xref: /openbmc/qemu/target/arm/cpu.c (revision 7f623d08)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39 
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43 
44     cpu->env.regs[15] = value;
45 }
46 
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50 
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57 
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62 
63     entry->hook = hook;
64     entry->opaque = opaque;
65 
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68 
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73 
74     entry->hook = hook;
75     entry->opaque = opaque;
76 
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79 
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85 
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89 
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94 
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103 
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110 
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121 
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125 
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131 
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138 
139     acc->parent_reset(s);
140 
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142 
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145 
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
150 
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153 
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157 
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191 
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202 
203     /*
204      * If the highest available EL is EL2, AArch32 will start in Hyp
205      * mode; otherwise it starts in SVC. Note that if we start in
206      * AArch64 then these values in the uncached_cpsr will be ignored.
207      */
208     if (arm_feature(env, ARM_FEATURE_EL2) &&
209         !arm_feature(env, ARM_FEATURE_EL3)) {
210         env->uncached_cpsr = ARM_CPU_MODE_HYP;
211     } else {
212         env->uncached_cpsr = ARM_CPU_MODE_SVC;
213     }
214     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
215 
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         uint32_t initial_msp; /* Loaded from 0x0 */
218         uint32_t initial_pc; /* Loaded from 0x4 */
219         uint8_t *rom;
220         uint32_t vecbase;
221 
222         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223             env->v7m.secure = true;
224         } else {
225             /* This bit resets to 0 if security is supported, but 1 if
226              * it is not. The bit is not present in v7M, but we set it
227              * here so we can avoid having to make checks on it conditional
228              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
229              */
230             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
231         }
232 
233         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234          * that it resets to 1, so QEMU always does that rather than making
235          * it dependent on CPU model. In v8M it is RES1.
236          */
237         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239         if (arm_feature(env, ARM_FEATURE_V8)) {
240             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
243         }
244         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
247         }
248 
249         /* Unlike A/R profile, M profile defines the reset LR value */
250         env->regs[14] = 0xffffffff;
251 
252         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
253 
254         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255         vecbase = env->v7m.vecbase[env->v7m.secure];
256         rom = rom_ptr(vecbase, 8);
257         if (rom) {
258             /* Address zero is covered by ROM which hasn't yet been
259              * copied into physical memory.
260              */
261             initial_msp = ldl_p(rom);
262             initial_pc = ldl_p(rom + 4);
263         } else {
264             /* Address zero not covered by a ROM blob, or the ROM blob
265              * is in non-modifiable memory and this is a second reset after
266              * it got copied into memory. In the latter case, rom_ptr
267              * will return a NULL pointer and we should use ldl_phys instead.
268              */
269             initial_msp = ldl_phys(s->as, vecbase);
270             initial_pc = ldl_phys(s->as, vecbase + 4);
271         }
272 
273         env->regs[13] = initial_msp & 0xFFFFFFFC;
274         env->regs[15] = initial_pc & ~1;
275         env->thumb = initial_pc & 1;
276     }
277 
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285 
286     /* M profile requires that reset clears the exclusive monitor;
287      * A profile does not, but clearing it makes more sense than having it
288      * set with an exclusive access on address zero.
289      */
290     arm_clear_exclusive(env);
291 
292     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
294 
295     if (arm_feature(env, ARM_FEATURE_PMSA)) {
296         if (cpu->pmsav7_dregion > 0) {
297             if (arm_feature(env, ARM_FEATURE_V8)) {
298                 memset(env->pmsav8.rbar[M_REG_NS], 0,
299                        sizeof(*env->pmsav8.rbar[M_REG_NS])
300                        * cpu->pmsav7_dregion);
301                 memset(env->pmsav8.rlar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rlar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305                     memset(env->pmsav8.rbar[M_REG_S], 0,
306                            sizeof(*env->pmsav8.rbar[M_REG_S])
307                            * cpu->pmsav7_dregion);
308                     memset(env->pmsav8.rlar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rlar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                 }
312             } else if (arm_feature(env, ARM_FEATURE_V7)) {
313                 memset(env->pmsav7.drbar, 0,
314                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315                 memset(env->pmsav7.drsr, 0,
316                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317                 memset(env->pmsav7.dracr, 0,
318                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
319             }
320         }
321         env->pmsav7.rnr[M_REG_NS] = 0;
322         env->pmsav7.rnr[M_REG_S] = 0;
323         env->pmsav8.mair0[M_REG_NS] = 0;
324         env->pmsav8.mair0[M_REG_S] = 0;
325         env->pmsav8.mair1[M_REG_NS] = 0;
326         env->pmsav8.mair1[M_REG_S] = 0;
327     }
328 
329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330         if (cpu->sau_sregion > 0) {
331             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
333         }
334         env->sau.rnr = 0;
335         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336          * the Cortex-M33 does.
337          */
338         env->sau.ctrl = 0;
339     }
340 
341     set_flush_to_zero(1, &env->vfp.standard_fp_status);
342     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343     set_default_nan_mode(1, &env->vfp.standard_fp_status);
344     set_float_detect_tininess(float_tininess_before_rounding,
345                               &env->vfp.fp_status);
346     set_float_detect_tininess(float_tininess_before_rounding,
347                               &env->vfp.standard_fp_status);
348     set_float_detect_tininess(float_tininess_before_rounding,
349                               &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351     if (kvm_enabled()) {
352         kvm_arm_reset_vcpu(cpu);
353     }
354 #endif
355 
356     hw_breakpoint_update_all(cpu);
357     hw_watchpoint_update_all(cpu);
358 }
359 
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     CPUARMState *env = cs->env_ptr;
364     uint32_t cur_el = arm_current_el(env);
365     bool secure = arm_is_secure(env);
366     uint32_t target_el;
367     uint32_t excp_idx;
368     bool ret = false;
369 
370     if (interrupt_request & CPU_INTERRUPT_FIQ) {
371         excp_idx = EXCP_FIQ;
372         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374             cs->exception_index = excp_idx;
375             env->exception.target_el = target_el;
376             cc->do_interrupt(cs);
377             ret = true;
378         }
379     }
380     if (interrupt_request & CPU_INTERRUPT_HARD) {
381         excp_idx = EXCP_IRQ;
382         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384             cs->exception_index = excp_idx;
385             env->exception.target_el = target_el;
386             cc->do_interrupt(cs);
387             ret = true;
388         }
389     }
390     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391         excp_idx = EXCP_VIRQ;
392         target_el = 1;
393         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394             cs->exception_index = excp_idx;
395             env->exception.target_el = target_el;
396             cc->do_interrupt(cs);
397             ret = true;
398         }
399     }
400     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401         excp_idx = EXCP_VFIQ;
402         target_el = 1;
403         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404             cs->exception_index = excp_idx;
405             env->exception.target_el = target_el;
406             cc->do_interrupt(cs);
407             ret = true;
408         }
409     }
410 
411     return ret;
412 }
413 
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
416 {
417     CPUClass *cc = CPU_GET_CLASS(cs);
418     ARMCPU *cpu = ARM_CPU(cs);
419     CPUARMState *env = &cpu->env;
420     bool ret = false;
421 
422     /* ARMv7-M interrupt masking works differently than -A or -R.
423      * There is no FIQ/IRQ distinction. Instead of I and F bits
424      * masking FIQ and IRQ interrupts, an exception is taken only
425      * if it is higher priority than the current execution priority
426      * (which depends on state like BASEPRI, FAULTMASK and the
427      * currently active exception).
428      */
429     if (interrupt_request & CPU_INTERRUPT_HARD
430         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431         cs->exception_index = EXCP_IRQ;
432         cc->do_interrupt(cs);
433         ret = true;
434     }
435     return ret;
436 }
437 #endif
438 
439 #ifndef CONFIG_USER_ONLY
440 static void arm_cpu_set_irq(void *opaque, int irq, int level)
441 {
442     ARMCPU *cpu = opaque;
443     CPUARMState *env = &cpu->env;
444     CPUState *cs = CPU(cpu);
445     static const int mask[] = {
446         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
447         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
448         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
449         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
450     };
451 
452     switch (irq) {
453     case ARM_CPU_VIRQ:
454     case ARM_CPU_VFIQ:
455         assert(arm_feature(env, ARM_FEATURE_EL2));
456         /* fall through */
457     case ARM_CPU_IRQ:
458     case ARM_CPU_FIQ:
459         if (level) {
460             cpu_interrupt(cs, mask[irq]);
461         } else {
462             cpu_reset_interrupt(cs, mask[irq]);
463         }
464         break;
465     default:
466         g_assert_not_reached();
467     }
468 }
469 
470 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
471 {
472 #ifdef CONFIG_KVM
473     ARMCPU *cpu = opaque;
474     CPUState *cs = CPU(cpu);
475     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
476 
477     switch (irq) {
478     case ARM_CPU_IRQ:
479         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
480         break;
481     case ARM_CPU_FIQ:
482         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
483         break;
484     default:
485         g_assert_not_reached();
486     }
487     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
488     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
489 #endif
490 }
491 
492 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
493 {
494     ARMCPU *cpu = ARM_CPU(cs);
495     CPUARMState *env = &cpu->env;
496 
497     cpu_synchronize_state(cs);
498     return arm_cpu_data_is_big_endian(env);
499 }
500 
501 #endif
502 
503 static inline void set_feature(CPUARMState *env, int feature)
504 {
505     env->features |= 1ULL << feature;
506 }
507 
508 static inline void unset_feature(CPUARMState *env, int feature)
509 {
510     env->features &= ~(1ULL << feature);
511 }
512 
513 static int
514 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
515 {
516   return print_insn_arm(pc | 1, info);
517 }
518 
519 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
520 {
521     ARMCPU *ac = ARM_CPU(cpu);
522     CPUARMState *env = &ac->env;
523     bool sctlr_b;
524 
525     if (is_a64(env)) {
526         /* We might not be compiled with the A64 disassembler
527          * because it needs a C++ compiler. Leave print_insn
528          * unset in this case to use the caller default behaviour.
529          */
530 #if defined(CONFIG_ARM_A64_DIS)
531         info->print_insn = print_insn_arm_a64;
532 #endif
533         info->cap_arch = CS_ARCH_ARM64;
534         info->cap_insn_unit = 4;
535         info->cap_insn_split = 4;
536     } else {
537         int cap_mode;
538         if (env->thumb) {
539             info->print_insn = print_insn_thumb1;
540             info->cap_insn_unit = 2;
541             info->cap_insn_split = 4;
542             cap_mode = CS_MODE_THUMB;
543         } else {
544             info->print_insn = print_insn_arm;
545             info->cap_insn_unit = 4;
546             info->cap_insn_split = 4;
547             cap_mode = CS_MODE_ARM;
548         }
549         if (arm_feature(env, ARM_FEATURE_V8)) {
550             cap_mode |= CS_MODE_V8;
551         }
552         if (arm_feature(env, ARM_FEATURE_M)) {
553             cap_mode |= CS_MODE_MCLASS;
554         }
555         info->cap_arch = CS_ARCH_ARM;
556         info->cap_mode = cap_mode;
557     }
558 
559     sctlr_b = arm_sctlr_b(env);
560     if (bswap_code(sctlr_b)) {
561 #ifdef TARGET_WORDS_BIGENDIAN
562         info->endian = BFD_ENDIAN_LITTLE;
563 #else
564         info->endian = BFD_ENDIAN_BIG;
565 #endif
566     }
567     info->flags &= ~INSN_ARM_BE32;
568 #ifndef CONFIG_USER_ONLY
569     if (sctlr_b) {
570         info->flags |= INSN_ARM_BE32;
571     }
572 #endif
573 }
574 
575 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
576 {
577     uint32_t Aff1 = idx / clustersz;
578     uint32_t Aff0 = idx % clustersz;
579     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
580 }
581 
582 static void arm_cpu_initfn(Object *obj)
583 {
584     CPUState *cs = CPU(obj);
585     ARMCPU *cpu = ARM_CPU(obj);
586 
587     cs->env_ptr = &cpu->env;
588     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
589                                          g_free, g_free);
590 
591     QLIST_INIT(&cpu->pre_el_change_hooks);
592     QLIST_INIT(&cpu->el_change_hooks);
593 
594 #ifndef CONFIG_USER_ONLY
595     /* Our inbound IRQ and FIQ lines */
596     if (kvm_enabled()) {
597         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
598          * the same interface as non-KVM CPUs.
599          */
600         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
601     } else {
602         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
603     }
604 
605     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
606                                                 arm_gt_ptimer_cb, cpu);
607     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
608                                                 arm_gt_vtimer_cb, cpu);
609     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
610                                                 arm_gt_htimer_cb, cpu);
611     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
612                                                 arm_gt_stimer_cb, cpu);
613     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
614                        ARRAY_SIZE(cpu->gt_timer_outputs));
615 
616     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
617                              "gicv3-maintenance-interrupt", 1);
618     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
619                              "pmu-interrupt", 1);
620 #endif
621 
622     /* DTB consumers generally don't in fact care what the 'compatible'
623      * string is, so always provide some string and trust that a hypothetical
624      * picky DTB consumer will also provide a helpful error message.
625      */
626     cpu->dtb_compatible = "qemu,unknown";
627     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
628     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
629 
630     if (tcg_enabled()) {
631         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
632     }
633 }
634 
635 static Property arm_cpu_reset_cbar_property =
636             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
637 
638 static Property arm_cpu_reset_hivecs_property =
639             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
640 
641 static Property arm_cpu_rvbar_property =
642             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
643 
644 static Property arm_cpu_has_el2_property =
645             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
646 
647 static Property arm_cpu_has_el3_property =
648             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
649 
650 static Property arm_cpu_cfgend_property =
651             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
652 
653 /* use property name "pmu" to match other archs and virt tools */
654 static Property arm_cpu_has_pmu_property =
655             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
656 
657 static Property arm_cpu_has_mpu_property =
658             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
659 
660 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
661  * because the CPU initfn will have already set cpu->pmsav7_dregion to
662  * the right value for that particular CPU type, and we don't want
663  * to override that with an incorrect constant value.
664  */
665 static Property arm_cpu_pmsav7_dregion_property =
666             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
667                                            pmsav7_dregion,
668                                            qdev_prop_uint32, uint32_t);
669 
670 /* M profile: initial value of the Secure VTOR */
671 static Property arm_cpu_initsvtor_property =
672             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
673 
674 static void arm_cpu_post_init(Object *obj)
675 {
676     ARMCPU *cpu = ARM_CPU(obj);
677 
678     /* M profile implies PMSA. We have to do this here rather than
679      * in realize with the other feature-implication checks because
680      * we look at the PMSA bit to see if we should add some properties.
681      */
682     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
683         set_feature(&cpu->env, ARM_FEATURE_PMSA);
684     }
685 
686     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
687         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
688         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
689                                  &error_abort);
690     }
691 
692     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
693         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
694                                  &error_abort);
695     }
696 
697     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
698         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
699                                  &error_abort);
700     }
701 
702     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
703         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
704          * prevent "has_el3" from existing on CPUs which cannot support EL3.
705          */
706         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
707                                  &error_abort);
708 
709 #ifndef CONFIG_USER_ONLY
710         object_property_add_link(obj, "secure-memory",
711                                  TYPE_MEMORY_REGION,
712                                  (Object **)&cpu->secure_memory,
713                                  qdev_prop_allow_set_link_before_realize,
714                                  OBJ_PROP_LINK_STRONG,
715                                  &error_abort);
716 #endif
717     }
718 
719     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
720         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
721                                  &error_abort);
722     }
723 
724     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
725         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
726                                  &error_abort);
727     }
728 
729     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
730         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
731                                  &error_abort);
732         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
733             qdev_property_add_static(DEVICE(obj),
734                                      &arm_cpu_pmsav7_dregion_property,
735                                      &error_abort);
736         }
737     }
738 
739     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
740         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
741                                  qdev_prop_allow_set_link_before_realize,
742                                  OBJ_PROP_LINK_STRONG,
743                                  &error_abort);
744         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
745                                  &error_abort);
746     }
747 
748     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
749                              &error_abort);
750 }
751 
752 static void arm_cpu_finalizefn(Object *obj)
753 {
754     ARMCPU *cpu = ARM_CPU(obj);
755     ARMELChangeHook *hook, *next;
756 
757     g_hash_table_destroy(cpu->cp_regs);
758 
759     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
760         QLIST_REMOVE(hook, node);
761         g_free(hook);
762     }
763     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
764         QLIST_REMOVE(hook, node);
765         g_free(hook);
766     }
767 }
768 
769 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
770 {
771     CPUState *cs = CPU(dev);
772     ARMCPU *cpu = ARM_CPU(dev);
773     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
774     CPUARMState *env = &cpu->env;
775     int pagebits;
776     Error *local_err = NULL;
777 
778     /* If we needed to query the host kernel for the CPU features
779      * then it's possible that might have failed in the initfn, but
780      * this is the first point where we can report it.
781      */
782     if (cpu->host_cpu_probe_failed) {
783         if (!kvm_enabled()) {
784             error_setg(errp, "The 'host' CPU type can only be used with KVM");
785         } else {
786             error_setg(errp, "Failed to retrieve host CPU features");
787         }
788         return;
789     }
790 
791 #ifndef CONFIG_USER_ONLY
792     /* The NVIC and M-profile CPU are two halves of a single piece of
793      * hardware; trying to use one without the other is a command line
794      * error and will result in segfaults if not caught here.
795      */
796     if (arm_feature(env, ARM_FEATURE_M)) {
797         if (!env->nvic) {
798             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
799             return;
800         }
801     } else {
802         if (env->nvic) {
803             error_setg(errp, "This board can only be used with Cortex-M CPUs");
804             return;
805         }
806     }
807 #endif
808 
809     cpu_exec_realizefn(cs, &local_err);
810     if (local_err != NULL) {
811         error_propagate(errp, local_err);
812         return;
813     }
814 
815     /* Some features automatically imply others: */
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         set_feature(env, ARM_FEATURE_V7VE);
818     }
819     if (arm_feature(env, ARM_FEATURE_V7VE)) {
820         /* v7 Virtualization Extensions. In real hardware this implies
821          * EL2 and also the presence of the Security Extensions.
822          * For QEMU, for backwards-compatibility we implement some
823          * CPUs or CPU configs which have no actual EL2 or EL3 but do
824          * include the various other features that V7VE implies.
825          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
826          * Security Extensions is ARM_FEATURE_EL3.
827          */
828         set_feature(env, ARM_FEATURE_ARM_DIV);
829         set_feature(env, ARM_FEATURE_LPAE);
830         set_feature(env, ARM_FEATURE_V7);
831     }
832     if (arm_feature(env, ARM_FEATURE_V7)) {
833         set_feature(env, ARM_FEATURE_VAPA);
834         set_feature(env, ARM_FEATURE_THUMB2);
835         set_feature(env, ARM_FEATURE_MPIDR);
836         if (!arm_feature(env, ARM_FEATURE_M)) {
837             set_feature(env, ARM_FEATURE_V6K);
838         } else {
839             set_feature(env, ARM_FEATURE_V6);
840         }
841 
842         /* Always define VBAR for V7 CPUs even if it doesn't exist in
843          * non-EL3 configs. This is needed by some legacy boards.
844          */
845         set_feature(env, ARM_FEATURE_VBAR);
846     }
847     if (arm_feature(env, ARM_FEATURE_V6K)) {
848         set_feature(env, ARM_FEATURE_V6);
849         set_feature(env, ARM_FEATURE_MVFR);
850     }
851     if (arm_feature(env, ARM_FEATURE_V6)) {
852         set_feature(env, ARM_FEATURE_V5);
853         set_feature(env, ARM_FEATURE_JAZELLE);
854         if (!arm_feature(env, ARM_FEATURE_M)) {
855             set_feature(env, ARM_FEATURE_AUXCR);
856         }
857     }
858     if (arm_feature(env, ARM_FEATURE_V5)) {
859         set_feature(env, ARM_FEATURE_V4T);
860     }
861     if (arm_feature(env, ARM_FEATURE_M)) {
862         set_feature(env, ARM_FEATURE_THUMB_DIV);
863     }
864     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
865         set_feature(env, ARM_FEATURE_THUMB_DIV);
866     }
867     if (arm_feature(env, ARM_FEATURE_VFP4)) {
868         set_feature(env, ARM_FEATURE_VFP3);
869         set_feature(env, ARM_FEATURE_VFP_FP16);
870     }
871     if (arm_feature(env, ARM_FEATURE_VFP3)) {
872         set_feature(env, ARM_FEATURE_VFP);
873     }
874     if (arm_feature(env, ARM_FEATURE_LPAE)) {
875         set_feature(env, ARM_FEATURE_V7MP);
876         set_feature(env, ARM_FEATURE_PXN);
877     }
878     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
879         set_feature(env, ARM_FEATURE_CBAR);
880     }
881     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
882         !arm_feature(env, ARM_FEATURE_M)) {
883         set_feature(env, ARM_FEATURE_THUMB_DSP);
884     }
885 
886     if (arm_feature(env, ARM_FEATURE_V7) &&
887         !arm_feature(env, ARM_FEATURE_M) &&
888         !arm_feature(env, ARM_FEATURE_PMSA)) {
889         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
890          * can use 4K pages.
891          */
892         pagebits = 12;
893     } else {
894         /* For CPUs which might have tiny 1K pages, or which have an
895          * MPU and might have small region sizes, stick with 1K pages.
896          */
897         pagebits = 10;
898     }
899     if (!set_preferred_target_page_bits(pagebits)) {
900         /* This can only ever happen for hotplugging a CPU, or if
901          * the board code incorrectly creates a CPU which it has
902          * promised via minimum_page_size that it will not.
903          */
904         error_setg(errp, "This CPU requires a smaller page size than the "
905                    "system is using");
906         return;
907     }
908 
909     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
910      * We don't support setting cluster ID ([16..23]) (known as Aff2
911      * in later ARM ARM versions), or any of the higher affinity level fields,
912      * so these bits always RAZ.
913      */
914     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
915         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
916                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
917     }
918 
919     if (cpu->reset_hivecs) {
920             cpu->reset_sctlr |= (1 << 13);
921     }
922 
923     if (cpu->cfgend) {
924         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
925             cpu->reset_sctlr |= SCTLR_EE;
926         } else {
927             cpu->reset_sctlr |= SCTLR_B;
928         }
929     }
930 
931     if (!cpu->has_el3) {
932         /* If the has_el3 CPU property is disabled then we need to disable the
933          * feature.
934          */
935         unset_feature(env, ARM_FEATURE_EL3);
936 
937         /* Disable the security extension feature bits in the processor feature
938          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
939          */
940         cpu->id_pfr1 &= ~0xf0;
941         cpu->id_aa64pfr0 &= ~0xf000;
942     }
943 
944     if (!cpu->has_el2) {
945         unset_feature(env, ARM_FEATURE_EL2);
946     }
947 
948     if (!cpu->has_pmu) {
949         unset_feature(env, ARM_FEATURE_PMU);
950         cpu->id_aa64dfr0 &= ~0xf00;
951     }
952 
953     if (!arm_feature(env, ARM_FEATURE_EL2)) {
954         /* Disable the hypervisor feature bits in the processor feature
955          * registers if we don't have EL2. These are id_pfr1[15:12] and
956          * id_aa64pfr0_el1[11:8].
957          */
958         cpu->id_aa64pfr0 &= ~0xf00;
959         cpu->id_pfr1 &= ~0xf000;
960     }
961 
962     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
963      * to false or by setting pmsav7-dregion to 0.
964      */
965     if (!cpu->has_mpu) {
966         cpu->pmsav7_dregion = 0;
967     }
968     if (cpu->pmsav7_dregion == 0) {
969         cpu->has_mpu = false;
970     }
971 
972     if (arm_feature(env, ARM_FEATURE_PMSA) &&
973         arm_feature(env, ARM_FEATURE_V7)) {
974         uint32_t nr = cpu->pmsav7_dregion;
975 
976         if (nr > 0xff) {
977             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
978             return;
979         }
980 
981         if (nr) {
982             if (arm_feature(env, ARM_FEATURE_V8)) {
983                 /* PMSAv8 */
984                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
985                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
986                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
987                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
988                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
989                 }
990             } else {
991                 env->pmsav7.drbar = g_new0(uint32_t, nr);
992                 env->pmsav7.drsr = g_new0(uint32_t, nr);
993                 env->pmsav7.dracr = g_new0(uint32_t, nr);
994             }
995         }
996     }
997 
998     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
999         uint32_t nr = cpu->sau_sregion;
1000 
1001         if (nr > 0xff) {
1002             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1003             return;
1004         }
1005 
1006         if (nr) {
1007             env->sau.rbar = g_new0(uint32_t, nr);
1008             env->sau.rlar = g_new0(uint32_t, nr);
1009         }
1010     }
1011 
1012     if (arm_feature(env, ARM_FEATURE_EL3)) {
1013         set_feature(env, ARM_FEATURE_VBAR);
1014     }
1015 
1016     register_cp_regs_for_features(cpu);
1017     arm_cpu_register_gdb_regs_for_features(cpu);
1018 
1019     init_cpreg_list(cpu);
1020 
1021 #ifndef CONFIG_USER_ONLY
1022     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1023         cs->num_ases = 2;
1024 
1025         if (!cpu->secure_memory) {
1026             cpu->secure_memory = cs->memory;
1027         }
1028         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1029                                cpu->secure_memory);
1030     } else {
1031         cs->num_ases = 1;
1032     }
1033     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1034 
1035     /* No core_count specified, default to smp_cpus. */
1036     if (cpu->core_count == -1) {
1037         cpu->core_count = smp_cpus;
1038     }
1039 #endif
1040 
1041     qemu_init_vcpu(cs);
1042     cpu_reset(cs);
1043 
1044     acc->parent_realize(dev, errp);
1045 }
1046 
1047 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1048 {
1049     ObjectClass *oc;
1050     char *typename;
1051     char **cpuname;
1052     const char *cpunamestr;
1053 
1054     cpuname = g_strsplit(cpu_model, ",", 1);
1055     cpunamestr = cpuname[0];
1056 #ifdef CONFIG_USER_ONLY
1057     /* For backwards compatibility usermode emulation allows "-cpu any",
1058      * which has the same semantics as "-cpu max".
1059      */
1060     if (!strcmp(cpunamestr, "any")) {
1061         cpunamestr = "max";
1062     }
1063 #endif
1064     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1065     oc = object_class_by_name(typename);
1066     g_strfreev(cpuname);
1067     g_free(typename);
1068     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1069         object_class_is_abstract(oc)) {
1070         return NULL;
1071     }
1072     return oc;
1073 }
1074 
1075 /* CPU models. These are not needed for the AArch64 linux-user build. */
1076 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1077 
1078 static void arm926_initfn(Object *obj)
1079 {
1080     ARMCPU *cpu = ARM_CPU(obj);
1081 
1082     cpu->dtb_compatible = "arm,arm926";
1083     set_feature(&cpu->env, ARM_FEATURE_V5);
1084     set_feature(&cpu->env, ARM_FEATURE_VFP);
1085     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1086     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1087     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1088     cpu->midr = 0x41069265;
1089     cpu->reset_fpsid = 0x41011090;
1090     cpu->ctr = 0x1dd20d2;
1091     cpu->reset_sctlr = 0x00090078;
1092 }
1093 
1094 static void arm946_initfn(Object *obj)
1095 {
1096     ARMCPU *cpu = ARM_CPU(obj);
1097 
1098     cpu->dtb_compatible = "arm,arm946";
1099     set_feature(&cpu->env, ARM_FEATURE_V5);
1100     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1101     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1102     cpu->midr = 0x41059461;
1103     cpu->ctr = 0x0f004006;
1104     cpu->reset_sctlr = 0x00000078;
1105 }
1106 
1107 static void arm1026_initfn(Object *obj)
1108 {
1109     ARMCPU *cpu = ARM_CPU(obj);
1110 
1111     cpu->dtb_compatible = "arm,arm1026";
1112     set_feature(&cpu->env, ARM_FEATURE_V5);
1113     set_feature(&cpu->env, ARM_FEATURE_VFP);
1114     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1115     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1116     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1117     set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1118     cpu->midr = 0x4106a262;
1119     cpu->reset_fpsid = 0x410110a0;
1120     cpu->ctr = 0x1dd20d2;
1121     cpu->reset_sctlr = 0x00090078;
1122     cpu->reset_auxcr = 1;
1123     {
1124         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1125         ARMCPRegInfo ifar = {
1126             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1127             .access = PL1_RW,
1128             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1129             .resetvalue = 0
1130         };
1131         define_one_arm_cp_reg(cpu, &ifar);
1132     }
1133 }
1134 
1135 static void arm1136_r2_initfn(Object *obj)
1136 {
1137     ARMCPU *cpu = ARM_CPU(obj);
1138     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1139      * older core than plain "arm1136". In particular this does not
1140      * have the v6K features.
1141      * These ID register values are correct for 1136 but may be wrong
1142      * for 1136_r2 (in particular r0p2 does not actually implement most
1143      * of the ID registers).
1144      */
1145 
1146     cpu->dtb_compatible = "arm,arm1136";
1147     set_feature(&cpu->env, ARM_FEATURE_V6);
1148     set_feature(&cpu->env, ARM_FEATURE_VFP);
1149     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1150     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1151     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1152     cpu->midr = 0x4107b362;
1153     cpu->reset_fpsid = 0x410120b4;
1154     cpu->mvfr0 = 0x11111111;
1155     cpu->mvfr1 = 0x00000000;
1156     cpu->ctr = 0x1dd20d2;
1157     cpu->reset_sctlr = 0x00050078;
1158     cpu->id_pfr0 = 0x111;
1159     cpu->id_pfr1 = 0x1;
1160     cpu->id_dfr0 = 0x2;
1161     cpu->id_afr0 = 0x3;
1162     cpu->id_mmfr0 = 0x01130003;
1163     cpu->id_mmfr1 = 0x10030302;
1164     cpu->id_mmfr2 = 0x01222110;
1165     cpu->id_isar0 = 0x00140011;
1166     cpu->id_isar1 = 0x12002111;
1167     cpu->id_isar2 = 0x11231111;
1168     cpu->id_isar3 = 0x01102131;
1169     cpu->id_isar4 = 0x141;
1170     cpu->reset_auxcr = 7;
1171 }
1172 
1173 static void arm1136_initfn(Object *obj)
1174 {
1175     ARMCPU *cpu = ARM_CPU(obj);
1176 
1177     cpu->dtb_compatible = "arm,arm1136";
1178     set_feature(&cpu->env, ARM_FEATURE_V6K);
1179     set_feature(&cpu->env, ARM_FEATURE_V6);
1180     set_feature(&cpu->env, ARM_FEATURE_VFP);
1181     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1182     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1183     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1184     cpu->midr = 0x4117b363;
1185     cpu->reset_fpsid = 0x410120b4;
1186     cpu->mvfr0 = 0x11111111;
1187     cpu->mvfr1 = 0x00000000;
1188     cpu->ctr = 0x1dd20d2;
1189     cpu->reset_sctlr = 0x00050078;
1190     cpu->id_pfr0 = 0x111;
1191     cpu->id_pfr1 = 0x1;
1192     cpu->id_dfr0 = 0x2;
1193     cpu->id_afr0 = 0x3;
1194     cpu->id_mmfr0 = 0x01130003;
1195     cpu->id_mmfr1 = 0x10030302;
1196     cpu->id_mmfr2 = 0x01222110;
1197     cpu->id_isar0 = 0x00140011;
1198     cpu->id_isar1 = 0x12002111;
1199     cpu->id_isar2 = 0x11231111;
1200     cpu->id_isar3 = 0x01102131;
1201     cpu->id_isar4 = 0x141;
1202     cpu->reset_auxcr = 7;
1203 }
1204 
1205 static void arm1176_initfn(Object *obj)
1206 {
1207     ARMCPU *cpu = ARM_CPU(obj);
1208 
1209     cpu->dtb_compatible = "arm,arm1176";
1210     set_feature(&cpu->env, ARM_FEATURE_V6K);
1211     set_feature(&cpu->env, ARM_FEATURE_VFP);
1212     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1213     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1214     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1215     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1216     set_feature(&cpu->env, ARM_FEATURE_EL3);
1217     cpu->midr = 0x410fb767;
1218     cpu->reset_fpsid = 0x410120b5;
1219     cpu->mvfr0 = 0x11111111;
1220     cpu->mvfr1 = 0x00000000;
1221     cpu->ctr = 0x1dd20d2;
1222     cpu->reset_sctlr = 0x00050078;
1223     cpu->id_pfr0 = 0x111;
1224     cpu->id_pfr1 = 0x11;
1225     cpu->id_dfr0 = 0x33;
1226     cpu->id_afr0 = 0;
1227     cpu->id_mmfr0 = 0x01130003;
1228     cpu->id_mmfr1 = 0x10030302;
1229     cpu->id_mmfr2 = 0x01222100;
1230     cpu->id_isar0 = 0x0140011;
1231     cpu->id_isar1 = 0x12002111;
1232     cpu->id_isar2 = 0x11231121;
1233     cpu->id_isar3 = 0x01102131;
1234     cpu->id_isar4 = 0x01141;
1235     cpu->reset_auxcr = 7;
1236 }
1237 
1238 static void arm11mpcore_initfn(Object *obj)
1239 {
1240     ARMCPU *cpu = ARM_CPU(obj);
1241 
1242     cpu->dtb_compatible = "arm,arm11mpcore";
1243     set_feature(&cpu->env, ARM_FEATURE_V6K);
1244     set_feature(&cpu->env, ARM_FEATURE_VFP);
1245     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1246     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1247     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1248     cpu->midr = 0x410fb022;
1249     cpu->reset_fpsid = 0x410120b4;
1250     cpu->mvfr0 = 0x11111111;
1251     cpu->mvfr1 = 0x00000000;
1252     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1253     cpu->id_pfr0 = 0x111;
1254     cpu->id_pfr1 = 0x1;
1255     cpu->id_dfr0 = 0;
1256     cpu->id_afr0 = 0x2;
1257     cpu->id_mmfr0 = 0x01100103;
1258     cpu->id_mmfr1 = 0x10020302;
1259     cpu->id_mmfr2 = 0x01222000;
1260     cpu->id_isar0 = 0x00100011;
1261     cpu->id_isar1 = 0x12002111;
1262     cpu->id_isar2 = 0x11221011;
1263     cpu->id_isar3 = 0x01102131;
1264     cpu->id_isar4 = 0x141;
1265     cpu->reset_auxcr = 1;
1266 }
1267 
1268 static void cortex_m0_initfn(Object *obj)
1269 {
1270     ARMCPU *cpu = ARM_CPU(obj);
1271     set_feature(&cpu->env, ARM_FEATURE_V6);
1272     set_feature(&cpu->env, ARM_FEATURE_M);
1273 
1274     cpu->midr = 0x410cc200;
1275 }
1276 
1277 static void cortex_m3_initfn(Object *obj)
1278 {
1279     ARMCPU *cpu = ARM_CPU(obj);
1280     set_feature(&cpu->env, ARM_FEATURE_V7);
1281     set_feature(&cpu->env, ARM_FEATURE_M);
1282     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1283     cpu->midr = 0x410fc231;
1284     cpu->pmsav7_dregion = 8;
1285     cpu->id_pfr0 = 0x00000030;
1286     cpu->id_pfr1 = 0x00000200;
1287     cpu->id_dfr0 = 0x00100000;
1288     cpu->id_afr0 = 0x00000000;
1289     cpu->id_mmfr0 = 0x00000030;
1290     cpu->id_mmfr1 = 0x00000000;
1291     cpu->id_mmfr2 = 0x00000000;
1292     cpu->id_mmfr3 = 0x00000000;
1293     cpu->id_isar0 = 0x01141110;
1294     cpu->id_isar1 = 0x02111000;
1295     cpu->id_isar2 = 0x21112231;
1296     cpu->id_isar3 = 0x01111110;
1297     cpu->id_isar4 = 0x01310102;
1298     cpu->id_isar5 = 0x00000000;
1299     cpu->id_isar6 = 0x00000000;
1300 }
1301 
1302 static void cortex_m4_initfn(Object *obj)
1303 {
1304     ARMCPU *cpu = ARM_CPU(obj);
1305 
1306     set_feature(&cpu->env, ARM_FEATURE_V7);
1307     set_feature(&cpu->env, ARM_FEATURE_M);
1308     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1309     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1310     cpu->midr = 0x410fc240; /* r0p0 */
1311     cpu->pmsav7_dregion = 8;
1312     cpu->id_pfr0 = 0x00000030;
1313     cpu->id_pfr1 = 0x00000200;
1314     cpu->id_dfr0 = 0x00100000;
1315     cpu->id_afr0 = 0x00000000;
1316     cpu->id_mmfr0 = 0x00000030;
1317     cpu->id_mmfr1 = 0x00000000;
1318     cpu->id_mmfr2 = 0x00000000;
1319     cpu->id_mmfr3 = 0x00000000;
1320     cpu->id_isar0 = 0x01141110;
1321     cpu->id_isar1 = 0x02111000;
1322     cpu->id_isar2 = 0x21112231;
1323     cpu->id_isar3 = 0x01111110;
1324     cpu->id_isar4 = 0x01310102;
1325     cpu->id_isar5 = 0x00000000;
1326     cpu->id_isar6 = 0x00000000;
1327 }
1328 
1329 static void cortex_m33_initfn(Object *obj)
1330 {
1331     ARMCPU *cpu = ARM_CPU(obj);
1332 
1333     set_feature(&cpu->env, ARM_FEATURE_V8);
1334     set_feature(&cpu->env, ARM_FEATURE_M);
1335     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1336     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1337     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1338     cpu->midr = 0x410fd213; /* r0p3 */
1339     cpu->pmsav7_dregion = 16;
1340     cpu->sau_sregion = 8;
1341     cpu->id_pfr0 = 0x00000030;
1342     cpu->id_pfr1 = 0x00000210;
1343     cpu->id_dfr0 = 0x00200000;
1344     cpu->id_afr0 = 0x00000000;
1345     cpu->id_mmfr0 = 0x00101F40;
1346     cpu->id_mmfr1 = 0x00000000;
1347     cpu->id_mmfr2 = 0x01000000;
1348     cpu->id_mmfr3 = 0x00000000;
1349     cpu->id_isar0 = 0x01101110;
1350     cpu->id_isar1 = 0x02212000;
1351     cpu->id_isar2 = 0x20232232;
1352     cpu->id_isar3 = 0x01111131;
1353     cpu->id_isar4 = 0x01310132;
1354     cpu->id_isar5 = 0x00000000;
1355     cpu->id_isar6 = 0x00000000;
1356     cpu->clidr = 0x00000000;
1357     cpu->ctr = 0x8000c000;
1358 }
1359 
1360 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1361 {
1362     CPUClass *cc = CPU_CLASS(oc);
1363 
1364 #ifndef CONFIG_USER_ONLY
1365     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1366 #endif
1367 
1368     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1369 }
1370 
1371 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1372     /* Dummy the TCM region regs for the moment */
1373     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1374       .access = PL1_RW, .type = ARM_CP_CONST },
1375     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1376       .access = PL1_RW, .type = ARM_CP_CONST },
1377     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1378       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1379     REGINFO_SENTINEL
1380 };
1381 
1382 static void cortex_r5_initfn(Object *obj)
1383 {
1384     ARMCPU *cpu = ARM_CPU(obj);
1385 
1386     set_feature(&cpu->env, ARM_FEATURE_V7);
1387     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1388     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1389     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1390     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1391     cpu->midr = 0x411fc153; /* r1p3 */
1392     cpu->id_pfr0 = 0x0131;
1393     cpu->id_pfr1 = 0x001;
1394     cpu->id_dfr0 = 0x010400;
1395     cpu->id_afr0 = 0x0;
1396     cpu->id_mmfr0 = 0x0210030;
1397     cpu->id_mmfr1 = 0x00000000;
1398     cpu->id_mmfr2 = 0x01200000;
1399     cpu->id_mmfr3 = 0x0211;
1400     cpu->id_isar0 = 0x2101111;
1401     cpu->id_isar1 = 0x13112111;
1402     cpu->id_isar2 = 0x21232141;
1403     cpu->id_isar3 = 0x01112131;
1404     cpu->id_isar4 = 0x0010142;
1405     cpu->id_isar5 = 0x0;
1406     cpu->id_isar6 = 0x0;
1407     cpu->mp_is_up = true;
1408     cpu->pmsav7_dregion = 16;
1409     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1410 }
1411 
1412 static void cortex_r5f_initfn(Object *obj)
1413 {
1414     ARMCPU *cpu = ARM_CPU(obj);
1415 
1416     cortex_r5_initfn(obj);
1417     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1418 }
1419 
1420 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1421     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1422       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1423     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1424       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1425     REGINFO_SENTINEL
1426 };
1427 
1428 static void cortex_a8_initfn(Object *obj)
1429 {
1430     ARMCPU *cpu = ARM_CPU(obj);
1431 
1432     cpu->dtb_compatible = "arm,cortex-a8";
1433     set_feature(&cpu->env, ARM_FEATURE_V7);
1434     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1435     set_feature(&cpu->env, ARM_FEATURE_NEON);
1436     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1437     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1438     set_feature(&cpu->env, ARM_FEATURE_EL3);
1439     cpu->midr = 0x410fc080;
1440     cpu->reset_fpsid = 0x410330c0;
1441     cpu->mvfr0 = 0x11110222;
1442     cpu->mvfr1 = 0x00011111;
1443     cpu->ctr = 0x82048004;
1444     cpu->reset_sctlr = 0x00c50078;
1445     cpu->id_pfr0 = 0x1031;
1446     cpu->id_pfr1 = 0x11;
1447     cpu->id_dfr0 = 0x400;
1448     cpu->id_afr0 = 0;
1449     cpu->id_mmfr0 = 0x31100003;
1450     cpu->id_mmfr1 = 0x20000000;
1451     cpu->id_mmfr2 = 0x01202000;
1452     cpu->id_mmfr3 = 0x11;
1453     cpu->id_isar0 = 0x00101111;
1454     cpu->id_isar1 = 0x12112111;
1455     cpu->id_isar2 = 0x21232031;
1456     cpu->id_isar3 = 0x11112131;
1457     cpu->id_isar4 = 0x00111142;
1458     cpu->dbgdidr = 0x15141000;
1459     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1460     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1461     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1462     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1463     cpu->reset_auxcr = 2;
1464     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1465 }
1466 
1467 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1468     /* power_control should be set to maximum latency. Again,
1469      * default to 0 and set by private hook
1470      */
1471     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1472       .access = PL1_RW, .resetvalue = 0,
1473       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1474     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1475       .access = PL1_RW, .resetvalue = 0,
1476       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1477     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1478       .access = PL1_RW, .resetvalue = 0,
1479       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1480     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1481       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1482     /* TLB lockdown control */
1483     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1484       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1485     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1486       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1487     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1488       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1489     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1490       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1491     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1492       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1493     REGINFO_SENTINEL
1494 };
1495 
1496 static void cortex_a9_initfn(Object *obj)
1497 {
1498     ARMCPU *cpu = ARM_CPU(obj);
1499 
1500     cpu->dtb_compatible = "arm,cortex-a9";
1501     set_feature(&cpu->env, ARM_FEATURE_V7);
1502     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1503     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1504     set_feature(&cpu->env, ARM_FEATURE_NEON);
1505     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1506     set_feature(&cpu->env, ARM_FEATURE_EL3);
1507     /* Note that A9 supports the MP extensions even for
1508      * A9UP and single-core A9MP (which are both different
1509      * and valid configurations; we don't model A9UP).
1510      */
1511     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1512     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1513     cpu->midr = 0x410fc090;
1514     cpu->reset_fpsid = 0x41033090;
1515     cpu->mvfr0 = 0x11110222;
1516     cpu->mvfr1 = 0x01111111;
1517     cpu->ctr = 0x80038003;
1518     cpu->reset_sctlr = 0x00c50078;
1519     cpu->id_pfr0 = 0x1031;
1520     cpu->id_pfr1 = 0x11;
1521     cpu->id_dfr0 = 0x000;
1522     cpu->id_afr0 = 0;
1523     cpu->id_mmfr0 = 0x00100103;
1524     cpu->id_mmfr1 = 0x20000000;
1525     cpu->id_mmfr2 = 0x01230000;
1526     cpu->id_mmfr3 = 0x00002111;
1527     cpu->id_isar0 = 0x00101111;
1528     cpu->id_isar1 = 0x13112111;
1529     cpu->id_isar2 = 0x21232041;
1530     cpu->id_isar3 = 0x11112131;
1531     cpu->id_isar4 = 0x00111142;
1532     cpu->dbgdidr = 0x35141000;
1533     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1534     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1535     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1536     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1537 }
1538 
1539 #ifndef CONFIG_USER_ONLY
1540 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1541 {
1542     /* Linux wants the number of processors from here.
1543      * Might as well set the interrupt-controller bit too.
1544      */
1545     return ((smp_cpus - 1) << 24) | (1 << 23);
1546 }
1547 #endif
1548 
1549 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1550 #ifndef CONFIG_USER_ONLY
1551     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1552       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1553       .writefn = arm_cp_write_ignore, },
1554 #endif
1555     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1556       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1557     REGINFO_SENTINEL
1558 };
1559 
1560 static void cortex_a7_initfn(Object *obj)
1561 {
1562     ARMCPU *cpu = ARM_CPU(obj);
1563 
1564     cpu->dtb_compatible = "arm,cortex-a7";
1565     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1566     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1567     set_feature(&cpu->env, ARM_FEATURE_NEON);
1568     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1569     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1570     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1571     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1572     set_feature(&cpu->env, ARM_FEATURE_EL3);
1573     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1574     cpu->midr = 0x410fc075;
1575     cpu->reset_fpsid = 0x41023075;
1576     cpu->mvfr0 = 0x10110222;
1577     cpu->mvfr1 = 0x11111111;
1578     cpu->ctr = 0x84448003;
1579     cpu->reset_sctlr = 0x00c50078;
1580     cpu->id_pfr0 = 0x00001131;
1581     cpu->id_pfr1 = 0x00011011;
1582     cpu->id_dfr0 = 0x02010555;
1583     cpu->pmceid0 = 0x00000000;
1584     cpu->pmceid1 = 0x00000000;
1585     cpu->id_afr0 = 0x00000000;
1586     cpu->id_mmfr0 = 0x10101105;
1587     cpu->id_mmfr1 = 0x40000000;
1588     cpu->id_mmfr2 = 0x01240000;
1589     cpu->id_mmfr3 = 0x02102211;
1590     cpu->id_isar0 = 0x01101110;
1591     cpu->id_isar1 = 0x13112111;
1592     cpu->id_isar2 = 0x21232041;
1593     cpu->id_isar3 = 0x11112131;
1594     cpu->id_isar4 = 0x10011142;
1595     cpu->dbgdidr = 0x3515f005;
1596     cpu->clidr = 0x0a200023;
1597     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1598     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1599     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1600     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1601 }
1602 
1603 static void cortex_a15_initfn(Object *obj)
1604 {
1605     ARMCPU *cpu = ARM_CPU(obj);
1606 
1607     cpu->dtb_compatible = "arm,cortex-a15";
1608     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1609     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1610     set_feature(&cpu->env, ARM_FEATURE_NEON);
1611     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1612     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1613     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1614     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1615     set_feature(&cpu->env, ARM_FEATURE_EL3);
1616     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1617     cpu->midr = 0x412fc0f1;
1618     cpu->reset_fpsid = 0x410430f0;
1619     cpu->mvfr0 = 0x10110222;
1620     cpu->mvfr1 = 0x11111111;
1621     cpu->ctr = 0x8444c004;
1622     cpu->reset_sctlr = 0x00c50078;
1623     cpu->id_pfr0 = 0x00001131;
1624     cpu->id_pfr1 = 0x00011011;
1625     cpu->id_dfr0 = 0x02010555;
1626     cpu->pmceid0 = 0x0000000;
1627     cpu->pmceid1 = 0x00000000;
1628     cpu->id_afr0 = 0x00000000;
1629     cpu->id_mmfr0 = 0x10201105;
1630     cpu->id_mmfr1 = 0x20000000;
1631     cpu->id_mmfr2 = 0x01240000;
1632     cpu->id_mmfr3 = 0x02102211;
1633     cpu->id_isar0 = 0x02101110;
1634     cpu->id_isar1 = 0x13112111;
1635     cpu->id_isar2 = 0x21232041;
1636     cpu->id_isar3 = 0x11112131;
1637     cpu->id_isar4 = 0x10011142;
1638     cpu->dbgdidr = 0x3515f021;
1639     cpu->clidr = 0x0a200023;
1640     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1641     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1642     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1643     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1644 }
1645 
1646 static void ti925t_initfn(Object *obj)
1647 {
1648     ARMCPU *cpu = ARM_CPU(obj);
1649     set_feature(&cpu->env, ARM_FEATURE_V4T);
1650     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1651     cpu->midr = ARM_CPUID_TI925T;
1652     cpu->ctr = 0x5109149;
1653     cpu->reset_sctlr = 0x00000070;
1654 }
1655 
1656 static void sa1100_initfn(Object *obj)
1657 {
1658     ARMCPU *cpu = ARM_CPU(obj);
1659 
1660     cpu->dtb_compatible = "intel,sa1100";
1661     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1662     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1663     cpu->midr = 0x4401A11B;
1664     cpu->reset_sctlr = 0x00000070;
1665 }
1666 
1667 static void sa1110_initfn(Object *obj)
1668 {
1669     ARMCPU *cpu = ARM_CPU(obj);
1670     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1671     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1672     cpu->midr = 0x6901B119;
1673     cpu->reset_sctlr = 0x00000070;
1674 }
1675 
1676 static void pxa250_initfn(Object *obj)
1677 {
1678     ARMCPU *cpu = ARM_CPU(obj);
1679 
1680     cpu->dtb_compatible = "marvell,xscale";
1681     set_feature(&cpu->env, ARM_FEATURE_V5);
1682     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1683     cpu->midr = 0x69052100;
1684     cpu->ctr = 0xd172172;
1685     cpu->reset_sctlr = 0x00000078;
1686 }
1687 
1688 static void pxa255_initfn(Object *obj)
1689 {
1690     ARMCPU *cpu = ARM_CPU(obj);
1691 
1692     cpu->dtb_compatible = "marvell,xscale";
1693     set_feature(&cpu->env, ARM_FEATURE_V5);
1694     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1695     cpu->midr = 0x69052d00;
1696     cpu->ctr = 0xd172172;
1697     cpu->reset_sctlr = 0x00000078;
1698 }
1699 
1700 static void pxa260_initfn(Object *obj)
1701 {
1702     ARMCPU *cpu = ARM_CPU(obj);
1703 
1704     cpu->dtb_compatible = "marvell,xscale";
1705     set_feature(&cpu->env, ARM_FEATURE_V5);
1706     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1707     cpu->midr = 0x69052903;
1708     cpu->ctr = 0xd172172;
1709     cpu->reset_sctlr = 0x00000078;
1710 }
1711 
1712 static void pxa261_initfn(Object *obj)
1713 {
1714     ARMCPU *cpu = ARM_CPU(obj);
1715 
1716     cpu->dtb_compatible = "marvell,xscale";
1717     set_feature(&cpu->env, ARM_FEATURE_V5);
1718     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1719     cpu->midr = 0x69052d05;
1720     cpu->ctr = 0xd172172;
1721     cpu->reset_sctlr = 0x00000078;
1722 }
1723 
1724 static void pxa262_initfn(Object *obj)
1725 {
1726     ARMCPU *cpu = ARM_CPU(obj);
1727 
1728     cpu->dtb_compatible = "marvell,xscale";
1729     set_feature(&cpu->env, ARM_FEATURE_V5);
1730     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1731     cpu->midr = 0x69052d06;
1732     cpu->ctr = 0xd172172;
1733     cpu->reset_sctlr = 0x00000078;
1734 }
1735 
1736 static void pxa270a0_initfn(Object *obj)
1737 {
1738     ARMCPU *cpu = ARM_CPU(obj);
1739 
1740     cpu->dtb_compatible = "marvell,xscale";
1741     set_feature(&cpu->env, ARM_FEATURE_V5);
1742     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1743     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1744     cpu->midr = 0x69054110;
1745     cpu->ctr = 0xd172172;
1746     cpu->reset_sctlr = 0x00000078;
1747 }
1748 
1749 static void pxa270a1_initfn(Object *obj)
1750 {
1751     ARMCPU *cpu = ARM_CPU(obj);
1752 
1753     cpu->dtb_compatible = "marvell,xscale";
1754     set_feature(&cpu->env, ARM_FEATURE_V5);
1755     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1756     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1757     cpu->midr = 0x69054111;
1758     cpu->ctr = 0xd172172;
1759     cpu->reset_sctlr = 0x00000078;
1760 }
1761 
1762 static void pxa270b0_initfn(Object *obj)
1763 {
1764     ARMCPU *cpu = ARM_CPU(obj);
1765 
1766     cpu->dtb_compatible = "marvell,xscale";
1767     set_feature(&cpu->env, ARM_FEATURE_V5);
1768     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1770     cpu->midr = 0x69054112;
1771     cpu->ctr = 0xd172172;
1772     cpu->reset_sctlr = 0x00000078;
1773 }
1774 
1775 static void pxa270b1_initfn(Object *obj)
1776 {
1777     ARMCPU *cpu = ARM_CPU(obj);
1778 
1779     cpu->dtb_compatible = "marvell,xscale";
1780     set_feature(&cpu->env, ARM_FEATURE_V5);
1781     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1782     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1783     cpu->midr = 0x69054113;
1784     cpu->ctr = 0xd172172;
1785     cpu->reset_sctlr = 0x00000078;
1786 }
1787 
1788 static void pxa270c0_initfn(Object *obj)
1789 {
1790     ARMCPU *cpu = ARM_CPU(obj);
1791 
1792     cpu->dtb_compatible = "marvell,xscale";
1793     set_feature(&cpu->env, ARM_FEATURE_V5);
1794     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1795     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1796     cpu->midr = 0x69054114;
1797     cpu->ctr = 0xd172172;
1798     cpu->reset_sctlr = 0x00000078;
1799 }
1800 
1801 static void pxa270c5_initfn(Object *obj)
1802 {
1803     ARMCPU *cpu = ARM_CPU(obj);
1804 
1805     cpu->dtb_compatible = "marvell,xscale";
1806     set_feature(&cpu->env, ARM_FEATURE_V5);
1807     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1808     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1809     cpu->midr = 0x69054117;
1810     cpu->ctr = 0xd172172;
1811     cpu->reset_sctlr = 0x00000078;
1812 }
1813 
1814 #ifndef TARGET_AARCH64
1815 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1816  * otherwise, a CPU with as many features enabled as our emulation supports.
1817  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1818  * this only needs to handle 32 bits.
1819  */
1820 static void arm_max_initfn(Object *obj)
1821 {
1822     ARMCPU *cpu = ARM_CPU(obj);
1823 
1824     if (kvm_enabled()) {
1825         kvm_arm_set_cpu_features_from_host(cpu);
1826     } else {
1827         cortex_a15_initfn(obj);
1828 #ifdef CONFIG_USER_ONLY
1829         /* We don't set these in system emulation mode for the moment,
1830          * since we don't correctly set the ID registers to advertise them,
1831          */
1832         set_feature(&cpu->env, ARM_FEATURE_V8);
1833         set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1834         set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1835         set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1836         set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1837         set_feature(&cpu->env, ARM_FEATURE_CRC);
1838         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1839         set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
1840         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1841 #endif
1842     }
1843 }
1844 #endif
1845 
1846 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1847 
1848 typedef struct ARMCPUInfo {
1849     const char *name;
1850     void (*initfn)(Object *obj);
1851     void (*class_init)(ObjectClass *oc, void *data);
1852 } ARMCPUInfo;
1853 
1854 static const ARMCPUInfo arm_cpus[] = {
1855 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1856     { .name = "arm926",      .initfn = arm926_initfn },
1857     { .name = "arm946",      .initfn = arm946_initfn },
1858     { .name = "arm1026",     .initfn = arm1026_initfn },
1859     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1860      * older core than plain "arm1136". In particular this does not
1861      * have the v6K features.
1862      */
1863     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1864     { .name = "arm1136",     .initfn = arm1136_initfn },
1865     { .name = "arm1176",     .initfn = arm1176_initfn },
1866     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1867     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1868                              .class_init = arm_v7m_class_init },
1869     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1870                              .class_init = arm_v7m_class_init },
1871     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1872                              .class_init = arm_v7m_class_init },
1873     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1874                              .class_init = arm_v7m_class_init },
1875     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1876     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1877     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1878     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1879     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1880     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1881     { .name = "ti925t",      .initfn = ti925t_initfn },
1882     { .name = "sa1100",      .initfn = sa1100_initfn },
1883     { .name = "sa1110",      .initfn = sa1110_initfn },
1884     { .name = "pxa250",      .initfn = pxa250_initfn },
1885     { .name = "pxa255",      .initfn = pxa255_initfn },
1886     { .name = "pxa260",      .initfn = pxa260_initfn },
1887     { .name = "pxa261",      .initfn = pxa261_initfn },
1888     { .name = "pxa262",      .initfn = pxa262_initfn },
1889     /* "pxa270" is an alias for "pxa270-a0" */
1890     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1891     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1892     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1893     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1894     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1895     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1896     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1897 #ifndef TARGET_AARCH64
1898     { .name = "max",         .initfn = arm_max_initfn },
1899 #endif
1900 #ifdef CONFIG_USER_ONLY
1901     { .name = "any",         .initfn = arm_max_initfn },
1902 #endif
1903 #endif
1904     { .name = NULL }
1905 };
1906 
1907 static Property arm_cpu_properties[] = {
1908     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1909     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1910     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1911     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1912                         mp_affinity, ARM64_AFFINITY_INVALID),
1913     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1914     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1915     DEFINE_PROP_END_OF_LIST()
1916 };
1917 
1918 #ifdef CONFIG_USER_ONLY
1919 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1920                                     int rw, int mmu_idx)
1921 {
1922     ARMCPU *cpu = ARM_CPU(cs);
1923     CPUARMState *env = &cpu->env;
1924 
1925     env->exception.vaddress = address;
1926     if (rw == 2) {
1927         cs->exception_index = EXCP_PREFETCH_ABORT;
1928     } else {
1929         cs->exception_index = EXCP_DATA_ABORT;
1930     }
1931     return 1;
1932 }
1933 #endif
1934 
1935 static gchar *arm_gdb_arch_name(CPUState *cs)
1936 {
1937     ARMCPU *cpu = ARM_CPU(cs);
1938     CPUARMState *env = &cpu->env;
1939 
1940     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1941         return g_strdup("iwmmxt");
1942     }
1943     return g_strdup("arm");
1944 }
1945 
1946 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1947 {
1948     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1949     CPUClass *cc = CPU_CLASS(acc);
1950     DeviceClass *dc = DEVICE_CLASS(oc);
1951 
1952     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1953                                     &acc->parent_realize);
1954     dc->props = arm_cpu_properties;
1955 
1956     acc->parent_reset = cc->reset;
1957     cc->reset = arm_cpu_reset;
1958 
1959     cc->class_by_name = arm_cpu_class_by_name;
1960     cc->has_work = arm_cpu_has_work;
1961     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1962     cc->dump_state = arm_cpu_dump_state;
1963     cc->set_pc = arm_cpu_set_pc;
1964     cc->gdb_read_register = arm_cpu_gdb_read_register;
1965     cc->gdb_write_register = arm_cpu_gdb_write_register;
1966 #ifdef CONFIG_USER_ONLY
1967     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1968 #else
1969     cc->do_interrupt = arm_cpu_do_interrupt;
1970     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1971     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1972     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1973     cc->asidx_from_attrs = arm_asidx_from_attrs;
1974     cc->vmsd = &vmstate_arm_cpu;
1975     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1976     cc->write_elf64_note = arm_cpu_write_elf64_note;
1977     cc->write_elf32_note = arm_cpu_write_elf32_note;
1978 #endif
1979     cc->gdb_num_core_regs = 26;
1980     cc->gdb_core_xml_file = "arm-core.xml";
1981     cc->gdb_arch_name = arm_gdb_arch_name;
1982     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1983     cc->gdb_stop_before_watchpoint = true;
1984     cc->debug_excp_handler = arm_debug_excp_handler;
1985     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1986 #if !defined(CONFIG_USER_ONLY)
1987     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1988 #endif
1989 
1990     cc->disas_set_info = arm_disas_set_info;
1991 #ifdef CONFIG_TCG
1992     cc->tcg_initialize = arm_translate_init;
1993 #endif
1994 }
1995 
1996 #ifdef CONFIG_KVM
1997 static void arm_host_initfn(Object *obj)
1998 {
1999     ARMCPU *cpu = ARM_CPU(obj);
2000 
2001     kvm_arm_set_cpu_features_from_host(cpu);
2002 }
2003 
2004 static const TypeInfo host_arm_cpu_type_info = {
2005     .name = TYPE_ARM_HOST_CPU,
2006 #ifdef TARGET_AARCH64
2007     .parent = TYPE_AARCH64_CPU,
2008 #else
2009     .parent = TYPE_ARM_CPU,
2010 #endif
2011     .instance_init = arm_host_initfn,
2012 };
2013 
2014 #endif
2015 
2016 static void cpu_register(const ARMCPUInfo *info)
2017 {
2018     TypeInfo type_info = {
2019         .parent = TYPE_ARM_CPU,
2020         .instance_size = sizeof(ARMCPU),
2021         .instance_init = info->initfn,
2022         .class_size = sizeof(ARMCPUClass),
2023         .class_init = info->class_init,
2024     };
2025 
2026     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2027     type_register(&type_info);
2028     g_free((void *)type_info.name);
2029 }
2030 
2031 static const TypeInfo arm_cpu_type_info = {
2032     .name = TYPE_ARM_CPU,
2033     .parent = TYPE_CPU,
2034     .instance_size = sizeof(ARMCPU),
2035     .instance_init = arm_cpu_initfn,
2036     .instance_post_init = arm_cpu_post_init,
2037     .instance_finalize = arm_cpu_finalizefn,
2038     .abstract = true,
2039     .class_size = sizeof(ARMCPUClass),
2040     .class_init = arm_cpu_class_init,
2041 };
2042 
2043 static const TypeInfo idau_interface_type_info = {
2044     .name = TYPE_IDAU_INTERFACE,
2045     .parent = TYPE_INTERFACE,
2046     .class_size = sizeof(IDAUInterfaceClass),
2047 };
2048 
2049 static void arm_cpu_register_types(void)
2050 {
2051     const ARMCPUInfo *info = arm_cpus;
2052 
2053     type_register_static(&arm_cpu_type_info);
2054     type_register_static(&idau_interface_type_info);
2055 
2056     while (info->name) {
2057         cpu_register(info);
2058         info++;
2059     }
2060 
2061 #ifdef CONFIG_KVM
2062     type_register_static(&host_arm_cpu_type_info);
2063 #endif
2064 }
2065 
2066 type_init(arm_cpu_register_types)
2067