xref: /openbmc/qemu/target/arm/cpu.c (revision 8535dd70)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 #ifdef CONFIG_TCG
58 static void arm_cpu_synchronize_from_tb(CPUState *cs,
59                                         const TranslationBlock *tb)
60 {
61     ARMCPU *cpu = ARM_CPU(cs);
62     CPUARMState *env = &cpu->env;
63 
64     /*
65      * It's OK to look at env for the current mode here, because it's
66      * never possible for an AArch64 TB to chain to an AArch32 TB.
67      */
68     if (is_a64(env)) {
69         env->pc = tb->pc;
70     } else {
71         env->regs[15] = tb->pc;
72     }
73 }
74 #endif /* CONFIG_TCG */
75 
76 static bool arm_cpu_has_work(CPUState *cs)
77 {
78     ARMCPU *cpu = ARM_CPU(cs);
79 
80     return (cpu->power_state != PSCI_OFF)
81         && cs->interrupt_request &
82         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
83          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
84          | CPU_INTERRUPT_EXITTB);
85 }
86 
87 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
88                                  void *opaque)
89 {
90     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
91 
92     entry->hook = hook;
93     entry->opaque = opaque;
94 
95     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
96 }
97 
98 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
99                                  void *opaque)
100 {
101     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
102 
103     entry->hook = hook;
104     entry->opaque = opaque;
105 
106     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
107 }
108 
109 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
110 {
111     /* Reset a single ARMCPRegInfo register */
112     ARMCPRegInfo *ri = value;
113     ARMCPU *cpu = opaque;
114 
115     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
116         return;
117     }
118 
119     if (ri->resetfn) {
120         ri->resetfn(&cpu->env, ri);
121         return;
122     }
123 
124     /* A zero offset is never possible as it would be regs[0]
125      * so we use it to indicate that reset is being handled elsewhere.
126      * This is basically only used for fields in non-core coprocessors
127      * (like the pxa2xx ones).
128      */
129     if (!ri->fieldoffset) {
130         return;
131     }
132 
133     if (cpreg_field_is_64bit(ri)) {
134         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
135     } else {
136         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137     }
138 }
139 
140 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
141 {
142     /* Purely an assertion check: we've already done reset once,
143      * so now check that running the reset for the cpreg doesn't
144      * change its value. This traps bugs where two different cpregs
145      * both try to reset the same state field but to different values.
146      */
147     ARMCPRegInfo *ri = value;
148     ARMCPU *cpu = opaque;
149     uint64_t oldvalue, newvalue;
150 
151     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
152         return;
153     }
154 
155     oldvalue = read_raw_cp_reg(&cpu->env, ri);
156     cp_reg_reset(key, value, opaque);
157     newvalue = read_raw_cp_reg(&cpu->env, ri);
158     assert(oldvalue == newvalue);
159 }
160 
161 static void arm_cpu_reset(DeviceState *dev)
162 {
163     CPUState *s = CPU(dev);
164     ARMCPU *cpu = ARM_CPU(s);
165     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
166     CPUARMState *env = &cpu->env;
167 
168     acc->parent_reset(dev);
169 
170     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
171 
172     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
173     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
174 
175     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
176     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
177     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
178     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
179 
180     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
181 
182     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
183         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
184     }
185 
186     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
187         /* 64 bit CPUs always start in 64 bit mode */
188         env->aarch64 = 1;
189 #if defined(CONFIG_USER_ONLY)
190         env->pstate = PSTATE_MODE_EL0t;
191         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
192         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
193         /* Enable all PAC keys.  */
194         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
195                                   SCTLR_EnDA | SCTLR_EnDB);
196         /* and to the FP/Neon instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
198         /* and to the SVE instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
200         /* with reasonable vector length */
201         if (cpu_isar_feature(aa64_sve, cpu)) {
202             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
203         }
204         /*
205          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
206          * turning on both here will produce smaller code and otherwise
207          * make no difference to the user-level emulation.
208          *
209          * In sve_probe_page, we assume that this is set.
210          * Do not modify this without other changes.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214         /* Reset into the highest available EL */
215         if (arm_feature(env, ARM_FEATURE_EL3)) {
216             env->pstate = PSTATE_MODE_EL3h;
217         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218             env->pstate = PSTATE_MODE_EL2h;
219         } else {
220             env->pstate = PSTATE_MODE_EL1h;
221         }
222         env->pc = cpu->rvbar;
223 #endif
224     } else {
225 #if defined(CONFIG_USER_ONLY)
226         /* Userspace expects access to cp10 and cp11 for FP/Neon */
227         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229     }
230 
231 #if defined(CONFIG_USER_ONLY)
232     env->uncached_cpsr = ARM_CPU_MODE_USR;
233     /* For user mode we must enable access to coprocessors */
234     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236         env->cp15.c15_cpar = 3;
237     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238         env->cp15.c15_cpar = 1;
239     }
240 #else
241 
242     /*
243      * If the highest available EL is EL2, AArch32 will start in Hyp
244      * mode; otherwise it starts in SVC. Note that if we start in
245      * AArch64 then these values in the uncached_cpsr will be ignored.
246      */
247     if (arm_feature(env, ARM_FEATURE_EL2) &&
248         !arm_feature(env, ARM_FEATURE_EL3)) {
249         env->uncached_cpsr = ARM_CPU_MODE_HYP;
250     } else {
251         env->uncached_cpsr = ARM_CPU_MODE_SVC;
252     }
253     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 
255     if (arm_feature(env, ARM_FEATURE_M)) {
256         uint32_t initial_msp; /* Loaded from 0x0 */
257         uint32_t initial_pc; /* Loaded from 0x4 */
258         uint8_t *rom;
259         uint32_t vecbase;
260 
261         if (cpu_isar_feature(aa32_lob, cpu)) {
262             /*
263              * LTPSIZE is constant 4 if MVE not implemented, and resets
264              * to an UNKNOWN value if MVE is implemented. We choose to
265              * always reset to 4.
266              */
267             env->v7m.ltpsize = 4;
268             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
269             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
270             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
271         }
272 
273         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
274             env->v7m.secure = true;
275         } else {
276             /* This bit resets to 0 if security is supported, but 1 if
277              * it is not. The bit is not present in v7M, but we set it
278              * here so we can avoid having to make checks on it conditional
279              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
280              */
281             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
282             /*
283              * Set NSACR to indicate "NS access permitted to everything";
284              * this avoids having to have all the tests of it being
285              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
286              * v8.1M the guest-visible value of NSACR in a CPU without the
287              * Security Extension is 0xcff.
288              */
289             env->v7m.nsacr = 0xcff;
290         }
291 
292         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
293          * that it resets to 1, so QEMU always does that rather than making
294          * it dependent on CPU model. In v8M it is RES1.
295          */
296         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
297         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
298         if (arm_feature(env, ARM_FEATURE_V8)) {
299             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
300             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
301             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
302         }
303         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
304             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
305             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
306         }
307 
308         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
309             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
310             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
311                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
312         }
313         /* Unlike A/R profile, M profile defines the reset LR value */
314         env->regs[14] = 0xffffffff;
315 
316         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
317 
318         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
319         vecbase = env->v7m.vecbase[env->v7m.secure];
320         rom = rom_ptr(vecbase, 8);
321         if (rom) {
322             /* Address zero is covered by ROM which hasn't yet been
323              * copied into physical memory.
324              */
325             initial_msp = ldl_p(rom);
326             initial_pc = ldl_p(rom + 4);
327         } else {
328             /* Address zero not covered by a ROM blob, or the ROM blob
329              * is in non-modifiable memory and this is a second reset after
330              * it got copied into memory. In the latter case, rom_ptr
331              * will return a NULL pointer and we should use ldl_phys instead.
332              */
333             initial_msp = ldl_phys(s->as, vecbase);
334             initial_pc = ldl_phys(s->as, vecbase + 4);
335         }
336 
337         env->regs[13] = initial_msp & 0xFFFFFFFC;
338         env->regs[15] = initial_pc & ~1;
339         env->thumb = initial_pc & 1;
340     }
341 
342     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
343      * executing as AArch32 then check if highvecs are enabled and
344      * adjust the PC accordingly.
345      */
346     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
347         env->regs[15] = 0xFFFF0000;
348     }
349 
350     /* M profile requires that reset clears the exclusive monitor;
351      * A profile does not, but clearing it makes more sense than having it
352      * set with an exclusive access on address zero.
353      */
354     arm_clear_exclusive(env);
355 
356     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
357 #endif
358 
359     if (arm_feature(env, ARM_FEATURE_PMSA)) {
360         if (cpu->pmsav7_dregion > 0) {
361             if (arm_feature(env, ARM_FEATURE_V8)) {
362                 memset(env->pmsav8.rbar[M_REG_NS], 0,
363                        sizeof(*env->pmsav8.rbar[M_REG_NS])
364                        * cpu->pmsav7_dregion);
365                 memset(env->pmsav8.rlar[M_REG_NS], 0,
366                        sizeof(*env->pmsav8.rlar[M_REG_NS])
367                        * cpu->pmsav7_dregion);
368                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
369                     memset(env->pmsav8.rbar[M_REG_S], 0,
370                            sizeof(*env->pmsav8.rbar[M_REG_S])
371                            * cpu->pmsav7_dregion);
372                     memset(env->pmsav8.rlar[M_REG_S], 0,
373                            sizeof(*env->pmsav8.rlar[M_REG_S])
374                            * cpu->pmsav7_dregion);
375                 }
376             } else if (arm_feature(env, ARM_FEATURE_V7)) {
377                 memset(env->pmsav7.drbar, 0,
378                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
379                 memset(env->pmsav7.drsr, 0,
380                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
381                 memset(env->pmsav7.dracr, 0,
382                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
383             }
384         }
385         env->pmsav7.rnr[M_REG_NS] = 0;
386         env->pmsav7.rnr[M_REG_S] = 0;
387         env->pmsav8.mair0[M_REG_NS] = 0;
388         env->pmsav8.mair0[M_REG_S] = 0;
389         env->pmsav8.mair1[M_REG_NS] = 0;
390         env->pmsav8.mair1[M_REG_S] = 0;
391     }
392 
393     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
394         if (cpu->sau_sregion > 0) {
395             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
396             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
397         }
398         env->sau.rnr = 0;
399         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
400          * the Cortex-M33 does.
401          */
402         env->sau.ctrl = 0;
403     }
404 
405     set_flush_to_zero(1, &env->vfp.standard_fp_status);
406     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
407     set_default_nan_mode(1, &env->vfp.standard_fp_status);
408     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
409     set_float_detect_tininess(float_tininess_before_rounding,
410                               &env->vfp.fp_status);
411     set_float_detect_tininess(float_tininess_before_rounding,
412                               &env->vfp.standard_fp_status);
413     set_float_detect_tininess(float_tininess_before_rounding,
414                               &env->vfp.fp_status_f16);
415     set_float_detect_tininess(float_tininess_before_rounding,
416                               &env->vfp.standard_fp_status_f16);
417 #ifndef CONFIG_USER_ONLY
418     if (kvm_enabled()) {
419         kvm_arm_reset_vcpu(cpu);
420     }
421 #endif
422 
423     hw_breakpoint_update_all(cpu);
424     hw_watchpoint_update_all(cpu);
425     arm_rebuild_hflags(env);
426 }
427 
428 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
429                                      unsigned int target_el,
430                                      unsigned int cur_el, bool secure,
431                                      uint64_t hcr_el2)
432 {
433     CPUARMState *env = cs->env_ptr;
434     bool pstate_unmasked;
435     bool unmasked = false;
436 
437     /*
438      * Don't take exceptions if they target a lower EL.
439      * This check should catch any exceptions that would not be taken
440      * but left pending.
441      */
442     if (cur_el > target_el) {
443         return false;
444     }
445 
446     switch (excp_idx) {
447     case EXCP_FIQ:
448         pstate_unmasked = !(env->daif & PSTATE_F);
449         break;
450 
451     case EXCP_IRQ:
452         pstate_unmasked = !(env->daif & PSTATE_I);
453         break;
454 
455     case EXCP_VFIQ:
456         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
457             /* VFIQs are only taken when hypervized.  */
458             return false;
459         }
460         return !(env->daif & PSTATE_F);
461     case EXCP_VIRQ:
462         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
463             /* VIRQs are only taken when hypervized.  */
464             return false;
465         }
466         return !(env->daif & PSTATE_I);
467     default:
468         g_assert_not_reached();
469     }
470 
471     /*
472      * Use the target EL, current execution state and SCR/HCR settings to
473      * determine whether the corresponding CPSR bit is used to mask the
474      * interrupt.
475      */
476     if ((target_el > cur_el) && (target_el != 1)) {
477         /* Exceptions targeting a higher EL may not be maskable */
478         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
479             /*
480              * 64-bit masking rules are simple: exceptions to EL3
481              * can't be masked, and exceptions to EL2 can only be
482              * masked from Secure state. The HCR and SCR settings
483              * don't affect the masking logic, only the interrupt routing.
484              */
485             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
486                 unmasked = true;
487             }
488         } else {
489             /*
490              * The old 32-bit-only environment has a more complicated
491              * masking setup. HCR and SCR bits not only affect interrupt
492              * routing but also change the behaviour of masking.
493              */
494             bool hcr, scr;
495 
496             switch (excp_idx) {
497             case EXCP_FIQ:
498                 /*
499                  * If FIQs are routed to EL3 or EL2 then there are cases where
500                  * we override the CPSR.F in determining if the exception is
501                  * masked or not. If neither of these are set then we fall back
502                  * to the CPSR.F setting otherwise we further assess the state
503                  * below.
504                  */
505                 hcr = hcr_el2 & HCR_FMO;
506                 scr = (env->cp15.scr_el3 & SCR_FIQ);
507 
508                 /*
509                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
510                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
511                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
512                  * when non-secure but only when FIQs are only routed to EL3.
513                  */
514                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
515                 break;
516             case EXCP_IRQ:
517                 /*
518                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
519                  * we may override the CPSR.I masking when in non-secure state.
520                  * The SCR.IRQ setting has already been taken into consideration
521                  * when setting the target EL, so it does not have a further
522                  * affect here.
523                  */
524                 hcr = hcr_el2 & HCR_IMO;
525                 scr = false;
526                 break;
527             default:
528                 g_assert_not_reached();
529             }
530 
531             if ((scr || hcr) && !secure) {
532                 unmasked = true;
533             }
534         }
535     }
536 
537     /*
538      * The PSTATE bits only mask the interrupt if we have not overriden the
539      * ability above.
540      */
541     return unmasked || pstate_unmasked;
542 }
543 
544 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
545 {
546     CPUClass *cc = CPU_GET_CLASS(cs);
547     CPUARMState *env = cs->env_ptr;
548     uint32_t cur_el = arm_current_el(env);
549     bool secure = arm_is_secure(env);
550     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
551     uint32_t target_el;
552     uint32_t excp_idx;
553 
554     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
555 
556     if (interrupt_request & CPU_INTERRUPT_FIQ) {
557         excp_idx = EXCP_FIQ;
558         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
559         if (arm_excp_unmasked(cs, excp_idx, target_el,
560                               cur_el, secure, hcr_el2)) {
561             goto found;
562         }
563     }
564     if (interrupt_request & CPU_INTERRUPT_HARD) {
565         excp_idx = EXCP_IRQ;
566         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
567         if (arm_excp_unmasked(cs, excp_idx, target_el,
568                               cur_el, secure, hcr_el2)) {
569             goto found;
570         }
571     }
572     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
573         excp_idx = EXCP_VIRQ;
574         target_el = 1;
575         if (arm_excp_unmasked(cs, excp_idx, target_el,
576                               cur_el, secure, hcr_el2)) {
577             goto found;
578         }
579     }
580     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
581         excp_idx = EXCP_VFIQ;
582         target_el = 1;
583         if (arm_excp_unmasked(cs, excp_idx, target_el,
584                               cur_el, secure, hcr_el2)) {
585             goto found;
586         }
587     }
588     return false;
589 
590  found:
591     cs->exception_index = excp_idx;
592     env->exception.target_el = target_el;
593     cc->tcg_ops.do_interrupt(cs);
594     return true;
595 }
596 
597 void arm_cpu_update_virq(ARMCPU *cpu)
598 {
599     /*
600      * Update the interrupt level for VIRQ, which is the logical OR of
601      * the HCR_EL2.VI bit and the input line level from the GIC.
602      */
603     CPUARMState *env = &cpu->env;
604     CPUState *cs = CPU(cpu);
605 
606     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
607         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
608 
609     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
610         if (new_state) {
611             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
612         } else {
613             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
614         }
615     }
616 }
617 
618 void arm_cpu_update_vfiq(ARMCPU *cpu)
619 {
620     /*
621      * Update the interrupt level for VFIQ, which is the logical OR of
622      * the HCR_EL2.VF bit and the input line level from the GIC.
623      */
624     CPUARMState *env = &cpu->env;
625     CPUState *cs = CPU(cpu);
626 
627     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
628         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
629 
630     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
631         if (new_state) {
632             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
633         } else {
634             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
635         }
636     }
637 }
638 
639 #ifndef CONFIG_USER_ONLY
640 static void arm_cpu_set_irq(void *opaque, int irq, int level)
641 {
642     ARMCPU *cpu = opaque;
643     CPUARMState *env = &cpu->env;
644     CPUState *cs = CPU(cpu);
645     static const int mask[] = {
646         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
647         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
648         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
649         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
650     };
651 
652     if (level) {
653         env->irq_line_state |= mask[irq];
654     } else {
655         env->irq_line_state &= ~mask[irq];
656     }
657 
658     switch (irq) {
659     case ARM_CPU_VIRQ:
660         assert(arm_feature(env, ARM_FEATURE_EL2));
661         arm_cpu_update_virq(cpu);
662         break;
663     case ARM_CPU_VFIQ:
664         assert(arm_feature(env, ARM_FEATURE_EL2));
665         arm_cpu_update_vfiq(cpu);
666         break;
667     case ARM_CPU_IRQ:
668     case ARM_CPU_FIQ:
669         if (level) {
670             cpu_interrupt(cs, mask[irq]);
671         } else {
672             cpu_reset_interrupt(cs, mask[irq]);
673         }
674         break;
675     default:
676         g_assert_not_reached();
677     }
678 }
679 
680 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
681 {
682 #ifdef CONFIG_KVM
683     ARMCPU *cpu = opaque;
684     CPUARMState *env = &cpu->env;
685     CPUState *cs = CPU(cpu);
686     uint32_t linestate_bit;
687     int irq_id;
688 
689     switch (irq) {
690     case ARM_CPU_IRQ:
691         irq_id = KVM_ARM_IRQ_CPU_IRQ;
692         linestate_bit = CPU_INTERRUPT_HARD;
693         break;
694     case ARM_CPU_FIQ:
695         irq_id = KVM_ARM_IRQ_CPU_FIQ;
696         linestate_bit = CPU_INTERRUPT_FIQ;
697         break;
698     default:
699         g_assert_not_reached();
700     }
701 
702     if (level) {
703         env->irq_line_state |= linestate_bit;
704     } else {
705         env->irq_line_state &= ~linestate_bit;
706     }
707     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
708 #endif
709 }
710 
711 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
712 {
713     ARMCPU *cpu = ARM_CPU(cs);
714     CPUARMState *env = &cpu->env;
715 
716     cpu_synchronize_state(cs);
717     return arm_cpu_data_is_big_endian(env);
718 }
719 
720 #endif
721 
722 static int
723 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
724 {
725   return print_insn_arm(pc | 1, info);
726 }
727 
728 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
729 {
730     ARMCPU *ac = ARM_CPU(cpu);
731     CPUARMState *env = &ac->env;
732     bool sctlr_b;
733 
734     if (is_a64(env)) {
735         /* We might not be compiled with the A64 disassembler
736          * because it needs a C++ compiler. Leave print_insn
737          * unset in this case to use the caller default behaviour.
738          */
739 #if defined(CONFIG_ARM_A64_DIS)
740         info->print_insn = print_insn_arm_a64;
741 #endif
742         info->cap_arch = CS_ARCH_ARM64;
743         info->cap_insn_unit = 4;
744         info->cap_insn_split = 4;
745     } else {
746         int cap_mode;
747         if (env->thumb) {
748             info->print_insn = print_insn_thumb1;
749             info->cap_insn_unit = 2;
750             info->cap_insn_split = 4;
751             cap_mode = CS_MODE_THUMB;
752         } else {
753             info->print_insn = print_insn_arm;
754             info->cap_insn_unit = 4;
755             info->cap_insn_split = 4;
756             cap_mode = CS_MODE_ARM;
757         }
758         if (arm_feature(env, ARM_FEATURE_V8)) {
759             cap_mode |= CS_MODE_V8;
760         }
761         if (arm_feature(env, ARM_FEATURE_M)) {
762             cap_mode |= CS_MODE_MCLASS;
763         }
764         info->cap_arch = CS_ARCH_ARM;
765         info->cap_mode = cap_mode;
766     }
767 
768     sctlr_b = arm_sctlr_b(env);
769     if (bswap_code(sctlr_b)) {
770 #ifdef TARGET_WORDS_BIGENDIAN
771         info->endian = BFD_ENDIAN_LITTLE;
772 #else
773         info->endian = BFD_ENDIAN_BIG;
774 #endif
775     }
776     info->flags &= ~INSN_ARM_BE32;
777 #ifndef CONFIG_USER_ONLY
778     if (sctlr_b) {
779         info->flags |= INSN_ARM_BE32;
780     }
781 #endif
782 }
783 
784 #ifdef TARGET_AARCH64
785 
786 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
787 {
788     ARMCPU *cpu = ARM_CPU(cs);
789     CPUARMState *env = &cpu->env;
790     uint32_t psr = pstate_read(env);
791     int i;
792     int el = arm_current_el(env);
793     const char *ns_status;
794 
795     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
796     for (i = 0; i < 32; i++) {
797         if (i == 31) {
798             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
799         } else {
800             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
801                          (i + 2) % 3 ? " " : "\n");
802         }
803     }
804 
805     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
806         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
807     } else {
808         ns_status = "";
809     }
810     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
811                  psr,
812                  psr & PSTATE_N ? 'N' : '-',
813                  psr & PSTATE_Z ? 'Z' : '-',
814                  psr & PSTATE_C ? 'C' : '-',
815                  psr & PSTATE_V ? 'V' : '-',
816                  ns_status,
817                  el,
818                  psr & PSTATE_SP ? 'h' : 't');
819 
820     if (cpu_isar_feature(aa64_bti, cpu)) {
821         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
822     }
823     if (!(flags & CPU_DUMP_FPU)) {
824         qemu_fprintf(f, "\n");
825         return;
826     }
827     if (fp_exception_el(env, el) != 0) {
828         qemu_fprintf(f, "    FPU disabled\n");
829         return;
830     }
831     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
832                  vfp_get_fpcr(env), vfp_get_fpsr(env));
833 
834     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
835         int j, zcr_len = sve_zcr_len_for_el(env, el);
836 
837         for (i = 0; i <= FFR_PRED_NUM; i++) {
838             bool eol;
839             if (i == FFR_PRED_NUM) {
840                 qemu_fprintf(f, "FFR=");
841                 /* It's last, so end the line.  */
842                 eol = true;
843             } else {
844                 qemu_fprintf(f, "P%02d=", i);
845                 switch (zcr_len) {
846                 case 0:
847                     eol = i % 8 == 7;
848                     break;
849                 case 1:
850                     eol = i % 6 == 5;
851                     break;
852                 case 2:
853                 case 3:
854                     eol = i % 3 == 2;
855                     break;
856                 default:
857                     /* More than one quadword per predicate.  */
858                     eol = true;
859                     break;
860                 }
861             }
862             for (j = zcr_len / 4; j >= 0; j--) {
863                 int digits;
864                 if (j * 4 + 4 <= zcr_len + 1) {
865                     digits = 16;
866                 } else {
867                     digits = (zcr_len % 4 + 1) * 4;
868                 }
869                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
870                              env->vfp.pregs[i].p[j],
871                              j ? ":" : eol ? "\n" : " ");
872             }
873         }
874 
875         for (i = 0; i < 32; i++) {
876             if (zcr_len == 0) {
877                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
878                              i, env->vfp.zregs[i].d[1],
879                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
880             } else if (zcr_len == 1) {
881                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
882                              ":%016" PRIx64 ":%016" PRIx64 "\n",
883                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
884                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
885             } else {
886                 for (j = zcr_len; j >= 0; j--) {
887                     bool odd = (zcr_len - j) % 2 != 0;
888                     if (j == zcr_len) {
889                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
890                     } else if (!odd) {
891                         if (j > 0) {
892                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
893                         } else {
894                             qemu_fprintf(f, "     [%x]=", j);
895                         }
896                     }
897                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
898                                  env->vfp.zregs[i].d[j * 2 + 1],
899                                  env->vfp.zregs[i].d[j * 2],
900                                  odd || j == 0 ? "\n" : ":");
901                 }
902             }
903         }
904     } else {
905         for (i = 0; i < 32; i++) {
906             uint64_t *q = aa64_vfp_qreg(env, i);
907             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
908                          i, q[1], q[0], (i & 1 ? "\n" : " "));
909         }
910     }
911 }
912 
913 #else
914 
915 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
916 {
917     g_assert_not_reached();
918 }
919 
920 #endif
921 
922 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
923 {
924     ARMCPU *cpu = ARM_CPU(cs);
925     CPUARMState *env = &cpu->env;
926     int i;
927 
928     if (is_a64(env)) {
929         aarch64_cpu_dump_state(cs, f, flags);
930         return;
931     }
932 
933     for (i = 0; i < 16; i++) {
934         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
935         if ((i % 4) == 3) {
936             qemu_fprintf(f, "\n");
937         } else {
938             qemu_fprintf(f, " ");
939         }
940     }
941 
942     if (arm_feature(env, ARM_FEATURE_M)) {
943         uint32_t xpsr = xpsr_read(env);
944         const char *mode;
945         const char *ns_status = "";
946 
947         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
948             ns_status = env->v7m.secure ? "S " : "NS ";
949         }
950 
951         if (xpsr & XPSR_EXCP) {
952             mode = "handler";
953         } else {
954             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
955                 mode = "unpriv-thread";
956             } else {
957                 mode = "priv-thread";
958             }
959         }
960 
961         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
962                      xpsr,
963                      xpsr & XPSR_N ? 'N' : '-',
964                      xpsr & XPSR_Z ? 'Z' : '-',
965                      xpsr & XPSR_C ? 'C' : '-',
966                      xpsr & XPSR_V ? 'V' : '-',
967                      xpsr & XPSR_T ? 'T' : 'A',
968                      ns_status,
969                      mode);
970     } else {
971         uint32_t psr = cpsr_read(env);
972         const char *ns_status = "";
973 
974         if (arm_feature(env, ARM_FEATURE_EL3) &&
975             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
976             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
977         }
978 
979         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
980                      psr,
981                      psr & CPSR_N ? 'N' : '-',
982                      psr & CPSR_Z ? 'Z' : '-',
983                      psr & CPSR_C ? 'C' : '-',
984                      psr & CPSR_V ? 'V' : '-',
985                      psr & CPSR_T ? 'T' : 'A',
986                      ns_status,
987                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
988     }
989 
990     if (flags & CPU_DUMP_FPU) {
991         int numvfpregs = 0;
992         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
993             numvfpregs = 32;
994         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
995             numvfpregs = 16;
996         }
997         for (i = 0; i < numvfpregs; i++) {
998             uint64_t v = *aa32_vfp_dreg(env, i);
999             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1000                          i * 2, (uint32_t)v,
1001                          i * 2 + 1, (uint32_t)(v >> 32),
1002                          i, v);
1003         }
1004         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1005     }
1006 }
1007 
1008 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1009 {
1010     uint32_t Aff1 = idx / clustersz;
1011     uint32_t Aff0 = idx % clustersz;
1012     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1013 }
1014 
1015 static void cpreg_hashtable_data_destroy(gpointer data)
1016 {
1017     /*
1018      * Destroy function for cpu->cp_regs hashtable data entries.
1019      * We must free the name string because it was g_strdup()ed in
1020      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1021      * from r->name because we know we definitely allocated it.
1022      */
1023     ARMCPRegInfo *r = data;
1024 
1025     g_free((void *)r->name);
1026     g_free(r);
1027 }
1028 
1029 static void arm_cpu_initfn(Object *obj)
1030 {
1031     ARMCPU *cpu = ARM_CPU(obj);
1032 
1033     cpu_set_cpustate_pointers(cpu);
1034     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1035                                          g_free, cpreg_hashtable_data_destroy);
1036 
1037     QLIST_INIT(&cpu->pre_el_change_hooks);
1038     QLIST_INIT(&cpu->el_change_hooks);
1039 
1040 #ifndef CONFIG_USER_ONLY
1041     /* Our inbound IRQ and FIQ lines */
1042     if (kvm_enabled()) {
1043         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1044          * the same interface as non-KVM CPUs.
1045          */
1046         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1047     } else {
1048         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1049     }
1050 
1051     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1052                        ARRAY_SIZE(cpu->gt_timer_outputs));
1053 
1054     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1055                              "gicv3-maintenance-interrupt", 1);
1056     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1057                              "pmu-interrupt", 1);
1058 #endif
1059 
1060     /* DTB consumers generally don't in fact care what the 'compatible'
1061      * string is, so always provide some string and trust that a hypothetical
1062      * picky DTB consumer will also provide a helpful error message.
1063      */
1064     cpu->dtb_compatible = "qemu,unknown";
1065     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1066     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1067 
1068     if (tcg_enabled()) {
1069         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1070     }
1071 }
1072 
1073 static Property arm_cpu_gt_cntfrq_property =
1074             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1075                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1076 
1077 static Property arm_cpu_reset_cbar_property =
1078             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1079 
1080 static Property arm_cpu_reset_hivecs_property =
1081             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1082 
1083 static Property arm_cpu_rvbar_property =
1084             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1085 
1086 #ifndef CONFIG_USER_ONLY
1087 static Property arm_cpu_has_el2_property =
1088             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1089 
1090 static Property arm_cpu_has_el3_property =
1091             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1092 #endif
1093 
1094 static Property arm_cpu_cfgend_property =
1095             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1096 
1097 static Property arm_cpu_has_vfp_property =
1098             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1099 
1100 static Property arm_cpu_has_neon_property =
1101             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1102 
1103 static Property arm_cpu_has_dsp_property =
1104             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1105 
1106 static Property arm_cpu_has_mpu_property =
1107             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1108 
1109 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1110  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1111  * the right value for that particular CPU type, and we don't want
1112  * to override that with an incorrect constant value.
1113  */
1114 static Property arm_cpu_pmsav7_dregion_property =
1115             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1116                                            pmsav7_dregion,
1117                                            qdev_prop_uint32, uint32_t);
1118 
1119 static bool arm_get_pmu(Object *obj, Error **errp)
1120 {
1121     ARMCPU *cpu = ARM_CPU(obj);
1122 
1123     return cpu->has_pmu;
1124 }
1125 
1126 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1127 {
1128     ARMCPU *cpu = ARM_CPU(obj);
1129 
1130     if (value) {
1131         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1132             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1133             return;
1134         }
1135         set_feature(&cpu->env, ARM_FEATURE_PMU);
1136     } else {
1137         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1138     }
1139     cpu->has_pmu = value;
1140 }
1141 
1142 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1143 {
1144     /*
1145      * The exact approach to calculating guest ticks is:
1146      *
1147      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1148      *              NANOSECONDS_PER_SECOND);
1149      *
1150      * We don't do that. Rather we intentionally use integer division
1151      * truncation below and in the caller for the conversion of host monotonic
1152      * time to guest ticks to provide the exact inverse for the semantics of
1153      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1154      * it loses precision when representing frequencies where
1155      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1156      * provide an exact inverse leads to scheduling timers with negative
1157      * periods, which in turn leads to sticky behaviour in the guest.
1158      *
1159      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1160      * cannot become zero.
1161      */
1162     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1163       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1164 }
1165 
1166 void arm_cpu_post_init(Object *obj)
1167 {
1168     ARMCPU *cpu = ARM_CPU(obj);
1169 
1170     /* M profile implies PMSA. We have to do this here rather than
1171      * in realize with the other feature-implication checks because
1172      * we look at the PMSA bit to see if we should add some properties.
1173      */
1174     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1175         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1176     }
1177 
1178     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1179         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1180         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1181     }
1182 
1183     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1184         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1185     }
1186 
1187     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1188         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1189     }
1190 
1191 #ifndef CONFIG_USER_ONLY
1192     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1193         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1194          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1195          */
1196         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1197 
1198         object_property_add_link(obj, "secure-memory",
1199                                  TYPE_MEMORY_REGION,
1200                                  (Object **)&cpu->secure_memory,
1201                                  qdev_prop_allow_set_link_before_realize,
1202                                  OBJ_PROP_LINK_STRONG);
1203     }
1204 
1205     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1206         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1207     }
1208 #endif
1209 
1210     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1211         cpu->has_pmu = true;
1212         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1213     }
1214 
1215     /*
1216      * Allow user to turn off VFP and Neon support, but only for TCG --
1217      * KVM does not currently allow us to lie to the guest about its
1218      * ID/feature registers, so the guest always sees what the host has.
1219      */
1220     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1221         ? cpu_isar_feature(aa64_fp_simd, cpu)
1222         : cpu_isar_feature(aa32_vfp, cpu)) {
1223         cpu->has_vfp = true;
1224         if (!kvm_enabled()) {
1225             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1226         }
1227     }
1228 
1229     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1230         cpu->has_neon = true;
1231         if (!kvm_enabled()) {
1232             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1233         }
1234     }
1235 
1236     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1237         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1238         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1239     }
1240 
1241     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1242         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1243         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1244             qdev_property_add_static(DEVICE(obj),
1245                                      &arm_cpu_pmsav7_dregion_property);
1246         }
1247     }
1248 
1249     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1250         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1251                                  qdev_prop_allow_set_link_before_realize,
1252                                  OBJ_PROP_LINK_STRONG);
1253         /*
1254          * M profile: initial value of the Secure VTOR. We can't just use
1255          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1256          * the property to be set after realize.
1257          */
1258         object_property_add_uint32_ptr(obj, "init-svtor",
1259                                        &cpu->init_svtor,
1260                                        OBJ_PROP_FLAG_READWRITE);
1261     }
1262 
1263     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1264 
1265     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1266         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1267     }
1268 
1269     if (kvm_enabled()) {
1270         kvm_arm_add_vcpu_properties(obj);
1271     }
1272 
1273 #ifndef CONFIG_USER_ONLY
1274     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1275         cpu_isar_feature(aa64_mte, cpu)) {
1276         object_property_add_link(obj, "tag-memory",
1277                                  TYPE_MEMORY_REGION,
1278                                  (Object **)&cpu->tag_memory,
1279                                  qdev_prop_allow_set_link_before_realize,
1280                                  OBJ_PROP_LINK_STRONG);
1281 
1282         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1283             object_property_add_link(obj, "secure-tag-memory",
1284                                      TYPE_MEMORY_REGION,
1285                                      (Object **)&cpu->secure_tag_memory,
1286                                      qdev_prop_allow_set_link_before_realize,
1287                                      OBJ_PROP_LINK_STRONG);
1288         }
1289     }
1290 #endif
1291 }
1292 
1293 static void arm_cpu_finalizefn(Object *obj)
1294 {
1295     ARMCPU *cpu = ARM_CPU(obj);
1296     ARMELChangeHook *hook, *next;
1297 
1298     g_hash_table_destroy(cpu->cp_regs);
1299 
1300     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1301         QLIST_REMOVE(hook, node);
1302         g_free(hook);
1303     }
1304     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1305         QLIST_REMOVE(hook, node);
1306         g_free(hook);
1307     }
1308 #ifndef CONFIG_USER_ONLY
1309     if (cpu->pmu_timer) {
1310         timer_free(cpu->pmu_timer);
1311     }
1312 #endif
1313 }
1314 
1315 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1316 {
1317     Error *local_err = NULL;
1318 
1319     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1320         arm_cpu_sve_finalize(cpu, &local_err);
1321         if (local_err != NULL) {
1322             error_propagate(errp, local_err);
1323             return;
1324         }
1325 
1326         /*
1327          * KVM does not support modifications to this feature.
1328          * We have not registered the cpu properties when KVM
1329          * is in use, so the user will not be able to set them.
1330          */
1331         if (!kvm_enabled()) {
1332             arm_cpu_pauth_finalize(cpu, &local_err);
1333             if (local_err != NULL) {
1334                 error_propagate(errp, local_err);
1335                 return;
1336             }
1337         }
1338     }
1339 
1340     if (kvm_enabled()) {
1341         kvm_arm_steal_time_finalize(cpu, &local_err);
1342         if (local_err != NULL) {
1343             error_propagate(errp, local_err);
1344             return;
1345         }
1346     }
1347 }
1348 
1349 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1350 {
1351     CPUState *cs = CPU(dev);
1352     ARMCPU *cpu = ARM_CPU(dev);
1353     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1354     CPUARMState *env = &cpu->env;
1355     int pagebits;
1356     Error *local_err = NULL;
1357     bool no_aa32 = false;
1358 
1359     /* If we needed to query the host kernel for the CPU features
1360      * then it's possible that might have failed in the initfn, but
1361      * this is the first point where we can report it.
1362      */
1363     if (cpu->host_cpu_probe_failed) {
1364         if (!kvm_enabled()) {
1365             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1366         } else {
1367             error_setg(errp, "Failed to retrieve host CPU features");
1368         }
1369         return;
1370     }
1371 
1372 #ifndef CONFIG_USER_ONLY
1373     /* The NVIC and M-profile CPU are two halves of a single piece of
1374      * hardware; trying to use one without the other is a command line
1375      * error and will result in segfaults if not caught here.
1376      */
1377     if (arm_feature(env, ARM_FEATURE_M)) {
1378         if (!env->nvic) {
1379             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1380             return;
1381         }
1382     } else {
1383         if (env->nvic) {
1384             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1385             return;
1386         }
1387     }
1388 
1389     {
1390         uint64_t scale;
1391 
1392         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1393             if (!cpu->gt_cntfrq_hz) {
1394                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1395                            cpu->gt_cntfrq_hz);
1396                 return;
1397             }
1398             scale = gt_cntfrq_period_ns(cpu);
1399         } else {
1400             scale = GTIMER_SCALE;
1401         }
1402 
1403         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1404                                                arm_gt_ptimer_cb, cpu);
1405         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1406                                                arm_gt_vtimer_cb, cpu);
1407         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1408                                               arm_gt_htimer_cb, cpu);
1409         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1410                                               arm_gt_stimer_cb, cpu);
1411         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1412                                                   arm_gt_hvtimer_cb, cpu);
1413     }
1414 #endif
1415 
1416     cpu_exec_realizefn(cs, &local_err);
1417     if (local_err != NULL) {
1418         error_propagate(errp, local_err);
1419         return;
1420     }
1421 
1422     arm_cpu_finalize_features(cpu, &local_err);
1423     if (local_err != NULL) {
1424         error_propagate(errp, local_err);
1425         return;
1426     }
1427 
1428     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1429         cpu->has_vfp != cpu->has_neon) {
1430         /*
1431          * This is an architectural requirement for AArch64; AArch32 is
1432          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1433          */
1434         error_setg(errp,
1435                    "AArch64 CPUs must have both VFP and Neon or neither");
1436         return;
1437     }
1438 
1439     if (!cpu->has_vfp) {
1440         uint64_t t;
1441         uint32_t u;
1442 
1443         t = cpu->isar.id_aa64isar1;
1444         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1445         cpu->isar.id_aa64isar1 = t;
1446 
1447         t = cpu->isar.id_aa64pfr0;
1448         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1449         cpu->isar.id_aa64pfr0 = t;
1450 
1451         u = cpu->isar.id_isar6;
1452         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1453         cpu->isar.id_isar6 = u;
1454 
1455         u = cpu->isar.mvfr0;
1456         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1457         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1458         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1459         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1460         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1461         if (!arm_feature(env, ARM_FEATURE_M)) {
1462             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1463             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1464         }
1465         cpu->isar.mvfr0 = u;
1466 
1467         u = cpu->isar.mvfr1;
1468         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1469         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1470         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1471         if (arm_feature(env, ARM_FEATURE_M)) {
1472             u = FIELD_DP32(u, MVFR1, FP16, 0);
1473         }
1474         cpu->isar.mvfr1 = u;
1475 
1476         u = cpu->isar.mvfr2;
1477         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1478         cpu->isar.mvfr2 = u;
1479     }
1480 
1481     if (!cpu->has_neon) {
1482         uint64_t t;
1483         uint32_t u;
1484 
1485         unset_feature(env, ARM_FEATURE_NEON);
1486 
1487         t = cpu->isar.id_aa64isar0;
1488         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1489         cpu->isar.id_aa64isar0 = t;
1490 
1491         t = cpu->isar.id_aa64isar1;
1492         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1493         cpu->isar.id_aa64isar1 = t;
1494 
1495         t = cpu->isar.id_aa64pfr0;
1496         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1497         cpu->isar.id_aa64pfr0 = t;
1498 
1499         u = cpu->isar.id_isar5;
1500         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1501         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1502         cpu->isar.id_isar5 = u;
1503 
1504         u = cpu->isar.id_isar6;
1505         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1506         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1507         cpu->isar.id_isar6 = u;
1508 
1509         if (!arm_feature(env, ARM_FEATURE_M)) {
1510             u = cpu->isar.mvfr1;
1511             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1512             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1513             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1514             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1515             cpu->isar.mvfr1 = u;
1516 
1517             u = cpu->isar.mvfr2;
1518             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1519             cpu->isar.mvfr2 = u;
1520         }
1521     }
1522 
1523     if (!cpu->has_neon && !cpu->has_vfp) {
1524         uint64_t t;
1525         uint32_t u;
1526 
1527         t = cpu->isar.id_aa64isar0;
1528         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1529         cpu->isar.id_aa64isar0 = t;
1530 
1531         t = cpu->isar.id_aa64isar1;
1532         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1533         cpu->isar.id_aa64isar1 = t;
1534 
1535         u = cpu->isar.mvfr0;
1536         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1537         cpu->isar.mvfr0 = u;
1538 
1539         /* Despite the name, this field covers both VFP and Neon */
1540         u = cpu->isar.mvfr1;
1541         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1542         cpu->isar.mvfr1 = u;
1543     }
1544 
1545     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1546         uint32_t u;
1547 
1548         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1549 
1550         u = cpu->isar.id_isar1;
1551         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1552         cpu->isar.id_isar1 = u;
1553 
1554         u = cpu->isar.id_isar2;
1555         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1556         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1557         cpu->isar.id_isar2 = u;
1558 
1559         u = cpu->isar.id_isar3;
1560         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1561         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1562         cpu->isar.id_isar3 = u;
1563     }
1564 
1565     /* Some features automatically imply others: */
1566     if (arm_feature(env, ARM_FEATURE_V8)) {
1567         if (arm_feature(env, ARM_FEATURE_M)) {
1568             set_feature(env, ARM_FEATURE_V7);
1569         } else {
1570             set_feature(env, ARM_FEATURE_V7VE);
1571         }
1572     }
1573 
1574     /*
1575      * There exist AArch64 cpus without AArch32 support.  When KVM
1576      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1577      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1578      * As a general principle, we also do not make ID register
1579      * consistency checks anywhere unless using TCG, because only
1580      * for TCG would a consistency-check failure be a QEMU bug.
1581      */
1582     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1583         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1584     }
1585 
1586     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1587         /* v7 Virtualization Extensions. In real hardware this implies
1588          * EL2 and also the presence of the Security Extensions.
1589          * For QEMU, for backwards-compatibility we implement some
1590          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1591          * include the various other features that V7VE implies.
1592          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1593          * Security Extensions is ARM_FEATURE_EL3.
1594          */
1595         assert(!tcg_enabled() || no_aa32 ||
1596                cpu_isar_feature(aa32_arm_div, cpu));
1597         set_feature(env, ARM_FEATURE_LPAE);
1598         set_feature(env, ARM_FEATURE_V7);
1599     }
1600     if (arm_feature(env, ARM_FEATURE_V7)) {
1601         set_feature(env, ARM_FEATURE_VAPA);
1602         set_feature(env, ARM_FEATURE_THUMB2);
1603         set_feature(env, ARM_FEATURE_MPIDR);
1604         if (!arm_feature(env, ARM_FEATURE_M)) {
1605             set_feature(env, ARM_FEATURE_V6K);
1606         } else {
1607             set_feature(env, ARM_FEATURE_V6);
1608         }
1609 
1610         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1611          * non-EL3 configs. This is needed by some legacy boards.
1612          */
1613         set_feature(env, ARM_FEATURE_VBAR);
1614     }
1615     if (arm_feature(env, ARM_FEATURE_V6K)) {
1616         set_feature(env, ARM_FEATURE_V6);
1617         set_feature(env, ARM_FEATURE_MVFR);
1618     }
1619     if (arm_feature(env, ARM_FEATURE_V6)) {
1620         set_feature(env, ARM_FEATURE_V5);
1621         if (!arm_feature(env, ARM_FEATURE_M)) {
1622             assert(!tcg_enabled() || no_aa32 ||
1623                    cpu_isar_feature(aa32_jazelle, cpu));
1624             set_feature(env, ARM_FEATURE_AUXCR);
1625         }
1626     }
1627     if (arm_feature(env, ARM_FEATURE_V5)) {
1628         set_feature(env, ARM_FEATURE_V4T);
1629     }
1630     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1631         set_feature(env, ARM_FEATURE_V7MP);
1632     }
1633     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1634         set_feature(env, ARM_FEATURE_CBAR);
1635     }
1636     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1637         !arm_feature(env, ARM_FEATURE_M)) {
1638         set_feature(env, ARM_FEATURE_THUMB_DSP);
1639     }
1640 
1641     /*
1642      * We rely on no XScale CPU having VFP so we can use the same bits in the
1643      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1644      */
1645     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1646            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1647            !arm_feature(env, ARM_FEATURE_XSCALE));
1648 
1649     if (arm_feature(env, ARM_FEATURE_V7) &&
1650         !arm_feature(env, ARM_FEATURE_M) &&
1651         !arm_feature(env, ARM_FEATURE_PMSA)) {
1652         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1653          * can use 4K pages.
1654          */
1655         pagebits = 12;
1656     } else {
1657         /* For CPUs which might have tiny 1K pages, or which have an
1658          * MPU and might have small region sizes, stick with 1K pages.
1659          */
1660         pagebits = 10;
1661     }
1662     if (!set_preferred_target_page_bits(pagebits)) {
1663         /* This can only ever happen for hotplugging a CPU, or if
1664          * the board code incorrectly creates a CPU which it has
1665          * promised via minimum_page_size that it will not.
1666          */
1667         error_setg(errp, "This CPU requires a smaller page size than the "
1668                    "system is using");
1669         return;
1670     }
1671 
1672     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1673      * We don't support setting cluster ID ([16..23]) (known as Aff2
1674      * in later ARM ARM versions), or any of the higher affinity level fields,
1675      * so these bits always RAZ.
1676      */
1677     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1678         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1679                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1680     }
1681 
1682     if (cpu->reset_hivecs) {
1683             cpu->reset_sctlr |= (1 << 13);
1684     }
1685 
1686     if (cpu->cfgend) {
1687         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1688             cpu->reset_sctlr |= SCTLR_EE;
1689         } else {
1690             cpu->reset_sctlr |= SCTLR_B;
1691         }
1692     }
1693 
1694     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1695         /* If the has_el3 CPU property is disabled then we need to disable the
1696          * feature.
1697          */
1698         unset_feature(env, ARM_FEATURE_EL3);
1699 
1700         /* Disable the security extension feature bits in the processor feature
1701          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1702          */
1703         cpu->isar.id_pfr1 &= ~0xf0;
1704         cpu->isar.id_aa64pfr0 &= ~0xf000;
1705     }
1706 
1707     if (!cpu->has_el2) {
1708         unset_feature(env, ARM_FEATURE_EL2);
1709     }
1710 
1711     if (!cpu->has_pmu) {
1712         unset_feature(env, ARM_FEATURE_PMU);
1713     }
1714     if (arm_feature(env, ARM_FEATURE_PMU)) {
1715         pmu_init(cpu);
1716 
1717         if (!kvm_enabled()) {
1718             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1719             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1720         }
1721 
1722 #ifndef CONFIG_USER_ONLY
1723         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1724                 cpu);
1725 #endif
1726     } else {
1727         cpu->isar.id_aa64dfr0 =
1728             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1729         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1730         cpu->pmceid0 = 0;
1731         cpu->pmceid1 = 0;
1732     }
1733 
1734     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1735         /* Disable the hypervisor feature bits in the processor feature
1736          * registers if we don't have EL2. These are id_pfr1[15:12] and
1737          * id_aa64pfr0_el1[11:8].
1738          */
1739         cpu->isar.id_aa64pfr0 &= ~0xf00;
1740         cpu->isar.id_pfr1 &= ~0xf000;
1741     }
1742 
1743 #ifndef CONFIG_USER_ONLY
1744     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1745         /*
1746          * Disable the MTE feature bits if we do not have tag-memory
1747          * provided by the machine.
1748          */
1749         cpu->isar.id_aa64pfr1 =
1750             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1751     }
1752 #endif
1753 
1754     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1755      * to false or by setting pmsav7-dregion to 0.
1756      */
1757     if (!cpu->has_mpu) {
1758         cpu->pmsav7_dregion = 0;
1759     }
1760     if (cpu->pmsav7_dregion == 0) {
1761         cpu->has_mpu = false;
1762     }
1763 
1764     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1765         arm_feature(env, ARM_FEATURE_V7)) {
1766         uint32_t nr = cpu->pmsav7_dregion;
1767 
1768         if (nr > 0xff) {
1769             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1770             return;
1771         }
1772 
1773         if (nr) {
1774             if (arm_feature(env, ARM_FEATURE_V8)) {
1775                 /* PMSAv8 */
1776                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1777                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1778                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1779                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1780                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1781                 }
1782             } else {
1783                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1784                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1785                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1786             }
1787         }
1788     }
1789 
1790     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1791         uint32_t nr = cpu->sau_sregion;
1792 
1793         if (nr > 0xff) {
1794             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1795             return;
1796         }
1797 
1798         if (nr) {
1799             env->sau.rbar = g_new0(uint32_t, nr);
1800             env->sau.rlar = g_new0(uint32_t, nr);
1801         }
1802     }
1803 
1804     if (arm_feature(env, ARM_FEATURE_EL3)) {
1805         set_feature(env, ARM_FEATURE_VBAR);
1806     }
1807 
1808     register_cp_regs_for_features(cpu);
1809     arm_cpu_register_gdb_regs_for_features(cpu);
1810 
1811     init_cpreg_list(cpu);
1812 
1813 #ifndef CONFIG_USER_ONLY
1814     MachineState *ms = MACHINE(qdev_get_machine());
1815     unsigned int smp_cpus = ms->smp.cpus;
1816     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1817 
1818     /*
1819      * We must set cs->num_ases to the final value before
1820      * the first call to cpu_address_space_init.
1821      */
1822     if (cpu->tag_memory != NULL) {
1823         cs->num_ases = 3 + has_secure;
1824     } else {
1825         cs->num_ases = 1 + has_secure;
1826     }
1827 
1828     if (has_secure) {
1829         if (!cpu->secure_memory) {
1830             cpu->secure_memory = cs->memory;
1831         }
1832         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1833                                cpu->secure_memory);
1834     }
1835 
1836     if (cpu->tag_memory != NULL) {
1837         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1838                                cpu->tag_memory);
1839         if (has_secure) {
1840             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1841                                    cpu->secure_tag_memory);
1842         }
1843     }
1844 
1845     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1846 
1847     /* No core_count specified, default to smp_cpus. */
1848     if (cpu->core_count == -1) {
1849         cpu->core_count = smp_cpus;
1850     }
1851 #endif
1852 
1853     if (tcg_enabled()) {
1854         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1855 
1856         /*
1857          * We only support DCZ blocklen that fits on one page.
1858          *
1859          * Architectually this is always true.  However TARGET_PAGE_SIZE
1860          * is variable and, for compatibility with -machine virt-2.7,
1861          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1862          * But even then, while the largest architectural DCZ blocklen
1863          * is 2KiB, no cpu actually uses such a large blocklen.
1864          */
1865         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1866 
1867         /*
1868          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1869          * both nibbles of each byte storing tag data may be written at once.
1870          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1871          */
1872         if (cpu_isar_feature(aa64_mte, cpu)) {
1873             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1874         }
1875     }
1876 
1877     qemu_init_vcpu(cs);
1878     cpu_reset(cs);
1879 
1880     acc->parent_realize(dev, errp);
1881 }
1882 
1883 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1884 {
1885     ObjectClass *oc;
1886     char *typename;
1887     char **cpuname;
1888     const char *cpunamestr;
1889 
1890     cpuname = g_strsplit(cpu_model, ",", 1);
1891     cpunamestr = cpuname[0];
1892 #ifdef CONFIG_USER_ONLY
1893     /* For backwards compatibility usermode emulation allows "-cpu any",
1894      * which has the same semantics as "-cpu max".
1895      */
1896     if (!strcmp(cpunamestr, "any")) {
1897         cpunamestr = "max";
1898     }
1899 #endif
1900     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1901     oc = object_class_by_name(typename);
1902     g_strfreev(cpuname);
1903     g_free(typename);
1904     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1905         object_class_is_abstract(oc)) {
1906         return NULL;
1907     }
1908     return oc;
1909 }
1910 
1911 /* CPU models. These are not needed for the AArch64 linux-user build. */
1912 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1913 
1914 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1915     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1916       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1917     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1918       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1919     REGINFO_SENTINEL
1920 };
1921 
1922 static void cortex_a8_initfn(Object *obj)
1923 {
1924     ARMCPU *cpu = ARM_CPU(obj);
1925 
1926     cpu->dtb_compatible = "arm,cortex-a8";
1927     set_feature(&cpu->env, ARM_FEATURE_V7);
1928     set_feature(&cpu->env, ARM_FEATURE_NEON);
1929     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1930     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1931     set_feature(&cpu->env, ARM_FEATURE_EL3);
1932     cpu->midr = 0x410fc080;
1933     cpu->reset_fpsid = 0x410330c0;
1934     cpu->isar.mvfr0 = 0x11110222;
1935     cpu->isar.mvfr1 = 0x00011111;
1936     cpu->ctr = 0x82048004;
1937     cpu->reset_sctlr = 0x00c50078;
1938     cpu->isar.id_pfr0 = 0x1031;
1939     cpu->isar.id_pfr1 = 0x11;
1940     cpu->isar.id_dfr0 = 0x400;
1941     cpu->id_afr0 = 0;
1942     cpu->isar.id_mmfr0 = 0x31100003;
1943     cpu->isar.id_mmfr1 = 0x20000000;
1944     cpu->isar.id_mmfr2 = 0x01202000;
1945     cpu->isar.id_mmfr3 = 0x11;
1946     cpu->isar.id_isar0 = 0x00101111;
1947     cpu->isar.id_isar1 = 0x12112111;
1948     cpu->isar.id_isar2 = 0x21232031;
1949     cpu->isar.id_isar3 = 0x11112131;
1950     cpu->isar.id_isar4 = 0x00111142;
1951     cpu->isar.dbgdidr = 0x15141000;
1952     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1953     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1954     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1955     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1956     cpu->reset_auxcr = 2;
1957     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1958 }
1959 
1960 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1961     /* power_control should be set to maximum latency. Again,
1962      * default to 0 and set by private hook
1963      */
1964     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1965       .access = PL1_RW, .resetvalue = 0,
1966       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1967     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1968       .access = PL1_RW, .resetvalue = 0,
1969       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1970     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1971       .access = PL1_RW, .resetvalue = 0,
1972       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1973     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1974       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1975     /* TLB lockdown control */
1976     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1977       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1978     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1979       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1980     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1981       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1982     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1983       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1984     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1985       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1986     REGINFO_SENTINEL
1987 };
1988 
1989 static void cortex_a9_initfn(Object *obj)
1990 {
1991     ARMCPU *cpu = ARM_CPU(obj);
1992 
1993     cpu->dtb_compatible = "arm,cortex-a9";
1994     set_feature(&cpu->env, ARM_FEATURE_V7);
1995     set_feature(&cpu->env, ARM_FEATURE_NEON);
1996     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1997     set_feature(&cpu->env, ARM_FEATURE_EL3);
1998     /* Note that A9 supports the MP extensions even for
1999      * A9UP and single-core A9MP (which are both different
2000      * and valid configurations; we don't model A9UP).
2001      */
2002     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2003     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2004     cpu->midr = 0x410fc090;
2005     cpu->reset_fpsid = 0x41033090;
2006     cpu->isar.mvfr0 = 0x11110222;
2007     cpu->isar.mvfr1 = 0x01111111;
2008     cpu->ctr = 0x80038003;
2009     cpu->reset_sctlr = 0x00c50078;
2010     cpu->isar.id_pfr0 = 0x1031;
2011     cpu->isar.id_pfr1 = 0x11;
2012     cpu->isar.id_dfr0 = 0x000;
2013     cpu->id_afr0 = 0;
2014     cpu->isar.id_mmfr0 = 0x00100103;
2015     cpu->isar.id_mmfr1 = 0x20000000;
2016     cpu->isar.id_mmfr2 = 0x01230000;
2017     cpu->isar.id_mmfr3 = 0x00002111;
2018     cpu->isar.id_isar0 = 0x00101111;
2019     cpu->isar.id_isar1 = 0x13112111;
2020     cpu->isar.id_isar2 = 0x21232041;
2021     cpu->isar.id_isar3 = 0x11112131;
2022     cpu->isar.id_isar4 = 0x00111142;
2023     cpu->isar.dbgdidr = 0x35141000;
2024     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2025     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2026     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2027     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2028 }
2029 
2030 #ifndef CONFIG_USER_ONLY
2031 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2032 {
2033     MachineState *ms = MACHINE(qdev_get_machine());
2034 
2035     /* Linux wants the number of processors from here.
2036      * Might as well set the interrupt-controller bit too.
2037      */
2038     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2039 }
2040 #endif
2041 
2042 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2043 #ifndef CONFIG_USER_ONLY
2044     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2045       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2046       .writefn = arm_cp_write_ignore, },
2047 #endif
2048     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2049       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2050     REGINFO_SENTINEL
2051 };
2052 
2053 static void cortex_a7_initfn(Object *obj)
2054 {
2055     ARMCPU *cpu = ARM_CPU(obj);
2056 
2057     cpu->dtb_compatible = "arm,cortex-a7";
2058     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2059     set_feature(&cpu->env, ARM_FEATURE_NEON);
2060     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2061     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2062     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2063     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2064     set_feature(&cpu->env, ARM_FEATURE_EL2);
2065     set_feature(&cpu->env, ARM_FEATURE_EL3);
2066     set_feature(&cpu->env, ARM_FEATURE_PMU);
2067     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2068     cpu->midr = 0x410fc075;
2069     cpu->reset_fpsid = 0x41023075;
2070     cpu->isar.mvfr0 = 0x10110222;
2071     cpu->isar.mvfr1 = 0x11111111;
2072     cpu->ctr = 0x84448003;
2073     cpu->reset_sctlr = 0x00c50078;
2074     cpu->isar.id_pfr0 = 0x00001131;
2075     cpu->isar.id_pfr1 = 0x00011011;
2076     cpu->isar.id_dfr0 = 0x02010555;
2077     cpu->id_afr0 = 0x00000000;
2078     cpu->isar.id_mmfr0 = 0x10101105;
2079     cpu->isar.id_mmfr1 = 0x40000000;
2080     cpu->isar.id_mmfr2 = 0x01240000;
2081     cpu->isar.id_mmfr3 = 0x02102211;
2082     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2083      * table 4-41 gives 0x02101110, which includes the arm div insns.
2084      */
2085     cpu->isar.id_isar0 = 0x02101110;
2086     cpu->isar.id_isar1 = 0x13112111;
2087     cpu->isar.id_isar2 = 0x21232041;
2088     cpu->isar.id_isar3 = 0x11112131;
2089     cpu->isar.id_isar4 = 0x10011142;
2090     cpu->isar.dbgdidr = 0x3515f005;
2091     cpu->clidr = 0x0a200023;
2092     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2093     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2094     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2095     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2096 }
2097 
2098 static void cortex_a15_initfn(Object *obj)
2099 {
2100     ARMCPU *cpu = ARM_CPU(obj);
2101 
2102     cpu->dtb_compatible = "arm,cortex-a15";
2103     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2104     set_feature(&cpu->env, ARM_FEATURE_NEON);
2105     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2106     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2107     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2108     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2109     set_feature(&cpu->env, ARM_FEATURE_EL2);
2110     set_feature(&cpu->env, ARM_FEATURE_EL3);
2111     set_feature(&cpu->env, ARM_FEATURE_PMU);
2112     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2113     cpu->midr = 0x412fc0f1;
2114     cpu->reset_fpsid = 0x410430f0;
2115     cpu->isar.mvfr0 = 0x10110222;
2116     cpu->isar.mvfr1 = 0x11111111;
2117     cpu->ctr = 0x8444c004;
2118     cpu->reset_sctlr = 0x00c50078;
2119     cpu->isar.id_pfr0 = 0x00001131;
2120     cpu->isar.id_pfr1 = 0x00011011;
2121     cpu->isar.id_dfr0 = 0x02010555;
2122     cpu->id_afr0 = 0x00000000;
2123     cpu->isar.id_mmfr0 = 0x10201105;
2124     cpu->isar.id_mmfr1 = 0x20000000;
2125     cpu->isar.id_mmfr2 = 0x01240000;
2126     cpu->isar.id_mmfr3 = 0x02102211;
2127     cpu->isar.id_isar0 = 0x02101110;
2128     cpu->isar.id_isar1 = 0x13112111;
2129     cpu->isar.id_isar2 = 0x21232041;
2130     cpu->isar.id_isar3 = 0x11112131;
2131     cpu->isar.id_isar4 = 0x10011142;
2132     cpu->isar.dbgdidr = 0x3515f021;
2133     cpu->clidr = 0x0a200023;
2134     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2135     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2136     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2137     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2138 }
2139 
2140 #ifndef TARGET_AARCH64
2141 /*
2142  * -cpu max: a CPU with as many features enabled as our emulation supports.
2143  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2144  * this only needs to handle 32 bits, and need not care about KVM.
2145  */
2146 static void arm_max_initfn(Object *obj)
2147 {
2148     ARMCPU *cpu = ARM_CPU(obj);
2149 
2150     cortex_a15_initfn(obj);
2151 
2152     /* old-style VFP short-vector support */
2153     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2154 
2155 #ifdef CONFIG_USER_ONLY
2156     /*
2157      * We don't set these in system emulation mode for the moment,
2158      * since we don't correctly set (all of) the ID registers to
2159      * advertise them.
2160      */
2161     set_feature(&cpu->env, ARM_FEATURE_V8);
2162     {
2163         uint32_t t;
2164 
2165         t = cpu->isar.id_isar5;
2166         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2167         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2168         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2169         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2170         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2171         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2172         cpu->isar.id_isar5 = t;
2173 
2174         t = cpu->isar.id_isar6;
2175         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2176         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2177         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2178         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2179         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2180         cpu->isar.id_isar6 = t;
2181 
2182         t = cpu->isar.mvfr1;
2183         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2184         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2185         cpu->isar.mvfr1 = t;
2186 
2187         t = cpu->isar.mvfr2;
2188         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2189         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2190         cpu->isar.mvfr2 = t;
2191 
2192         t = cpu->isar.id_mmfr3;
2193         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2194         cpu->isar.id_mmfr3 = t;
2195 
2196         t = cpu->isar.id_mmfr4;
2197         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2198         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2199         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2200         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2201         cpu->isar.id_mmfr4 = t;
2202     }
2203 #endif
2204 }
2205 #endif
2206 
2207 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2208 
2209 static const ARMCPUInfo arm_cpus[] = {
2210 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2211     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2212     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2213     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2214     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2215 #ifndef TARGET_AARCH64
2216     { .name = "max",         .initfn = arm_max_initfn },
2217 #endif
2218 #ifdef CONFIG_USER_ONLY
2219     { .name = "any",         .initfn = arm_max_initfn },
2220 #endif
2221 #endif
2222 };
2223 
2224 static Property arm_cpu_properties[] = {
2225     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2226     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2227     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2228                         mp_affinity, ARM64_AFFINITY_INVALID),
2229     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2230     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2231     DEFINE_PROP_END_OF_LIST()
2232 };
2233 
2234 static gchar *arm_gdb_arch_name(CPUState *cs)
2235 {
2236     ARMCPU *cpu = ARM_CPU(cs);
2237     CPUARMState *env = &cpu->env;
2238 
2239     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2240         return g_strdup("iwmmxt");
2241     }
2242     return g_strdup("arm");
2243 }
2244 
2245 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2246 {
2247     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2248     CPUClass *cc = CPU_CLASS(acc);
2249     DeviceClass *dc = DEVICE_CLASS(oc);
2250 
2251     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2252                                     &acc->parent_realize);
2253 
2254     device_class_set_props(dc, arm_cpu_properties);
2255     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2256 
2257     cc->class_by_name = arm_cpu_class_by_name;
2258     cc->has_work = arm_cpu_has_work;
2259     cc->dump_state = arm_cpu_dump_state;
2260     cc->set_pc = arm_cpu_set_pc;
2261     cc->gdb_read_register = arm_cpu_gdb_read_register;
2262     cc->gdb_write_register = arm_cpu_gdb_write_register;
2263 #ifndef CONFIG_USER_ONLY
2264     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2265     cc->asidx_from_attrs = arm_asidx_from_attrs;
2266     cc->vmsd = &vmstate_arm_cpu;
2267     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2268     cc->write_elf64_note = arm_cpu_write_elf64_note;
2269     cc->write_elf32_note = arm_cpu_write_elf32_note;
2270 #endif
2271     cc->gdb_num_core_regs = 26;
2272     cc->gdb_core_xml_file = "arm-core.xml";
2273     cc->gdb_arch_name = arm_gdb_arch_name;
2274     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2275     cc->gdb_stop_before_watchpoint = true;
2276     cc->disas_set_info = arm_disas_set_info;
2277 #ifdef CONFIG_TCG
2278     cc->tcg_ops.initialize = arm_translate_init;
2279     cc->tcg_ops.cpu_exec_interrupt = arm_cpu_exec_interrupt;
2280     cc->tcg_ops.synchronize_from_tb = arm_cpu_synchronize_from_tb;
2281     cc->tcg_ops.tlb_fill = arm_cpu_tlb_fill;
2282     cc->tcg_ops.debug_excp_handler = arm_debug_excp_handler;
2283     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2284 #if !defined(CONFIG_USER_ONLY)
2285     cc->tcg_ops.do_transaction_failed = arm_cpu_do_transaction_failed;
2286     cc->tcg_ops.do_unaligned_access = arm_cpu_do_unaligned_access;
2287     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2288     cc->tcg_ops.do_interrupt = arm_cpu_do_interrupt;
2289 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2290 #endif /* CONFIG_TCG */
2291 }
2292 
2293 #ifdef CONFIG_KVM
2294 static void arm_host_initfn(Object *obj)
2295 {
2296     ARMCPU *cpu = ARM_CPU(obj);
2297 
2298     kvm_arm_set_cpu_features_from_host(cpu);
2299     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2300         aarch64_add_sve_properties(obj);
2301     }
2302     arm_cpu_post_init(obj);
2303 }
2304 
2305 static const TypeInfo host_arm_cpu_type_info = {
2306     .name = TYPE_ARM_HOST_CPU,
2307     .parent = TYPE_AARCH64_CPU,
2308     .instance_init = arm_host_initfn,
2309 };
2310 
2311 #endif
2312 
2313 static void arm_cpu_instance_init(Object *obj)
2314 {
2315     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2316 
2317     acc->info->initfn(obj);
2318     arm_cpu_post_init(obj);
2319 }
2320 
2321 static void cpu_register_class_init(ObjectClass *oc, void *data)
2322 {
2323     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2324 
2325     acc->info = data;
2326 }
2327 
2328 void arm_cpu_register(const ARMCPUInfo *info)
2329 {
2330     TypeInfo type_info = {
2331         .parent = TYPE_ARM_CPU,
2332         .instance_size = sizeof(ARMCPU),
2333         .instance_align = __alignof__(ARMCPU),
2334         .instance_init = arm_cpu_instance_init,
2335         .class_size = sizeof(ARMCPUClass),
2336         .class_init = info->class_init ?: cpu_register_class_init,
2337         .class_data = (void *)info,
2338     };
2339 
2340     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2341     type_register(&type_info);
2342     g_free((void *)type_info.name);
2343 }
2344 
2345 static const TypeInfo arm_cpu_type_info = {
2346     .name = TYPE_ARM_CPU,
2347     .parent = TYPE_CPU,
2348     .instance_size = sizeof(ARMCPU),
2349     .instance_align = __alignof__(ARMCPU),
2350     .instance_init = arm_cpu_initfn,
2351     .instance_finalize = arm_cpu_finalizefn,
2352     .abstract = true,
2353     .class_size = sizeof(ARMCPUClass),
2354     .class_init = arm_cpu_class_init,
2355 };
2356 
2357 static const TypeInfo idau_interface_type_info = {
2358     .name = TYPE_IDAU_INTERFACE,
2359     .parent = TYPE_INTERFACE,
2360     .class_size = sizeof(IDAUInterfaceClass),
2361 };
2362 
2363 static void arm_cpu_register_types(void)
2364 {
2365     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2366 
2367     type_register_static(&arm_cpu_type_info);
2368 
2369 #ifdef CONFIG_KVM
2370     type_register_static(&host_arm_cpu_type_info);
2371 #endif
2372 
2373     if (cpu_count) {
2374         size_t i;
2375 
2376         type_register_static(&idau_interface_type_info);
2377         for (i = 0; i < cpu_count; ++i) {
2378             arm_cpu_register(&arm_cpus[i]);
2379         }
2380     }
2381 }
2382 
2383 type_init(arm_cpu_register_types)
2384