xref: /openbmc/qemu/target/arm/cpu.c (revision 8072aae3)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
206         /*
207          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
208          * turning on both here will produce smaller code and otherwise
209          * make no difference to the user-level emulation.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213         /* Reset into the highest available EL */
214         if (arm_feature(env, ARM_FEATURE_EL3)) {
215             env->pstate = PSTATE_MODE_EL3h;
216         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217             env->pstate = PSTATE_MODE_EL2h;
218         } else {
219             env->pstate = PSTATE_MODE_EL1h;
220         }
221         env->pc = cpu->rvbar;
222 #endif
223     } else {
224 #if defined(CONFIG_USER_ONLY)
225         /* Userspace expects access to cp10 and cp11 for FP/Neon */
226         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
228     }
229 
230 #if defined(CONFIG_USER_ONLY)
231     env->uncached_cpsr = ARM_CPU_MODE_USR;
232     /* For user mode we must enable access to coprocessors */
233     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235         env->cp15.c15_cpar = 3;
236     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237         env->cp15.c15_cpar = 1;
238     }
239 #else
240 
241     /*
242      * If the highest available EL is EL2, AArch32 will start in Hyp
243      * mode; otherwise it starts in SVC. Note that if we start in
244      * AArch64 then these values in the uncached_cpsr will be ignored.
245      */
246     if (arm_feature(env, ARM_FEATURE_EL2) &&
247         !arm_feature(env, ARM_FEATURE_EL3)) {
248         env->uncached_cpsr = ARM_CPU_MODE_HYP;
249     } else {
250         env->uncached_cpsr = ARM_CPU_MODE_SVC;
251     }
252     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 
254     if (arm_feature(env, ARM_FEATURE_M)) {
255         uint32_t initial_msp; /* Loaded from 0x0 */
256         uint32_t initial_pc; /* Loaded from 0x4 */
257         uint8_t *rom;
258         uint32_t vecbase;
259 
260         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261             env->v7m.secure = true;
262         } else {
263             /* This bit resets to 0 if security is supported, but 1 if
264              * it is not. The bit is not present in v7M, but we set it
265              * here so we can avoid having to make checks on it conditional
266              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267              */
268             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269         }
270 
271         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
272          * that it resets to 1, so QEMU always does that rather than making
273          * it dependent on CPU model. In v8M it is RES1.
274          */
275         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
276         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
277         if (arm_feature(env, ARM_FEATURE_V8)) {
278             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
279             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
281         }
282         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
283             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
284             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
285         }
286 
287         if (arm_feature(env, ARM_FEATURE_VFP)) {
288             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
289             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
290                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
291         }
292         /* Unlike A/R profile, M profile defines the reset LR value */
293         env->regs[14] = 0xffffffff;
294 
295         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
296 
297         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
298         vecbase = env->v7m.vecbase[env->v7m.secure];
299         rom = rom_ptr(vecbase, 8);
300         if (rom) {
301             /* Address zero is covered by ROM which hasn't yet been
302              * copied into physical memory.
303              */
304             initial_msp = ldl_p(rom);
305             initial_pc = ldl_p(rom + 4);
306         } else {
307             /* Address zero not covered by a ROM blob, or the ROM blob
308              * is in non-modifiable memory and this is a second reset after
309              * it got copied into memory. In the latter case, rom_ptr
310              * will return a NULL pointer and we should use ldl_phys instead.
311              */
312             initial_msp = ldl_phys(s->as, vecbase);
313             initial_pc = ldl_phys(s->as, vecbase + 4);
314         }
315 
316         env->regs[13] = initial_msp & 0xFFFFFFFC;
317         env->regs[15] = initial_pc & ~1;
318         env->thumb = initial_pc & 1;
319     }
320 
321     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
322      * executing as AArch32 then check if highvecs are enabled and
323      * adjust the PC accordingly.
324      */
325     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
326         env->regs[15] = 0xFFFF0000;
327     }
328 
329     /* M profile requires that reset clears the exclusive monitor;
330      * A profile does not, but clearing it makes more sense than having it
331      * set with an exclusive access on address zero.
332      */
333     arm_clear_exclusive(env);
334 
335     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
336 #endif
337 
338     if (arm_feature(env, ARM_FEATURE_PMSA)) {
339         if (cpu->pmsav7_dregion > 0) {
340             if (arm_feature(env, ARM_FEATURE_V8)) {
341                 memset(env->pmsav8.rbar[M_REG_NS], 0,
342                        sizeof(*env->pmsav8.rbar[M_REG_NS])
343                        * cpu->pmsav7_dregion);
344                 memset(env->pmsav8.rlar[M_REG_NS], 0,
345                        sizeof(*env->pmsav8.rlar[M_REG_NS])
346                        * cpu->pmsav7_dregion);
347                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
348                     memset(env->pmsav8.rbar[M_REG_S], 0,
349                            sizeof(*env->pmsav8.rbar[M_REG_S])
350                            * cpu->pmsav7_dregion);
351                     memset(env->pmsav8.rlar[M_REG_S], 0,
352                            sizeof(*env->pmsav8.rlar[M_REG_S])
353                            * cpu->pmsav7_dregion);
354                 }
355             } else if (arm_feature(env, ARM_FEATURE_V7)) {
356                 memset(env->pmsav7.drbar, 0,
357                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
358                 memset(env->pmsav7.drsr, 0,
359                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
360                 memset(env->pmsav7.dracr, 0,
361                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
362             }
363         }
364         env->pmsav7.rnr[M_REG_NS] = 0;
365         env->pmsav7.rnr[M_REG_S] = 0;
366         env->pmsav8.mair0[M_REG_NS] = 0;
367         env->pmsav8.mair0[M_REG_S] = 0;
368         env->pmsav8.mair1[M_REG_NS] = 0;
369         env->pmsav8.mair1[M_REG_S] = 0;
370     }
371 
372     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
373         if (cpu->sau_sregion > 0) {
374             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
375             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
376         }
377         env->sau.rnr = 0;
378         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
379          * the Cortex-M33 does.
380          */
381         env->sau.ctrl = 0;
382     }
383 
384     set_flush_to_zero(1, &env->vfp.standard_fp_status);
385     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
386     set_default_nan_mode(1, &env->vfp.standard_fp_status);
387     set_float_detect_tininess(float_tininess_before_rounding,
388                               &env->vfp.fp_status);
389     set_float_detect_tininess(float_tininess_before_rounding,
390                               &env->vfp.standard_fp_status);
391     set_float_detect_tininess(float_tininess_before_rounding,
392                               &env->vfp.fp_status_f16);
393 #ifndef CONFIG_USER_ONLY
394     if (kvm_enabled()) {
395         kvm_arm_reset_vcpu(cpu);
396     }
397 #endif
398 
399     hw_breakpoint_update_all(cpu);
400     hw_watchpoint_update_all(cpu);
401 }
402 
403 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
404 {
405     CPUClass *cc = CPU_GET_CLASS(cs);
406     CPUARMState *env = cs->env_ptr;
407     uint32_t cur_el = arm_current_el(env);
408     bool secure = arm_is_secure(env);
409     uint32_t target_el;
410     uint32_t excp_idx;
411     bool ret = false;
412 
413     if (interrupt_request & CPU_INTERRUPT_FIQ) {
414         excp_idx = EXCP_FIQ;
415         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
416         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
417             cs->exception_index = excp_idx;
418             env->exception.target_el = target_el;
419             cc->do_interrupt(cs);
420             ret = true;
421         }
422     }
423     if (interrupt_request & CPU_INTERRUPT_HARD) {
424         excp_idx = EXCP_IRQ;
425         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427             cs->exception_index = excp_idx;
428             env->exception.target_el = target_el;
429             cc->do_interrupt(cs);
430             ret = true;
431         }
432     }
433     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
434         excp_idx = EXCP_VIRQ;
435         target_el = 1;
436         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437             cs->exception_index = excp_idx;
438             env->exception.target_el = target_el;
439             cc->do_interrupt(cs);
440             ret = true;
441         }
442     }
443     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
444         excp_idx = EXCP_VFIQ;
445         target_el = 1;
446         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447             cs->exception_index = excp_idx;
448             env->exception.target_el = target_el;
449             cc->do_interrupt(cs);
450             ret = true;
451         }
452     }
453 
454     return ret;
455 }
456 
457 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
458 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
459 {
460     CPUClass *cc = CPU_GET_CLASS(cs);
461     ARMCPU *cpu = ARM_CPU(cs);
462     CPUARMState *env = &cpu->env;
463     bool ret = false;
464 
465     /* ARMv7-M interrupt masking works differently than -A or -R.
466      * There is no FIQ/IRQ distinction. Instead of I and F bits
467      * masking FIQ and IRQ interrupts, an exception is taken only
468      * if it is higher priority than the current execution priority
469      * (which depends on state like BASEPRI, FAULTMASK and the
470      * currently active exception).
471      */
472     if (interrupt_request & CPU_INTERRUPT_HARD
473         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
474         cs->exception_index = EXCP_IRQ;
475         cc->do_interrupt(cs);
476         ret = true;
477     }
478     return ret;
479 }
480 #endif
481 
482 void arm_cpu_update_virq(ARMCPU *cpu)
483 {
484     /*
485      * Update the interrupt level for VIRQ, which is the logical OR of
486      * the HCR_EL2.VI bit and the input line level from the GIC.
487      */
488     CPUARMState *env = &cpu->env;
489     CPUState *cs = CPU(cpu);
490 
491     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
492         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
493 
494     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
495         if (new_state) {
496             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
497         } else {
498             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
499         }
500     }
501 }
502 
503 void arm_cpu_update_vfiq(ARMCPU *cpu)
504 {
505     /*
506      * Update the interrupt level for VFIQ, which is the logical OR of
507      * the HCR_EL2.VF bit and the input line level from the GIC.
508      */
509     CPUARMState *env = &cpu->env;
510     CPUState *cs = CPU(cpu);
511 
512     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
513         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
514 
515     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
516         if (new_state) {
517             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
518         } else {
519             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
520         }
521     }
522 }
523 
524 #ifndef CONFIG_USER_ONLY
525 static void arm_cpu_set_irq(void *opaque, int irq, int level)
526 {
527     ARMCPU *cpu = opaque;
528     CPUARMState *env = &cpu->env;
529     CPUState *cs = CPU(cpu);
530     static const int mask[] = {
531         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
532         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
533         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
534         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
535     };
536 
537     if (level) {
538         env->irq_line_state |= mask[irq];
539     } else {
540         env->irq_line_state &= ~mask[irq];
541     }
542 
543     switch (irq) {
544     case ARM_CPU_VIRQ:
545         assert(arm_feature(env, ARM_FEATURE_EL2));
546         arm_cpu_update_virq(cpu);
547         break;
548     case ARM_CPU_VFIQ:
549         assert(arm_feature(env, ARM_FEATURE_EL2));
550         arm_cpu_update_vfiq(cpu);
551         break;
552     case ARM_CPU_IRQ:
553     case ARM_CPU_FIQ:
554         if (level) {
555             cpu_interrupt(cs, mask[irq]);
556         } else {
557             cpu_reset_interrupt(cs, mask[irq]);
558         }
559         break;
560     default:
561         g_assert_not_reached();
562     }
563 }
564 
565 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
566 {
567 #ifdef CONFIG_KVM
568     ARMCPU *cpu = opaque;
569     CPUARMState *env = &cpu->env;
570     CPUState *cs = CPU(cpu);
571     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
572     uint32_t linestate_bit;
573 
574     switch (irq) {
575     case ARM_CPU_IRQ:
576         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
577         linestate_bit = CPU_INTERRUPT_HARD;
578         break;
579     case ARM_CPU_FIQ:
580         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
581         linestate_bit = CPU_INTERRUPT_FIQ;
582         break;
583     default:
584         g_assert_not_reached();
585     }
586 
587     if (level) {
588         env->irq_line_state |= linestate_bit;
589     } else {
590         env->irq_line_state &= ~linestate_bit;
591     }
592 
593     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
594     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
595 #endif
596 }
597 
598 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
599 {
600     ARMCPU *cpu = ARM_CPU(cs);
601     CPUARMState *env = &cpu->env;
602 
603     cpu_synchronize_state(cs);
604     return arm_cpu_data_is_big_endian(env);
605 }
606 
607 #endif
608 
609 static inline void set_feature(CPUARMState *env, int feature)
610 {
611     env->features |= 1ULL << feature;
612 }
613 
614 static inline void unset_feature(CPUARMState *env, int feature)
615 {
616     env->features &= ~(1ULL << feature);
617 }
618 
619 static int
620 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
621 {
622   return print_insn_arm(pc | 1, info);
623 }
624 
625 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
626 {
627     ARMCPU *ac = ARM_CPU(cpu);
628     CPUARMState *env = &ac->env;
629     bool sctlr_b;
630 
631     if (is_a64(env)) {
632         /* We might not be compiled with the A64 disassembler
633          * because it needs a C++ compiler. Leave print_insn
634          * unset in this case to use the caller default behaviour.
635          */
636 #if defined(CONFIG_ARM_A64_DIS)
637         info->print_insn = print_insn_arm_a64;
638 #endif
639         info->cap_arch = CS_ARCH_ARM64;
640         info->cap_insn_unit = 4;
641         info->cap_insn_split = 4;
642     } else {
643         int cap_mode;
644         if (env->thumb) {
645             info->print_insn = print_insn_thumb1;
646             info->cap_insn_unit = 2;
647             info->cap_insn_split = 4;
648             cap_mode = CS_MODE_THUMB;
649         } else {
650             info->print_insn = print_insn_arm;
651             info->cap_insn_unit = 4;
652             info->cap_insn_split = 4;
653             cap_mode = CS_MODE_ARM;
654         }
655         if (arm_feature(env, ARM_FEATURE_V8)) {
656             cap_mode |= CS_MODE_V8;
657         }
658         if (arm_feature(env, ARM_FEATURE_M)) {
659             cap_mode |= CS_MODE_MCLASS;
660         }
661         info->cap_arch = CS_ARCH_ARM;
662         info->cap_mode = cap_mode;
663     }
664 
665     sctlr_b = arm_sctlr_b(env);
666     if (bswap_code(sctlr_b)) {
667 #ifdef TARGET_WORDS_BIGENDIAN
668         info->endian = BFD_ENDIAN_LITTLE;
669 #else
670         info->endian = BFD_ENDIAN_BIG;
671 #endif
672     }
673     info->flags &= ~INSN_ARM_BE32;
674 #ifndef CONFIG_USER_ONLY
675     if (sctlr_b) {
676         info->flags |= INSN_ARM_BE32;
677     }
678 #endif
679 }
680 
681 #ifdef TARGET_AARCH64
682 
683 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
684 {
685     ARMCPU *cpu = ARM_CPU(cs);
686     CPUARMState *env = &cpu->env;
687     uint32_t psr = pstate_read(env);
688     int i;
689     int el = arm_current_el(env);
690     const char *ns_status;
691 
692     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
693     for (i = 0; i < 32; i++) {
694         if (i == 31) {
695             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
696         } else {
697             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
698                          (i + 2) % 3 ? " " : "\n");
699         }
700     }
701 
702     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
703         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
704     } else {
705         ns_status = "";
706     }
707     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
708                  psr,
709                  psr & PSTATE_N ? 'N' : '-',
710                  psr & PSTATE_Z ? 'Z' : '-',
711                  psr & PSTATE_C ? 'C' : '-',
712                  psr & PSTATE_V ? 'V' : '-',
713                  ns_status,
714                  el,
715                  psr & PSTATE_SP ? 'h' : 't');
716 
717     if (cpu_isar_feature(aa64_bti, cpu)) {
718         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
719     }
720     if (!(flags & CPU_DUMP_FPU)) {
721         qemu_fprintf(f, "\n");
722         return;
723     }
724     if (fp_exception_el(env, el) != 0) {
725         qemu_fprintf(f, "    FPU disabled\n");
726         return;
727     }
728     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
729                  vfp_get_fpcr(env), vfp_get_fpsr(env));
730 
731     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
732         int j, zcr_len = sve_zcr_len_for_el(env, el);
733 
734         for (i = 0; i <= FFR_PRED_NUM; i++) {
735             bool eol;
736             if (i == FFR_PRED_NUM) {
737                 qemu_fprintf(f, "FFR=");
738                 /* It's last, so end the line.  */
739                 eol = true;
740             } else {
741                 qemu_fprintf(f, "P%02d=", i);
742                 switch (zcr_len) {
743                 case 0:
744                     eol = i % 8 == 7;
745                     break;
746                 case 1:
747                     eol = i % 6 == 5;
748                     break;
749                 case 2:
750                 case 3:
751                     eol = i % 3 == 2;
752                     break;
753                 default:
754                     /* More than one quadword per predicate.  */
755                     eol = true;
756                     break;
757                 }
758             }
759             for (j = zcr_len / 4; j >= 0; j--) {
760                 int digits;
761                 if (j * 4 + 4 <= zcr_len + 1) {
762                     digits = 16;
763                 } else {
764                     digits = (zcr_len % 4 + 1) * 4;
765                 }
766                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
767                              env->vfp.pregs[i].p[j],
768                              j ? ":" : eol ? "\n" : " ");
769             }
770         }
771 
772         for (i = 0; i < 32; i++) {
773             if (zcr_len == 0) {
774                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
775                              i, env->vfp.zregs[i].d[1],
776                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
777             } else if (zcr_len == 1) {
778                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
779                              ":%016" PRIx64 ":%016" PRIx64 "\n",
780                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
781                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
782             } else {
783                 for (j = zcr_len; j >= 0; j--) {
784                     bool odd = (zcr_len - j) % 2 != 0;
785                     if (j == zcr_len) {
786                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
787                     } else if (!odd) {
788                         if (j > 0) {
789                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
790                         } else {
791                             qemu_fprintf(f, "     [%x]=", j);
792                         }
793                     }
794                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
795                                  env->vfp.zregs[i].d[j * 2 + 1],
796                                  env->vfp.zregs[i].d[j * 2],
797                                  odd || j == 0 ? "\n" : ":");
798                 }
799             }
800         }
801     } else {
802         for (i = 0; i < 32; i++) {
803             uint64_t *q = aa64_vfp_qreg(env, i);
804             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
805                          i, q[1], q[0], (i & 1 ? "\n" : " "));
806         }
807     }
808 }
809 
810 #else
811 
812 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
813 {
814     g_assert_not_reached();
815 }
816 
817 #endif
818 
819 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
820 {
821     ARMCPU *cpu = ARM_CPU(cs);
822     CPUARMState *env = &cpu->env;
823     int i;
824 
825     if (is_a64(env)) {
826         aarch64_cpu_dump_state(cs, f, flags);
827         return;
828     }
829 
830     for (i = 0; i < 16; i++) {
831         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
832         if ((i % 4) == 3) {
833             qemu_fprintf(f, "\n");
834         } else {
835             qemu_fprintf(f, " ");
836         }
837     }
838 
839     if (arm_feature(env, ARM_FEATURE_M)) {
840         uint32_t xpsr = xpsr_read(env);
841         const char *mode;
842         const char *ns_status = "";
843 
844         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
845             ns_status = env->v7m.secure ? "S " : "NS ";
846         }
847 
848         if (xpsr & XPSR_EXCP) {
849             mode = "handler";
850         } else {
851             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
852                 mode = "unpriv-thread";
853             } else {
854                 mode = "priv-thread";
855             }
856         }
857 
858         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
859                      xpsr,
860                      xpsr & XPSR_N ? 'N' : '-',
861                      xpsr & XPSR_Z ? 'Z' : '-',
862                      xpsr & XPSR_C ? 'C' : '-',
863                      xpsr & XPSR_V ? 'V' : '-',
864                      xpsr & XPSR_T ? 'T' : 'A',
865                      ns_status,
866                      mode);
867     } else {
868         uint32_t psr = cpsr_read(env);
869         const char *ns_status = "";
870 
871         if (arm_feature(env, ARM_FEATURE_EL3) &&
872             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
873             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
874         }
875 
876         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
877                      psr,
878                      psr & CPSR_N ? 'N' : '-',
879                      psr & CPSR_Z ? 'Z' : '-',
880                      psr & CPSR_C ? 'C' : '-',
881                      psr & CPSR_V ? 'V' : '-',
882                      psr & CPSR_T ? 'T' : 'A',
883                      ns_status,
884                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
885     }
886 
887     if (flags & CPU_DUMP_FPU) {
888         int numvfpregs = 0;
889         if (arm_feature(env, ARM_FEATURE_VFP)) {
890             numvfpregs += 16;
891         }
892         if (arm_feature(env, ARM_FEATURE_VFP3)) {
893             numvfpregs += 16;
894         }
895         for (i = 0; i < numvfpregs; i++) {
896             uint64_t v = *aa32_vfp_dreg(env, i);
897             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
898                          i * 2, (uint32_t)v,
899                          i * 2 + 1, (uint32_t)(v >> 32),
900                          i, v);
901         }
902         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
903     }
904 }
905 
906 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
907 {
908     uint32_t Aff1 = idx / clustersz;
909     uint32_t Aff0 = idx % clustersz;
910     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
911 }
912 
913 static void cpreg_hashtable_data_destroy(gpointer data)
914 {
915     /*
916      * Destroy function for cpu->cp_regs hashtable data entries.
917      * We must free the name string because it was g_strdup()ed in
918      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
919      * from r->name because we know we definitely allocated it.
920      */
921     ARMCPRegInfo *r = data;
922 
923     g_free((void *)r->name);
924     g_free(r);
925 }
926 
927 static void arm_cpu_initfn(Object *obj)
928 {
929     ARMCPU *cpu = ARM_CPU(obj);
930 
931     cpu_set_cpustate_pointers(cpu);
932     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
933                                          g_free, cpreg_hashtable_data_destroy);
934 
935     QLIST_INIT(&cpu->pre_el_change_hooks);
936     QLIST_INIT(&cpu->el_change_hooks);
937 
938 #ifndef CONFIG_USER_ONLY
939     /* Our inbound IRQ and FIQ lines */
940     if (kvm_enabled()) {
941         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
942          * the same interface as non-KVM CPUs.
943          */
944         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
945     } else {
946         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
947     }
948 
949     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
950                        ARRAY_SIZE(cpu->gt_timer_outputs));
951 
952     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
953                              "gicv3-maintenance-interrupt", 1);
954     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
955                              "pmu-interrupt", 1);
956 #endif
957 
958     /* DTB consumers generally don't in fact care what the 'compatible'
959      * string is, so always provide some string and trust that a hypothetical
960      * picky DTB consumer will also provide a helpful error message.
961      */
962     cpu->dtb_compatible = "qemu,unknown";
963     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
964     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
965 
966     if (tcg_enabled()) {
967         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
968     }
969 }
970 
971 static Property arm_cpu_reset_cbar_property =
972             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
973 
974 static Property arm_cpu_reset_hivecs_property =
975             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
976 
977 static Property arm_cpu_rvbar_property =
978             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
979 
980 static Property arm_cpu_has_el2_property =
981             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
982 
983 static Property arm_cpu_has_el3_property =
984             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
985 
986 static Property arm_cpu_cfgend_property =
987             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
988 
989 /* use property name "pmu" to match other archs and virt tools */
990 static Property arm_cpu_has_pmu_property =
991             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
992 
993 static Property arm_cpu_has_vfp_property =
994             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
995 
996 static Property arm_cpu_has_neon_property =
997             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
998 
999 static Property arm_cpu_has_dsp_property =
1000             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1001 
1002 static Property arm_cpu_has_mpu_property =
1003             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1004 
1005 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1006  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1007  * the right value for that particular CPU type, and we don't want
1008  * to override that with an incorrect constant value.
1009  */
1010 static Property arm_cpu_pmsav7_dregion_property =
1011             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1012                                            pmsav7_dregion,
1013                                            qdev_prop_uint32, uint32_t);
1014 
1015 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1016                                void *opaque, Error **errp)
1017 {
1018     ARMCPU *cpu = ARM_CPU(obj);
1019 
1020     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1021 }
1022 
1023 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1024                                void *opaque, Error **errp)
1025 {
1026     ARMCPU *cpu = ARM_CPU(obj);
1027 
1028     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1029 }
1030 
1031 void arm_cpu_post_init(Object *obj)
1032 {
1033     ARMCPU *cpu = ARM_CPU(obj);
1034 
1035     /* M profile implies PMSA. We have to do this here rather than
1036      * in realize with the other feature-implication checks because
1037      * we look at the PMSA bit to see if we should add some properties.
1038      */
1039     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1040         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1041     }
1042     /* Similarly for the VFP feature bits */
1043     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1044         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1045     }
1046     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1047         set_feature(&cpu->env, ARM_FEATURE_VFP);
1048     }
1049 
1050     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1051         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1052         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1053                                  &error_abort);
1054     }
1055 
1056     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1057         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1058                                  &error_abort);
1059     }
1060 
1061     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1062         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1063                                  &error_abort);
1064     }
1065 
1066     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1067         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1068          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1069          */
1070         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1071                                  &error_abort);
1072 
1073 #ifndef CONFIG_USER_ONLY
1074         object_property_add_link(obj, "secure-memory",
1075                                  TYPE_MEMORY_REGION,
1076                                  (Object **)&cpu->secure_memory,
1077                                  qdev_prop_allow_set_link_before_realize,
1078                                  OBJ_PROP_LINK_STRONG,
1079                                  &error_abort);
1080 #endif
1081     }
1082 
1083     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1084         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1085                                  &error_abort);
1086     }
1087 
1088     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1089         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
1090                                  &error_abort);
1091     }
1092 
1093     /*
1094      * Allow user to turn off VFP and Neon support, but only for TCG --
1095      * KVM does not currently allow us to lie to the guest about its
1096      * ID/feature registers, so the guest always sees what the host has.
1097      */
1098     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1099         cpu->has_vfp = true;
1100         if (!kvm_enabled()) {
1101             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1102                                      &error_abort);
1103         }
1104     }
1105 
1106     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1107         cpu->has_neon = true;
1108         if (!kvm_enabled()) {
1109             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1110                                      &error_abort);
1111         }
1112     }
1113 
1114     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1115         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1116         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1117                                  &error_abort);
1118     }
1119 
1120     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1121         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1122                                  &error_abort);
1123         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1124             qdev_property_add_static(DEVICE(obj),
1125                                      &arm_cpu_pmsav7_dregion_property,
1126                                      &error_abort);
1127         }
1128     }
1129 
1130     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1131         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1132                                  qdev_prop_allow_set_link_before_realize,
1133                                  OBJ_PROP_LINK_STRONG,
1134                                  &error_abort);
1135         /*
1136          * M profile: initial value of the Secure VTOR. We can't just use
1137          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1138          * the property to be set after realize.
1139          */
1140         object_property_add(obj, "init-svtor", "uint32",
1141                             arm_get_init_svtor, arm_set_init_svtor,
1142                             NULL, NULL, &error_abort);
1143     }
1144 
1145     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1146                              &error_abort);
1147 }
1148 
1149 static void arm_cpu_finalizefn(Object *obj)
1150 {
1151     ARMCPU *cpu = ARM_CPU(obj);
1152     ARMELChangeHook *hook, *next;
1153 
1154     g_hash_table_destroy(cpu->cp_regs);
1155 
1156     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1157         QLIST_REMOVE(hook, node);
1158         g_free(hook);
1159     }
1160     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1161         QLIST_REMOVE(hook, node);
1162         g_free(hook);
1163     }
1164 #ifndef CONFIG_USER_ONLY
1165     if (cpu->pmu_timer) {
1166         timer_del(cpu->pmu_timer);
1167         timer_deinit(cpu->pmu_timer);
1168         timer_free(cpu->pmu_timer);
1169     }
1170 #endif
1171 }
1172 
1173 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1174 {
1175     CPUState *cs = CPU(dev);
1176     ARMCPU *cpu = ARM_CPU(dev);
1177     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1178     CPUARMState *env = &cpu->env;
1179     int pagebits;
1180     Error *local_err = NULL;
1181     bool no_aa32 = false;
1182 
1183     /* If we needed to query the host kernel for the CPU features
1184      * then it's possible that might have failed in the initfn, but
1185      * this is the first point where we can report it.
1186      */
1187     if (cpu->host_cpu_probe_failed) {
1188         if (!kvm_enabled()) {
1189             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1190         } else {
1191             error_setg(errp, "Failed to retrieve host CPU features");
1192         }
1193         return;
1194     }
1195 
1196 #ifndef CONFIG_USER_ONLY
1197     /* The NVIC and M-profile CPU are two halves of a single piece of
1198      * hardware; trying to use one without the other is a command line
1199      * error and will result in segfaults if not caught here.
1200      */
1201     if (arm_feature(env, ARM_FEATURE_M)) {
1202         if (!env->nvic) {
1203             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1204             return;
1205         }
1206     } else {
1207         if (env->nvic) {
1208             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1209             return;
1210         }
1211     }
1212 
1213     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1214                                            arm_gt_ptimer_cb, cpu);
1215     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1216                                            arm_gt_vtimer_cb, cpu);
1217     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1218                                           arm_gt_htimer_cb, cpu);
1219     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1220                                           arm_gt_stimer_cb, cpu);
1221 #endif
1222 
1223     cpu_exec_realizefn(cs, &local_err);
1224     if (local_err != NULL) {
1225         error_propagate(errp, local_err);
1226         return;
1227     }
1228 
1229     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1230         cpu->has_vfp != cpu->has_neon) {
1231         /*
1232          * This is an architectural requirement for AArch64; AArch32 is
1233          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1234          */
1235         error_setg(errp,
1236                    "AArch64 CPUs must have both VFP and Neon or neither");
1237         return;
1238     }
1239 
1240     if (!cpu->has_vfp) {
1241         uint64_t t;
1242         uint32_t u;
1243 
1244         unset_feature(env, ARM_FEATURE_VFP);
1245         unset_feature(env, ARM_FEATURE_VFP3);
1246         unset_feature(env, ARM_FEATURE_VFP4);
1247 
1248         t = cpu->isar.id_aa64isar1;
1249         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1250         cpu->isar.id_aa64isar1 = t;
1251 
1252         t = cpu->isar.id_aa64pfr0;
1253         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1254         cpu->isar.id_aa64pfr0 = t;
1255 
1256         u = cpu->isar.id_isar6;
1257         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1258         cpu->isar.id_isar6 = u;
1259 
1260         u = cpu->isar.mvfr0;
1261         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1262         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1263         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1264         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1265         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1266         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1267         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1268         cpu->isar.mvfr0 = u;
1269 
1270         u = cpu->isar.mvfr1;
1271         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1272         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1273         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1274         cpu->isar.mvfr1 = u;
1275 
1276         u = cpu->isar.mvfr2;
1277         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1278         cpu->isar.mvfr2 = u;
1279     }
1280 
1281     if (!cpu->has_neon) {
1282         uint64_t t;
1283         uint32_t u;
1284 
1285         unset_feature(env, ARM_FEATURE_NEON);
1286 
1287         t = cpu->isar.id_aa64isar0;
1288         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1289         cpu->isar.id_aa64isar0 = t;
1290 
1291         t = cpu->isar.id_aa64isar1;
1292         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1293         cpu->isar.id_aa64isar1 = t;
1294 
1295         t = cpu->isar.id_aa64pfr0;
1296         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1297         cpu->isar.id_aa64pfr0 = t;
1298 
1299         u = cpu->isar.id_isar5;
1300         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1301         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1302         cpu->isar.id_isar5 = u;
1303 
1304         u = cpu->isar.id_isar6;
1305         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1306         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1307         cpu->isar.id_isar6 = u;
1308 
1309         u = cpu->isar.mvfr1;
1310         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1311         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1312         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1313         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1314         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1315         cpu->isar.mvfr1 = u;
1316 
1317         u = cpu->isar.mvfr2;
1318         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1319         cpu->isar.mvfr2 = u;
1320     }
1321 
1322     if (!cpu->has_neon && !cpu->has_vfp) {
1323         uint64_t t;
1324         uint32_t u;
1325 
1326         t = cpu->isar.id_aa64isar0;
1327         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1328         cpu->isar.id_aa64isar0 = t;
1329 
1330         t = cpu->isar.id_aa64isar1;
1331         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1332         cpu->isar.id_aa64isar1 = t;
1333 
1334         u = cpu->isar.mvfr0;
1335         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1336         cpu->isar.mvfr0 = u;
1337     }
1338 
1339     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1340         uint32_t u;
1341 
1342         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1343 
1344         u = cpu->isar.id_isar1;
1345         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1346         cpu->isar.id_isar1 = u;
1347 
1348         u = cpu->isar.id_isar2;
1349         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1350         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1351         cpu->isar.id_isar2 = u;
1352 
1353         u = cpu->isar.id_isar3;
1354         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1355         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1356         cpu->isar.id_isar3 = u;
1357     }
1358 
1359     /* Some features automatically imply others: */
1360     if (arm_feature(env, ARM_FEATURE_V8)) {
1361         if (arm_feature(env, ARM_FEATURE_M)) {
1362             set_feature(env, ARM_FEATURE_V7);
1363         } else {
1364             set_feature(env, ARM_FEATURE_V7VE);
1365         }
1366     }
1367 
1368     /*
1369      * There exist AArch64 cpus without AArch32 support.  When KVM
1370      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1371      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1372      */
1373     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1374         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1375     }
1376 
1377     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1378         /* v7 Virtualization Extensions. In real hardware this implies
1379          * EL2 and also the presence of the Security Extensions.
1380          * For QEMU, for backwards-compatibility we implement some
1381          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1382          * include the various other features that V7VE implies.
1383          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1384          * Security Extensions is ARM_FEATURE_EL3.
1385          */
1386         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1387         set_feature(env, ARM_FEATURE_LPAE);
1388         set_feature(env, ARM_FEATURE_V7);
1389     }
1390     if (arm_feature(env, ARM_FEATURE_V7)) {
1391         set_feature(env, ARM_FEATURE_VAPA);
1392         set_feature(env, ARM_FEATURE_THUMB2);
1393         set_feature(env, ARM_FEATURE_MPIDR);
1394         if (!arm_feature(env, ARM_FEATURE_M)) {
1395             set_feature(env, ARM_FEATURE_V6K);
1396         } else {
1397             set_feature(env, ARM_FEATURE_V6);
1398         }
1399 
1400         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1401          * non-EL3 configs. This is needed by some legacy boards.
1402          */
1403         set_feature(env, ARM_FEATURE_VBAR);
1404     }
1405     if (arm_feature(env, ARM_FEATURE_V6K)) {
1406         set_feature(env, ARM_FEATURE_V6);
1407         set_feature(env, ARM_FEATURE_MVFR);
1408     }
1409     if (arm_feature(env, ARM_FEATURE_V6)) {
1410         set_feature(env, ARM_FEATURE_V5);
1411         if (!arm_feature(env, ARM_FEATURE_M)) {
1412             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1413             set_feature(env, ARM_FEATURE_AUXCR);
1414         }
1415     }
1416     if (arm_feature(env, ARM_FEATURE_V5)) {
1417         set_feature(env, ARM_FEATURE_V4T);
1418     }
1419     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1420         set_feature(env, ARM_FEATURE_V7MP);
1421         set_feature(env, ARM_FEATURE_PXN);
1422     }
1423     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1424         set_feature(env, ARM_FEATURE_CBAR);
1425     }
1426     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1427         !arm_feature(env, ARM_FEATURE_M)) {
1428         set_feature(env, ARM_FEATURE_THUMB_DSP);
1429     }
1430 
1431     /*
1432      * We rely on no XScale CPU having VFP so we can use the same bits in the
1433      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1434      */
1435     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1436              arm_feature(env, ARM_FEATURE_XSCALE)));
1437 
1438     if (arm_feature(env, ARM_FEATURE_V7) &&
1439         !arm_feature(env, ARM_FEATURE_M) &&
1440         !arm_feature(env, ARM_FEATURE_PMSA)) {
1441         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1442          * can use 4K pages.
1443          */
1444         pagebits = 12;
1445     } else {
1446         /* For CPUs which might have tiny 1K pages, or which have an
1447          * MPU and might have small region sizes, stick with 1K pages.
1448          */
1449         pagebits = 10;
1450     }
1451     if (!set_preferred_target_page_bits(pagebits)) {
1452         /* This can only ever happen for hotplugging a CPU, or if
1453          * the board code incorrectly creates a CPU which it has
1454          * promised via minimum_page_size that it will not.
1455          */
1456         error_setg(errp, "This CPU requires a smaller page size than the "
1457                    "system is using");
1458         return;
1459     }
1460 
1461     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1462      * We don't support setting cluster ID ([16..23]) (known as Aff2
1463      * in later ARM ARM versions), or any of the higher affinity level fields,
1464      * so these bits always RAZ.
1465      */
1466     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1467         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1468                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1469     }
1470 
1471     if (cpu->reset_hivecs) {
1472             cpu->reset_sctlr |= (1 << 13);
1473     }
1474 
1475     if (cpu->cfgend) {
1476         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1477             cpu->reset_sctlr |= SCTLR_EE;
1478         } else {
1479             cpu->reset_sctlr |= SCTLR_B;
1480         }
1481     }
1482 
1483     if (!cpu->has_el3) {
1484         /* If the has_el3 CPU property is disabled then we need to disable the
1485          * feature.
1486          */
1487         unset_feature(env, ARM_FEATURE_EL3);
1488 
1489         /* Disable the security extension feature bits in the processor feature
1490          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1491          */
1492         cpu->id_pfr1 &= ~0xf0;
1493         cpu->isar.id_aa64pfr0 &= ~0xf000;
1494     }
1495 
1496     if (!cpu->has_el2) {
1497         unset_feature(env, ARM_FEATURE_EL2);
1498     }
1499 
1500     if (!cpu->has_pmu) {
1501         unset_feature(env, ARM_FEATURE_PMU);
1502     }
1503     if (arm_feature(env, ARM_FEATURE_PMU)) {
1504         pmu_init(cpu);
1505 
1506         if (!kvm_enabled()) {
1507             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1508             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1509         }
1510 
1511 #ifndef CONFIG_USER_ONLY
1512         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1513                 cpu);
1514 #endif
1515     } else {
1516         cpu->id_aa64dfr0 &= ~0xf00;
1517         cpu->id_dfr0 &= ~(0xf << 24);
1518         cpu->pmceid0 = 0;
1519         cpu->pmceid1 = 0;
1520     }
1521 
1522     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1523         /* Disable the hypervisor feature bits in the processor feature
1524          * registers if we don't have EL2. These are id_pfr1[15:12] and
1525          * id_aa64pfr0_el1[11:8].
1526          */
1527         cpu->isar.id_aa64pfr0 &= ~0xf00;
1528         cpu->id_pfr1 &= ~0xf000;
1529     }
1530 
1531     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1532      * to false or by setting pmsav7-dregion to 0.
1533      */
1534     if (!cpu->has_mpu) {
1535         cpu->pmsav7_dregion = 0;
1536     }
1537     if (cpu->pmsav7_dregion == 0) {
1538         cpu->has_mpu = false;
1539     }
1540 
1541     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1542         arm_feature(env, ARM_FEATURE_V7)) {
1543         uint32_t nr = cpu->pmsav7_dregion;
1544 
1545         if (nr > 0xff) {
1546             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1547             return;
1548         }
1549 
1550         if (nr) {
1551             if (arm_feature(env, ARM_FEATURE_V8)) {
1552                 /* PMSAv8 */
1553                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1554                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1555                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1556                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1557                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1558                 }
1559             } else {
1560                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1561                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1562                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1563             }
1564         }
1565     }
1566 
1567     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1568         uint32_t nr = cpu->sau_sregion;
1569 
1570         if (nr > 0xff) {
1571             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1572             return;
1573         }
1574 
1575         if (nr) {
1576             env->sau.rbar = g_new0(uint32_t, nr);
1577             env->sau.rlar = g_new0(uint32_t, nr);
1578         }
1579     }
1580 
1581     if (arm_feature(env, ARM_FEATURE_EL3)) {
1582         set_feature(env, ARM_FEATURE_VBAR);
1583     }
1584 
1585     register_cp_regs_for_features(cpu);
1586     arm_cpu_register_gdb_regs_for_features(cpu);
1587 
1588     init_cpreg_list(cpu);
1589 
1590 #ifndef CONFIG_USER_ONLY
1591     MachineState *ms = MACHINE(qdev_get_machine());
1592     unsigned int smp_cpus = ms->smp.cpus;
1593 
1594     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1595         cs->num_ases = 2;
1596 
1597         if (!cpu->secure_memory) {
1598             cpu->secure_memory = cs->memory;
1599         }
1600         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1601                                cpu->secure_memory);
1602     } else {
1603         cs->num_ases = 1;
1604     }
1605     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1606 
1607     /* No core_count specified, default to smp_cpus. */
1608     if (cpu->core_count == -1) {
1609         cpu->core_count = smp_cpus;
1610     }
1611 #endif
1612 
1613     qemu_init_vcpu(cs);
1614     cpu_reset(cs);
1615 
1616     acc->parent_realize(dev, errp);
1617 }
1618 
1619 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1620 {
1621     ObjectClass *oc;
1622     char *typename;
1623     char **cpuname;
1624     const char *cpunamestr;
1625 
1626     cpuname = g_strsplit(cpu_model, ",", 1);
1627     cpunamestr = cpuname[0];
1628 #ifdef CONFIG_USER_ONLY
1629     /* For backwards compatibility usermode emulation allows "-cpu any",
1630      * which has the same semantics as "-cpu max".
1631      */
1632     if (!strcmp(cpunamestr, "any")) {
1633         cpunamestr = "max";
1634     }
1635 #endif
1636     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1637     oc = object_class_by_name(typename);
1638     g_strfreev(cpuname);
1639     g_free(typename);
1640     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1641         object_class_is_abstract(oc)) {
1642         return NULL;
1643     }
1644     return oc;
1645 }
1646 
1647 /* CPU models. These are not needed for the AArch64 linux-user build. */
1648 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1649 
1650 static void arm926_initfn(Object *obj)
1651 {
1652     ARMCPU *cpu = ARM_CPU(obj);
1653 
1654     cpu->dtb_compatible = "arm,arm926";
1655     set_feature(&cpu->env, ARM_FEATURE_V5);
1656     set_feature(&cpu->env, ARM_FEATURE_VFP);
1657     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1658     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1659     cpu->midr = 0x41069265;
1660     cpu->reset_fpsid = 0x41011090;
1661     cpu->ctr = 0x1dd20d2;
1662     cpu->reset_sctlr = 0x00090078;
1663 
1664     /*
1665      * ARMv5 does not have the ID_ISAR registers, but we can still
1666      * set the field to indicate Jazelle support within QEMU.
1667      */
1668     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1669     /*
1670      * Similarly, we need to set MVFR0 fields to enable double precision
1671      * and short vector support even though ARMv5 doesn't have this register.
1672      */
1673     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1674     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1675 }
1676 
1677 static void arm946_initfn(Object *obj)
1678 {
1679     ARMCPU *cpu = ARM_CPU(obj);
1680 
1681     cpu->dtb_compatible = "arm,arm946";
1682     set_feature(&cpu->env, ARM_FEATURE_V5);
1683     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1684     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1685     cpu->midr = 0x41059461;
1686     cpu->ctr = 0x0f004006;
1687     cpu->reset_sctlr = 0x00000078;
1688 }
1689 
1690 static void arm1026_initfn(Object *obj)
1691 {
1692     ARMCPU *cpu = ARM_CPU(obj);
1693 
1694     cpu->dtb_compatible = "arm,arm1026";
1695     set_feature(&cpu->env, ARM_FEATURE_V5);
1696     set_feature(&cpu->env, ARM_FEATURE_VFP);
1697     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1698     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1699     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1700     cpu->midr = 0x4106a262;
1701     cpu->reset_fpsid = 0x410110a0;
1702     cpu->ctr = 0x1dd20d2;
1703     cpu->reset_sctlr = 0x00090078;
1704     cpu->reset_auxcr = 1;
1705 
1706     /*
1707      * ARMv5 does not have the ID_ISAR registers, but we can still
1708      * set the field to indicate Jazelle support within QEMU.
1709      */
1710     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1711     /*
1712      * Similarly, we need to set MVFR0 fields to enable double precision
1713      * and short vector support even though ARMv5 doesn't have this register.
1714      */
1715     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1716     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1717 
1718     {
1719         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1720         ARMCPRegInfo ifar = {
1721             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1722             .access = PL1_RW,
1723             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1724             .resetvalue = 0
1725         };
1726         define_one_arm_cp_reg(cpu, &ifar);
1727     }
1728 }
1729 
1730 static void arm1136_r2_initfn(Object *obj)
1731 {
1732     ARMCPU *cpu = ARM_CPU(obj);
1733     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1734      * older core than plain "arm1136". In particular this does not
1735      * have the v6K features.
1736      * These ID register values are correct for 1136 but may be wrong
1737      * for 1136_r2 (in particular r0p2 does not actually implement most
1738      * of the ID registers).
1739      */
1740 
1741     cpu->dtb_compatible = "arm,arm1136";
1742     set_feature(&cpu->env, ARM_FEATURE_V6);
1743     set_feature(&cpu->env, ARM_FEATURE_VFP);
1744     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1746     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1747     cpu->midr = 0x4107b362;
1748     cpu->reset_fpsid = 0x410120b4;
1749     cpu->isar.mvfr0 = 0x11111111;
1750     cpu->isar.mvfr1 = 0x00000000;
1751     cpu->ctr = 0x1dd20d2;
1752     cpu->reset_sctlr = 0x00050078;
1753     cpu->id_pfr0 = 0x111;
1754     cpu->id_pfr1 = 0x1;
1755     cpu->id_dfr0 = 0x2;
1756     cpu->id_afr0 = 0x3;
1757     cpu->id_mmfr0 = 0x01130003;
1758     cpu->id_mmfr1 = 0x10030302;
1759     cpu->id_mmfr2 = 0x01222110;
1760     cpu->isar.id_isar0 = 0x00140011;
1761     cpu->isar.id_isar1 = 0x12002111;
1762     cpu->isar.id_isar2 = 0x11231111;
1763     cpu->isar.id_isar3 = 0x01102131;
1764     cpu->isar.id_isar4 = 0x141;
1765     cpu->reset_auxcr = 7;
1766 }
1767 
1768 static void arm1136_initfn(Object *obj)
1769 {
1770     ARMCPU *cpu = ARM_CPU(obj);
1771 
1772     cpu->dtb_compatible = "arm,arm1136";
1773     set_feature(&cpu->env, ARM_FEATURE_V6K);
1774     set_feature(&cpu->env, ARM_FEATURE_V6);
1775     set_feature(&cpu->env, ARM_FEATURE_VFP);
1776     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1777     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1778     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1779     cpu->midr = 0x4117b363;
1780     cpu->reset_fpsid = 0x410120b4;
1781     cpu->isar.mvfr0 = 0x11111111;
1782     cpu->isar.mvfr1 = 0x00000000;
1783     cpu->ctr = 0x1dd20d2;
1784     cpu->reset_sctlr = 0x00050078;
1785     cpu->id_pfr0 = 0x111;
1786     cpu->id_pfr1 = 0x1;
1787     cpu->id_dfr0 = 0x2;
1788     cpu->id_afr0 = 0x3;
1789     cpu->id_mmfr0 = 0x01130003;
1790     cpu->id_mmfr1 = 0x10030302;
1791     cpu->id_mmfr2 = 0x01222110;
1792     cpu->isar.id_isar0 = 0x00140011;
1793     cpu->isar.id_isar1 = 0x12002111;
1794     cpu->isar.id_isar2 = 0x11231111;
1795     cpu->isar.id_isar3 = 0x01102131;
1796     cpu->isar.id_isar4 = 0x141;
1797     cpu->reset_auxcr = 7;
1798 }
1799 
1800 static void arm1176_initfn(Object *obj)
1801 {
1802     ARMCPU *cpu = ARM_CPU(obj);
1803 
1804     cpu->dtb_compatible = "arm,arm1176";
1805     set_feature(&cpu->env, ARM_FEATURE_V6K);
1806     set_feature(&cpu->env, ARM_FEATURE_VFP);
1807     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1808     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1809     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1810     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1811     set_feature(&cpu->env, ARM_FEATURE_EL3);
1812     cpu->midr = 0x410fb767;
1813     cpu->reset_fpsid = 0x410120b5;
1814     cpu->isar.mvfr0 = 0x11111111;
1815     cpu->isar.mvfr1 = 0x00000000;
1816     cpu->ctr = 0x1dd20d2;
1817     cpu->reset_sctlr = 0x00050078;
1818     cpu->id_pfr0 = 0x111;
1819     cpu->id_pfr1 = 0x11;
1820     cpu->id_dfr0 = 0x33;
1821     cpu->id_afr0 = 0;
1822     cpu->id_mmfr0 = 0x01130003;
1823     cpu->id_mmfr1 = 0x10030302;
1824     cpu->id_mmfr2 = 0x01222100;
1825     cpu->isar.id_isar0 = 0x0140011;
1826     cpu->isar.id_isar1 = 0x12002111;
1827     cpu->isar.id_isar2 = 0x11231121;
1828     cpu->isar.id_isar3 = 0x01102131;
1829     cpu->isar.id_isar4 = 0x01141;
1830     cpu->reset_auxcr = 7;
1831 }
1832 
1833 static void arm11mpcore_initfn(Object *obj)
1834 {
1835     ARMCPU *cpu = ARM_CPU(obj);
1836 
1837     cpu->dtb_compatible = "arm,arm11mpcore";
1838     set_feature(&cpu->env, ARM_FEATURE_V6K);
1839     set_feature(&cpu->env, ARM_FEATURE_VFP);
1840     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1841     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1842     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1843     cpu->midr = 0x410fb022;
1844     cpu->reset_fpsid = 0x410120b4;
1845     cpu->isar.mvfr0 = 0x11111111;
1846     cpu->isar.mvfr1 = 0x00000000;
1847     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1848     cpu->id_pfr0 = 0x111;
1849     cpu->id_pfr1 = 0x1;
1850     cpu->id_dfr0 = 0;
1851     cpu->id_afr0 = 0x2;
1852     cpu->id_mmfr0 = 0x01100103;
1853     cpu->id_mmfr1 = 0x10020302;
1854     cpu->id_mmfr2 = 0x01222000;
1855     cpu->isar.id_isar0 = 0x00100011;
1856     cpu->isar.id_isar1 = 0x12002111;
1857     cpu->isar.id_isar2 = 0x11221011;
1858     cpu->isar.id_isar3 = 0x01102131;
1859     cpu->isar.id_isar4 = 0x141;
1860     cpu->reset_auxcr = 1;
1861 }
1862 
1863 static void cortex_m0_initfn(Object *obj)
1864 {
1865     ARMCPU *cpu = ARM_CPU(obj);
1866     set_feature(&cpu->env, ARM_FEATURE_V6);
1867     set_feature(&cpu->env, ARM_FEATURE_M);
1868 
1869     cpu->midr = 0x410cc200;
1870 }
1871 
1872 static void cortex_m3_initfn(Object *obj)
1873 {
1874     ARMCPU *cpu = ARM_CPU(obj);
1875     set_feature(&cpu->env, ARM_FEATURE_V7);
1876     set_feature(&cpu->env, ARM_FEATURE_M);
1877     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1878     cpu->midr = 0x410fc231;
1879     cpu->pmsav7_dregion = 8;
1880     cpu->id_pfr0 = 0x00000030;
1881     cpu->id_pfr1 = 0x00000200;
1882     cpu->id_dfr0 = 0x00100000;
1883     cpu->id_afr0 = 0x00000000;
1884     cpu->id_mmfr0 = 0x00000030;
1885     cpu->id_mmfr1 = 0x00000000;
1886     cpu->id_mmfr2 = 0x00000000;
1887     cpu->id_mmfr3 = 0x00000000;
1888     cpu->isar.id_isar0 = 0x01141110;
1889     cpu->isar.id_isar1 = 0x02111000;
1890     cpu->isar.id_isar2 = 0x21112231;
1891     cpu->isar.id_isar3 = 0x01111110;
1892     cpu->isar.id_isar4 = 0x01310102;
1893     cpu->isar.id_isar5 = 0x00000000;
1894     cpu->isar.id_isar6 = 0x00000000;
1895 }
1896 
1897 static void cortex_m4_initfn(Object *obj)
1898 {
1899     ARMCPU *cpu = ARM_CPU(obj);
1900 
1901     set_feature(&cpu->env, ARM_FEATURE_V7);
1902     set_feature(&cpu->env, ARM_FEATURE_M);
1903     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1904     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1905     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1906     cpu->midr = 0x410fc240; /* r0p0 */
1907     cpu->pmsav7_dregion = 8;
1908     cpu->isar.mvfr0 = 0x10110021;
1909     cpu->isar.mvfr1 = 0x11000011;
1910     cpu->isar.mvfr2 = 0x00000000;
1911     cpu->id_pfr0 = 0x00000030;
1912     cpu->id_pfr1 = 0x00000200;
1913     cpu->id_dfr0 = 0x00100000;
1914     cpu->id_afr0 = 0x00000000;
1915     cpu->id_mmfr0 = 0x00000030;
1916     cpu->id_mmfr1 = 0x00000000;
1917     cpu->id_mmfr2 = 0x00000000;
1918     cpu->id_mmfr3 = 0x00000000;
1919     cpu->isar.id_isar0 = 0x01141110;
1920     cpu->isar.id_isar1 = 0x02111000;
1921     cpu->isar.id_isar2 = 0x21112231;
1922     cpu->isar.id_isar3 = 0x01111110;
1923     cpu->isar.id_isar4 = 0x01310102;
1924     cpu->isar.id_isar5 = 0x00000000;
1925     cpu->isar.id_isar6 = 0x00000000;
1926 }
1927 
1928 static void cortex_m33_initfn(Object *obj)
1929 {
1930     ARMCPU *cpu = ARM_CPU(obj);
1931 
1932     set_feature(&cpu->env, ARM_FEATURE_V8);
1933     set_feature(&cpu->env, ARM_FEATURE_M);
1934     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1935     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1936     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1937     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1938     cpu->midr = 0x410fd213; /* r0p3 */
1939     cpu->pmsav7_dregion = 16;
1940     cpu->sau_sregion = 8;
1941     cpu->isar.mvfr0 = 0x10110021;
1942     cpu->isar.mvfr1 = 0x11000011;
1943     cpu->isar.mvfr2 = 0x00000040;
1944     cpu->id_pfr0 = 0x00000030;
1945     cpu->id_pfr1 = 0x00000210;
1946     cpu->id_dfr0 = 0x00200000;
1947     cpu->id_afr0 = 0x00000000;
1948     cpu->id_mmfr0 = 0x00101F40;
1949     cpu->id_mmfr1 = 0x00000000;
1950     cpu->id_mmfr2 = 0x01000000;
1951     cpu->id_mmfr3 = 0x00000000;
1952     cpu->isar.id_isar0 = 0x01101110;
1953     cpu->isar.id_isar1 = 0x02212000;
1954     cpu->isar.id_isar2 = 0x20232232;
1955     cpu->isar.id_isar3 = 0x01111131;
1956     cpu->isar.id_isar4 = 0x01310132;
1957     cpu->isar.id_isar5 = 0x00000000;
1958     cpu->isar.id_isar6 = 0x00000000;
1959     cpu->clidr = 0x00000000;
1960     cpu->ctr = 0x8000c000;
1961 }
1962 
1963 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1964 {
1965     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1966     CPUClass *cc = CPU_CLASS(oc);
1967 
1968     acc->info = data;
1969 #ifndef CONFIG_USER_ONLY
1970     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1971 #endif
1972 
1973     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1974 }
1975 
1976 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1977     /* Dummy the TCM region regs for the moment */
1978     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1979       .access = PL1_RW, .type = ARM_CP_CONST },
1980     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1981       .access = PL1_RW, .type = ARM_CP_CONST },
1982     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1983       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1984     REGINFO_SENTINEL
1985 };
1986 
1987 static void cortex_r5_initfn(Object *obj)
1988 {
1989     ARMCPU *cpu = ARM_CPU(obj);
1990 
1991     set_feature(&cpu->env, ARM_FEATURE_V7);
1992     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1993     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1994     cpu->midr = 0x411fc153; /* r1p3 */
1995     cpu->id_pfr0 = 0x0131;
1996     cpu->id_pfr1 = 0x001;
1997     cpu->id_dfr0 = 0x010400;
1998     cpu->id_afr0 = 0x0;
1999     cpu->id_mmfr0 = 0x0210030;
2000     cpu->id_mmfr1 = 0x00000000;
2001     cpu->id_mmfr2 = 0x01200000;
2002     cpu->id_mmfr3 = 0x0211;
2003     cpu->isar.id_isar0 = 0x02101111;
2004     cpu->isar.id_isar1 = 0x13112111;
2005     cpu->isar.id_isar2 = 0x21232141;
2006     cpu->isar.id_isar3 = 0x01112131;
2007     cpu->isar.id_isar4 = 0x0010142;
2008     cpu->isar.id_isar5 = 0x0;
2009     cpu->isar.id_isar6 = 0x0;
2010     cpu->mp_is_up = true;
2011     cpu->pmsav7_dregion = 16;
2012     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2013 }
2014 
2015 static void cortex_r5f_initfn(Object *obj)
2016 {
2017     ARMCPU *cpu = ARM_CPU(obj);
2018 
2019     cortex_r5_initfn(obj);
2020     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2021     cpu->isar.mvfr0 = 0x10110221;
2022     cpu->isar.mvfr1 = 0x00000011;
2023 }
2024 
2025 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2026     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2027       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2028     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2029       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2030     REGINFO_SENTINEL
2031 };
2032 
2033 static void cortex_a8_initfn(Object *obj)
2034 {
2035     ARMCPU *cpu = ARM_CPU(obj);
2036 
2037     cpu->dtb_compatible = "arm,cortex-a8";
2038     set_feature(&cpu->env, ARM_FEATURE_V7);
2039     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2040     set_feature(&cpu->env, ARM_FEATURE_NEON);
2041     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2042     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2043     set_feature(&cpu->env, ARM_FEATURE_EL3);
2044     cpu->midr = 0x410fc080;
2045     cpu->reset_fpsid = 0x410330c0;
2046     cpu->isar.mvfr0 = 0x11110222;
2047     cpu->isar.mvfr1 = 0x00011111;
2048     cpu->ctr = 0x82048004;
2049     cpu->reset_sctlr = 0x00c50078;
2050     cpu->id_pfr0 = 0x1031;
2051     cpu->id_pfr1 = 0x11;
2052     cpu->id_dfr0 = 0x400;
2053     cpu->id_afr0 = 0;
2054     cpu->id_mmfr0 = 0x31100003;
2055     cpu->id_mmfr1 = 0x20000000;
2056     cpu->id_mmfr2 = 0x01202000;
2057     cpu->id_mmfr3 = 0x11;
2058     cpu->isar.id_isar0 = 0x00101111;
2059     cpu->isar.id_isar1 = 0x12112111;
2060     cpu->isar.id_isar2 = 0x21232031;
2061     cpu->isar.id_isar3 = 0x11112131;
2062     cpu->isar.id_isar4 = 0x00111142;
2063     cpu->dbgdidr = 0x15141000;
2064     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2065     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2066     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2067     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2068     cpu->reset_auxcr = 2;
2069     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2070 }
2071 
2072 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2073     /* power_control should be set to maximum latency. Again,
2074      * default to 0 and set by private hook
2075      */
2076     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2077       .access = PL1_RW, .resetvalue = 0,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2079     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2080       .access = PL1_RW, .resetvalue = 0,
2081       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2082     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2083       .access = PL1_RW, .resetvalue = 0,
2084       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2085     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2086       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2087     /* TLB lockdown control */
2088     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2089       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2090     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2091       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2092     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2093       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2094     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2095       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2096     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2097       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2098     REGINFO_SENTINEL
2099 };
2100 
2101 static void cortex_a9_initfn(Object *obj)
2102 {
2103     ARMCPU *cpu = ARM_CPU(obj);
2104 
2105     cpu->dtb_compatible = "arm,cortex-a9";
2106     set_feature(&cpu->env, ARM_FEATURE_V7);
2107     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2108     set_feature(&cpu->env, ARM_FEATURE_NEON);
2109     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2110     set_feature(&cpu->env, ARM_FEATURE_EL3);
2111     /* Note that A9 supports the MP extensions even for
2112      * A9UP and single-core A9MP (which are both different
2113      * and valid configurations; we don't model A9UP).
2114      */
2115     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2116     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2117     cpu->midr = 0x410fc090;
2118     cpu->reset_fpsid = 0x41033090;
2119     cpu->isar.mvfr0 = 0x11110222;
2120     cpu->isar.mvfr1 = 0x01111111;
2121     cpu->ctr = 0x80038003;
2122     cpu->reset_sctlr = 0x00c50078;
2123     cpu->id_pfr0 = 0x1031;
2124     cpu->id_pfr1 = 0x11;
2125     cpu->id_dfr0 = 0x000;
2126     cpu->id_afr0 = 0;
2127     cpu->id_mmfr0 = 0x00100103;
2128     cpu->id_mmfr1 = 0x20000000;
2129     cpu->id_mmfr2 = 0x01230000;
2130     cpu->id_mmfr3 = 0x00002111;
2131     cpu->isar.id_isar0 = 0x00101111;
2132     cpu->isar.id_isar1 = 0x13112111;
2133     cpu->isar.id_isar2 = 0x21232041;
2134     cpu->isar.id_isar3 = 0x11112131;
2135     cpu->isar.id_isar4 = 0x00111142;
2136     cpu->dbgdidr = 0x35141000;
2137     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2138     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2139     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2140     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2141 }
2142 
2143 #ifndef CONFIG_USER_ONLY
2144 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2145 {
2146     MachineState *ms = MACHINE(qdev_get_machine());
2147 
2148     /* Linux wants the number of processors from here.
2149      * Might as well set the interrupt-controller bit too.
2150      */
2151     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2152 }
2153 #endif
2154 
2155 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2156 #ifndef CONFIG_USER_ONLY
2157     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2158       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2159       .writefn = arm_cp_write_ignore, },
2160 #endif
2161     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2162       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2163     REGINFO_SENTINEL
2164 };
2165 
2166 static void cortex_a7_initfn(Object *obj)
2167 {
2168     ARMCPU *cpu = ARM_CPU(obj);
2169 
2170     cpu->dtb_compatible = "arm,cortex-a7";
2171     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2172     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2173     set_feature(&cpu->env, ARM_FEATURE_NEON);
2174     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2175     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2176     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2177     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2178     set_feature(&cpu->env, ARM_FEATURE_EL2);
2179     set_feature(&cpu->env, ARM_FEATURE_EL3);
2180     set_feature(&cpu->env, ARM_FEATURE_PMU);
2181     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2182     cpu->midr = 0x410fc075;
2183     cpu->reset_fpsid = 0x41023075;
2184     cpu->isar.mvfr0 = 0x10110222;
2185     cpu->isar.mvfr1 = 0x11111111;
2186     cpu->ctr = 0x84448003;
2187     cpu->reset_sctlr = 0x00c50078;
2188     cpu->id_pfr0 = 0x00001131;
2189     cpu->id_pfr1 = 0x00011011;
2190     cpu->id_dfr0 = 0x02010555;
2191     cpu->id_afr0 = 0x00000000;
2192     cpu->id_mmfr0 = 0x10101105;
2193     cpu->id_mmfr1 = 0x40000000;
2194     cpu->id_mmfr2 = 0x01240000;
2195     cpu->id_mmfr3 = 0x02102211;
2196     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2197      * table 4-41 gives 0x02101110, which includes the arm div insns.
2198      */
2199     cpu->isar.id_isar0 = 0x02101110;
2200     cpu->isar.id_isar1 = 0x13112111;
2201     cpu->isar.id_isar2 = 0x21232041;
2202     cpu->isar.id_isar3 = 0x11112131;
2203     cpu->isar.id_isar4 = 0x10011142;
2204     cpu->dbgdidr = 0x3515f005;
2205     cpu->clidr = 0x0a200023;
2206     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2207     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2208     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2209     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2210 }
2211 
2212 static void cortex_a15_initfn(Object *obj)
2213 {
2214     ARMCPU *cpu = ARM_CPU(obj);
2215 
2216     cpu->dtb_compatible = "arm,cortex-a15";
2217     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2218     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2219     set_feature(&cpu->env, ARM_FEATURE_NEON);
2220     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2221     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2222     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2223     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2224     set_feature(&cpu->env, ARM_FEATURE_EL2);
2225     set_feature(&cpu->env, ARM_FEATURE_EL3);
2226     set_feature(&cpu->env, ARM_FEATURE_PMU);
2227     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2228     cpu->midr = 0x412fc0f1;
2229     cpu->reset_fpsid = 0x410430f0;
2230     cpu->isar.mvfr0 = 0x10110222;
2231     cpu->isar.mvfr1 = 0x11111111;
2232     cpu->ctr = 0x8444c004;
2233     cpu->reset_sctlr = 0x00c50078;
2234     cpu->id_pfr0 = 0x00001131;
2235     cpu->id_pfr1 = 0x00011011;
2236     cpu->id_dfr0 = 0x02010555;
2237     cpu->id_afr0 = 0x00000000;
2238     cpu->id_mmfr0 = 0x10201105;
2239     cpu->id_mmfr1 = 0x20000000;
2240     cpu->id_mmfr2 = 0x01240000;
2241     cpu->id_mmfr3 = 0x02102211;
2242     cpu->isar.id_isar0 = 0x02101110;
2243     cpu->isar.id_isar1 = 0x13112111;
2244     cpu->isar.id_isar2 = 0x21232041;
2245     cpu->isar.id_isar3 = 0x11112131;
2246     cpu->isar.id_isar4 = 0x10011142;
2247     cpu->dbgdidr = 0x3515f021;
2248     cpu->clidr = 0x0a200023;
2249     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2250     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2251     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2252     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2253 }
2254 
2255 static void ti925t_initfn(Object *obj)
2256 {
2257     ARMCPU *cpu = ARM_CPU(obj);
2258     set_feature(&cpu->env, ARM_FEATURE_V4T);
2259     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2260     cpu->midr = ARM_CPUID_TI925T;
2261     cpu->ctr = 0x5109149;
2262     cpu->reset_sctlr = 0x00000070;
2263 }
2264 
2265 static void sa1100_initfn(Object *obj)
2266 {
2267     ARMCPU *cpu = ARM_CPU(obj);
2268 
2269     cpu->dtb_compatible = "intel,sa1100";
2270     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2271     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2272     cpu->midr = 0x4401A11B;
2273     cpu->reset_sctlr = 0x00000070;
2274 }
2275 
2276 static void sa1110_initfn(Object *obj)
2277 {
2278     ARMCPU *cpu = ARM_CPU(obj);
2279     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2280     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2281     cpu->midr = 0x6901B119;
2282     cpu->reset_sctlr = 0x00000070;
2283 }
2284 
2285 static void pxa250_initfn(Object *obj)
2286 {
2287     ARMCPU *cpu = ARM_CPU(obj);
2288 
2289     cpu->dtb_compatible = "marvell,xscale";
2290     set_feature(&cpu->env, ARM_FEATURE_V5);
2291     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2292     cpu->midr = 0x69052100;
2293     cpu->ctr = 0xd172172;
2294     cpu->reset_sctlr = 0x00000078;
2295 }
2296 
2297 static void pxa255_initfn(Object *obj)
2298 {
2299     ARMCPU *cpu = ARM_CPU(obj);
2300 
2301     cpu->dtb_compatible = "marvell,xscale";
2302     set_feature(&cpu->env, ARM_FEATURE_V5);
2303     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2304     cpu->midr = 0x69052d00;
2305     cpu->ctr = 0xd172172;
2306     cpu->reset_sctlr = 0x00000078;
2307 }
2308 
2309 static void pxa260_initfn(Object *obj)
2310 {
2311     ARMCPU *cpu = ARM_CPU(obj);
2312 
2313     cpu->dtb_compatible = "marvell,xscale";
2314     set_feature(&cpu->env, ARM_FEATURE_V5);
2315     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2316     cpu->midr = 0x69052903;
2317     cpu->ctr = 0xd172172;
2318     cpu->reset_sctlr = 0x00000078;
2319 }
2320 
2321 static void pxa261_initfn(Object *obj)
2322 {
2323     ARMCPU *cpu = ARM_CPU(obj);
2324 
2325     cpu->dtb_compatible = "marvell,xscale";
2326     set_feature(&cpu->env, ARM_FEATURE_V5);
2327     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2328     cpu->midr = 0x69052d05;
2329     cpu->ctr = 0xd172172;
2330     cpu->reset_sctlr = 0x00000078;
2331 }
2332 
2333 static void pxa262_initfn(Object *obj)
2334 {
2335     ARMCPU *cpu = ARM_CPU(obj);
2336 
2337     cpu->dtb_compatible = "marvell,xscale";
2338     set_feature(&cpu->env, ARM_FEATURE_V5);
2339     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2340     cpu->midr = 0x69052d06;
2341     cpu->ctr = 0xd172172;
2342     cpu->reset_sctlr = 0x00000078;
2343 }
2344 
2345 static void pxa270a0_initfn(Object *obj)
2346 {
2347     ARMCPU *cpu = ARM_CPU(obj);
2348 
2349     cpu->dtb_compatible = "marvell,xscale";
2350     set_feature(&cpu->env, ARM_FEATURE_V5);
2351     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2352     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2353     cpu->midr = 0x69054110;
2354     cpu->ctr = 0xd172172;
2355     cpu->reset_sctlr = 0x00000078;
2356 }
2357 
2358 static void pxa270a1_initfn(Object *obj)
2359 {
2360     ARMCPU *cpu = ARM_CPU(obj);
2361 
2362     cpu->dtb_compatible = "marvell,xscale";
2363     set_feature(&cpu->env, ARM_FEATURE_V5);
2364     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2365     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2366     cpu->midr = 0x69054111;
2367     cpu->ctr = 0xd172172;
2368     cpu->reset_sctlr = 0x00000078;
2369 }
2370 
2371 static void pxa270b0_initfn(Object *obj)
2372 {
2373     ARMCPU *cpu = ARM_CPU(obj);
2374 
2375     cpu->dtb_compatible = "marvell,xscale";
2376     set_feature(&cpu->env, ARM_FEATURE_V5);
2377     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2378     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2379     cpu->midr = 0x69054112;
2380     cpu->ctr = 0xd172172;
2381     cpu->reset_sctlr = 0x00000078;
2382 }
2383 
2384 static void pxa270b1_initfn(Object *obj)
2385 {
2386     ARMCPU *cpu = ARM_CPU(obj);
2387 
2388     cpu->dtb_compatible = "marvell,xscale";
2389     set_feature(&cpu->env, ARM_FEATURE_V5);
2390     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2391     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2392     cpu->midr = 0x69054113;
2393     cpu->ctr = 0xd172172;
2394     cpu->reset_sctlr = 0x00000078;
2395 }
2396 
2397 static void pxa270c0_initfn(Object *obj)
2398 {
2399     ARMCPU *cpu = ARM_CPU(obj);
2400 
2401     cpu->dtb_compatible = "marvell,xscale";
2402     set_feature(&cpu->env, ARM_FEATURE_V5);
2403     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2404     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2405     cpu->midr = 0x69054114;
2406     cpu->ctr = 0xd172172;
2407     cpu->reset_sctlr = 0x00000078;
2408 }
2409 
2410 static void pxa270c5_initfn(Object *obj)
2411 {
2412     ARMCPU *cpu = ARM_CPU(obj);
2413 
2414     cpu->dtb_compatible = "marvell,xscale";
2415     set_feature(&cpu->env, ARM_FEATURE_V5);
2416     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2417     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2418     cpu->midr = 0x69054117;
2419     cpu->ctr = 0xd172172;
2420     cpu->reset_sctlr = 0x00000078;
2421 }
2422 
2423 #ifndef TARGET_AARCH64
2424 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2425  * otherwise, a CPU with as many features enabled as our emulation supports.
2426  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2427  * this only needs to handle 32 bits.
2428  */
2429 static void arm_max_initfn(Object *obj)
2430 {
2431     ARMCPU *cpu = ARM_CPU(obj);
2432 
2433     if (kvm_enabled()) {
2434         kvm_arm_set_cpu_features_from_host(cpu);
2435     } else {
2436         cortex_a15_initfn(obj);
2437 
2438         /* old-style VFP short-vector support */
2439         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2440 
2441 #ifdef CONFIG_USER_ONLY
2442         /* We don't set these in system emulation mode for the moment,
2443          * since we don't correctly set (all of) the ID registers to
2444          * advertise them.
2445          */
2446         set_feature(&cpu->env, ARM_FEATURE_V8);
2447         {
2448             uint32_t t;
2449 
2450             t = cpu->isar.id_isar5;
2451             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2452             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2453             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2454             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2455             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2456             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2457             cpu->isar.id_isar5 = t;
2458 
2459             t = cpu->isar.id_isar6;
2460             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2461             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2462             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2463             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2464             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2465             cpu->isar.id_isar6 = t;
2466 
2467             t = cpu->isar.mvfr1;
2468             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2469             cpu->isar.mvfr1 = t;
2470 
2471             t = cpu->isar.mvfr2;
2472             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2473             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2474             cpu->isar.mvfr2 = t;
2475 
2476             t = cpu->id_mmfr4;
2477             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2478             cpu->id_mmfr4 = t;
2479         }
2480 #endif
2481     }
2482 }
2483 #endif
2484 
2485 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2486 
2487 struct ARMCPUInfo {
2488     const char *name;
2489     void (*initfn)(Object *obj);
2490     void (*class_init)(ObjectClass *oc, void *data);
2491 };
2492 
2493 static const ARMCPUInfo arm_cpus[] = {
2494 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2495     { .name = "arm926",      .initfn = arm926_initfn },
2496     { .name = "arm946",      .initfn = arm946_initfn },
2497     { .name = "arm1026",     .initfn = arm1026_initfn },
2498     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2499      * older core than plain "arm1136". In particular this does not
2500      * have the v6K features.
2501      */
2502     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2503     { .name = "arm1136",     .initfn = arm1136_initfn },
2504     { .name = "arm1176",     .initfn = arm1176_initfn },
2505     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2506     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2507                              .class_init = arm_v7m_class_init },
2508     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2509                              .class_init = arm_v7m_class_init },
2510     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2511                              .class_init = arm_v7m_class_init },
2512     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2513                              .class_init = arm_v7m_class_init },
2514     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2515     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2516     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2517     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2518     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2519     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2520     { .name = "ti925t",      .initfn = ti925t_initfn },
2521     { .name = "sa1100",      .initfn = sa1100_initfn },
2522     { .name = "sa1110",      .initfn = sa1110_initfn },
2523     { .name = "pxa250",      .initfn = pxa250_initfn },
2524     { .name = "pxa255",      .initfn = pxa255_initfn },
2525     { .name = "pxa260",      .initfn = pxa260_initfn },
2526     { .name = "pxa261",      .initfn = pxa261_initfn },
2527     { .name = "pxa262",      .initfn = pxa262_initfn },
2528     /* "pxa270" is an alias for "pxa270-a0" */
2529     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2530     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2531     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2532     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2533     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2534     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2535     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2536 #ifndef TARGET_AARCH64
2537     { .name = "max",         .initfn = arm_max_initfn },
2538 #endif
2539 #ifdef CONFIG_USER_ONLY
2540     { .name = "any",         .initfn = arm_max_initfn },
2541 #endif
2542 #endif
2543     { .name = NULL }
2544 };
2545 
2546 static Property arm_cpu_properties[] = {
2547     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2548     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2549     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2550     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2551                         mp_affinity, ARM64_AFFINITY_INVALID),
2552     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2553     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2554     DEFINE_PROP_END_OF_LIST()
2555 };
2556 
2557 static gchar *arm_gdb_arch_name(CPUState *cs)
2558 {
2559     ARMCPU *cpu = ARM_CPU(cs);
2560     CPUARMState *env = &cpu->env;
2561 
2562     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2563         return g_strdup("iwmmxt");
2564     }
2565     return g_strdup("arm");
2566 }
2567 
2568 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2569 {
2570     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2571     CPUClass *cc = CPU_CLASS(acc);
2572     DeviceClass *dc = DEVICE_CLASS(oc);
2573 
2574     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2575                                     &acc->parent_realize);
2576     dc->props = arm_cpu_properties;
2577 
2578     acc->parent_reset = cc->reset;
2579     cc->reset = arm_cpu_reset;
2580 
2581     cc->class_by_name = arm_cpu_class_by_name;
2582     cc->has_work = arm_cpu_has_work;
2583     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2584     cc->dump_state = arm_cpu_dump_state;
2585     cc->set_pc = arm_cpu_set_pc;
2586     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2587     cc->gdb_read_register = arm_cpu_gdb_read_register;
2588     cc->gdb_write_register = arm_cpu_gdb_write_register;
2589 #ifndef CONFIG_USER_ONLY
2590     cc->do_interrupt = arm_cpu_do_interrupt;
2591     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2592     cc->asidx_from_attrs = arm_asidx_from_attrs;
2593     cc->vmsd = &vmstate_arm_cpu;
2594     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2595     cc->write_elf64_note = arm_cpu_write_elf64_note;
2596     cc->write_elf32_note = arm_cpu_write_elf32_note;
2597 #endif
2598     cc->gdb_num_core_regs = 26;
2599     cc->gdb_core_xml_file = "arm-core.xml";
2600     cc->gdb_arch_name = arm_gdb_arch_name;
2601     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2602     cc->gdb_stop_before_watchpoint = true;
2603     cc->disas_set_info = arm_disas_set_info;
2604 #ifdef CONFIG_TCG
2605     cc->tcg_initialize = arm_translate_init;
2606     cc->tlb_fill = arm_cpu_tlb_fill;
2607     cc->debug_excp_handler = arm_debug_excp_handler;
2608     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2609 #if !defined(CONFIG_USER_ONLY)
2610     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2611     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2612     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2613 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2614 #endif
2615 }
2616 
2617 #ifdef CONFIG_KVM
2618 static void arm_host_initfn(Object *obj)
2619 {
2620     ARMCPU *cpu = ARM_CPU(obj);
2621 
2622     kvm_arm_set_cpu_features_from_host(cpu);
2623     arm_cpu_post_init(obj);
2624 }
2625 
2626 static const TypeInfo host_arm_cpu_type_info = {
2627     .name = TYPE_ARM_HOST_CPU,
2628 #ifdef TARGET_AARCH64
2629     .parent = TYPE_AARCH64_CPU,
2630 #else
2631     .parent = TYPE_ARM_CPU,
2632 #endif
2633     .instance_init = arm_host_initfn,
2634 };
2635 
2636 #endif
2637 
2638 static void arm_cpu_instance_init(Object *obj)
2639 {
2640     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2641 
2642     acc->info->initfn(obj);
2643     arm_cpu_post_init(obj);
2644 }
2645 
2646 static void cpu_register_class_init(ObjectClass *oc, void *data)
2647 {
2648     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2649 
2650     acc->info = data;
2651 }
2652 
2653 static void cpu_register(const ARMCPUInfo *info)
2654 {
2655     TypeInfo type_info = {
2656         .parent = TYPE_ARM_CPU,
2657         .instance_size = sizeof(ARMCPU),
2658         .instance_init = arm_cpu_instance_init,
2659         .class_size = sizeof(ARMCPUClass),
2660         .class_init = info->class_init ?: cpu_register_class_init,
2661         .class_data = (void *)info,
2662     };
2663 
2664     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2665     type_register(&type_info);
2666     g_free((void *)type_info.name);
2667 }
2668 
2669 static const TypeInfo arm_cpu_type_info = {
2670     .name = TYPE_ARM_CPU,
2671     .parent = TYPE_CPU,
2672     .instance_size = sizeof(ARMCPU),
2673     .instance_init = arm_cpu_initfn,
2674     .instance_finalize = arm_cpu_finalizefn,
2675     .abstract = true,
2676     .class_size = sizeof(ARMCPUClass),
2677     .class_init = arm_cpu_class_init,
2678 };
2679 
2680 static const TypeInfo idau_interface_type_info = {
2681     .name = TYPE_IDAU_INTERFACE,
2682     .parent = TYPE_INTERFACE,
2683     .class_size = sizeof(IDAUInterfaceClass),
2684 };
2685 
2686 static void arm_cpu_register_types(void)
2687 {
2688     const ARMCPUInfo *info = arm_cpus;
2689 
2690     type_register_static(&arm_cpu_type_info);
2691     type_register_static(&idau_interface_type_info);
2692 
2693     while (info->name) {
2694         cpu_register(info);
2695         info++;
2696     }
2697 
2698 #ifdef CONFIG_KVM
2699     type_register_static(&host_arm_cpu_type_info);
2700 #endif
2701 }
2702 
2703 type_init(arm_cpu_register_types)
2704