xref: /openbmc/qemu/target/arm/cpu.c (revision 795c40b8)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         /* For M profile we store FAULTMASK and PRIMASK in the
189          * PSTATE F and I bits; these are both clear at reset.
190          */
191         env->daif &= ~(PSTATE_I | PSTATE_F);
192 
193         /* The reset value of this bit is IMPDEF, but ARM recommends
194          * that it resets to 1, so QEMU always does that rather than making
195          * it dependent on CPU model.
196          */
197         env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
198 
199         /* Unlike A/R profile, M profile defines the reset LR value */
200         env->regs[14] = 0xffffffff;
201 
202         /* Load the initial SP and PC from the vector table at address 0 */
203         rom = rom_ptr(0);
204         if (rom) {
205             /* Address zero is covered by ROM which hasn't yet been
206              * copied into physical memory.
207              */
208             initial_msp = ldl_p(rom);
209             initial_pc = ldl_p(rom + 4);
210         } else {
211             /* Address zero not covered by a ROM blob, or the ROM blob
212              * is in non-modifiable memory and this is a second reset after
213              * it got copied into memory. In the latter case, rom_ptr
214              * will return a NULL pointer and we should use ldl_phys instead.
215              */
216             initial_msp = ldl_phys(s->as, 0);
217             initial_pc = ldl_phys(s->as, 4);
218         }
219 
220         env->regs[13] = initial_msp & 0xFFFFFFFC;
221         env->regs[15] = initial_pc & ~1;
222         env->thumb = initial_pc & 1;
223     }
224 
225     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
226      * executing as AArch32 then check if highvecs are enabled and
227      * adjust the PC accordingly.
228      */
229     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
230         env->regs[15] = 0xFFFF0000;
231     }
232 
233     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
234 #endif
235     set_flush_to_zero(1, &env->vfp.standard_fp_status);
236     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
237     set_default_nan_mode(1, &env->vfp.standard_fp_status);
238     set_float_detect_tininess(float_tininess_before_rounding,
239                               &env->vfp.fp_status);
240     set_float_detect_tininess(float_tininess_before_rounding,
241                               &env->vfp.standard_fp_status);
242 #ifndef CONFIG_USER_ONLY
243     if (kvm_enabled()) {
244         kvm_arm_reset_vcpu(cpu);
245     }
246 #endif
247 
248     hw_breakpoint_update_all(cpu);
249     hw_watchpoint_update_all(cpu);
250 }
251 
252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
253 {
254     CPUClass *cc = CPU_GET_CLASS(cs);
255     CPUARMState *env = cs->env_ptr;
256     uint32_t cur_el = arm_current_el(env);
257     bool secure = arm_is_secure(env);
258     uint32_t target_el;
259     uint32_t excp_idx;
260     bool ret = false;
261 
262     if (interrupt_request & CPU_INTERRUPT_FIQ) {
263         excp_idx = EXCP_FIQ;
264         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
265         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
266             cs->exception_index = excp_idx;
267             env->exception.target_el = target_el;
268             cc->do_interrupt(cs);
269             ret = true;
270         }
271     }
272     if (interrupt_request & CPU_INTERRUPT_HARD) {
273         excp_idx = EXCP_IRQ;
274         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
275         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
276             cs->exception_index = excp_idx;
277             env->exception.target_el = target_el;
278             cc->do_interrupt(cs);
279             ret = true;
280         }
281     }
282     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
283         excp_idx = EXCP_VIRQ;
284         target_el = 1;
285         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
286             cs->exception_index = excp_idx;
287             env->exception.target_el = target_el;
288             cc->do_interrupt(cs);
289             ret = true;
290         }
291     }
292     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
293         excp_idx = EXCP_VFIQ;
294         target_el = 1;
295         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
296             cs->exception_index = excp_idx;
297             env->exception.target_el = target_el;
298             cc->do_interrupt(cs);
299             ret = true;
300         }
301     }
302 
303     return ret;
304 }
305 
306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
307 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
308 {
309     CPUClass *cc = CPU_GET_CLASS(cs);
310     ARMCPU *cpu = ARM_CPU(cs);
311     CPUARMState *env = &cpu->env;
312     bool ret = false;
313 
314     /* ARMv7-M interrupt masking works differently than -A or -R.
315      * There is no FIQ/IRQ distinction. Instead of I and F bits
316      * masking FIQ and IRQ interrupts, an exception is taken only
317      * if it is higher priority than the current execution priority
318      * (which depends on state like BASEPRI, FAULTMASK and the
319      * currently active exception).
320      */
321     if (interrupt_request & CPU_INTERRUPT_HARD
322         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
323         cs->exception_index = EXCP_IRQ;
324         cc->do_interrupt(cs);
325         ret = true;
326     }
327     return ret;
328 }
329 #endif
330 
331 #ifndef CONFIG_USER_ONLY
332 static void arm_cpu_set_irq(void *opaque, int irq, int level)
333 {
334     ARMCPU *cpu = opaque;
335     CPUARMState *env = &cpu->env;
336     CPUState *cs = CPU(cpu);
337     static const int mask[] = {
338         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
339         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
340         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
341         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
342     };
343 
344     switch (irq) {
345     case ARM_CPU_VIRQ:
346     case ARM_CPU_VFIQ:
347         assert(arm_feature(env, ARM_FEATURE_EL2));
348         /* fall through */
349     case ARM_CPU_IRQ:
350     case ARM_CPU_FIQ:
351         if (level) {
352             cpu_interrupt(cs, mask[irq]);
353         } else {
354             cpu_reset_interrupt(cs, mask[irq]);
355         }
356         break;
357     default:
358         g_assert_not_reached();
359     }
360 }
361 
362 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
363 {
364 #ifdef CONFIG_KVM
365     ARMCPU *cpu = opaque;
366     CPUState *cs = CPU(cpu);
367     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
368 
369     switch (irq) {
370     case ARM_CPU_IRQ:
371         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
372         break;
373     case ARM_CPU_FIQ:
374         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
375         break;
376     default:
377         g_assert_not_reached();
378     }
379     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
380     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
381 #endif
382 }
383 
384 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
385 {
386     ARMCPU *cpu = ARM_CPU(cs);
387     CPUARMState *env = &cpu->env;
388 
389     cpu_synchronize_state(cs);
390     return arm_cpu_data_is_big_endian(env);
391 }
392 
393 #endif
394 
395 static inline void set_feature(CPUARMState *env, int feature)
396 {
397     env->features |= 1ULL << feature;
398 }
399 
400 static inline void unset_feature(CPUARMState *env, int feature)
401 {
402     env->features &= ~(1ULL << feature);
403 }
404 
405 static int
406 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
407 {
408   return print_insn_arm(pc | 1, info);
409 }
410 
411 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
412                                 int length, struct disassemble_info *info)
413 {
414     assert(info->read_memory_inner_func);
415     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
416 
417     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
418         assert(info->endian == BFD_ENDIAN_LITTLE);
419         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
420                                             info);
421     } else {
422         return info->read_memory_inner_func(memaddr, b, length, info);
423     }
424 }
425 
426 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
427 {
428     ARMCPU *ac = ARM_CPU(cpu);
429     CPUARMState *env = &ac->env;
430 
431     if (is_a64(env)) {
432         /* We might not be compiled with the A64 disassembler
433          * because it needs a C++ compiler. Leave print_insn
434          * unset in this case to use the caller default behaviour.
435          */
436 #if defined(CONFIG_ARM_A64_DIS)
437         info->print_insn = print_insn_arm_a64;
438 #endif
439     } else if (env->thumb) {
440         info->print_insn = print_insn_thumb1;
441     } else {
442         info->print_insn = print_insn_arm;
443     }
444     if (bswap_code(arm_sctlr_b(env))) {
445 #ifdef TARGET_WORDS_BIGENDIAN
446         info->endian = BFD_ENDIAN_LITTLE;
447 #else
448         info->endian = BFD_ENDIAN_BIG;
449 #endif
450     }
451     if (info->read_memory_inner_func == NULL) {
452         info->read_memory_inner_func = info->read_memory_func;
453         info->read_memory_func = arm_read_memory_func;
454     }
455     info->flags &= ~INSN_ARM_BE32;
456     if (arm_sctlr_b(env)) {
457         info->flags |= INSN_ARM_BE32;
458     }
459 }
460 
461 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
462 {
463     uint32_t Aff1 = idx / clustersz;
464     uint32_t Aff0 = idx % clustersz;
465     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
466 }
467 
468 static void arm_cpu_initfn(Object *obj)
469 {
470     CPUState *cs = CPU(obj);
471     ARMCPU *cpu = ARM_CPU(obj);
472     static bool inited;
473 
474     cs->env_ptr = &cpu->env;
475     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
476                                          g_free, g_free);
477 
478 #ifndef CONFIG_USER_ONLY
479     /* Our inbound IRQ and FIQ lines */
480     if (kvm_enabled()) {
481         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
482          * the same interface as non-KVM CPUs.
483          */
484         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
485     } else {
486         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
487     }
488 
489     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
490                                                 arm_gt_ptimer_cb, cpu);
491     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
492                                                 arm_gt_vtimer_cb, cpu);
493     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
494                                                 arm_gt_htimer_cb, cpu);
495     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
496                                                 arm_gt_stimer_cb, cpu);
497     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
498                        ARRAY_SIZE(cpu->gt_timer_outputs));
499 
500     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
501                              "gicv3-maintenance-interrupt", 1);
502 #endif
503 
504     /* DTB consumers generally don't in fact care what the 'compatible'
505      * string is, so always provide some string and trust that a hypothetical
506      * picky DTB consumer will also provide a helpful error message.
507      */
508     cpu->dtb_compatible = "qemu,unknown";
509     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
510     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
511 
512     if (tcg_enabled()) {
513         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
514         if (!inited) {
515             inited = true;
516             arm_translate_init();
517         }
518     }
519 }
520 
521 static Property arm_cpu_reset_cbar_property =
522             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
523 
524 static Property arm_cpu_reset_hivecs_property =
525             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
526 
527 static Property arm_cpu_rvbar_property =
528             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
529 
530 static Property arm_cpu_has_el2_property =
531             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
532 
533 static Property arm_cpu_has_el3_property =
534             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
535 
536 static Property arm_cpu_cfgend_property =
537             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
538 
539 /* use property name "pmu" to match other archs and virt tools */
540 static Property arm_cpu_has_pmu_property =
541             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
542 
543 static Property arm_cpu_has_mpu_property =
544             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
545 
546 static Property arm_cpu_pmsav7_dregion_property =
547             DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
548 
549 static void arm_cpu_post_init(Object *obj)
550 {
551     ARMCPU *cpu = ARM_CPU(obj);
552 
553     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
554         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
555         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
556                                  &error_abort);
557     }
558 
559     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
560         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
561                                  &error_abort);
562     }
563 
564     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
565         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
566                                  &error_abort);
567     }
568 
569     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
570         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
571          * prevent "has_el3" from existing on CPUs which cannot support EL3.
572          */
573         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
574                                  &error_abort);
575 
576 #ifndef CONFIG_USER_ONLY
577         object_property_add_link(obj, "secure-memory",
578                                  TYPE_MEMORY_REGION,
579                                  (Object **)&cpu->secure_memory,
580                                  qdev_prop_allow_set_link_before_realize,
581                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
582                                  &error_abort);
583 #endif
584     }
585 
586     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
587         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
588                                  &error_abort);
589     }
590 
591     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
592         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
593                                  &error_abort);
594     }
595 
596     if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
597         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
598                                  &error_abort);
599         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
600             qdev_property_add_static(DEVICE(obj),
601                                      &arm_cpu_pmsav7_dregion_property,
602                                      &error_abort);
603         }
604     }
605 
606     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
607                              &error_abort);
608 }
609 
610 static void arm_cpu_finalizefn(Object *obj)
611 {
612     ARMCPU *cpu = ARM_CPU(obj);
613     g_hash_table_destroy(cpu->cp_regs);
614 }
615 
616 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
617 {
618     CPUState *cs = CPU(dev);
619     ARMCPU *cpu = ARM_CPU(dev);
620     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
621     CPUARMState *env = &cpu->env;
622     int pagebits;
623     Error *local_err = NULL;
624 
625     cpu_exec_realizefn(cs, &local_err);
626     if (local_err != NULL) {
627         error_propagate(errp, local_err);
628         return;
629     }
630 
631     /* Some features automatically imply others: */
632     if (arm_feature(env, ARM_FEATURE_V8)) {
633         set_feature(env, ARM_FEATURE_V7);
634         set_feature(env, ARM_FEATURE_ARM_DIV);
635         set_feature(env, ARM_FEATURE_LPAE);
636     }
637     if (arm_feature(env, ARM_FEATURE_V7)) {
638         set_feature(env, ARM_FEATURE_VAPA);
639         set_feature(env, ARM_FEATURE_THUMB2);
640         set_feature(env, ARM_FEATURE_MPIDR);
641         if (!arm_feature(env, ARM_FEATURE_M)) {
642             set_feature(env, ARM_FEATURE_V6K);
643         } else {
644             set_feature(env, ARM_FEATURE_V6);
645         }
646 
647         /* Always define VBAR for V7 CPUs even if it doesn't exist in
648          * non-EL3 configs. This is needed by some legacy boards.
649          */
650         set_feature(env, ARM_FEATURE_VBAR);
651     }
652     if (arm_feature(env, ARM_FEATURE_V6K)) {
653         set_feature(env, ARM_FEATURE_V6);
654         set_feature(env, ARM_FEATURE_MVFR);
655     }
656     if (arm_feature(env, ARM_FEATURE_V6)) {
657         set_feature(env, ARM_FEATURE_V5);
658         if (!arm_feature(env, ARM_FEATURE_M)) {
659             set_feature(env, ARM_FEATURE_AUXCR);
660         }
661     }
662     if (arm_feature(env, ARM_FEATURE_V5)) {
663         set_feature(env, ARM_FEATURE_V4T);
664     }
665     if (arm_feature(env, ARM_FEATURE_M)) {
666         set_feature(env, ARM_FEATURE_THUMB_DIV);
667     }
668     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
669         set_feature(env, ARM_FEATURE_THUMB_DIV);
670     }
671     if (arm_feature(env, ARM_FEATURE_VFP4)) {
672         set_feature(env, ARM_FEATURE_VFP3);
673         set_feature(env, ARM_FEATURE_VFP_FP16);
674     }
675     if (arm_feature(env, ARM_FEATURE_VFP3)) {
676         set_feature(env, ARM_FEATURE_VFP);
677     }
678     if (arm_feature(env, ARM_FEATURE_LPAE)) {
679         set_feature(env, ARM_FEATURE_V7MP);
680         set_feature(env, ARM_FEATURE_PXN);
681     }
682     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
683         set_feature(env, ARM_FEATURE_CBAR);
684     }
685     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
686         !arm_feature(env, ARM_FEATURE_M)) {
687         set_feature(env, ARM_FEATURE_THUMB_DSP);
688     }
689 
690     if (arm_feature(env, ARM_FEATURE_V7) &&
691         !arm_feature(env, ARM_FEATURE_M) &&
692         !arm_feature(env, ARM_FEATURE_MPU)) {
693         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
694          * can use 4K pages.
695          */
696         pagebits = 12;
697     } else {
698         /* For CPUs which might have tiny 1K pages, or which have an
699          * MPU and might have small region sizes, stick with 1K pages.
700          */
701         pagebits = 10;
702     }
703     if (!set_preferred_target_page_bits(pagebits)) {
704         /* This can only ever happen for hotplugging a CPU, or if
705          * the board code incorrectly creates a CPU which it has
706          * promised via minimum_page_size that it will not.
707          */
708         error_setg(errp, "This CPU requires a smaller page size than the "
709                    "system is using");
710         return;
711     }
712 
713     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
714      * We don't support setting cluster ID ([16..23]) (known as Aff2
715      * in later ARM ARM versions), or any of the higher affinity level fields,
716      * so these bits always RAZ.
717      */
718     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
719         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
720                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
721     }
722 
723     if (cpu->reset_hivecs) {
724             cpu->reset_sctlr |= (1 << 13);
725     }
726 
727     if (cpu->cfgend) {
728         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
729             cpu->reset_sctlr |= SCTLR_EE;
730         } else {
731             cpu->reset_sctlr |= SCTLR_B;
732         }
733     }
734 
735     if (!cpu->has_el3) {
736         /* If the has_el3 CPU property is disabled then we need to disable the
737          * feature.
738          */
739         unset_feature(env, ARM_FEATURE_EL3);
740 
741         /* Disable the security extension feature bits in the processor feature
742          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
743          */
744         cpu->id_pfr1 &= ~0xf0;
745         cpu->id_aa64pfr0 &= ~0xf000;
746     }
747 
748     if (!cpu->has_el2) {
749         unset_feature(env, ARM_FEATURE_EL2);
750     }
751 
752     if (!cpu->has_pmu) {
753         cpu->has_pmu = false;
754         unset_feature(env, ARM_FEATURE_PMU);
755     }
756 
757     if (!arm_feature(env, ARM_FEATURE_EL2)) {
758         /* Disable the hypervisor feature bits in the processor feature
759          * registers if we don't have EL2. These are id_pfr1[15:12] and
760          * id_aa64pfr0_el1[11:8].
761          */
762         cpu->id_aa64pfr0 &= ~0xf00;
763         cpu->id_pfr1 &= ~0xf000;
764     }
765 
766     if (!cpu->has_mpu) {
767         unset_feature(env, ARM_FEATURE_MPU);
768     }
769 
770     if (arm_feature(env, ARM_FEATURE_MPU) &&
771         arm_feature(env, ARM_FEATURE_V7)) {
772         uint32_t nr = cpu->pmsav7_dregion;
773 
774         if (nr > 0xff) {
775             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
776             return;
777         }
778 
779         if (nr) {
780             env->pmsav7.drbar = g_new0(uint32_t, nr);
781             env->pmsav7.drsr = g_new0(uint32_t, nr);
782             env->pmsav7.dracr = g_new0(uint32_t, nr);
783         }
784     }
785 
786     if (arm_feature(env, ARM_FEATURE_EL3)) {
787         set_feature(env, ARM_FEATURE_VBAR);
788     }
789 
790     register_cp_regs_for_features(cpu);
791     arm_cpu_register_gdb_regs_for_features(cpu);
792 
793     init_cpreg_list(cpu);
794 
795 #ifndef CONFIG_USER_ONLY
796     if (cpu->has_el3) {
797         cs->num_ases = 2;
798     } else {
799         cs->num_ases = 1;
800     }
801 
802     if (cpu->has_el3) {
803         AddressSpace *as;
804 
805         if (!cpu->secure_memory) {
806             cpu->secure_memory = cs->memory;
807         }
808         as = address_space_init_shareable(cpu->secure_memory,
809                                           "cpu-secure-memory");
810         cpu_address_space_init(cs, as, ARMASIdx_S);
811     }
812     cpu_address_space_init(cs,
813                            address_space_init_shareable(cs->memory,
814                                                         "cpu-memory"),
815                            ARMASIdx_NS);
816 #endif
817 
818     qemu_init_vcpu(cs);
819     cpu_reset(cs);
820 
821     acc->parent_realize(dev, errp);
822 }
823 
824 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
825 {
826     ObjectClass *oc;
827     char *typename;
828     char **cpuname;
829 
830     if (!cpu_model) {
831         return NULL;
832     }
833 
834     cpuname = g_strsplit(cpu_model, ",", 1);
835     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
836     oc = object_class_by_name(typename);
837     g_strfreev(cpuname);
838     g_free(typename);
839     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
840         object_class_is_abstract(oc)) {
841         return NULL;
842     }
843     return oc;
844 }
845 
846 /* CPU models. These are not needed for the AArch64 linux-user build. */
847 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
848 
849 static void arm926_initfn(Object *obj)
850 {
851     ARMCPU *cpu = ARM_CPU(obj);
852 
853     cpu->dtb_compatible = "arm,arm926";
854     set_feature(&cpu->env, ARM_FEATURE_V5);
855     set_feature(&cpu->env, ARM_FEATURE_VFP);
856     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
857     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
858     cpu->midr = 0x41069265;
859     cpu->reset_fpsid = 0x41011090;
860     cpu->ctr = 0x1dd20d2;
861     cpu->reset_sctlr = 0x00090078;
862 }
863 
864 static void arm946_initfn(Object *obj)
865 {
866     ARMCPU *cpu = ARM_CPU(obj);
867 
868     cpu->dtb_compatible = "arm,arm946";
869     set_feature(&cpu->env, ARM_FEATURE_V5);
870     set_feature(&cpu->env, ARM_FEATURE_MPU);
871     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
872     cpu->midr = 0x41059461;
873     cpu->ctr = 0x0f004006;
874     cpu->reset_sctlr = 0x00000078;
875 }
876 
877 static void arm1026_initfn(Object *obj)
878 {
879     ARMCPU *cpu = ARM_CPU(obj);
880 
881     cpu->dtb_compatible = "arm,arm1026";
882     set_feature(&cpu->env, ARM_FEATURE_V5);
883     set_feature(&cpu->env, ARM_FEATURE_VFP);
884     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
885     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
886     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
887     cpu->midr = 0x4106a262;
888     cpu->reset_fpsid = 0x410110a0;
889     cpu->ctr = 0x1dd20d2;
890     cpu->reset_sctlr = 0x00090078;
891     cpu->reset_auxcr = 1;
892     {
893         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
894         ARMCPRegInfo ifar = {
895             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
896             .access = PL1_RW,
897             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
898             .resetvalue = 0
899         };
900         define_one_arm_cp_reg(cpu, &ifar);
901     }
902 }
903 
904 static void arm1136_r2_initfn(Object *obj)
905 {
906     ARMCPU *cpu = ARM_CPU(obj);
907     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
908      * older core than plain "arm1136". In particular this does not
909      * have the v6K features.
910      * These ID register values are correct for 1136 but may be wrong
911      * for 1136_r2 (in particular r0p2 does not actually implement most
912      * of the ID registers).
913      */
914 
915     cpu->dtb_compatible = "arm,arm1136";
916     set_feature(&cpu->env, ARM_FEATURE_V6);
917     set_feature(&cpu->env, ARM_FEATURE_VFP);
918     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
919     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
920     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
921     cpu->midr = 0x4107b362;
922     cpu->reset_fpsid = 0x410120b4;
923     cpu->mvfr0 = 0x11111111;
924     cpu->mvfr1 = 0x00000000;
925     cpu->ctr = 0x1dd20d2;
926     cpu->reset_sctlr = 0x00050078;
927     cpu->id_pfr0 = 0x111;
928     cpu->id_pfr1 = 0x1;
929     cpu->id_dfr0 = 0x2;
930     cpu->id_afr0 = 0x3;
931     cpu->id_mmfr0 = 0x01130003;
932     cpu->id_mmfr1 = 0x10030302;
933     cpu->id_mmfr2 = 0x01222110;
934     cpu->id_isar0 = 0x00140011;
935     cpu->id_isar1 = 0x12002111;
936     cpu->id_isar2 = 0x11231111;
937     cpu->id_isar3 = 0x01102131;
938     cpu->id_isar4 = 0x141;
939     cpu->reset_auxcr = 7;
940 }
941 
942 static void arm1136_initfn(Object *obj)
943 {
944     ARMCPU *cpu = ARM_CPU(obj);
945 
946     cpu->dtb_compatible = "arm,arm1136";
947     set_feature(&cpu->env, ARM_FEATURE_V6K);
948     set_feature(&cpu->env, ARM_FEATURE_V6);
949     set_feature(&cpu->env, ARM_FEATURE_VFP);
950     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
951     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
952     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
953     cpu->midr = 0x4117b363;
954     cpu->reset_fpsid = 0x410120b4;
955     cpu->mvfr0 = 0x11111111;
956     cpu->mvfr1 = 0x00000000;
957     cpu->ctr = 0x1dd20d2;
958     cpu->reset_sctlr = 0x00050078;
959     cpu->id_pfr0 = 0x111;
960     cpu->id_pfr1 = 0x1;
961     cpu->id_dfr0 = 0x2;
962     cpu->id_afr0 = 0x3;
963     cpu->id_mmfr0 = 0x01130003;
964     cpu->id_mmfr1 = 0x10030302;
965     cpu->id_mmfr2 = 0x01222110;
966     cpu->id_isar0 = 0x00140011;
967     cpu->id_isar1 = 0x12002111;
968     cpu->id_isar2 = 0x11231111;
969     cpu->id_isar3 = 0x01102131;
970     cpu->id_isar4 = 0x141;
971     cpu->reset_auxcr = 7;
972 }
973 
974 static void arm1176_initfn(Object *obj)
975 {
976     ARMCPU *cpu = ARM_CPU(obj);
977 
978     cpu->dtb_compatible = "arm,arm1176";
979     set_feature(&cpu->env, ARM_FEATURE_V6K);
980     set_feature(&cpu->env, ARM_FEATURE_VFP);
981     set_feature(&cpu->env, ARM_FEATURE_VAPA);
982     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
983     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
984     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
985     set_feature(&cpu->env, ARM_FEATURE_EL3);
986     cpu->midr = 0x410fb767;
987     cpu->reset_fpsid = 0x410120b5;
988     cpu->mvfr0 = 0x11111111;
989     cpu->mvfr1 = 0x00000000;
990     cpu->ctr = 0x1dd20d2;
991     cpu->reset_sctlr = 0x00050078;
992     cpu->id_pfr0 = 0x111;
993     cpu->id_pfr1 = 0x11;
994     cpu->id_dfr0 = 0x33;
995     cpu->id_afr0 = 0;
996     cpu->id_mmfr0 = 0x01130003;
997     cpu->id_mmfr1 = 0x10030302;
998     cpu->id_mmfr2 = 0x01222100;
999     cpu->id_isar0 = 0x0140011;
1000     cpu->id_isar1 = 0x12002111;
1001     cpu->id_isar2 = 0x11231121;
1002     cpu->id_isar3 = 0x01102131;
1003     cpu->id_isar4 = 0x01141;
1004     cpu->reset_auxcr = 7;
1005 }
1006 
1007 static void arm11mpcore_initfn(Object *obj)
1008 {
1009     ARMCPU *cpu = ARM_CPU(obj);
1010 
1011     cpu->dtb_compatible = "arm,arm11mpcore";
1012     set_feature(&cpu->env, ARM_FEATURE_V6K);
1013     set_feature(&cpu->env, ARM_FEATURE_VFP);
1014     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1015     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1016     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1017     cpu->midr = 0x410fb022;
1018     cpu->reset_fpsid = 0x410120b4;
1019     cpu->mvfr0 = 0x11111111;
1020     cpu->mvfr1 = 0x00000000;
1021     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1022     cpu->id_pfr0 = 0x111;
1023     cpu->id_pfr1 = 0x1;
1024     cpu->id_dfr0 = 0;
1025     cpu->id_afr0 = 0x2;
1026     cpu->id_mmfr0 = 0x01100103;
1027     cpu->id_mmfr1 = 0x10020302;
1028     cpu->id_mmfr2 = 0x01222000;
1029     cpu->id_isar0 = 0x00100011;
1030     cpu->id_isar1 = 0x12002111;
1031     cpu->id_isar2 = 0x11221011;
1032     cpu->id_isar3 = 0x01102131;
1033     cpu->id_isar4 = 0x141;
1034     cpu->reset_auxcr = 1;
1035 }
1036 
1037 static void cortex_m3_initfn(Object *obj)
1038 {
1039     ARMCPU *cpu = ARM_CPU(obj);
1040     set_feature(&cpu->env, ARM_FEATURE_V7);
1041     set_feature(&cpu->env, ARM_FEATURE_M);
1042     cpu->midr = 0x410fc231;
1043 }
1044 
1045 static void cortex_m4_initfn(Object *obj)
1046 {
1047     ARMCPU *cpu = ARM_CPU(obj);
1048 
1049     set_feature(&cpu->env, ARM_FEATURE_V7);
1050     set_feature(&cpu->env, ARM_FEATURE_M);
1051     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1052     cpu->midr = 0x410fc240; /* r0p0 */
1053 }
1054 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1055 {
1056     CPUClass *cc = CPU_CLASS(oc);
1057 
1058 #ifndef CONFIG_USER_ONLY
1059     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1060 #endif
1061 
1062     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1063 }
1064 
1065 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1066     /* Dummy the TCM region regs for the moment */
1067     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1068       .access = PL1_RW, .type = ARM_CP_CONST },
1069     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1070       .access = PL1_RW, .type = ARM_CP_CONST },
1071     REGINFO_SENTINEL
1072 };
1073 
1074 static void cortex_r5_initfn(Object *obj)
1075 {
1076     ARMCPU *cpu = ARM_CPU(obj);
1077 
1078     set_feature(&cpu->env, ARM_FEATURE_V7);
1079     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1080     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1081     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1082     set_feature(&cpu->env, ARM_FEATURE_MPU);
1083     cpu->midr = 0x411fc153; /* r1p3 */
1084     cpu->id_pfr0 = 0x0131;
1085     cpu->id_pfr1 = 0x001;
1086     cpu->id_dfr0 = 0x010400;
1087     cpu->id_afr0 = 0x0;
1088     cpu->id_mmfr0 = 0x0210030;
1089     cpu->id_mmfr1 = 0x00000000;
1090     cpu->id_mmfr2 = 0x01200000;
1091     cpu->id_mmfr3 = 0x0211;
1092     cpu->id_isar0 = 0x2101111;
1093     cpu->id_isar1 = 0x13112111;
1094     cpu->id_isar2 = 0x21232141;
1095     cpu->id_isar3 = 0x01112131;
1096     cpu->id_isar4 = 0x0010142;
1097     cpu->id_isar5 = 0x0;
1098     cpu->mp_is_up = true;
1099     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1100 }
1101 
1102 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1103     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1104       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1105     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1106       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1107     REGINFO_SENTINEL
1108 };
1109 
1110 static void cortex_a8_initfn(Object *obj)
1111 {
1112     ARMCPU *cpu = ARM_CPU(obj);
1113 
1114     cpu->dtb_compatible = "arm,cortex-a8";
1115     set_feature(&cpu->env, ARM_FEATURE_V7);
1116     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1117     set_feature(&cpu->env, ARM_FEATURE_NEON);
1118     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1119     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1120     set_feature(&cpu->env, ARM_FEATURE_EL3);
1121     cpu->midr = 0x410fc080;
1122     cpu->reset_fpsid = 0x410330c0;
1123     cpu->mvfr0 = 0x11110222;
1124     cpu->mvfr1 = 0x00011111;
1125     cpu->ctr = 0x82048004;
1126     cpu->reset_sctlr = 0x00c50078;
1127     cpu->id_pfr0 = 0x1031;
1128     cpu->id_pfr1 = 0x11;
1129     cpu->id_dfr0 = 0x400;
1130     cpu->id_afr0 = 0;
1131     cpu->id_mmfr0 = 0x31100003;
1132     cpu->id_mmfr1 = 0x20000000;
1133     cpu->id_mmfr2 = 0x01202000;
1134     cpu->id_mmfr3 = 0x11;
1135     cpu->id_isar0 = 0x00101111;
1136     cpu->id_isar1 = 0x12112111;
1137     cpu->id_isar2 = 0x21232031;
1138     cpu->id_isar3 = 0x11112131;
1139     cpu->id_isar4 = 0x00111142;
1140     cpu->dbgdidr = 0x15141000;
1141     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1142     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1143     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1144     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1145     cpu->reset_auxcr = 2;
1146     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1147 }
1148 
1149 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1150     /* power_control should be set to maximum latency. Again,
1151      * default to 0 and set by private hook
1152      */
1153     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1154       .access = PL1_RW, .resetvalue = 0,
1155       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1156     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1157       .access = PL1_RW, .resetvalue = 0,
1158       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1159     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1160       .access = PL1_RW, .resetvalue = 0,
1161       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1162     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1163       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1164     /* TLB lockdown control */
1165     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1166       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1167     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1168       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1169     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1170       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1171     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1172       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1173     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1174       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1175     REGINFO_SENTINEL
1176 };
1177 
1178 static void cortex_a9_initfn(Object *obj)
1179 {
1180     ARMCPU *cpu = ARM_CPU(obj);
1181 
1182     cpu->dtb_compatible = "arm,cortex-a9";
1183     set_feature(&cpu->env, ARM_FEATURE_V7);
1184     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1185     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1186     set_feature(&cpu->env, ARM_FEATURE_NEON);
1187     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1188     set_feature(&cpu->env, ARM_FEATURE_EL3);
1189     /* Note that A9 supports the MP extensions even for
1190      * A9UP and single-core A9MP (which are both different
1191      * and valid configurations; we don't model A9UP).
1192      */
1193     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1194     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1195     cpu->midr = 0x410fc090;
1196     cpu->reset_fpsid = 0x41033090;
1197     cpu->mvfr0 = 0x11110222;
1198     cpu->mvfr1 = 0x01111111;
1199     cpu->ctr = 0x80038003;
1200     cpu->reset_sctlr = 0x00c50078;
1201     cpu->id_pfr0 = 0x1031;
1202     cpu->id_pfr1 = 0x11;
1203     cpu->id_dfr0 = 0x000;
1204     cpu->id_afr0 = 0;
1205     cpu->id_mmfr0 = 0x00100103;
1206     cpu->id_mmfr1 = 0x20000000;
1207     cpu->id_mmfr2 = 0x01230000;
1208     cpu->id_mmfr3 = 0x00002111;
1209     cpu->id_isar0 = 0x00101111;
1210     cpu->id_isar1 = 0x13112111;
1211     cpu->id_isar2 = 0x21232041;
1212     cpu->id_isar3 = 0x11112131;
1213     cpu->id_isar4 = 0x00111142;
1214     cpu->dbgdidr = 0x35141000;
1215     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1216     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1217     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1218     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1219 }
1220 
1221 #ifndef CONFIG_USER_ONLY
1222 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1223 {
1224     /* Linux wants the number of processors from here.
1225      * Might as well set the interrupt-controller bit too.
1226      */
1227     return ((smp_cpus - 1) << 24) | (1 << 23);
1228 }
1229 #endif
1230 
1231 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1232 #ifndef CONFIG_USER_ONLY
1233     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1234       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1235       .writefn = arm_cp_write_ignore, },
1236 #endif
1237     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1238       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1239     REGINFO_SENTINEL
1240 };
1241 
1242 static void cortex_a7_initfn(Object *obj)
1243 {
1244     ARMCPU *cpu = ARM_CPU(obj);
1245 
1246     cpu->dtb_compatible = "arm,cortex-a7";
1247     set_feature(&cpu->env, ARM_FEATURE_V7);
1248     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1249     set_feature(&cpu->env, ARM_FEATURE_NEON);
1250     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1251     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1252     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1253     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1254     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1255     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1256     set_feature(&cpu->env, ARM_FEATURE_EL3);
1257     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1258     cpu->midr = 0x410fc075;
1259     cpu->reset_fpsid = 0x41023075;
1260     cpu->mvfr0 = 0x10110222;
1261     cpu->mvfr1 = 0x11111111;
1262     cpu->ctr = 0x84448003;
1263     cpu->reset_sctlr = 0x00c50078;
1264     cpu->id_pfr0 = 0x00001131;
1265     cpu->id_pfr1 = 0x00011011;
1266     cpu->id_dfr0 = 0x02010555;
1267     cpu->pmceid0 = 0x00000000;
1268     cpu->pmceid1 = 0x00000000;
1269     cpu->id_afr0 = 0x00000000;
1270     cpu->id_mmfr0 = 0x10101105;
1271     cpu->id_mmfr1 = 0x40000000;
1272     cpu->id_mmfr2 = 0x01240000;
1273     cpu->id_mmfr3 = 0x02102211;
1274     cpu->id_isar0 = 0x01101110;
1275     cpu->id_isar1 = 0x13112111;
1276     cpu->id_isar2 = 0x21232041;
1277     cpu->id_isar3 = 0x11112131;
1278     cpu->id_isar4 = 0x10011142;
1279     cpu->dbgdidr = 0x3515f005;
1280     cpu->clidr = 0x0a200023;
1281     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1282     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1283     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1284     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1285 }
1286 
1287 static void cortex_a15_initfn(Object *obj)
1288 {
1289     ARMCPU *cpu = ARM_CPU(obj);
1290 
1291     cpu->dtb_compatible = "arm,cortex-a15";
1292     set_feature(&cpu->env, ARM_FEATURE_V7);
1293     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1294     set_feature(&cpu->env, ARM_FEATURE_NEON);
1295     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1296     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1297     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1298     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1299     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1300     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1301     set_feature(&cpu->env, ARM_FEATURE_EL3);
1302     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1303     cpu->midr = 0x412fc0f1;
1304     cpu->reset_fpsid = 0x410430f0;
1305     cpu->mvfr0 = 0x10110222;
1306     cpu->mvfr1 = 0x11111111;
1307     cpu->ctr = 0x8444c004;
1308     cpu->reset_sctlr = 0x00c50078;
1309     cpu->id_pfr0 = 0x00001131;
1310     cpu->id_pfr1 = 0x00011011;
1311     cpu->id_dfr0 = 0x02010555;
1312     cpu->pmceid0 = 0x0000000;
1313     cpu->pmceid1 = 0x00000000;
1314     cpu->id_afr0 = 0x00000000;
1315     cpu->id_mmfr0 = 0x10201105;
1316     cpu->id_mmfr1 = 0x20000000;
1317     cpu->id_mmfr2 = 0x01240000;
1318     cpu->id_mmfr3 = 0x02102211;
1319     cpu->id_isar0 = 0x02101110;
1320     cpu->id_isar1 = 0x13112111;
1321     cpu->id_isar2 = 0x21232041;
1322     cpu->id_isar3 = 0x11112131;
1323     cpu->id_isar4 = 0x10011142;
1324     cpu->dbgdidr = 0x3515f021;
1325     cpu->clidr = 0x0a200023;
1326     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1327     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1328     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1329     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1330 }
1331 
1332 static void ti925t_initfn(Object *obj)
1333 {
1334     ARMCPU *cpu = ARM_CPU(obj);
1335     set_feature(&cpu->env, ARM_FEATURE_V4T);
1336     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1337     cpu->midr = ARM_CPUID_TI925T;
1338     cpu->ctr = 0x5109149;
1339     cpu->reset_sctlr = 0x00000070;
1340 }
1341 
1342 static void sa1100_initfn(Object *obj)
1343 {
1344     ARMCPU *cpu = ARM_CPU(obj);
1345 
1346     cpu->dtb_compatible = "intel,sa1100";
1347     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1348     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1349     cpu->midr = 0x4401A11B;
1350     cpu->reset_sctlr = 0x00000070;
1351 }
1352 
1353 static void sa1110_initfn(Object *obj)
1354 {
1355     ARMCPU *cpu = ARM_CPU(obj);
1356     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1357     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1358     cpu->midr = 0x6901B119;
1359     cpu->reset_sctlr = 0x00000070;
1360 }
1361 
1362 static void pxa250_initfn(Object *obj)
1363 {
1364     ARMCPU *cpu = ARM_CPU(obj);
1365 
1366     cpu->dtb_compatible = "marvell,xscale";
1367     set_feature(&cpu->env, ARM_FEATURE_V5);
1368     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1369     cpu->midr = 0x69052100;
1370     cpu->ctr = 0xd172172;
1371     cpu->reset_sctlr = 0x00000078;
1372 }
1373 
1374 static void pxa255_initfn(Object *obj)
1375 {
1376     ARMCPU *cpu = ARM_CPU(obj);
1377 
1378     cpu->dtb_compatible = "marvell,xscale";
1379     set_feature(&cpu->env, ARM_FEATURE_V5);
1380     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1381     cpu->midr = 0x69052d00;
1382     cpu->ctr = 0xd172172;
1383     cpu->reset_sctlr = 0x00000078;
1384 }
1385 
1386 static void pxa260_initfn(Object *obj)
1387 {
1388     ARMCPU *cpu = ARM_CPU(obj);
1389 
1390     cpu->dtb_compatible = "marvell,xscale";
1391     set_feature(&cpu->env, ARM_FEATURE_V5);
1392     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1393     cpu->midr = 0x69052903;
1394     cpu->ctr = 0xd172172;
1395     cpu->reset_sctlr = 0x00000078;
1396 }
1397 
1398 static void pxa261_initfn(Object *obj)
1399 {
1400     ARMCPU *cpu = ARM_CPU(obj);
1401 
1402     cpu->dtb_compatible = "marvell,xscale";
1403     set_feature(&cpu->env, ARM_FEATURE_V5);
1404     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1405     cpu->midr = 0x69052d05;
1406     cpu->ctr = 0xd172172;
1407     cpu->reset_sctlr = 0x00000078;
1408 }
1409 
1410 static void pxa262_initfn(Object *obj)
1411 {
1412     ARMCPU *cpu = ARM_CPU(obj);
1413 
1414     cpu->dtb_compatible = "marvell,xscale";
1415     set_feature(&cpu->env, ARM_FEATURE_V5);
1416     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1417     cpu->midr = 0x69052d06;
1418     cpu->ctr = 0xd172172;
1419     cpu->reset_sctlr = 0x00000078;
1420 }
1421 
1422 static void pxa270a0_initfn(Object *obj)
1423 {
1424     ARMCPU *cpu = ARM_CPU(obj);
1425 
1426     cpu->dtb_compatible = "marvell,xscale";
1427     set_feature(&cpu->env, ARM_FEATURE_V5);
1428     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1429     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1430     cpu->midr = 0x69054110;
1431     cpu->ctr = 0xd172172;
1432     cpu->reset_sctlr = 0x00000078;
1433 }
1434 
1435 static void pxa270a1_initfn(Object *obj)
1436 {
1437     ARMCPU *cpu = ARM_CPU(obj);
1438 
1439     cpu->dtb_compatible = "marvell,xscale";
1440     set_feature(&cpu->env, ARM_FEATURE_V5);
1441     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1442     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1443     cpu->midr = 0x69054111;
1444     cpu->ctr = 0xd172172;
1445     cpu->reset_sctlr = 0x00000078;
1446 }
1447 
1448 static void pxa270b0_initfn(Object *obj)
1449 {
1450     ARMCPU *cpu = ARM_CPU(obj);
1451 
1452     cpu->dtb_compatible = "marvell,xscale";
1453     set_feature(&cpu->env, ARM_FEATURE_V5);
1454     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1455     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1456     cpu->midr = 0x69054112;
1457     cpu->ctr = 0xd172172;
1458     cpu->reset_sctlr = 0x00000078;
1459 }
1460 
1461 static void pxa270b1_initfn(Object *obj)
1462 {
1463     ARMCPU *cpu = ARM_CPU(obj);
1464 
1465     cpu->dtb_compatible = "marvell,xscale";
1466     set_feature(&cpu->env, ARM_FEATURE_V5);
1467     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1468     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1469     cpu->midr = 0x69054113;
1470     cpu->ctr = 0xd172172;
1471     cpu->reset_sctlr = 0x00000078;
1472 }
1473 
1474 static void pxa270c0_initfn(Object *obj)
1475 {
1476     ARMCPU *cpu = ARM_CPU(obj);
1477 
1478     cpu->dtb_compatible = "marvell,xscale";
1479     set_feature(&cpu->env, ARM_FEATURE_V5);
1480     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1481     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1482     cpu->midr = 0x69054114;
1483     cpu->ctr = 0xd172172;
1484     cpu->reset_sctlr = 0x00000078;
1485 }
1486 
1487 static void pxa270c5_initfn(Object *obj)
1488 {
1489     ARMCPU *cpu = ARM_CPU(obj);
1490 
1491     cpu->dtb_compatible = "marvell,xscale";
1492     set_feature(&cpu->env, ARM_FEATURE_V5);
1493     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1494     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1495     cpu->midr = 0x69054117;
1496     cpu->ctr = 0xd172172;
1497     cpu->reset_sctlr = 0x00000078;
1498 }
1499 
1500 #ifdef CONFIG_USER_ONLY
1501 static void arm_any_initfn(Object *obj)
1502 {
1503     ARMCPU *cpu = ARM_CPU(obj);
1504     set_feature(&cpu->env, ARM_FEATURE_V8);
1505     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1506     set_feature(&cpu->env, ARM_FEATURE_NEON);
1507     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1508     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1509     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1510     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1511     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1512     set_feature(&cpu->env, ARM_FEATURE_CRC);
1513     cpu->midr = 0xffffffff;
1514 }
1515 #endif
1516 
1517 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1518 
1519 typedef struct ARMCPUInfo {
1520     const char *name;
1521     void (*initfn)(Object *obj);
1522     void (*class_init)(ObjectClass *oc, void *data);
1523 } ARMCPUInfo;
1524 
1525 static const ARMCPUInfo arm_cpus[] = {
1526 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1527     { .name = "arm926",      .initfn = arm926_initfn },
1528     { .name = "arm946",      .initfn = arm946_initfn },
1529     { .name = "arm1026",     .initfn = arm1026_initfn },
1530     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1531      * older core than plain "arm1136". In particular this does not
1532      * have the v6K features.
1533      */
1534     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1535     { .name = "arm1136",     .initfn = arm1136_initfn },
1536     { .name = "arm1176",     .initfn = arm1176_initfn },
1537     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1538     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1539                              .class_init = arm_v7m_class_init },
1540     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1541                              .class_init = arm_v7m_class_init },
1542     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1543     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1544     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1545     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1546     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1547     { .name = "ti925t",      .initfn = ti925t_initfn },
1548     { .name = "sa1100",      .initfn = sa1100_initfn },
1549     { .name = "sa1110",      .initfn = sa1110_initfn },
1550     { .name = "pxa250",      .initfn = pxa250_initfn },
1551     { .name = "pxa255",      .initfn = pxa255_initfn },
1552     { .name = "pxa260",      .initfn = pxa260_initfn },
1553     { .name = "pxa261",      .initfn = pxa261_initfn },
1554     { .name = "pxa262",      .initfn = pxa262_initfn },
1555     /* "pxa270" is an alias for "pxa270-a0" */
1556     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1557     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1558     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1559     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1560     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1561     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1562     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1563 #ifdef CONFIG_USER_ONLY
1564     { .name = "any",         .initfn = arm_any_initfn },
1565 #endif
1566 #endif
1567     { .name = NULL }
1568 };
1569 
1570 static Property arm_cpu_properties[] = {
1571     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1572     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1573     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1574     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1575                         mp_affinity, ARM64_AFFINITY_INVALID),
1576     DEFINE_PROP_INT32("node-id", CPUState, numa_node, CPU_UNSET_NUMA_NODE_ID),
1577     DEFINE_PROP_END_OF_LIST()
1578 };
1579 
1580 #ifdef CONFIG_USER_ONLY
1581 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1582                                     int mmu_idx)
1583 {
1584     ARMCPU *cpu = ARM_CPU(cs);
1585     CPUARMState *env = &cpu->env;
1586 
1587     env->exception.vaddress = address;
1588     if (rw == 2) {
1589         cs->exception_index = EXCP_PREFETCH_ABORT;
1590     } else {
1591         cs->exception_index = EXCP_DATA_ABORT;
1592     }
1593     return 1;
1594 }
1595 #endif
1596 
1597 static gchar *arm_gdb_arch_name(CPUState *cs)
1598 {
1599     ARMCPU *cpu = ARM_CPU(cs);
1600     CPUARMState *env = &cpu->env;
1601 
1602     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1603         return g_strdup("iwmmxt");
1604     }
1605     return g_strdup("arm");
1606 }
1607 
1608 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1609 {
1610     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1611     CPUClass *cc = CPU_CLASS(acc);
1612     DeviceClass *dc = DEVICE_CLASS(oc);
1613 
1614     acc->parent_realize = dc->realize;
1615     dc->realize = arm_cpu_realizefn;
1616     dc->props = arm_cpu_properties;
1617 
1618     acc->parent_reset = cc->reset;
1619     cc->reset = arm_cpu_reset;
1620 
1621     cc->class_by_name = arm_cpu_class_by_name;
1622     cc->has_work = arm_cpu_has_work;
1623     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1624     cc->dump_state = arm_cpu_dump_state;
1625     cc->set_pc = arm_cpu_set_pc;
1626     cc->gdb_read_register = arm_cpu_gdb_read_register;
1627     cc->gdb_write_register = arm_cpu_gdb_write_register;
1628 #ifdef CONFIG_USER_ONLY
1629     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1630 #else
1631     cc->do_interrupt = arm_cpu_do_interrupt;
1632     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1633     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1634     cc->asidx_from_attrs = arm_asidx_from_attrs;
1635     cc->vmsd = &vmstate_arm_cpu;
1636     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1637     cc->write_elf64_note = arm_cpu_write_elf64_note;
1638     cc->write_elf32_note = arm_cpu_write_elf32_note;
1639 #endif
1640     cc->gdb_num_core_regs = 26;
1641     cc->gdb_core_xml_file = "arm-core.xml";
1642     cc->gdb_arch_name = arm_gdb_arch_name;
1643     cc->gdb_stop_before_watchpoint = true;
1644     cc->debug_excp_handler = arm_debug_excp_handler;
1645     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1646 #if !defined(CONFIG_USER_ONLY)
1647     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1648 #endif
1649 
1650     cc->disas_set_info = arm_disas_set_info;
1651 }
1652 
1653 static void cpu_register(const ARMCPUInfo *info)
1654 {
1655     TypeInfo type_info = {
1656         .parent = TYPE_ARM_CPU,
1657         .instance_size = sizeof(ARMCPU),
1658         .instance_init = info->initfn,
1659         .class_size = sizeof(ARMCPUClass),
1660         .class_init = info->class_init,
1661     };
1662 
1663     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1664     type_register(&type_info);
1665     g_free((void *)type_info.name);
1666 }
1667 
1668 static const TypeInfo arm_cpu_type_info = {
1669     .name = TYPE_ARM_CPU,
1670     .parent = TYPE_CPU,
1671     .instance_size = sizeof(ARMCPU),
1672     .instance_init = arm_cpu_initfn,
1673     .instance_post_init = arm_cpu_post_init,
1674     .instance_finalize = arm_cpu_finalizefn,
1675     .abstract = true,
1676     .class_size = sizeof(ARMCPUClass),
1677     .class_init = arm_cpu_class_init,
1678 };
1679 
1680 static void arm_cpu_register_types(void)
1681 {
1682     const ARMCPUInfo *info = arm_cpus;
1683 
1684     type_register_static(&arm_cpu_type_info);
1685 
1686     while (info->name) {
1687         cpu_register(info);
1688         info++;
1689     }
1690 }
1691 
1692 type_init(arm_cpu_register_types)
1693