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1635         if (arm_feature(env, ARM_FEATURE_M)) {
1636             u = FIELD_DP32(u, MVFR1, FP16, 0);
1637         }
1638         cpu->isar.mvfr1 = u;
1639 
1640         u = cpu->isar.mvfr2;
1641         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1642         cpu->isar.mvfr2 = u;
1643     }
1644 
1645     if (!cpu->has_neon) {
1646         uint64_t t;
1647         uint32_t u;
1648 
1649         unset_feature(env, ARM_FEATURE_NEON);
1650 
1651         t = cpu->isar.id_aa64isar0;
1652         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1653         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1654         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1655         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1656         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1657         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1658         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1659         cpu->isar.id_aa64isar0 = t;
1660 
1661         t = cpu->isar.id_aa64isar1;
1662         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1663         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1664         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1665         cpu->isar.id_aa64isar1 = t;
1666 
1667         t = cpu->isar.id_aa64pfr0;
1668         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1669         cpu->isar.id_aa64pfr0 = t;
1670 
1671         u = cpu->isar.id_isar5;
1672         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1673         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1674         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1675         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1676         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1677         cpu->isar.id_isar5 = u;
1678 
1679         u = cpu->isar.id_isar6;
1680         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1681         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1682         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1683         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1684         cpu->isar.id_isar6 = u;
1685 
1686         if (!arm_feature(env, ARM_FEATURE_M)) {
1687             u = cpu->isar.mvfr1;
1688             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1689             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1690             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1691             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1692             cpu->isar.mvfr1 = u;
1693 
1694             u = cpu->isar.mvfr2;
1695             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1696             cpu->isar.mvfr2 = u;
1697         }
1698     }
1699 
1700     if (!cpu->has_neon && !cpu->has_vfp) {
1701         uint64_t t;
1702         uint32_t u;
1703 
1704         t = cpu->isar.id_aa64isar0;
1705         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1706         cpu->isar.id_aa64isar0 = t;
1707 
1708         t = cpu->isar.id_aa64isar1;
1709         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1710         cpu->isar.id_aa64isar1 = t;
1711 
1712         u = cpu->isar.mvfr0;
1713         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1714         cpu->isar.mvfr0 = u;
1715 
1716         /* Despite the name, this field covers both VFP and Neon */
1717         u = cpu->isar.mvfr1;
1718         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1719         cpu->isar.mvfr1 = u;
1720     }
1721 
1722     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1723         uint32_t u;
1724 
1725         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1726 
1727         u = cpu->isar.id_isar1;
1728         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1729         cpu->isar.id_isar1 = u;
1730 
1731         u = cpu->isar.id_isar2;
1732         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1733         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1734         cpu->isar.id_isar2 = u;
1735 
1736         u = cpu->isar.id_isar3;
1737         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1738         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1739         cpu->isar.id_isar3 = u;
1740     }
1741 
1742     /* Some features automatically imply others: */
1743     if (arm_feature(env, ARM_FEATURE_V8)) {
1744         if (arm_feature(env, ARM_FEATURE_M)) {
1745             set_feature(env, ARM_FEATURE_V7);
1746         } else {
1747             set_feature(env, ARM_FEATURE_V7VE);
1748         }
1749     }
1750 
1751     /*
1752      * There exist AArch64 cpus without AArch32 support.  When KVM
1753      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1754      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1755      * As a general principle, we also do not make ID register
1756      * consistency checks anywhere unless using TCG, because only
1757      * for TCG would a consistency-check failure be a QEMU bug.
1758      */
1759     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1760         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1761     }
1762 
1763     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1764         /* v7 Virtualization Extensions. In real hardware this implies
1765          * EL2 and also the presence of the Security Extensions.
1766          * For QEMU, for backwards-compatibility we implement some
1767          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1768          * include the various other features that V7VE implies.
1769          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1770          * Security Extensions is ARM_FEATURE_EL3.
1771          */
1772         assert(!tcg_enabled() || no_aa32 ||
1773                cpu_isar_feature(aa32_arm_div, cpu));
1774         set_feature(env, ARM_FEATURE_LPAE);
1775         set_feature(env, ARM_FEATURE_V7);
1776     }
1777     if (arm_feature(env, ARM_FEATURE_V7)) {
1778         set_feature(env, ARM_FEATURE_VAPA);
1779         set_feature(env, ARM_FEATURE_THUMB2);
1780         set_feature(env, ARM_FEATURE_MPIDR);
1781         if (!arm_feature(env, ARM_FEATURE_M)) {
1782             set_feature(env, ARM_FEATURE_V6K);
1783         } else {
1784             set_feature(env, ARM_FEATURE_V6);
1785         }
1786 
1787         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1788          * non-EL3 configs. This is needed by some legacy boards.
1789          */
1790         set_feature(env, ARM_FEATURE_VBAR);
1791     }
1792     if (arm_feature(env, ARM_FEATURE_V6K)) {
1793         set_feature(env, ARM_FEATURE_V6);
1794         set_feature(env, ARM_FEATURE_MVFR);
1795     }
1796     if (arm_feature(env, ARM_FEATURE_V6)) {
1797         set_feature(env, ARM_FEATURE_V5);
1798         if (!arm_feature(env, ARM_FEATURE_M)) {
1799             assert(!tcg_enabled() || no_aa32 ||
1800                    cpu_isar_feature(aa32_jazelle, cpu));
1801             set_feature(env, ARM_FEATURE_AUXCR);
1802         }
1803     }
1804     if (arm_feature(env, ARM_FEATURE_V5)) {
1805         set_feature(env, ARM_FEATURE_V4T);
1806     }
1807     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1808         set_feature(env, ARM_FEATURE_V7MP);
1809     }
1810     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1811         set_feature(env, ARM_FEATURE_CBAR);
1812     }
1813     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1814         !arm_feature(env, ARM_FEATURE_M)) {
1815         set_feature(env, ARM_FEATURE_THUMB_DSP);
1816     }
1817 
1818     /*
1819      * We rely on no XScale CPU having VFP so we can use the same bits in the
1820      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1821      */
1822     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1823            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1824            !arm_feature(env, ARM_FEATURE_XSCALE));
1825 
1826     if (arm_feature(env, ARM_FEATURE_V7) &&
1827         !arm_feature(env, ARM_FEATURE_M) &&
1828         !arm_feature(env, ARM_FEATURE_PMSA)) {
1829         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1830          * can use 4K pages.
1831          */
1832         pagebits = 12;
1833     } else {
1834         /* For CPUs which might have tiny 1K pages, or which have an
1835          * MPU and might have small region sizes, stick with 1K pages.
1836          */
1837         pagebits = 10;
1838     }
1839     if (!set_preferred_target_page_bits(pagebits)) {
1840         /* This can only ever happen for hotplugging a CPU, or if
1841          * the board code incorrectly creates a CPU which it has
1842          * promised via minimum_page_size that it will not.
1843          */
1844         error_setg(errp, "This CPU requires a smaller page size than the "
1845                    "system is using");
1846         return;
1847     }
1848 
1849     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1850      * We don't support setting cluster ID ([16..23]) (known as Aff2
1851      * in later ARM ARM versions), or any of the higher affinity level fields,
1852      * so these bits always RAZ.
1853      */
1854     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1855         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1856                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1857     }
1858 
1859     if (cpu->reset_hivecs) {
1860             cpu->reset_sctlr |= (1 << 13);
1861     }
1862 
1863     if (cpu->cfgend) {
1864         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1865             cpu->reset_sctlr |= SCTLR_EE;
1866         } else {
1867             cpu->reset_sctlr |= SCTLR_B;
1868         }
1869     }
1870 
1871     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1872         /* If the has_el3 CPU property is disabled then we need to disable the
1873          * feature.
1874          */
1875         unset_feature(env, ARM_FEATURE_EL3);
1876 
1877         /*
1878          * Disable the security extension feature bits in the processor
1879          * feature registers as well.
1880          */
1881         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1882         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1883         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1884                                            ID_AA64PFR0, EL3, 0);
1885     }
1886 
1887     if (!cpu->has_el2) {
1888         unset_feature(env, ARM_FEATURE_EL2);
1889     }
1890 
1891     if (!cpu->has_pmu) {
1892         unset_feature(env, ARM_FEATURE_PMU);
1893     }
1894     if (arm_feature(env, ARM_FEATURE_PMU)) {
1895         pmu_init(cpu);
1896 
1897         if (!kvm_enabled()) {
1898             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1899             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1900         }
1901 
1902 #ifndef CONFIG_USER_ONLY
1903         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1904                 cpu);
1905 #endif
1906     } else {
1907         cpu->isar.id_aa64dfr0 =
1908             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1909         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1910         cpu->pmceid0 = 0;
1911         cpu->pmceid1 = 0;
1912     }
1913 
1914     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1915         /*
1916          * Disable the hypervisor feature bits in the processor feature
1917          * registers if we don't have EL2.
1918          */
1919         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1920                                            ID_AA64PFR0, EL2, 0);
1921         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1922                                        ID_PFR1, VIRTUALIZATION, 0);
1923     }
1924 
1925 #ifndef CONFIG_USER_ONLY
1926     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1927         /*
1928          * Disable the MTE feature bits if we do not have tag-memory
1929          * provided by the machine.
1930          */
1931         cpu->isar.id_aa64pfr1 =
1932             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1933     }
1934 #endif
1935 
1936     if (tcg_enabled()) {
1937         /*
1938          * Don't report the Statistical Profiling Extension in the ID
1939          * registers, because TCG doesn't implement it yet (not even a
1940          * minimal stub version) and guests will fall over when they
1941          * try to access the non-existent system registers for it.
1942          */
1943         cpu->isar.id_aa64dfr0 =
1944             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
1945     }
1946 
1947     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1948      * to false or by setting pmsav7-dregion to 0.
1949      */
1950     if (!cpu->has_mpu) {
1951         cpu->pmsav7_dregion = 0;
1952     }
1953     if (cpu->pmsav7_dregion == 0) {
1954         cpu->has_mpu = false;
1955     }
1956 
1957     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1958         arm_feature(env, ARM_FEATURE_V7)) {
1959         uint32_t nr = cpu->pmsav7_dregion;
1960 
1961         if (nr > 0xff) {
1962             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1963             return;
1964         }
1965 
1966         if (nr) {
1967             if (arm_feature(env, ARM_FEATURE_V8)) {
1968                 /* PMSAv8 */
1969                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1970                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1971                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1972                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1973                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1974                 }
1975             } else {
1976                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1977                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1978                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1979             }
1980         }
1981     }
1982 
1983     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1984         uint32_t nr = cpu->sau_sregion;
1985 
1986         if (nr > 0xff) {
1987             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1988             return;
1989         }
1990 
1991         if (nr) {
1992             env->sau.rbar = g_new0(uint32_t, nr);
1993             env->sau.rlar = g_new0(uint32_t, nr);
1994         }
1995     }
1996 
1997     if (arm_feature(env, ARM_FEATURE_EL3)) {
1998         set_feature(env, ARM_FEATURE_VBAR);
1999     }
2000 
2001     register_cp_regs_for_features(cpu);
2002     arm_cpu_register_gdb_regs_for_features(cpu);
2003 
2004     init_cpreg_list(cpu);
2005 
2006 #ifndef CONFIG_USER_ONLY
2007     MachineState *ms = MACHINE(qdev_get_machine());
2008     unsigned int smp_cpus = ms->smp.cpus;
2009     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2010 
2011     /*
2012      * We must set cs->num_ases to the final value before
2013      * the first call to cpu_address_space_init.
2014      */
2015     if (cpu->tag_memory != NULL) {
2016         cs->num_ases = 3 + has_secure;
2017     } else {
2018         cs->num_ases = 1 + has_secure;
2019     }
2020 
2021     if (has_secure) {
2022         if (!cpu->secure_memory) {
2023             cpu->secure_memory = cs->memory;
2024         }
2025         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2026                                cpu->secure_memory);
2027     }
2028 
2029     if (cpu->tag_memory != NULL) {
2030         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2031                                cpu->tag_memory);
2032         if (has_secure) {
2033             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2034                                    cpu->secure_tag_memory);
2035         }
2036     }
2037 
2038     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2039 
2040     /* No core_count specified, default to smp_cpus. */
2041     if (cpu->core_count == -1) {
2042         cpu->core_count = smp_cpus;
2043     }
2044 #endif
2045 
2046     if (tcg_enabled()) {
2047         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2048 
2049         /*
2050          * We only support DCZ blocklen that fits on one page.
2051          *
2052          * Architectually this is always true.  However TARGET_PAGE_SIZE
2053          * is variable and, for compatibility with -machine virt-2.7,
2054          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2055          * But even then, while the largest architectural DCZ blocklen
2056          * is 2KiB, no cpu actually uses such a large blocklen.
2057          */
2058         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2059 
2060         /*
2061          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2062          * both nibbles of each byte storing tag data may be written at once.
2063          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2064          */
2065         if (cpu_isar_feature(aa64_mte, cpu)) {
2066             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2067         }
2068     }
2069 
2070     qemu_init_vcpu(cs);
2071     cpu_reset(cs);
2072 
2073     acc->parent_realize(dev, errp);
2074 }
2075 
2076 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2077 {
2078     ObjectClass *oc;
2079     char *typename;
2080     char **cpuname;
2081     const char *cpunamestr;
2082 
2083     cpuname = g_strsplit(cpu_model, ",", 1);
2084     cpunamestr = cpuname[0];
2085 #ifdef CONFIG_USER_ONLY
2086     /* For backwards compatibility usermode emulation allows "-cpu any",
2087      * which has the same semantics as "-cpu max".
2088      */
2089     if (!strcmp(cpunamestr, "any")) {
2090         cpunamestr = "max";
2091     }
2092 #endif
2093     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2094     oc = object_class_by_name(typename);
2095     g_strfreev(cpuname);
2096     g_free(typename);
2097     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2098         object_class_is_abstract(oc)) {
2099         return NULL;
2100     }
2101     return oc;
2102 }
2103 
2104 static Property arm_cpu_properties[] = {
2105     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2106     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2107                         mp_affinity, ARM64_AFFINITY_INVALID),
2108     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2109     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2110     DEFINE_PROP_END_OF_LIST()
2111 };
2112 
2113 static gchar *arm_gdb_arch_name(CPUState *cs)
2114 {
2115     ARMCPU *cpu = ARM_CPU(cs);
2116     CPUARMState *env = &cpu->env;
2117 
2118     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2119         return g_strdup("iwmmxt");
2120     }
2121     return g_strdup("arm");
2122 }
2123 
2124 #ifndef CONFIG_USER_ONLY
2125 #include "hw/core/sysemu-cpu-ops.h"
2126 
2127 static const struct SysemuCPUOps arm_sysemu_ops = {
2128     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2129     .asidx_from_attrs = arm_asidx_from_attrs,
2130     .write_elf32_note = arm_cpu_write_elf32_note,
2131     .write_elf64_note = arm_cpu_write_elf64_note,
2132     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2133     .legacy_vmsd = &vmstate_arm_cpu,
2134 };
2135 #endif
2136 
2137 #ifdef CONFIG_TCG
2138 static const struct TCGCPUOps arm_tcg_ops = {
2139     .initialize = arm_translate_init,
2140     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2141     .debug_excp_handler = arm_debug_excp_handler,
2142 
2143 #ifdef CONFIG_USER_ONLY
2144     .record_sigsegv = arm_cpu_record_sigsegv,
2145     .record_sigbus = arm_cpu_record_sigbus,
2146 #else
2147     .tlb_fill = arm_cpu_tlb_fill,
2148     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2149     .do_interrupt = arm_cpu_do_interrupt,
2150     .do_transaction_failed = arm_cpu_do_transaction_failed,
2151     .do_unaligned_access = arm_cpu_do_unaligned_access,
2152     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2153     .debug_check_watchpoint = arm_debug_check_watchpoint,
2154     .debug_check_breakpoint = arm_debug_check_breakpoint,
2155 #endif /* !CONFIG_USER_ONLY */
2156 };
2157 #endif /* CONFIG_TCG */
2158 
2159 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2160 {
2161     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2162     CPUClass *cc = CPU_CLASS(acc);
2163     DeviceClass *dc = DEVICE_CLASS(oc);
2164 
2165     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2166                                     &acc->parent_realize);
2167 
2168     device_class_set_props(dc, arm_cpu_properties);
2169     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2170 
2171     cc->class_by_name = arm_cpu_class_by_name;
2172     cc->has_work = arm_cpu_has_work;
2173     cc->dump_state = arm_cpu_dump_state;
2174     cc->set_pc = arm_cpu_set_pc;
2175     cc->gdb_read_register = arm_cpu_gdb_read_register;
2176     cc->gdb_write_register = arm_cpu_gdb_write_register;
2177 #ifndef CONFIG_USER_ONLY
2178     cc->sysemu_ops = &arm_sysemu_ops;
2179 #endif
2180     cc->gdb_num_core_regs = 26;
2181     cc->gdb_core_xml_file = "arm-core.xml";
2182     cc->gdb_arch_name = arm_gdb_arch_name;
2183     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2184     cc->gdb_stop_before_watchpoint = true;
2185     cc->disas_set_info = arm_disas_set_info;
2186 
2187 #ifdef CONFIG_TCG
2188     cc->tcg_ops = &arm_tcg_ops;
2189 #endif /* CONFIG_TCG */
2190 }
2191 
2192 static void arm_cpu_instance_init(Object *obj)
2193 {
2194     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2195 
2196     acc->info->initfn(obj);
2197     arm_cpu_post_init(obj);
2198 }
2199 
2200 static void cpu_register_class_init(ObjectClass *oc, void *data)
2201 {
2202     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2203 
2204     acc->info = data;
2205 }
2206 
2207 void arm_cpu_register(const ARMCPUInfo *info)
2208 {
2209     TypeInfo type_info = {
2210         .parent = TYPE_ARM_CPU,
2211         .instance_size = sizeof(ARMCPU),
2212         .instance_align = __alignof__(ARMCPU),
2213         .instance_init = arm_cpu_instance_init,
2214         .class_size = sizeof(ARMCPUClass),
2215         .class_init = info->class_init ?: cpu_register_class_init,
2216         .class_data = (void *)info,
2217     };
2218 
2219     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2220     type_register(&type_info);
2221     g_free((void *)type_info.name);
2222 }
2223 
2224 static const TypeInfo arm_cpu_type_info = {
2225     .name = TYPE_ARM_CPU,
2226     .parent = TYPE_CPU,
2227     .instance_size = sizeof(ARMCPU),
2228     .instance_align = __alignof__(ARMCPU),
2229     .instance_init = arm_cpu_initfn,
2230     .instance_finalize = arm_cpu_finalizefn,
2231     .abstract = true,
2232     .class_size = sizeof(ARMCPUClass),
2233     .class_init = arm_cpu_class_init,
2234 };
2235 
2236 static void arm_cpu_register_types(void)
2237 {
2238     type_register_static(&arm_cpu_type_info);
2239 }
2240 
2241 type_init(arm_cpu_register_types)
2242