xref: /openbmc/qemu/target/arm/cpu.c (revision 886cc689)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204                              cpu->sve_max_vq - 1 : 0;
205         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262             env->v7m.secure = true;
263         } else {
264             /* This bit resets to 0 if security is supported, but 1 if
265              * it is not. The bit is not present in v7M, but we set it
266              * here so we can avoid having to make checks on it conditional
267              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268              */
269             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270             /*
271              * Set NSACR to indicate "NS access permitted to everything";
272              * this avoids having to have all the tests of it being
273              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274              * v8.1M the guest-visible value of NSACR in a CPU without the
275              * Security Extension is 0xcff.
276              */
277             env->v7m.nsacr = 0xcff;
278         }
279 
280         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281          * that it resets to 1, so QEMU always does that rather than making
282          * it dependent on CPU model. In v8M it is RES1.
283          */
284         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286         if (arm_feature(env, ARM_FEATURE_V8)) {
287             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290         }
291         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294         }
295 
296         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
297             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300         }
301         /* Unlike A/R profile, M profile defines the reset LR value */
302         env->regs[14] = 0xffffffff;
303 
304         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305 
306         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307         vecbase = env->v7m.vecbase[env->v7m.secure];
308         rom = rom_ptr(vecbase, 8);
309         if (rom) {
310             /* Address zero is covered by ROM which hasn't yet been
311              * copied into physical memory.
312              */
313             initial_msp = ldl_p(rom);
314             initial_pc = ldl_p(rom + 4);
315         } else {
316             /* Address zero not covered by a ROM blob, or the ROM blob
317              * is in non-modifiable memory and this is a second reset after
318              * it got copied into memory. In the latter case, rom_ptr
319              * will return a NULL pointer and we should use ldl_phys instead.
320              */
321             initial_msp = ldl_phys(s->as, vecbase);
322             initial_pc = ldl_phys(s->as, vecbase + 4);
323         }
324 
325         env->regs[13] = initial_msp & 0xFFFFFFFC;
326         env->regs[15] = initial_pc & ~1;
327         env->thumb = initial_pc & 1;
328     }
329 
330     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
331      * executing as AArch32 then check if highvecs are enabled and
332      * adjust the PC accordingly.
333      */
334     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335         env->regs[15] = 0xFFFF0000;
336     }
337 
338     /* M profile requires that reset clears the exclusive monitor;
339      * A profile does not, but clearing it makes more sense than having it
340      * set with an exclusive access on address zero.
341      */
342     arm_clear_exclusive(env);
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_PMSA)) {
348         if (cpu->pmsav7_dregion > 0) {
349             if (arm_feature(env, ARM_FEATURE_V8)) {
350                 memset(env->pmsav8.rbar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rbar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 memset(env->pmsav8.rlar[M_REG_NS], 0,
354                        sizeof(*env->pmsav8.rlar[M_REG_NS])
355                        * cpu->pmsav7_dregion);
356                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357                     memset(env->pmsav8.rbar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rbar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                     memset(env->pmsav8.rlar[M_REG_S], 0,
361                            sizeof(*env->pmsav8.rlar[M_REG_S])
362                            * cpu->pmsav7_dregion);
363                 }
364             } else if (arm_feature(env, ARM_FEATURE_V7)) {
365                 memset(env->pmsav7.drbar, 0,
366                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367                 memset(env->pmsav7.drsr, 0,
368                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369                 memset(env->pmsav7.dracr, 0,
370                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371             }
372         }
373         env->pmsav7.rnr[M_REG_NS] = 0;
374         env->pmsav7.rnr[M_REG_S] = 0;
375         env->pmsav8.mair0[M_REG_NS] = 0;
376         env->pmsav8.mair0[M_REG_S] = 0;
377         env->pmsav8.mair1[M_REG_NS] = 0;
378         env->pmsav8.mair1[M_REG_S] = 0;
379     }
380 
381     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382         if (cpu->sau_sregion > 0) {
383             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385         }
386         env->sau.rnr = 0;
387         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388          * the Cortex-M33 does.
389          */
390         env->sau.ctrl = 0;
391     }
392 
393     set_flush_to_zero(1, &env->vfp.standard_fp_status);
394     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395     set_default_nan_mode(1, &env->vfp.standard_fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.standard_fp_status);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414                                      unsigned int target_el,
415                                      unsigned int cur_el, bool secure,
416                                      uint64_t hcr_el2)
417 {
418     CPUARMState *env = cs->env_ptr;
419     bool pstate_unmasked;
420     bool unmasked = false;
421 
422     /*
423      * Don't take exceptions if they target a lower EL.
424      * This check should catch any exceptions that would not be taken
425      * but left pending.
426      */
427     if (cur_el > target_el) {
428         return false;
429     }
430 
431     switch (excp_idx) {
432     case EXCP_FIQ:
433         pstate_unmasked = !(env->daif & PSTATE_F);
434         break;
435 
436     case EXCP_IRQ:
437         pstate_unmasked = !(env->daif & PSTATE_I);
438         break;
439 
440     case EXCP_VFIQ:
441         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442             /* VFIQs are only taken when hypervized and non-secure.  */
443             return false;
444         }
445         return !(env->daif & PSTATE_F);
446     case EXCP_VIRQ:
447         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448             /* VIRQs are only taken when hypervized and non-secure.  */
449             return false;
450         }
451         return !(env->daif & PSTATE_I);
452     default:
453         g_assert_not_reached();
454     }
455 
456     /*
457      * Use the target EL, current execution state and SCR/HCR settings to
458      * determine whether the corresponding CPSR bit is used to mask the
459      * interrupt.
460      */
461     if ((target_el > cur_el) && (target_el != 1)) {
462         /* Exceptions targeting a higher EL may not be maskable */
463         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464             /*
465              * 64-bit masking rules are simple: exceptions to EL3
466              * can't be masked, and exceptions to EL2 can only be
467              * masked from Secure state. The HCR and SCR settings
468              * don't affect the masking logic, only the interrupt routing.
469              */
470             if (target_el == 3 || !secure) {
471                 unmasked = true;
472             }
473         } else {
474             /*
475              * The old 32-bit-only environment has a more complicated
476              * masking setup. HCR and SCR bits not only affect interrupt
477              * routing but also change the behaviour of masking.
478              */
479             bool hcr, scr;
480 
481             switch (excp_idx) {
482             case EXCP_FIQ:
483                 /*
484                  * If FIQs are routed to EL3 or EL2 then there are cases where
485                  * we override the CPSR.F in determining if the exception is
486                  * masked or not. If neither of these are set then we fall back
487                  * to the CPSR.F setting otherwise we further assess the state
488                  * below.
489                  */
490                 hcr = hcr_el2 & HCR_FMO;
491                 scr = (env->cp15.scr_el3 & SCR_FIQ);
492 
493                 /*
494                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
495                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
496                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497                  * when non-secure but only when FIQs are only routed to EL3.
498                  */
499                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500                 break;
501             case EXCP_IRQ:
502                 /*
503                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
504                  * we may override the CPSR.I masking when in non-secure state.
505                  * The SCR.IRQ setting has already been taken into consideration
506                  * when setting the target EL, so it does not have a further
507                  * affect here.
508                  */
509                 hcr = hcr_el2 & HCR_IMO;
510                 scr = false;
511                 break;
512             default:
513                 g_assert_not_reached();
514             }
515 
516             if ((scr || hcr) && !secure) {
517                 unmasked = true;
518             }
519         }
520     }
521 
522     /*
523      * The PSTATE bits only mask the interrupt if we have not overriden the
524      * ability above.
525      */
526     return unmasked || pstate_unmasked;
527 }
528 
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531     CPUClass *cc = CPU_GET_CLASS(cs);
532     CPUARMState *env = cs->env_ptr;
533     uint32_t cur_el = arm_current_el(env);
534     bool secure = arm_is_secure(env);
535     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536     uint32_t target_el;
537     uint32_t excp_idx;
538 
539     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
540 
541     if (interrupt_request & CPU_INTERRUPT_FIQ) {
542         excp_idx = EXCP_FIQ;
543         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
544         if (arm_excp_unmasked(cs, excp_idx, target_el,
545                               cur_el, secure, hcr_el2)) {
546             goto found;
547         }
548     }
549     if (interrupt_request & CPU_INTERRUPT_HARD) {
550         excp_idx = EXCP_IRQ;
551         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
552         if (arm_excp_unmasked(cs, excp_idx, target_el,
553                               cur_el, secure, hcr_el2)) {
554             goto found;
555         }
556     }
557     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
558         excp_idx = EXCP_VIRQ;
559         target_el = 1;
560         if (arm_excp_unmasked(cs, excp_idx, target_el,
561                               cur_el, secure, hcr_el2)) {
562             goto found;
563         }
564     }
565     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
566         excp_idx = EXCP_VFIQ;
567         target_el = 1;
568         if (arm_excp_unmasked(cs, excp_idx, target_el,
569                               cur_el, secure, hcr_el2)) {
570             goto found;
571         }
572     }
573     return false;
574 
575  found:
576     cs->exception_index = excp_idx;
577     env->exception.target_el = target_el;
578     cc->do_interrupt(cs);
579     return true;
580 }
581 
582 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
583 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
584 {
585     CPUClass *cc = CPU_GET_CLASS(cs);
586     ARMCPU *cpu = ARM_CPU(cs);
587     CPUARMState *env = &cpu->env;
588     bool ret = false;
589 
590     /* ARMv7-M interrupt masking works differently than -A or -R.
591      * There is no FIQ/IRQ distinction. Instead of I and F bits
592      * masking FIQ and IRQ interrupts, an exception is taken only
593      * if it is higher priority than the current execution priority
594      * (which depends on state like BASEPRI, FAULTMASK and the
595      * currently active exception).
596      */
597     if (interrupt_request & CPU_INTERRUPT_HARD
598         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
599         cs->exception_index = EXCP_IRQ;
600         cc->do_interrupt(cs);
601         ret = true;
602     }
603     return ret;
604 }
605 #endif
606 
607 void arm_cpu_update_virq(ARMCPU *cpu)
608 {
609     /*
610      * Update the interrupt level for VIRQ, which is the logical OR of
611      * the HCR_EL2.VI bit and the input line level from the GIC.
612      */
613     CPUARMState *env = &cpu->env;
614     CPUState *cs = CPU(cpu);
615 
616     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
617         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
618 
619     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
620         if (new_state) {
621             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
622         } else {
623             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
624         }
625     }
626 }
627 
628 void arm_cpu_update_vfiq(ARMCPU *cpu)
629 {
630     /*
631      * Update the interrupt level for VFIQ, which is the logical OR of
632      * the HCR_EL2.VF bit and the input line level from the GIC.
633      */
634     CPUARMState *env = &cpu->env;
635     CPUState *cs = CPU(cpu);
636 
637     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
638         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
639 
640     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
641         if (new_state) {
642             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
643         } else {
644             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
645         }
646     }
647 }
648 
649 #ifndef CONFIG_USER_ONLY
650 static void arm_cpu_set_irq(void *opaque, int irq, int level)
651 {
652     ARMCPU *cpu = opaque;
653     CPUARMState *env = &cpu->env;
654     CPUState *cs = CPU(cpu);
655     static const int mask[] = {
656         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
657         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
658         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
659         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
660     };
661 
662     if (level) {
663         env->irq_line_state |= mask[irq];
664     } else {
665         env->irq_line_state &= ~mask[irq];
666     }
667 
668     switch (irq) {
669     case ARM_CPU_VIRQ:
670         assert(arm_feature(env, ARM_FEATURE_EL2));
671         arm_cpu_update_virq(cpu);
672         break;
673     case ARM_CPU_VFIQ:
674         assert(arm_feature(env, ARM_FEATURE_EL2));
675         arm_cpu_update_vfiq(cpu);
676         break;
677     case ARM_CPU_IRQ:
678     case ARM_CPU_FIQ:
679         if (level) {
680             cpu_interrupt(cs, mask[irq]);
681         } else {
682             cpu_reset_interrupt(cs, mask[irq]);
683         }
684         break;
685     default:
686         g_assert_not_reached();
687     }
688 }
689 
690 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
691 {
692 #ifdef CONFIG_KVM
693     ARMCPU *cpu = opaque;
694     CPUARMState *env = &cpu->env;
695     CPUState *cs = CPU(cpu);
696     uint32_t linestate_bit;
697     int irq_id;
698 
699     switch (irq) {
700     case ARM_CPU_IRQ:
701         irq_id = KVM_ARM_IRQ_CPU_IRQ;
702         linestate_bit = CPU_INTERRUPT_HARD;
703         break;
704     case ARM_CPU_FIQ:
705         irq_id = KVM_ARM_IRQ_CPU_FIQ;
706         linestate_bit = CPU_INTERRUPT_FIQ;
707         break;
708     default:
709         g_assert_not_reached();
710     }
711 
712     if (level) {
713         env->irq_line_state |= linestate_bit;
714     } else {
715         env->irq_line_state &= ~linestate_bit;
716     }
717     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
718 #endif
719 }
720 
721 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
722 {
723     ARMCPU *cpu = ARM_CPU(cs);
724     CPUARMState *env = &cpu->env;
725 
726     cpu_synchronize_state(cs);
727     return arm_cpu_data_is_big_endian(env);
728 }
729 
730 #endif
731 
732 static inline void set_feature(CPUARMState *env, int feature)
733 {
734     env->features |= 1ULL << feature;
735 }
736 
737 static inline void unset_feature(CPUARMState *env, int feature)
738 {
739     env->features &= ~(1ULL << feature);
740 }
741 
742 static int
743 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
744 {
745   return print_insn_arm(pc | 1, info);
746 }
747 
748 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
749 {
750     ARMCPU *ac = ARM_CPU(cpu);
751     CPUARMState *env = &ac->env;
752     bool sctlr_b;
753 
754     if (is_a64(env)) {
755         /* We might not be compiled with the A64 disassembler
756          * because it needs a C++ compiler. Leave print_insn
757          * unset in this case to use the caller default behaviour.
758          */
759 #if defined(CONFIG_ARM_A64_DIS)
760         info->print_insn = print_insn_arm_a64;
761 #endif
762         info->cap_arch = CS_ARCH_ARM64;
763         info->cap_insn_unit = 4;
764         info->cap_insn_split = 4;
765     } else {
766         int cap_mode;
767         if (env->thumb) {
768             info->print_insn = print_insn_thumb1;
769             info->cap_insn_unit = 2;
770             info->cap_insn_split = 4;
771             cap_mode = CS_MODE_THUMB;
772         } else {
773             info->print_insn = print_insn_arm;
774             info->cap_insn_unit = 4;
775             info->cap_insn_split = 4;
776             cap_mode = CS_MODE_ARM;
777         }
778         if (arm_feature(env, ARM_FEATURE_V8)) {
779             cap_mode |= CS_MODE_V8;
780         }
781         if (arm_feature(env, ARM_FEATURE_M)) {
782             cap_mode |= CS_MODE_MCLASS;
783         }
784         info->cap_arch = CS_ARCH_ARM;
785         info->cap_mode = cap_mode;
786     }
787 
788     sctlr_b = arm_sctlr_b(env);
789     if (bswap_code(sctlr_b)) {
790 #ifdef TARGET_WORDS_BIGENDIAN
791         info->endian = BFD_ENDIAN_LITTLE;
792 #else
793         info->endian = BFD_ENDIAN_BIG;
794 #endif
795     }
796     info->flags &= ~INSN_ARM_BE32;
797 #ifndef CONFIG_USER_ONLY
798     if (sctlr_b) {
799         info->flags |= INSN_ARM_BE32;
800     }
801 #endif
802 }
803 
804 #ifdef TARGET_AARCH64
805 
806 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
807 {
808     ARMCPU *cpu = ARM_CPU(cs);
809     CPUARMState *env = &cpu->env;
810     uint32_t psr = pstate_read(env);
811     int i;
812     int el = arm_current_el(env);
813     const char *ns_status;
814 
815     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
816     for (i = 0; i < 32; i++) {
817         if (i == 31) {
818             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
819         } else {
820             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
821                          (i + 2) % 3 ? " " : "\n");
822         }
823     }
824 
825     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
826         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
827     } else {
828         ns_status = "";
829     }
830     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
831                  psr,
832                  psr & PSTATE_N ? 'N' : '-',
833                  psr & PSTATE_Z ? 'Z' : '-',
834                  psr & PSTATE_C ? 'C' : '-',
835                  psr & PSTATE_V ? 'V' : '-',
836                  ns_status,
837                  el,
838                  psr & PSTATE_SP ? 'h' : 't');
839 
840     if (cpu_isar_feature(aa64_bti, cpu)) {
841         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
842     }
843     if (!(flags & CPU_DUMP_FPU)) {
844         qemu_fprintf(f, "\n");
845         return;
846     }
847     if (fp_exception_el(env, el) != 0) {
848         qemu_fprintf(f, "    FPU disabled\n");
849         return;
850     }
851     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
852                  vfp_get_fpcr(env), vfp_get_fpsr(env));
853 
854     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
855         int j, zcr_len = sve_zcr_len_for_el(env, el);
856 
857         for (i = 0; i <= FFR_PRED_NUM; i++) {
858             bool eol;
859             if (i == FFR_PRED_NUM) {
860                 qemu_fprintf(f, "FFR=");
861                 /* It's last, so end the line.  */
862                 eol = true;
863             } else {
864                 qemu_fprintf(f, "P%02d=", i);
865                 switch (zcr_len) {
866                 case 0:
867                     eol = i % 8 == 7;
868                     break;
869                 case 1:
870                     eol = i % 6 == 5;
871                     break;
872                 case 2:
873                 case 3:
874                     eol = i % 3 == 2;
875                     break;
876                 default:
877                     /* More than one quadword per predicate.  */
878                     eol = true;
879                     break;
880                 }
881             }
882             for (j = zcr_len / 4; j >= 0; j--) {
883                 int digits;
884                 if (j * 4 + 4 <= zcr_len + 1) {
885                     digits = 16;
886                 } else {
887                     digits = (zcr_len % 4 + 1) * 4;
888                 }
889                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
890                              env->vfp.pregs[i].p[j],
891                              j ? ":" : eol ? "\n" : " ");
892             }
893         }
894 
895         for (i = 0; i < 32; i++) {
896             if (zcr_len == 0) {
897                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
898                              i, env->vfp.zregs[i].d[1],
899                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
900             } else if (zcr_len == 1) {
901                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
902                              ":%016" PRIx64 ":%016" PRIx64 "\n",
903                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
904                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
905             } else {
906                 for (j = zcr_len; j >= 0; j--) {
907                     bool odd = (zcr_len - j) % 2 != 0;
908                     if (j == zcr_len) {
909                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
910                     } else if (!odd) {
911                         if (j > 0) {
912                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
913                         } else {
914                             qemu_fprintf(f, "     [%x]=", j);
915                         }
916                     }
917                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
918                                  env->vfp.zregs[i].d[j * 2 + 1],
919                                  env->vfp.zregs[i].d[j * 2],
920                                  odd || j == 0 ? "\n" : ":");
921                 }
922             }
923         }
924     } else {
925         for (i = 0; i < 32; i++) {
926             uint64_t *q = aa64_vfp_qreg(env, i);
927             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
928                          i, q[1], q[0], (i & 1 ? "\n" : " "));
929         }
930     }
931 }
932 
933 #else
934 
935 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
936 {
937     g_assert_not_reached();
938 }
939 
940 #endif
941 
942 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
943 {
944     ARMCPU *cpu = ARM_CPU(cs);
945     CPUARMState *env = &cpu->env;
946     int i;
947 
948     if (is_a64(env)) {
949         aarch64_cpu_dump_state(cs, f, flags);
950         return;
951     }
952 
953     for (i = 0; i < 16; i++) {
954         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
955         if ((i % 4) == 3) {
956             qemu_fprintf(f, "\n");
957         } else {
958             qemu_fprintf(f, " ");
959         }
960     }
961 
962     if (arm_feature(env, ARM_FEATURE_M)) {
963         uint32_t xpsr = xpsr_read(env);
964         const char *mode;
965         const char *ns_status = "";
966 
967         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
968             ns_status = env->v7m.secure ? "S " : "NS ";
969         }
970 
971         if (xpsr & XPSR_EXCP) {
972             mode = "handler";
973         } else {
974             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
975                 mode = "unpriv-thread";
976             } else {
977                 mode = "priv-thread";
978             }
979         }
980 
981         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
982                      xpsr,
983                      xpsr & XPSR_N ? 'N' : '-',
984                      xpsr & XPSR_Z ? 'Z' : '-',
985                      xpsr & XPSR_C ? 'C' : '-',
986                      xpsr & XPSR_V ? 'V' : '-',
987                      xpsr & XPSR_T ? 'T' : 'A',
988                      ns_status,
989                      mode);
990     } else {
991         uint32_t psr = cpsr_read(env);
992         const char *ns_status = "";
993 
994         if (arm_feature(env, ARM_FEATURE_EL3) &&
995             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
996             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
997         }
998 
999         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1000                      psr,
1001                      psr & CPSR_N ? 'N' : '-',
1002                      psr & CPSR_Z ? 'Z' : '-',
1003                      psr & CPSR_C ? 'C' : '-',
1004                      psr & CPSR_V ? 'V' : '-',
1005                      psr & CPSR_T ? 'T' : 'A',
1006                      ns_status,
1007                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1008     }
1009 
1010     if (flags & CPU_DUMP_FPU) {
1011         int numvfpregs = 0;
1012         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1013             numvfpregs = 32;
1014         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1015             numvfpregs = 16;
1016         }
1017         for (i = 0; i < numvfpregs; i++) {
1018             uint64_t v = *aa32_vfp_dreg(env, i);
1019             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1020                          i * 2, (uint32_t)v,
1021                          i * 2 + 1, (uint32_t)(v >> 32),
1022                          i, v);
1023         }
1024         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1025     }
1026 }
1027 
1028 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1029 {
1030     uint32_t Aff1 = idx / clustersz;
1031     uint32_t Aff0 = idx % clustersz;
1032     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1033 }
1034 
1035 static void cpreg_hashtable_data_destroy(gpointer data)
1036 {
1037     /*
1038      * Destroy function for cpu->cp_regs hashtable data entries.
1039      * We must free the name string because it was g_strdup()ed in
1040      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1041      * from r->name because we know we definitely allocated it.
1042      */
1043     ARMCPRegInfo *r = data;
1044 
1045     g_free((void *)r->name);
1046     g_free(r);
1047 }
1048 
1049 static void arm_cpu_initfn(Object *obj)
1050 {
1051     ARMCPU *cpu = ARM_CPU(obj);
1052 
1053     cpu_set_cpustate_pointers(cpu);
1054     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1055                                          g_free, cpreg_hashtable_data_destroy);
1056 
1057     QLIST_INIT(&cpu->pre_el_change_hooks);
1058     QLIST_INIT(&cpu->el_change_hooks);
1059 
1060 #ifndef CONFIG_USER_ONLY
1061     /* Our inbound IRQ and FIQ lines */
1062     if (kvm_enabled()) {
1063         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1064          * the same interface as non-KVM CPUs.
1065          */
1066         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1067     } else {
1068         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1069     }
1070 
1071     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1072                        ARRAY_SIZE(cpu->gt_timer_outputs));
1073 
1074     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1075                              "gicv3-maintenance-interrupt", 1);
1076     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1077                              "pmu-interrupt", 1);
1078 #endif
1079 
1080     /* DTB consumers generally don't in fact care what the 'compatible'
1081      * string is, so always provide some string and trust that a hypothetical
1082      * picky DTB consumer will also provide a helpful error message.
1083      */
1084     cpu->dtb_compatible = "qemu,unknown";
1085     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1086     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1087 
1088     if (tcg_enabled()) {
1089         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1090     }
1091 }
1092 
1093 static Property arm_cpu_gt_cntfrq_property =
1094             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1095                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1096 
1097 static Property arm_cpu_reset_cbar_property =
1098             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1099 
1100 static Property arm_cpu_reset_hivecs_property =
1101             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1102 
1103 static Property arm_cpu_rvbar_property =
1104             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1105 
1106 static Property arm_cpu_has_el2_property =
1107             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1108 
1109 static Property arm_cpu_has_el3_property =
1110             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1111 
1112 static Property arm_cpu_cfgend_property =
1113             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1114 
1115 static Property arm_cpu_has_vfp_property =
1116             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1117 
1118 static Property arm_cpu_has_neon_property =
1119             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1120 
1121 static Property arm_cpu_has_dsp_property =
1122             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1123 
1124 static Property arm_cpu_has_mpu_property =
1125             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1126 
1127 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1128  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1129  * the right value for that particular CPU type, and we don't want
1130  * to override that with an incorrect constant value.
1131  */
1132 static Property arm_cpu_pmsav7_dregion_property =
1133             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1134                                            pmsav7_dregion,
1135                                            qdev_prop_uint32, uint32_t);
1136 
1137 static bool arm_get_pmu(Object *obj, Error **errp)
1138 {
1139     ARMCPU *cpu = ARM_CPU(obj);
1140 
1141     return cpu->has_pmu;
1142 }
1143 
1144 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1145 {
1146     ARMCPU *cpu = ARM_CPU(obj);
1147 
1148     if (value) {
1149         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1150             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1151             return;
1152         }
1153         set_feature(&cpu->env, ARM_FEATURE_PMU);
1154     } else {
1155         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1156     }
1157     cpu->has_pmu = value;
1158 }
1159 
1160 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1161                                void *opaque, Error **errp)
1162 {
1163     ARMCPU *cpu = ARM_CPU(obj);
1164 
1165     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1166 }
1167 
1168 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1169                                void *opaque, Error **errp)
1170 {
1171     ARMCPU *cpu = ARM_CPU(obj);
1172 
1173     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1174 }
1175 
1176 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1177 {
1178     /*
1179      * The exact approach to calculating guest ticks is:
1180      *
1181      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1182      *              NANOSECONDS_PER_SECOND);
1183      *
1184      * We don't do that. Rather we intentionally use integer division
1185      * truncation below and in the caller for the conversion of host monotonic
1186      * time to guest ticks to provide the exact inverse for the semantics of
1187      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1188      * it loses precision when representing frequencies where
1189      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1190      * provide an exact inverse leads to scheduling timers with negative
1191      * periods, which in turn leads to sticky behaviour in the guest.
1192      *
1193      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1194      * cannot become zero.
1195      */
1196     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1197       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1198 }
1199 
1200 void arm_cpu_post_init(Object *obj)
1201 {
1202     ARMCPU *cpu = ARM_CPU(obj);
1203 
1204     /* M profile implies PMSA. We have to do this here rather than
1205      * in realize with the other feature-implication checks because
1206      * we look at the PMSA bit to see if we should add some properties.
1207      */
1208     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1209         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1210     }
1211 
1212     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1213         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1214         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1215     }
1216 
1217     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1218         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1219     }
1220 
1221     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1222         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1223     }
1224 
1225     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1226         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1227          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1228          */
1229         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1230 
1231 #ifndef CONFIG_USER_ONLY
1232         object_property_add_link(obj, "secure-memory",
1233                                  TYPE_MEMORY_REGION,
1234                                  (Object **)&cpu->secure_memory,
1235                                  qdev_prop_allow_set_link_before_realize,
1236                                  OBJ_PROP_LINK_STRONG,
1237                                  &error_abort);
1238 #endif
1239     }
1240 
1241     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1242         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1243     }
1244 
1245     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1246         cpu->has_pmu = true;
1247         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1248                                  &error_abort);
1249     }
1250 
1251     /*
1252      * Allow user to turn off VFP and Neon support, but only for TCG --
1253      * KVM does not currently allow us to lie to the guest about its
1254      * ID/feature registers, so the guest always sees what the host has.
1255      */
1256     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1257         ? cpu_isar_feature(aa64_fp_simd, cpu)
1258         : cpu_isar_feature(aa32_vfp, cpu)) {
1259         cpu->has_vfp = true;
1260         if (!kvm_enabled()) {
1261             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1262         }
1263     }
1264 
1265     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1266         cpu->has_neon = true;
1267         if (!kvm_enabled()) {
1268             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1269         }
1270     }
1271 
1272     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1273         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1274         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1275     }
1276 
1277     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1278         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1279         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1280             qdev_property_add_static(DEVICE(obj),
1281                                      &arm_cpu_pmsav7_dregion_property);
1282         }
1283     }
1284 
1285     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1286         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1287                                  qdev_prop_allow_set_link_before_realize,
1288                                  OBJ_PROP_LINK_STRONG,
1289                                  &error_abort);
1290         /*
1291          * M profile: initial value of the Secure VTOR. We can't just use
1292          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1293          * the property to be set after realize.
1294          */
1295         object_property_add(obj, "init-svtor", "uint32",
1296                             arm_get_init_svtor, arm_set_init_svtor,
1297                             NULL, NULL, &error_abort);
1298     }
1299 
1300     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1301 
1302     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1303         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1304     }
1305 }
1306 
1307 static void arm_cpu_finalizefn(Object *obj)
1308 {
1309     ARMCPU *cpu = ARM_CPU(obj);
1310     ARMELChangeHook *hook, *next;
1311 
1312     g_hash_table_destroy(cpu->cp_regs);
1313 
1314     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1315         QLIST_REMOVE(hook, node);
1316         g_free(hook);
1317     }
1318     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1319         QLIST_REMOVE(hook, node);
1320         g_free(hook);
1321     }
1322 #ifndef CONFIG_USER_ONLY
1323     if (cpu->pmu_timer) {
1324         timer_del(cpu->pmu_timer);
1325         timer_deinit(cpu->pmu_timer);
1326         timer_free(cpu->pmu_timer);
1327     }
1328 #endif
1329 }
1330 
1331 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1332 {
1333     Error *local_err = NULL;
1334 
1335     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1336         arm_cpu_sve_finalize(cpu, &local_err);
1337         if (local_err != NULL) {
1338             error_propagate(errp, local_err);
1339             return;
1340         }
1341     }
1342 }
1343 
1344 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1345 {
1346     CPUState *cs = CPU(dev);
1347     ARMCPU *cpu = ARM_CPU(dev);
1348     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1349     CPUARMState *env = &cpu->env;
1350     int pagebits;
1351     Error *local_err = NULL;
1352     bool no_aa32 = false;
1353 
1354     /* If we needed to query the host kernel for the CPU features
1355      * then it's possible that might have failed in the initfn, but
1356      * this is the first point where we can report it.
1357      */
1358     if (cpu->host_cpu_probe_failed) {
1359         if (!kvm_enabled()) {
1360             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1361         } else {
1362             error_setg(errp, "Failed to retrieve host CPU features");
1363         }
1364         return;
1365     }
1366 
1367 #ifndef CONFIG_USER_ONLY
1368     /* The NVIC and M-profile CPU are two halves of a single piece of
1369      * hardware; trying to use one without the other is a command line
1370      * error and will result in segfaults if not caught here.
1371      */
1372     if (arm_feature(env, ARM_FEATURE_M)) {
1373         if (!env->nvic) {
1374             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1375             return;
1376         }
1377     } else {
1378         if (env->nvic) {
1379             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1380             return;
1381         }
1382     }
1383 
1384     {
1385         uint64_t scale;
1386 
1387         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1388             if (!cpu->gt_cntfrq_hz) {
1389                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1390                            cpu->gt_cntfrq_hz);
1391                 return;
1392             }
1393             scale = gt_cntfrq_period_ns(cpu);
1394         } else {
1395             scale = GTIMER_SCALE;
1396         }
1397 
1398         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1399                                                arm_gt_ptimer_cb, cpu);
1400         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1401                                                arm_gt_vtimer_cb, cpu);
1402         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1403                                               arm_gt_htimer_cb, cpu);
1404         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1405                                               arm_gt_stimer_cb, cpu);
1406         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1407                                                   arm_gt_hvtimer_cb, cpu);
1408     }
1409 #endif
1410 
1411     cpu_exec_realizefn(cs, &local_err);
1412     if (local_err != NULL) {
1413         error_propagate(errp, local_err);
1414         return;
1415     }
1416 
1417     arm_cpu_finalize_features(cpu, &local_err);
1418     if (local_err != NULL) {
1419         error_propagate(errp, local_err);
1420         return;
1421     }
1422 
1423     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1424         cpu->has_vfp != cpu->has_neon) {
1425         /*
1426          * This is an architectural requirement for AArch64; AArch32 is
1427          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1428          */
1429         error_setg(errp,
1430                    "AArch64 CPUs must have both VFP and Neon or neither");
1431         return;
1432     }
1433 
1434     if (!cpu->has_vfp) {
1435         uint64_t t;
1436         uint32_t u;
1437 
1438         t = cpu->isar.id_aa64isar1;
1439         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1440         cpu->isar.id_aa64isar1 = t;
1441 
1442         t = cpu->isar.id_aa64pfr0;
1443         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1444         cpu->isar.id_aa64pfr0 = t;
1445 
1446         u = cpu->isar.id_isar6;
1447         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1448         cpu->isar.id_isar6 = u;
1449 
1450         u = cpu->isar.mvfr0;
1451         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1452         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1453         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1454         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1455         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1456         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1457         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1458         cpu->isar.mvfr0 = u;
1459 
1460         u = cpu->isar.mvfr1;
1461         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1462         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1463         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1464         cpu->isar.mvfr1 = u;
1465 
1466         u = cpu->isar.mvfr2;
1467         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1468         cpu->isar.mvfr2 = u;
1469     }
1470 
1471     if (!cpu->has_neon) {
1472         uint64_t t;
1473         uint32_t u;
1474 
1475         unset_feature(env, ARM_FEATURE_NEON);
1476 
1477         t = cpu->isar.id_aa64isar0;
1478         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1479         cpu->isar.id_aa64isar0 = t;
1480 
1481         t = cpu->isar.id_aa64isar1;
1482         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1483         cpu->isar.id_aa64isar1 = t;
1484 
1485         t = cpu->isar.id_aa64pfr0;
1486         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1487         cpu->isar.id_aa64pfr0 = t;
1488 
1489         u = cpu->isar.id_isar5;
1490         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1491         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1492         cpu->isar.id_isar5 = u;
1493 
1494         u = cpu->isar.id_isar6;
1495         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1496         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1497         cpu->isar.id_isar6 = u;
1498 
1499         u = cpu->isar.mvfr1;
1500         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1501         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1502         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1503         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1504         cpu->isar.mvfr1 = u;
1505 
1506         u = cpu->isar.mvfr2;
1507         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1508         cpu->isar.mvfr2 = u;
1509     }
1510 
1511     if (!cpu->has_neon && !cpu->has_vfp) {
1512         uint64_t t;
1513         uint32_t u;
1514 
1515         t = cpu->isar.id_aa64isar0;
1516         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1517         cpu->isar.id_aa64isar0 = t;
1518 
1519         t = cpu->isar.id_aa64isar1;
1520         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1521         cpu->isar.id_aa64isar1 = t;
1522 
1523         u = cpu->isar.mvfr0;
1524         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1525         cpu->isar.mvfr0 = u;
1526 
1527         /* Despite the name, this field covers both VFP and Neon */
1528         u = cpu->isar.mvfr1;
1529         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1530         cpu->isar.mvfr1 = u;
1531     }
1532 
1533     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1534         uint32_t u;
1535 
1536         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1537 
1538         u = cpu->isar.id_isar1;
1539         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1540         cpu->isar.id_isar1 = u;
1541 
1542         u = cpu->isar.id_isar2;
1543         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1544         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1545         cpu->isar.id_isar2 = u;
1546 
1547         u = cpu->isar.id_isar3;
1548         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1549         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1550         cpu->isar.id_isar3 = u;
1551     }
1552 
1553     /* Some features automatically imply others: */
1554     if (arm_feature(env, ARM_FEATURE_V8)) {
1555         if (arm_feature(env, ARM_FEATURE_M)) {
1556             set_feature(env, ARM_FEATURE_V7);
1557         } else {
1558             set_feature(env, ARM_FEATURE_V7VE);
1559         }
1560     }
1561 
1562     /*
1563      * There exist AArch64 cpus without AArch32 support.  When KVM
1564      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1565      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1566      * As a general principle, we also do not make ID register
1567      * consistency checks anywhere unless using TCG, because only
1568      * for TCG would a consistency-check failure be a QEMU bug.
1569      */
1570     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1571         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1575         /* v7 Virtualization Extensions. In real hardware this implies
1576          * EL2 and also the presence of the Security Extensions.
1577          * For QEMU, for backwards-compatibility we implement some
1578          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1579          * include the various other features that V7VE implies.
1580          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1581          * Security Extensions is ARM_FEATURE_EL3.
1582          */
1583         assert(!tcg_enabled() || no_aa32 ||
1584                cpu_isar_feature(aa32_arm_div, cpu));
1585         set_feature(env, ARM_FEATURE_LPAE);
1586         set_feature(env, ARM_FEATURE_V7);
1587     }
1588     if (arm_feature(env, ARM_FEATURE_V7)) {
1589         set_feature(env, ARM_FEATURE_VAPA);
1590         set_feature(env, ARM_FEATURE_THUMB2);
1591         set_feature(env, ARM_FEATURE_MPIDR);
1592         if (!arm_feature(env, ARM_FEATURE_M)) {
1593             set_feature(env, ARM_FEATURE_V6K);
1594         } else {
1595             set_feature(env, ARM_FEATURE_V6);
1596         }
1597 
1598         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1599          * non-EL3 configs. This is needed by some legacy boards.
1600          */
1601         set_feature(env, ARM_FEATURE_VBAR);
1602     }
1603     if (arm_feature(env, ARM_FEATURE_V6K)) {
1604         set_feature(env, ARM_FEATURE_V6);
1605         set_feature(env, ARM_FEATURE_MVFR);
1606     }
1607     if (arm_feature(env, ARM_FEATURE_V6)) {
1608         set_feature(env, ARM_FEATURE_V5);
1609         if (!arm_feature(env, ARM_FEATURE_M)) {
1610             assert(!tcg_enabled() || no_aa32 ||
1611                    cpu_isar_feature(aa32_jazelle, cpu));
1612             set_feature(env, ARM_FEATURE_AUXCR);
1613         }
1614     }
1615     if (arm_feature(env, ARM_FEATURE_V5)) {
1616         set_feature(env, ARM_FEATURE_V4T);
1617     }
1618     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1619         set_feature(env, ARM_FEATURE_V7MP);
1620         set_feature(env, ARM_FEATURE_PXN);
1621     }
1622     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1623         set_feature(env, ARM_FEATURE_CBAR);
1624     }
1625     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1626         !arm_feature(env, ARM_FEATURE_M)) {
1627         set_feature(env, ARM_FEATURE_THUMB_DSP);
1628     }
1629 
1630     /*
1631      * We rely on no XScale CPU having VFP so we can use the same bits in the
1632      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1633      */
1634     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1635            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1636            !arm_feature(env, ARM_FEATURE_XSCALE));
1637 
1638     if (arm_feature(env, ARM_FEATURE_V7) &&
1639         !arm_feature(env, ARM_FEATURE_M) &&
1640         !arm_feature(env, ARM_FEATURE_PMSA)) {
1641         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1642          * can use 4K pages.
1643          */
1644         pagebits = 12;
1645     } else {
1646         /* For CPUs which might have tiny 1K pages, or which have an
1647          * MPU and might have small region sizes, stick with 1K pages.
1648          */
1649         pagebits = 10;
1650     }
1651     if (!set_preferred_target_page_bits(pagebits)) {
1652         /* This can only ever happen for hotplugging a CPU, or if
1653          * the board code incorrectly creates a CPU which it has
1654          * promised via minimum_page_size that it will not.
1655          */
1656         error_setg(errp, "This CPU requires a smaller page size than the "
1657                    "system is using");
1658         return;
1659     }
1660 
1661     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1662      * We don't support setting cluster ID ([16..23]) (known as Aff2
1663      * in later ARM ARM versions), or any of the higher affinity level fields,
1664      * so these bits always RAZ.
1665      */
1666     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1667         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1668                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1669     }
1670 
1671     if (cpu->reset_hivecs) {
1672             cpu->reset_sctlr |= (1 << 13);
1673     }
1674 
1675     if (cpu->cfgend) {
1676         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1677             cpu->reset_sctlr |= SCTLR_EE;
1678         } else {
1679             cpu->reset_sctlr |= SCTLR_B;
1680         }
1681     }
1682 
1683     if (!cpu->has_el3) {
1684         /* If the has_el3 CPU property is disabled then we need to disable the
1685          * feature.
1686          */
1687         unset_feature(env, ARM_FEATURE_EL3);
1688 
1689         /* Disable the security extension feature bits in the processor feature
1690          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1691          */
1692         cpu->id_pfr1 &= ~0xf0;
1693         cpu->isar.id_aa64pfr0 &= ~0xf000;
1694     }
1695 
1696     if (!cpu->has_el2) {
1697         unset_feature(env, ARM_FEATURE_EL2);
1698     }
1699 
1700     if (!cpu->has_pmu) {
1701         unset_feature(env, ARM_FEATURE_PMU);
1702     }
1703     if (arm_feature(env, ARM_FEATURE_PMU)) {
1704         pmu_init(cpu);
1705 
1706         if (!kvm_enabled()) {
1707             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1708             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1709         }
1710 
1711 #ifndef CONFIG_USER_ONLY
1712         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1713                 cpu);
1714 #endif
1715     } else {
1716         cpu->isar.id_aa64dfr0 =
1717             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1718         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1719         cpu->pmceid0 = 0;
1720         cpu->pmceid1 = 0;
1721     }
1722 
1723     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1724         /* Disable the hypervisor feature bits in the processor feature
1725          * registers if we don't have EL2. These are id_pfr1[15:12] and
1726          * id_aa64pfr0_el1[11:8].
1727          */
1728         cpu->isar.id_aa64pfr0 &= ~0xf00;
1729         cpu->id_pfr1 &= ~0xf000;
1730     }
1731 
1732     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1733      * to false or by setting pmsav7-dregion to 0.
1734      */
1735     if (!cpu->has_mpu) {
1736         cpu->pmsav7_dregion = 0;
1737     }
1738     if (cpu->pmsav7_dregion == 0) {
1739         cpu->has_mpu = false;
1740     }
1741 
1742     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1743         arm_feature(env, ARM_FEATURE_V7)) {
1744         uint32_t nr = cpu->pmsav7_dregion;
1745 
1746         if (nr > 0xff) {
1747             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1748             return;
1749         }
1750 
1751         if (nr) {
1752             if (arm_feature(env, ARM_FEATURE_V8)) {
1753                 /* PMSAv8 */
1754                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1755                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1756                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1757                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1758                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1759                 }
1760             } else {
1761                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1762                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1763                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1764             }
1765         }
1766     }
1767 
1768     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1769         uint32_t nr = cpu->sau_sregion;
1770 
1771         if (nr > 0xff) {
1772             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1773             return;
1774         }
1775 
1776         if (nr) {
1777             env->sau.rbar = g_new0(uint32_t, nr);
1778             env->sau.rlar = g_new0(uint32_t, nr);
1779         }
1780     }
1781 
1782     if (arm_feature(env, ARM_FEATURE_EL3)) {
1783         set_feature(env, ARM_FEATURE_VBAR);
1784     }
1785 
1786     register_cp_regs_for_features(cpu);
1787     arm_cpu_register_gdb_regs_for_features(cpu);
1788 
1789     init_cpreg_list(cpu);
1790 
1791 #ifndef CONFIG_USER_ONLY
1792     MachineState *ms = MACHINE(qdev_get_machine());
1793     unsigned int smp_cpus = ms->smp.cpus;
1794 
1795     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1796         cs->num_ases = 2;
1797 
1798         if (!cpu->secure_memory) {
1799             cpu->secure_memory = cs->memory;
1800         }
1801         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1802                                cpu->secure_memory);
1803     } else {
1804         cs->num_ases = 1;
1805     }
1806     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1807 
1808     /* No core_count specified, default to smp_cpus. */
1809     if (cpu->core_count == -1) {
1810         cpu->core_count = smp_cpus;
1811     }
1812 #endif
1813 
1814     qemu_init_vcpu(cs);
1815     cpu_reset(cs);
1816 
1817     acc->parent_realize(dev, errp);
1818 }
1819 
1820 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1821 {
1822     ObjectClass *oc;
1823     char *typename;
1824     char **cpuname;
1825     const char *cpunamestr;
1826 
1827     cpuname = g_strsplit(cpu_model, ",", 1);
1828     cpunamestr = cpuname[0];
1829 #ifdef CONFIG_USER_ONLY
1830     /* For backwards compatibility usermode emulation allows "-cpu any",
1831      * which has the same semantics as "-cpu max".
1832      */
1833     if (!strcmp(cpunamestr, "any")) {
1834         cpunamestr = "max";
1835     }
1836 #endif
1837     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1838     oc = object_class_by_name(typename);
1839     g_strfreev(cpuname);
1840     g_free(typename);
1841     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1842         object_class_is_abstract(oc)) {
1843         return NULL;
1844     }
1845     return oc;
1846 }
1847 
1848 /* CPU models. These are not needed for the AArch64 linux-user build. */
1849 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1850 
1851 static void arm926_initfn(Object *obj)
1852 {
1853     ARMCPU *cpu = ARM_CPU(obj);
1854 
1855     cpu->dtb_compatible = "arm,arm926";
1856     set_feature(&cpu->env, ARM_FEATURE_V5);
1857     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1858     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1859     cpu->midr = 0x41069265;
1860     cpu->reset_fpsid = 0x41011090;
1861     cpu->ctr = 0x1dd20d2;
1862     cpu->reset_sctlr = 0x00090078;
1863 
1864     /*
1865      * ARMv5 does not have the ID_ISAR registers, but we can still
1866      * set the field to indicate Jazelle support within QEMU.
1867      */
1868     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1869     /*
1870      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1871      * support even though ARMv5 doesn't have this register.
1872      */
1873     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1874     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1875     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1876 }
1877 
1878 static void arm946_initfn(Object *obj)
1879 {
1880     ARMCPU *cpu = ARM_CPU(obj);
1881 
1882     cpu->dtb_compatible = "arm,arm946";
1883     set_feature(&cpu->env, ARM_FEATURE_V5);
1884     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1885     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1886     cpu->midr = 0x41059461;
1887     cpu->ctr = 0x0f004006;
1888     cpu->reset_sctlr = 0x00000078;
1889 }
1890 
1891 static void arm1026_initfn(Object *obj)
1892 {
1893     ARMCPU *cpu = ARM_CPU(obj);
1894 
1895     cpu->dtb_compatible = "arm,arm1026";
1896     set_feature(&cpu->env, ARM_FEATURE_V5);
1897     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1898     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1899     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1900     cpu->midr = 0x4106a262;
1901     cpu->reset_fpsid = 0x410110a0;
1902     cpu->ctr = 0x1dd20d2;
1903     cpu->reset_sctlr = 0x00090078;
1904     cpu->reset_auxcr = 1;
1905 
1906     /*
1907      * ARMv5 does not have the ID_ISAR registers, but we can still
1908      * set the field to indicate Jazelle support within QEMU.
1909      */
1910     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1911     /*
1912      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1913      * support even though ARMv5 doesn't have this register.
1914      */
1915     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1916     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1917     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1918 
1919     {
1920         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1921         ARMCPRegInfo ifar = {
1922             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1923             .access = PL1_RW,
1924             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1925             .resetvalue = 0
1926         };
1927         define_one_arm_cp_reg(cpu, &ifar);
1928     }
1929 }
1930 
1931 static void arm1136_r2_initfn(Object *obj)
1932 {
1933     ARMCPU *cpu = ARM_CPU(obj);
1934     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1935      * older core than plain "arm1136". In particular this does not
1936      * have the v6K features.
1937      * These ID register values are correct for 1136 but may be wrong
1938      * for 1136_r2 (in particular r0p2 does not actually implement most
1939      * of the ID registers).
1940      */
1941 
1942     cpu->dtb_compatible = "arm,arm1136";
1943     set_feature(&cpu->env, ARM_FEATURE_V6);
1944     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1945     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1946     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1947     cpu->midr = 0x4107b362;
1948     cpu->reset_fpsid = 0x410120b4;
1949     cpu->isar.mvfr0 = 0x11111111;
1950     cpu->isar.mvfr1 = 0x00000000;
1951     cpu->ctr = 0x1dd20d2;
1952     cpu->reset_sctlr = 0x00050078;
1953     cpu->id_pfr0 = 0x111;
1954     cpu->id_pfr1 = 0x1;
1955     cpu->isar.id_dfr0 = 0x2;
1956     cpu->id_afr0 = 0x3;
1957     cpu->isar.id_mmfr0 = 0x01130003;
1958     cpu->isar.id_mmfr1 = 0x10030302;
1959     cpu->isar.id_mmfr2 = 0x01222110;
1960     cpu->isar.id_isar0 = 0x00140011;
1961     cpu->isar.id_isar1 = 0x12002111;
1962     cpu->isar.id_isar2 = 0x11231111;
1963     cpu->isar.id_isar3 = 0x01102131;
1964     cpu->isar.id_isar4 = 0x141;
1965     cpu->reset_auxcr = 7;
1966 }
1967 
1968 static void arm1136_initfn(Object *obj)
1969 {
1970     ARMCPU *cpu = ARM_CPU(obj);
1971 
1972     cpu->dtb_compatible = "arm,arm1136";
1973     set_feature(&cpu->env, ARM_FEATURE_V6K);
1974     set_feature(&cpu->env, ARM_FEATURE_V6);
1975     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1976     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1977     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1978     cpu->midr = 0x4117b363;
1979     cpu->reset_fpsid = 0x410120b4;
1980     cpu->isar.mvfr0 = 0x11111111;
1981     cpu->isar.mvfr1 = 0x00000000;
1982     cpu->ctr = 0x1dd20d2;
1983     cpu->reset_sctlr = 0x00050078;
1984     cpu->id_pfr0 = 0x111;
1985     cpu->id_pfr1 = 0x1;
1986     cpu->isar.id_dfr0 = 0x2;
1987     cpu->id_afr0 = 0x3;
1988     cpu->isar.id_mmfr0 = 0x01130003;
1989     cpu->isar.id_mmfr1 = 0x10030302;
1990     cpu->isar.id_mmfr2 = 0x01222110;
1991     cpu->isar.id_isar0 = 0x00140011;
1992     cpu->isar.id_isar1 = 0x12002111;
1993     cpu->isar.id_isar2 = 0x11231111;
1994     cpu->isar.id_isar3 = 0x01102131;
1995     cpu->isar.id_isar4 = 0x141;
1996     cpu->reset_auxcr = 7;
1997 }
1998 
1999 static void arm1176_initfn(Object *obj)
2000 {
2001     ARMCPU *cpu = ARM_CPU(obj);
2002 
2003     cpu->dtb_compatible = "arm,arm1176";
2004     set_feature(&cpu->env, ARM_FEATURE_V6K);
2005     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2006     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2007     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
2008     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
2009     set_feature(&cpu->env, ARM_FEATURE_EL3);
2010     cpu->midr = 0x410fb767;
2011     cpu->reset_fpsid = 0x410120b5;
2012     cpu->isar.mvfr0 = 0x11111111;
2013     cpu->isar.mvfr1 = 0x00000000;
2014     cpu->ctr = 0x1dd20d2;
2015     cpu->reset_sctlr = 0x00050078;
2016     cpu->id_pfr0 = 0x111;
2017     cpu->id_pfr1 = 0x11;
2018     cpu->isar.id_dfr0 = 0x33;
2019     cpu->id_afr0 = 0;
2020     cpu->isar.id_mmfr0 = 0x01130003;
2021     cpu->isar.id_mmfr1 = 0x10030302;
2022     cpu->isar.id_mmfr2 = 0x01222100;
2023     cpu->isar.id_isar0 = 0x0140011;
2024     cpu->isar.id_isar1 = 0x12002111;
2025     cpu->isar.id_isar2 = 0x11231121;
2026     cpu->isar.id_isar3 = 0x01102131;
2027     cpu->isar.id_isar4 = 0x01141;
2028     cpu->reset_auxcr = 7;
2029 }
2030 
2031 static void arm11mpcore_initfn(Object *obj)
2032 {
2033     ARMCPU *cpu = ARM_CPU(obj);
2034 
2035     cpu->dtb_compatible = "arm,arm11mpcore";
2036     set_feature(&cpu->env, ARM_FEATURE_V6K);
2037     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2038     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2039     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2040     cpu->midr = 0x410fb022;
2041     cpu->reset_fpsid = 0x410120b4;
2042     cpu->isar.mvfr0 = 0x11111111;
2043     cpu->isar.mvfr1 = 0x00000000;
2044     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2045     cpu->id_pfr0 = 0x111;
2046     cpu->id_pfr1 = 0x1;
2047     cpu->isar.id_dfr0 = 0;
2048     cpu->id_afr0 = 0x2;
2049     cpu->isar.id_mmfr0 = 0x01100103;
2050     cpu->isar.id_mmfr1 = 0x10020302;
2051     cpu->isar.id_mmfr2 = 0x01222000;
2052     cpu->isar.id_isar0 = 0x00100011;
2053     cpu->isar.id_isar1 = 0x12002111;
2054     cpu->isar.id_isar2 = 0x11221011;
2055     cpu->isar.id_isar3 = 0x01102131;
2056     cpu->isar.id_isar4 = 0x141;
2057     cpu->reset_auxcr = 1;
2058 }
2059 
2060 static void cortex_m0_initfn(Object *obj)
2061 {
2062     ARMCPU *cpu = ARM_CPU(obj);
2063     set_feature(&cpu->env, ARM_FEATURE_V6);
2064     set_feature(&cpu->env, ARM_FEATURE_M);
2065 
2066     cpu->midr = 0x410cc200;
2067 }
2068 
2069 static void cortex_m3_initfn(Object *obj)
2070 {
2071     ARMCPU *cpu = ARM_CPU(obj);
2072     set_feature(&cpu->env, ARM_FEATURE_V7);
2073     set_feature(&cpu->env, ARM_FEATURE_M);
2074     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2075     cpu->midr = 0x410fc231;
2076     cpu->pmsav7_dregion = 8;
2077     cpu->id_pfr0 = 0x00000030;
2078     cpu->id_pfr1 = 0x00000200;
2079     cpu->isar.id_dfr0 = 0x00100000;
2080     cpu->id_afr0 = 0x00000000;
2081     cpu->isar.id_mmfr0 = 0x00000030;
2082     cpu->isar.id_mmfr1 = 0x00000000;
2083     cpu->isar.id_mmfr2 = 0x00000000;
2084     cpu->isar.id_mmfr3 = 0x00000000;
2085     cpu->isar.id_isar0 = 0x01141110;
2086     cpu->isar.id_isar1 = 0x02111000;
2087     cpu->isar.id_isar2 = 0x21112231;
2088     cpu->isar.id_isar3 = 0x01111110;
2089     cpu->isar.id_isar4 = 0x01310102;
2090     cpu->isar.id_isar5 = 0x00000000;
2091     cpu->isar.id_isar6 = 0x00000000;
2092 }
2093 
2094 static void cortex_m4_initfn(Object *obj)
2095 {
2096     ARMCPU *cpu = ARM_CPU(obj);
2097 
2098     set_feature(&cpu->env, ARM_FEATURE_V7);
2099     set_feature(&cpu->env, ARM_FEATURE_M);
2100     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2101     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2102     cpu->midr = 0x410fc240; /* r0p0 */
2103     cpu->pmsav7_dregion = 8;
2104     cpu->isar.mvfr0 = 0x10110021;
2105     cpu->isar.mvfr1 = 0x11000011;
2106     cpu->isar.mvfr2 = 0x00000000;
2107     cpu->id_pfr0 = 0x00000030;
2108     cpu->id_pfr1 = 0x00000200;
2109     cpu->isar.id_dfr0 = 0x00100000;
2110     cpu->id_afr0 = 0x00000000;
2111     cpu->isar.id_mmfr0 = 0x00000030;
2112     cpu->isar.id_mmfr1 = 0x00000000;
2113     cpu->isar.id_mmfr2 = 0x00000000;
2114     cpu->isar.id_mmfr3 = 0x00000000;
2115     cpu->isar.id_isar0 = 0x01141110;
2116     cpu->isar.id_isar1 = 0x02111000;
2117     cpu->isar.id_isar2 = 0x21112231;
2118     cpu->isar.id_isar3 = 0x01111110;
2119     cpu->isar.id_isar4 = 0x01310102;
2120     cpu->isar.id_isar5 = 0x00000000;
2121     cpu->isar.id_isar6 = 0x00000000;
2122 }
2123 
2124 static void cortex_m7_initfn(Object *obj)
2125 {
2126     ARMCPU *cpu = ARM_CPU(obj);
2127 
2128     set_feature(&cpu->env, ARM_FEATURE_V7);
2129     set_feature(&cpu->env, ARM_FEATURE_M);
2130     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2131     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2132     cpu->midr = 0x411fc272; /* r1p2 */
2133     cpu->pmsav7_dregion = 8;
2134     cpu->isar.mvfr0 = 0x10110221;
2135     cpu->isar.mvfr1 = 0x12000011;
2136     cpu->isar.mvfr2 = 0x00000040;
2137     cpu->id_pfr0 = 0x00000030;
2138     cpu->id_pfr1 = 0x00000200;
2139     cpu->isar.id_dfr0 = 0x00100000;
2140     cpu->id_afr0 = 0x00000000;
2141     cpu->isar.id_mmfr0 = 0x00100030;
2142     cpu->isar.id_mmfr1 = 0x00000000;
2143     cpu->isar.id_mmfr2 = 0x01000000;
2144     cpu->isar.id_mmfr3 = 0x00000000;
2145     cpu->isar.id_isar0 = 0x01101110;
2146     cpu->isar.id_isar1 = 0x02112000;
2147     cpu->isar.id_isar2 = 0x20232231;
2148     cpu->isar.id_isar3 = 0x01111131;
2149     cpu->isar.id_isar4 = 0x01310132;
2150     cpu->isar.id_isar5 = 0x00000000;
2151     cpu->isar.id_isar6 = 0x00000000;
2152 }
2153 
2154 static void cortex_m33_initfn(Object *obj)
2155 {
2156     ARMCPU *cpu = ARM_CPU(obj);
2157 
2158     set_feature(&cpu->env, ARM_FEATURE_V8);
2159     set_feature(&cpu->env, ARM_FEATURE_M);
2160     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2161     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2162     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2163     cpu->midr = 0x410fd213; /* r0p3 */
2164     cpu->pmsav7_dregion = 16;
2165     cpu->sau_sregion = 8;
2166     cpu->isar.mvfr0 = 0x10110021;
2167     cpu->isar.mvfr1 = 0x11000011;
2168     cpu->isar.mvfr2 = 0x00000040;
2169     cpu->id_pfr0 = 0x00000030;
2170     cpu->id_pfr1 = 0x00000210;
2171     cpu->isar.id_dfr0 = 0x00200000;
2172     cpu->id_afr0 = 0x00000000;
2173     cpu->isar.id_mmfr0 = 0x00101F40;
2174     cpu->isar.id_mmfr1 = 0x00000000;
2175     cpu->isar.id_mmfr2 = 0x01000000;
2176     cpu->isar.id_mmfr3 = 0x00000000;
2177     cpu->isar.id_isar0 = 0x01101110;
2178     cpu->isar.id_isar1 = 0x02212000;
2179     cpu->isar.id_isar2 = 0x20232232;
2180     cpu->isar.id_isar3 = 0x01111131;
2181     cpu->isar.id_isar4 = 0x01310132;
2182     cpu->isar.id_isar5 = 0x00000000;
2183     cpu->isar.id_isar6 = 0x00000000;
2184     cpu->clidr = 0x00000000;
2185     cpu->ctr = 0x8000c000;
2186 }
2187 
2188 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2189 {
2190     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2191     CPUClass *cc = CPU_CLASS(oc);
2192 
2193     acc->info = data;
2194 #ifndef CONFIG_USER_ONLY
2195     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2196 #endif
2197 
2198     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2199 }
2200 
2201 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2202     /* Dummy the TCM region regs for the moment */
2203     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2204       .access = PL1_RW, .type = ARM_CP_CONST },
2205     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2206       .access = PL1_RW, .type = ARM_CP_CONST },
2207     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2208       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2209     REGINFO_SENTINEL
2210 };
2211 
2212 static void cortex_r5_initfn(Object *obj)
2213 {
2214     ARMCPU *cpu = ARM_CPU(obj);
2215 
2216     set_feature(&cpu->env, ARM_FEATURE_V7);
2217     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2218     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2219     set_feature(&cpu->env, ARM_FEATURE_PMU);
2220     cpu->midr = 0x411fc153; /* r1p3 */
2221     cpu->id_pfr0 = 0x0131;
2222     cpu->id_pfr1 = 0x001;
2223     cpu->isar.id_dfr0 = 0x010400;
2224     cpu->id_afr0 = 0x0;
2225     cpu->isar.id_mmfr0 = 0x0210030;
2226     cpu->isar.id_mmfr1 = 0x00000000;
2227     cpu->isar.id_mmfr2 = 0x01200000;
2228     cpu->isar.id_mmfr3 = 0x0211;
2229     cpu->isar.id_isar0 = 0x02101111;
2230     cpu->isar.id_isar1 = 0x13112111;
2231     cpu->isar.id_isar2 = 0x21232141;
2232     cpu->isar.id_isar3 = 0x01112131;
2233     cpu->isar.id_isar4 = 0x0010142;
2234     cpu->isar.id_isar5 = 0x0;
2235     cpu->isar.id_isar6 = 0x0;
2236     cpu->mp_is_up = true;
2237     cpu->pmsav7_dregion = 16;
2238     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2239 }
2240 
2241 static void cortex_r5f_initfn(Object *obj)
2242 {
2243     ARMCPU *cpu = ARM_CPU(obj);
2244 
2245     cortex_r5_initfn(obj);
2246     cpu->isar.mvfr0 = 0x10110221;
2247     cpu->isar.mvfr1 = 0x00000011;
2248 }
2249 
2250 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2251     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2252       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2253     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2254       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2255     REGINFO_SENTINEL
2256 };
2257 
2258 static void cortex_a8_initfn(Object *obj)
2259 {
2260     ARMCPU *cpu = ARM_CPU(obj);
2261 
2262     cpu->dtb_compatible = "arm,cortex-a8";
2263     set_feature(&cpu->env, ARM_FEATURE_V7);
2264     set_feature(&cpu->env, ARM_FEATURE_NEON);
2265     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2266     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2267     set_feature(&cpu->env, ARM_FEATURE_EL3);
2268     cpu->midr = 0x410fc080;
2269     cpu->reset_fpsid = 0x410330c0;
2270     cpu->isar.mvfr0 = 0x11110222;
2271     cpu->isar.mvfr1 = 0x00011111;
2272     cpu->ctr = 0x82048004;
2273     cpu->reset_sctlr = 0x00c50078;
2274     cpu->id_pfr0 = 0x1031;
2275     cpu->id_pfr1 = 0x11;
2276     cpu->isar.id_dfr0 = 0x400;
2277     cpu->id_afr0 = 0;
2278     cpu->isar.id_mmfr0 = 0x31100003;
2279     cpu->isar.id_mmfr1 = 0x20000000;
2280     cpu->isar.id_mmfr2 = 0x01202000;
2281     cpu->isar.id_mmfr3 = 0x11;
2282     cpu->isar.id_isar0 = 0x00101111;
2283     cpu->isar.id_isar1 = 0x12112111;
2284     cpu->isar.id_isar2 = 0x21232031;
2285     cpu->isar.id_isar3 = 0x11112131;
2286     cpu->isar.id_isar4 = 0x00111142;
2287     cpu->isar.dbgdidr = 0x15141000;
2288     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2289     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2290     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2291     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2292     cpu->reset_auxcr = 2;
2293     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2294 }
2295 
2296 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2297     /* power_control should be set to maximum latency. Again,
2298      * default to 0 and set by private hook
2299      */
2300     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2301       .access = PL1_RW, .resetvalue = 0,
2302       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2303     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2304       .access = PL1_RW, .resetvalue = 0,
2305       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2306     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2307       .access = PL1_RW, .resetvalue = 0,
2308       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2309     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2310       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2311     /* TLB lockdown control */
2312     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2313       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2314     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2315       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2316     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2317       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2318     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2319       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2320     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2321       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2322     REGINFO_SENTINEL
2323 };
2324 
2325 static void cortex_a9_initfn(Object *obj)
2326 {
2327     ARMCPU *cpu = ARM_CPU(obj);
2328 
2329     cpu->dtb_compatible = "arm,cortex-a9";
2330     set_feature(&cpu->env, ARM_FEATURE_V7);
2331     set_feature(&cpu->env, ARM_FEATURE_NEON);
2332     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2333     set_feature(&cpu->env, ARM_FEATURE_EL3);
2334     /* Note that A9 supports the MP extensions even for
2335      * A9UP and single-core A9MP (which are both different
2336      * and valid configurations; we don't model A9UP).
2337      */
2338     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2339     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2340     cpu->midr = 0x410fc090;
2341     cpu->reset_fpsid = 0x41033090;
2342     cpu->isar.mvfr0 = 0x11110222;
2343     cpu->isar.mvfr1 = 0x01111111;
2344     cpu->ctr = 0x80038003;
2345     cpu->reset_sctlr = 0x00c50078;
2346     cpu->id_pfr0 = 0x1031;
2347     cpu->id_pfr1 = 0x11;
2348     cpu->isar.id_dfr0 = 0x000;
2349     cpu->id_afr0 = 0;
2350     cpu->isar.id_mmfr0 = 0x00100103;
2351     cpu->isar.id_mmfr1 = 0x20000000;
2352     cpu->isar.id_mmfr2 = 0x01230000;
2353     cpu->isar.id_mmfr3 = 0x00002111;
2354     cpu->isar.id_isar0 = 0x00101111;
2355     cpu->isar.id_isar1 = 0x13112111;
2356     cpu->isar.id_isar2 = 0x21232041;
2357     cpu->isar.id_isar3 = 0x11112131;
2358     cpu->isar.id_isar4 = 0x00111142;
2359     cpu->isar.dbgdidr = 0x35141000;
2360     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2361     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2362     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2363     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2364 }
2365 
2366 #ifndef CONFIG_USER_ONLY
2367 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2368 {
2369     MachineState *ms = MACHINE(qdev_get_machine());
2370 
2371     /* Linux wants the number of processors from here.
2372      * Might as well set the interrupt-controller bit too.
2373      */
2374     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2375 }
2376 #endif
2377 
2378 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2379 #ifndef CONFIG_USER_ONLY
2380     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2381       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2382       .writefn = arm_cp_write_ignore, },
2383 #endif
2384     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2385       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2386     REGINFO_SENTINEL
2387 };
2388 
2389 static void cortex_a7_initfn(Object *obj)
2390 {
2391     ARMCPU *cpu = ARM_CPU(obj);
2392 
2393     cpu->dtb_compatible = "arm,cortex-a7";
2394     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2395     set_feature(&cpu->env, ARM_FEATURE_NEON);
2396     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2397     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2398     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2399     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2400     set_feature(&cpu->env, ARM_FEATURE_EL2);
2401     set_feature(&cpu->env, ARM_FEATURE_EL3);
2402     set_feature(&cpu->env, ARM_FEATURE_PMU);
2403     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2404     cpu->midr = 0x410fc075;
2405     cpu->reset_fpsid = 0x41023075;
2406     cpu->isar.mvfr0 = 0x10110222;
2407     cpu->isar.mvfr1 = 0x11111111;
2408     cpu->ctr = 0x84448003;
2409     cpu->reset_sctlr = 0x00c50078;
2410     cpu->id_pfr0 = 0x00001131;
2411     cpu->id_pfr1 = 0x00011011;
2412     cpu->isar.id_dfr0 = 0x02010555;
2413     cpu->id_afr0 = 0x00000000;
2414     cpu->isar.id_mmfr0 = 0x10101105;
2415     cpu->isar.id_mmfr1 = 0x40000000;
2416     cpu->isar.id_mmfr2 = 0x01240000;
2417     cpu->isar.id_mmfr3 = 0x02102211;
2418     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2419      * table 4-41 gives 0x02101110, which includes the arm div insns.
2420      */
2421     cpu->isar.id_isar0 = 0x02101110;
2422     cpu->isar.id_isar1 = 0x13112111;
2423     cpu->isar.id_isar2 = 0x21232041;
2424     cpu->isar.id_isar3 = 0x11112131;
2425     cpu->isar.id_isar4 = 0x10011142;
2426     cpu->isar.dbgdidr = 0x3515f005;
2427     cpu->clidr = 0x0a200023;
2428     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2429     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2430     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2431     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2432 }
2433 
2434 static void cortex_a15_initfn(Object *obj)
2435 {
2436     ARMCPU *cpu = ARM_CPU(obj);
2437 
2438     cpu->dtb_compatible = "arm,cortex-a15";
2439     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2440     set_feature(&cpu->env, ARM_FEATURE_NEON);
2441     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2442     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2443     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2444     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2445     set_feature(&cpu->env, ARM_FEATURE_EL2);
2446     set_feature(&cpu->env, ARM_FEATURE_EL3);
2447     set_feature(&cpu->env, ARM_FEATURE_PMU);
2448     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2449     cpu->midr = 0x412fc0f1;
2450     cpu->reset_fpsid = 0x410430f0;
2451     cpu->isar.mvfr0 = 0x10110222;
2452     cpu->isar.mvfr1 = 0x11111111;
2453     cpu->ctr = 0x8444c004;
2454     cpu->reset_sctlr = 0x00c50078;
2455     cpu->id_pfr0 = 0x00001131;
2456     cpu->id_pfr1 = 0x00011011;
2457     cpu->isar.id_dfr0 = 0x02010555;
2458     cpu->id_afr0 = 0x00000000;
2459     cpu->isar.id_mmfr0 = 0x10201105;
2460     cpu->isar.id_mmfr1 = 0x20000000;
2461     cpu->isar.id_mmfr2 = 0x01240000;
2462     cpu->isar.id_mmfr3 = 0x02102211;
2463     cpu->isar.id_isar0 = 0x02101110;
2464     cpu->isar.id_isar1 = 0x13112111;
2465     cpu->isar.id_isar2 = 0x21232041;
2466     cpu->isar.id_isar3 = 0x11112131;
2467     cpu->isar.id_isar4 = 0x10011142;
2468     cpu->isar.dbgdidr = 0x3515f021;
2469     cpu->clidr = 0x0a200023;
2470     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2471     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2472     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2473     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2474 }
2475 
2476 static void ti925t_initfn(Object *obj)
2477 {
2478     ARMCPU *cpu = ARM_CPU(obj);
2479     set_feature(&cpu->env, ARM_FEATURE_V4T);
2480     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2481     cpu->midr = ARM_CPUID_TI925T;
2482     cpu->ctr = 0x5109149;
2483     cpu->reset_sctlr = 0x00000070;
2484 }
2485 
2486 static void sa1100_initfn(Object *obj)
2487 {
2488     ARMCPU *cpu = ARM_CPU(obj);
2489 
2490     cpu->dtb_compatible = "intel,sa1100";
2491     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2492     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2493     cpu->midr = 0x4401A11B;
2494     cpu->reset_sctlr = 0x00000070;
2495 }
2496 
2497 static void sa1110_initfn(Object *obj)
2498 {
2499     ARMCPU *cpu = ARM_CPU(obj);
2500     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2501     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2502     cpu->midr = 0x6901B119;
2503     cpu->reset_sctlr = 0x00000070;
2504 }
2505 
2506 static void pxa250_initfn(Object *obj)
2507 {
2508     ARMCPU *cpu = ARM_CPU(obj);
2509 
2510     cpu->dtb_compatible = "marvell,xscale";
2511     set_feature(&cpu->env, ARM_FEATURE_V5);
2512     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2513     cpu->midr = 0x69052100;
2514     cpu->ctr = 0xd172172;
2515     cpu->reset_sctlr = 0x00000078;
2516 }
2517 
2518 static void pxa255_initfn(Object *obj)
2519 {
2520     ARMCPU *cpu = ARM_CPU(obj);
2521 
2522     cpu->dtb_compatible = "marvell,xscale";
2523     set_feature(&cpu->env, ARM_FEATURE_V5);
2524     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2525     cpu->midr = 0x69052d00;
2526     cpu->ctr = 0xd172172;
2527     cpu->reset_sctlr = 0x00000078;
2528 }
2529 
2530 static void pxa260_initfn(Object *obj)
2531 {
2532     ARMCPU *cpu = ARM_CPU(obj);
2533 
2534     cpu->dtb_compatible = "marvell,xscale";
2535     set_feature(&cpu->env, ARM_FEATURE_V5);
2536     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2537     cpu->midr = 0x69052903;
2538     cpu->ctr = 0xd172172;
2539     cpu->reset_sctlr = 0x00000078;
2540 }
2541 
2542 static void pxa261_initfn(Object *obj)
2543 {
2544     ARMCPU *cpu = ARM_CPU(obj);
2545 
2546     cpu->dtb_compatible = "marvell,xscale";
2547     set_feature(&cpu->env, ARM_FEATURE_V5);
2548     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2549     cpu->midr = 0x69052d05;
2550     cpu->ctr = 0xd172172;
2551     cpu->reset_sctlr = 0x00000078;
2552 }
2553 
2554 static void pxa262_initfn(Object *obj)
2555 {
2556     ARMCPU *cpu = ARM_CPU(obj);
2557 
2558     cpu->dtb_compatible = "marvell,xscale";
2559     set_feature(&cpu->env, ARM_FEATURE_V5);
2560     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2561     cpu->midr = 0x69052d06;
2562     cpu->ctr = 0xd172172;
2563     cpu->reset_sctlr = 0x00000078;
2564 }
2565 
2566 static void pxa270a0_initfn(Object *obj)
2567 {
2568     ARMCPU *cpu = ARM_CPU(obj);
2569 
2570     cpu->dtb_compatible = "marvell,xscale";
2571     set_feature(&cpu->env, ARM_FEATURE_V5);
2572     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2573     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2574     cpu->midr = 0x69054110;
2575     cpu->ctr = 0xd172172;
2576     cpu->reset_sctlr = 0x00000078;
2577 }
2578 
2579 static void pxa270a1_initfn(Object *obj)
2580 {
2581     ARMCPU *cpu = ARM_CPU(obj);
2582 
2583     cpu->dtb_compatible = "marvell,xscale";
2584     set_feature(&cpu->env, ARM_FEATURE_V5);
2585     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2586     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2587     cpu->midr = 0x69054111;
2588     cpu->ctr = 0xd172172;
2589     cpu->reset_sctlr = 0x00000078;
2590 }
2591 
2592 static void pxa270b0_initfn(Object *obj)
2593 {
2594     ARMCPU *cpu = ARM_CPU(obj);
2595 
2596     cpu->dtb_compatible = "marvell,xscale";
2597     set_feature(&cpu->env, ARM_FEATURE_V5);
2598     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2599     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2600     cpu->midr = 0x69054112;
2601     cpu->ctr = 0xd172172;
2602     cpu->reset_sctlr = 0x00000078;
2603 }
2604 
2605 static void pxa270b1_initfn(Object *obj)
2606 {
2607     ARMCPU *cpu = ARM_CPU(obj);
2608 
2609     cpu->dtb_compatible = "marvell,xscale";
2610     set_feature(&cpu->env, ARM_FEATURE_V5);
2611     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2612     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2613     cpu->midr = 0x69054113;
2614     cpu->ctr = 0xd172172;
2615     cpu->reset_sctlr = 0x00000078;
2616 }
2617 
2618 static void pxa270c0_initfn(Object *obj)
2619 {
2620     ARMCPU *cpu = ARM_CPU(obj);
2621 
2622     cpu->dtb_compatible = "marvell,xscale";
2623     set_feature(&cpu->env, ARM_FEATURE_V5);
2624     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2625     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2626     cpu->midr = 0x69054114;
2627     cpu->ctr = 0xd172172;
2628     cpu->reset_sctlr = 0x00000078;
2629 }
2630 
2631 static void pxa270c5_initfn(Object *obj)
2632 {
2633     ARMCPU *cpu = ARM_CPU(obj);
2634 
2635     cpu->dtb_compatible = "marvell,xscale";
2636     set_feature(&cpu->env, ARM_FEATURE_V5);
2637     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2638     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2639     cpu->midr = 0x69054117;
2640     cpu->ctr = 0xd172172;
2641     cpu->reset_sctlr = 0x00000078;
2642 }
2643 
2644 #ifndef TARGET_AARCH64
2645 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2646  * otherwise, a CPU with as many features enabled as our emulation supports.
2647  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2648  * this only needs to handle 32 bits.
2649  */
2650 static void arm_max_initfn(Object *obj)
2651 {
2652     ARMCPU *cpu = ARM_CPU(obj);
2653 
2654     if (kvm_enabled()) {
2655         kvm_arm_set_cpu_features_from_host(cpu);
2656         kvm_arm_add_vcpu_properties(obj);
2657     } else {
2658         cortex_a15_initfn(obj);
2659 
2660         /* old-style VFP short-vector support */
2661         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2662 
2663 #ifdef CONFIG_USER_ONLY
2664         /* We don't set these in system emulation mode for the moment,
2665          * since we don't correctly set (all of) the ID registers to
2666          * advertise them.
2667          */
2668         set_feature(&cpu->env, ARM_FEATURE_V8);
2669         {
2670             uint32_t t;
2671 
2672             t = cpu->isar.id_isar5;
2673             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2674             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2675             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2676             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2677             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2678             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2679             cpu->isar.id_isar5 = t;
2680 
2681             t = cpu->isar.id_isar6;
2682             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2683             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2684             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2685             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2686             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2687             cpu->isar.id_isar6 = t;
2688 
2689             t = cpu->isar.mvfr1;
2690             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2691             cpu->isar.mvfr1 = t;
2692 
2693             t = cpu->isar.mvfr2;
2694             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2695             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2696             cpu->isar.mvfr2 = t;
2697 
2698             t = cpu->isar.id_mmfr3;
2699             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2700             cpu->isar.id_mmfr3 = t;
2701 
2702             t = cpu->isar.id_mmfr4;
2703             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2704             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2705             cpu->isar.id_mmfr4 = t;
2706         }
2707 #endif
2708     }
2709 }
2710 #endif
2711 
2712 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2713 
2714 struct ARMCPUInfo {
2715     const char *name;
2716     void (*initfn)(Object *obj);
2717     void (*class_init)(ObjectClass *oc, void *data);
2718 };
2719 
2720 static const ARMCPUInfo arm_cpus[] = {
2721 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2722     { .name = "arm926",      .initfn = arm926_initfn },
2723     { .name = "arm946",      .initfn = arm946_initfn },
2724     { .name = "arm1026",     .initfn = arm1026_initfn },
2725     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2726      * older core than plain "arm1136". In particular this does not
2727      * have the v6K features.
2728      */
2729     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2730     { .name = "arm1136",     .initfn = arm1136_initfn },
2731     { .name = "arm1176",     .initfn = arm1176_initfn },
2732     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2733     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2734                              .class_init = arm_v7m_class_init },
2735     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2736                              .class_init = arm_v7m_class_init },
2737     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2738                              .class_init = arm_v7m_class_init },
2739     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2740                              .class_init = arm_v7m_class_init },
2741     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2742                              .class_init = arm_v7m_class_init },
2743     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2744     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2745     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2746     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2747     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2748     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2749     { .name = "ti925t",      .initfn = ti925t_initfn },
2750     { .name = "sa1100",      .initfn = sa1100_initfn },
2751     { .name = "sa1110",      .initfn = sa1110_initfn },
2752     { .name = "pxa250",      .initfn = pxa250_initfn },
2753     { .name = "pxa255",      .initfn = pxa255_initfn },
2754     { .name = "pxa260",      .initfn = pxa260_initfn },
2755     { .name = "pxa261",      .initfn = pxa261_initfn },
2756     { .name = "pxa262",      .initfn = pxa262_initfn },
2757     /* "pxa270" is an alias for "pxa270-a0" */
2758     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2759     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2760     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2761     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2762     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2763     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2764     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2765 #ifndef TARGET_AARCH64
2766     { .name = "max",         .initfn = arm_max_initfn },
2767 #endif
2768 #ifdef CONFIG_USER_ONLY
2769     { .name = "any",         .initfn = arm_max_initfn },
2770 #endif
2771 #endif
2772     { .name = NULL }
2773 };
2774 
2775 static Property arm_cpu_properties[] = {
2776     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2777     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2778     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2779     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2780                         mp_affinity, ARM64_AFFINITY_INVALID),
2781     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2782     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2783     DEFINE_PROP_END_OF_LIST()
2784 };
2785 
2786 static gchar *arm_gdb_arch_name(CPUState *cs)
2787 {
2788     ARMCPU *cpu = ARM_CPU(cs);
2789     CPUARMState *env = &cpu->env;
2790 
2791     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2792         return g_strdup("iwmmxt");
2793     }
2794     return g_strdup("arm");
2795 }
2796 
2797 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2798 {
2799     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2800     CPUClass *cc = CPU_CLASS(acc);
2801     DeviceClass *dc = DEVICE_CLASS(oc);
2802 
2803     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2804                                     &acc->parent_realize);
2805 
2806     device_class_set_props(dc, arm_cpu_properties);
2807     cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2808 
2809     cc->class_by_name = arm_cpu_class_by_name;
2810     cc->has_work = arm_cpu_has_work;
2811     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2812     cc->dump_state = arm_cpu_dump_state;
2813     cc->set_pc = arm_cpu_set_pc;
2814     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2815     cc->gdb_read_register = arm_cpu_gdb_read_register;
2816     cc->gdb_write_register = arm_cpu_gdb_write_register;
2817 #ifndef CONFIG_USER_ONLY
2818     cc->do_interrupt = arm_cpu_do_interrupt;
2819     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2820     cc->asidx_from_attrs = arm_asidx_from_attrs;
2821     cc->vmsd = &vmstate_arm_cpu;
2822     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2823     cc->write_elf64_note = arm_cpu_write_elf64_note;
2824     cc->write_elf32_note = arm_cpu_write_elf32_note;
2825 #endif
2826     cc->gdb_num_core_regs = 26;
2827     cc->gdb_core_xml_file = "arm-core.xml";
2828     cc->gdb_arch_name = arm_gdb_arch_name;
2829     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2830     cc->gdb_stop_before_watchpoint = true;
2831     cc->disas_set_info = arm_disas_set_info;
2832 #ifdef CONFIG_TCG
2833     cc->tcg_initialize = arm_translate_init;
2834     cc->tlb_fill = arm_cpu_tlb_fill;
2835     cc->debug_excp_handler = arm_debug_excp_handler;
2836     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2837 #if !defined(CONFIG_USER_ONLY)
2838     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2839     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2840     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2841 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2842 #endif
2843 }
2844 
2845 #ifdef CONFIG_KVM
2846 static void arm_host_initfn(Object *obj)
2847 {
2848     ARMCPU *cpu = ARM_CPU(obj);
2849 
2850     kvm_arm_set_cpu_features_from_host(cpu);
2851     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2852         aarch64_add_sve_properties(obj);
2853     }
2854     kvm_arm_add_vcpu_properties(obj);
2855     arm_cpu_post_init(obj);
2856 }
2857 
2858 static const TypeInfo host_arm_cpu_type_info = {
2859     .name = TYPE_ARM_HOST_CPU,
2860 #ifdef TARGET_AARCH64
2861     .parent = TYPE_AARCH64_CPU,
2862 #else
2863     .parent = TYPE_ARM_CPU,
2864 #endif
2865     .instance_init = arm_host_initfn,
2866 };
2867 
2868 #endif
2869 
2870 static void arm_cpu_instance_init(Object *obj)
2871 {
2872     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2873 
2874     acc->info->initfn(obj);
2875     arm_cpu_post_init(obj);
2876 }
2877 
2878 static void cpu_register_class_init(ObjectClass *oc, void *data)
2879 {
2880     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2881 
2882     acc->info = data;
2883 }
2884 
2885 static void cpu_register(const ARMCPUInfo *info)
2886 {
2887     TypeInfo type_info = {
2888         .parent = TYPE_ARM_CPU,
2889         .instance_size = sizeof(ARMCPU),
2890         .instance_init = arm_cpu_instance_init,
2891         .class_size = sizeof(ARMCPUClass),
2892         .class_init = info->class_init ?: cpu_register_class_init,
2893         .class_data = (void *)info,
2894     };
2895 
2896     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2897     type_register(&type_info);
2898     g_free((void *)type_info.name);
2899 }
2900 
2901 static const TypeInfo arm_cpu_type_info = {
2902     .name = TYPE_ARM_CPU,
2903     .parent = TYPE_CPU,
2904     .instance_size = sizeof(ARMCPU),
2905     .instance_init = arm_cpu_initfn,
2906     .instance_finalize = arm_cpu_finalizefn,
2907     .abstract = true,
2908     .class_size = sizeof(ARMCPUClass),
2909     .class_init = arm_cpu_class_init,
2910 };
2911 
2912 static const TypeInfo idau_interface_type_info = {
2913     .name = TYPE_IDAU_INTERFACE,
2914     .parent = TYPE_INTERFACE,
2915     .class_size = sizeof(IDAUInterfaceClass),
2916 };
2917 
2918 static void arm_cpu_register_types(void)
2919 {
2920     const ARMCPUInfo *info = arm_cpus;
2921 
2922     type_register_static(&arm_cpu_type_info);
2923     type_register_static(&idau_interface_type_info);
2924 
2925     while (info->name) {
2926         cpu_register(info);
2927         info++;
2928     }
2929 
2930 #ifdef CONFIG_KVM
2931     type_register_static(&host_arm_cpu_type_info);
2932 #endif
2933 }
2934 
2935 type_init(arm_cpu_register_types)
2936