1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu-common.h" 24 #include "target/arm/idau.h" 25 #include "qemu/module.h" 26 #include "qapi/error.h" 27 #include "qapi/visitor.h" 28 #include "cpu.h" 29 #include "internals.h" 30 #include "exec/exec-all.h" 31 #include "hw/qdev-properties.h" 32 #if !defined(CONFIG_USER_ONLY) 33 #include "hw/loader.h" 34 #include "hw/boards.h" 35 #endif 36 #include "sysemu/sysemu.h" 37 #include "sysemu/tcg.h" 38 #include "sysemu/hw_accel.h" 39 #include "kvm_arm.h" 40 #include "disas/capstone.h" 41 #include "fpu/softfloat.h" 42 43 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 44 { 45 ARMCPU *cpu = ARM_CPU(cs); 46 CPUARMState *env = &cpu->env; 47 48 if (is_a64(env)) { 49 env->pc = value; 50 env->thumb = 0; 51 } else { 52 env->regs[15] = value & ~1; 53 env->thumb = value & 1; 54 } 55 } 56 57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) 58 { 59 ARMCPU *cpu = ARM_CPU(cs); 60 CPUARMState *env = &cpu->env; 61 62 /* 63 * It's OK to look at env for the current mode here, because it's 64 * never possible for an AArch64 TB to chain to an AArch32 TB. 65 */ 66 if (is_a64(env)) { 67 env->pc = tb->pc; 68 } else { 69 env->regs[15] = tb->pc; 70 } 71 } 72 73 static bool arm_cpu_has_work(CPUState *cs) 74 { 75 ARMCPU *cpu = ARM_CPU(cs); 76 77 return (cpu->power_state != PSCI_OFF) 78 && cs->interrupt_request & 79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ 81 | CPU_INTERRUPT_EXITTB); 82 } 83 84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 85 void *opaque) 86 { 87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 88 89 entry->hook = hook; 90 entry->opaque = opaque; 91 92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 93 } 94 95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 96 void *opaque) 97 { 98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 99 100 entry->hook = hook; 101 entry->opaque = opaque; 102 103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 104 } 105 106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 107 { 108 /* Reset a single ARMCPRegInfo register */ 109 ARMCPRegInfo *ri = value; 110 ARMCPU *cpu = opaque; 111 112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { 113 return; 114 } 115 116 if (ri->resetfn) { 117 ri->resetfn(&cpu->env, ri); 118 return; 119 } 120 121 /* A zero offset is never possible as it would be regs[0] 122 * so we use it to indicate that reset is being handled elsewhere. 123 * This is basically only used for fields in non-core coprocessors 124 * (like the pxa2xx ones). 125 */ 126 if (!ri->fieldoffset) { 127 return; 128 } 129 130 if (cpreg_field_is_64bit(ri)) { 131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 132 } else { 133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 134 } 135 } 136 137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 138 { 139 /* Purely an assertion check: we've already done reset once, 140 * so now check that running the reset for the cpreg doesn't 141 * change its value. This traps bugs where two different cpregs 142 * both try to reset the same state field but to different values. 143 */ 144 ARMCPRegInfo *ri = value; 145 ARMCPU *cpu = opaque; 146 uint64_t oldvalue, newvalue; 147 148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 149 return; 150 } 151 152 oldvalue = read_raw_cp_reg(&cpu->env, ri); 153 cp_reg_reset(key, value, opaque); 154 newvalue = read_raw_cp_reg(&cpu->env, ri); 155 assert(oldvalue == newvalue); 156 } 157 158 static void arm_cpu_reset(DeviceState *dev) 159 { 160 CPUState *s = CPU(dev); 161 ARMCPU *cpu = ARM_CPU(s); 162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); 163 CPUARMState *env = &cpu->env; 164 165 acc->parent_reset(dev); 166 167 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 168 169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 171 172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 176 177 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; 178 179 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 180 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 181 } 182 183 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 184 /* 64 bit CPUs always start in 64 bit mode */ 185 env->aarch64 = 1; 186 #if defined(CONFIG_USER_ONLY) 187 env->pstate = PSTATE_MODE_EL0t; 188 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 189 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 190 /* Enable all PAC keys. */ 191 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 192 SCTLR_EnDA | SCTLR_EnDB); 193 /* and to the FP/Neon instructions */ 194 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); 195 /* and to the SVE instructions */ 196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); 197 /* with reasonable vector length */ 198 if (cpu_isar_feature(aa64_sve, cpu)) { 199 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3); 200 } 201 /* 202 * Enable TBI0 and TBI1. While the real kernel only enables TBI0, 203 * turning on both here will produce smaller code and otherwise 204 * make no difference to the user-level emulation. 205 * 206 * In sve_probe_page, we assume that this is set. 207 * Do not modify this without other changes. 208 */ 209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37); 210 #else 211 /* Reset into the highest available EL */ 212 if (arm_feature(env, ARM_FEATURE_EL3)) { 213 env->pstate = PSTATE_MODE_EL3h; 214 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 215 env->pstate = PSTATE_MODE_EL2h; 216 } else { 217 env->pstate = PSTATE_MODE_EL1h; 218 } 219 env->pc = cpu->rvbar; 220 #endif 221 } else { 222 #if defined(CONFIG_USER_ONLY) 223 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); 225 #endif 226 } 227 228 #if defined(CONFIG_USER_ONLY) 229 env->uncached_cpsr = ARM_CPU_MODE_USR; 230 /* For user mode we must enable access to coprocessors */ 231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 233 env->cp15.c15_cpar = 3; 234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 235 env->cp15.c15_cpar = 1; 236 } 237 #else 238 239 /* 240 * If the highest available EL is EL2, AArch32 will start in Hyp 241 * mode; otherwise it starts in SVC. Note that if we start in 242 * AArch64 then these values in the uncached_cpsr will be ignored. 243 */ 244 if (arm_feature(env, ARM_FEATURE_EL2) && 245 !arm_feature(env, ARM_FEATURE_EL3)) { 246 env->uncached_cpsr = ARM_CPU_MODE_HYP; 247 } else { 248 env->uncached_cpsr = ARM_CPU_MODE_SVC; 249 } 250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 251 252 if (arm_feature(env, ARM_FEATURE_M)) { 253 uint32_t initial_msp; /* Loaded from 0x0 */ 254 uint32_t initial_pc; /* Loaded from 0x4 */ 255 uint8_t *rom; 256 uint32_t vecbase; 257 258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 259 env->v7m.secure = true; 260 } else { 261 /* This bit resets to 0 if security is supported, but 1 if 262 * it is not. The bit is not present in v7M, but we set it 263 * here so we can avoid having to make checks on it conditional 264 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 265 */ 266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 267 /* 268 * Set NSACR to indicate "NS access permitted to everything"; 269 * this avoids having to have all the tests of it being 270 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 271 * v8.1M the guest-visible value of NSACR in a CPU without the 272 * Security Extension is 0xcff. 273 */ 274 env->v7m.nsacr = 0xcff; 275 } 276 277 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 278 * that it resets to 1, so QEMU always does that rather than making 279 * it dependent on CPU model. In v8M it is RES1. 280 */ 281 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 282 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 283 if (arm_feature(env, ARM_FEATURE_V8)) { 284 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 285 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 286 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 287 } 288 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 289 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 290 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 291 } 292 293 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 294 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 295 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 296 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 297 } 298 /* Unlike A/R profile, M profile defines the reset LR value */ 299 env->regs[14] = 0xffffffff; 300 301 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 302 303 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 304 vecbase = env->v7m.vecbase[env->v7m.secure]; 305 rom = rom_ptr(vecbase, 8); 306 if (rom) { 307 /* Address zero is covered by ROM which hasn't yet been 308 * copied into physical memory. 309 */ 310 initial_msp = ldl_p(rom); 311 initial_pc = ldl_p(rom + 4); 312 } else { 313 /* Address zero not covered by a ROM blob, or the ROM blob 314 * is in non-modifiable memory and this is a second reset after 315 * it got copied into memory. In the latter case, rom_ptr 316 * will return a NULL pointer and we should use ldl_phys instead. 317 */ 318 initial_msp = ldl_phys(s->as, vecbase); 319 initial_pc = ldl_phys(s->as, vecbase + 4); 320 } 321 322 env->regs[13] = initial_msp & 0xFFFFFFFC; 323 env->regs[15] = initial_pc & ~1; 324 env->thumb = initial_pc & 1; 325 } 326 327 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 328 * executing as AArch32 then check if highvecs are enabled and 329 * adjust the PC accordingly. 330 */ 331 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 332 env->regs[15] = 0xFFFF0000; 333 } 334 335 /* M profile requires that reset clears the exclusive monitor; 336 * A profile does not, but clearing it makes more sense than having it 337 * set with an exclusive access on address zero. 338 */ 339 arm_clear_exclusive(env); 340 341 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 342 #endif 343 344 if (arm_feature(env, ARM_FEATURE_PMSA)) { 345 if (cpu->pmsav7_dregion > 0) { 346 if (arm_feature(env, ARM_FEATURE_V8)) { 347 memset(env->pmsav8.rbar[M_REG_NS], 0, 348 sizeof(*env->pmsav8.rbar[M_REG_NS]) 349 * cpu->pmsav7_dregion); 350 memset(env->pmsav8.rlar[M_REG_NS], 0, 351 sizeof(*env->pmsav8.rlar[M_REG_NS]) 352 * cpu->pmsav7_dregion); 353 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 354 memset(env->pmsav8.rbar[M_REG_S], 0, 355 sizeof(*env->pmsav8.rbar[M_REG_S]) 356 * cpu->pmsav7_dregion); 357 memset(env->pmsav8.rlar[M_REG_S], 0, 358 sizeof(*env->pmsav8.rlar[M_REG_S]) 359 * cpu->pmsav7_dregion); 360 } 361 } else if (arm_feature(env, ARM_FEATURE_V7)) { 362 memset(env->pmsav7.drbar, 0, 363 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 364 memset(env->pmsav7.drsr, 0, 365 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 366 memset(env->pmsav7.dracr, 0, 367 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 368 } 369 } 370 env->pmsav7.rnr[M_REG_NS] = 0; 371 env->pmsav7.rnr[M_REG_S] = 0; 372 env->pmsav8.mair0[M_REG_NS] = 0; 373 env->pmsav8.mair0[M_REG_S] = 0; 374 env->pmsav8.mair1[M_REG_NS] = 0; 375 env->pmsav8.mair1[M_REG_S] = 0; 376 } 377 378 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 379 if (cpu->sau_sregion > 0) { 380 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 381 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 382 } 383 env->sau.rnr = 0; 384 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 385 * the Cortex-M33 does. 386 */ 387 env->sau.ctrl = 0; 388 } 389 390 set_flush_to_zero(1, &env->vfp.standard_fp_status); 391 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 392 set_default_nan_mode(1, &env->vfp.standard_fp_status); 393 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 394 set_float_detect_tininess(float_tininess_before_rounding, 395 &env->vfp.fp_status); 396 set_float_detect_tininess(float_tininess_before_rounding, 397 &env->vfp.standard_fp_status); 398 set_float_detect_tininess(float_tininess_before_rounding, 399 &env->vfp.fp_status_f16); 400 set_float_detect_tininess(float_tininess_before_rounding, 401 &env->vfp.standard_fp_status_f16); 402 #ifndef CONFIG_USER_ONLY 403 if (kvm_enabled()) { 404 kvm_arm_reset_vcpu(cpu); 405 } 406 #endif 407 408 hw_breakpoint_update_all(cpu); 409 hw_watchpoint_update_all(cpu); 410 arm_rebuild_hflags(env); 411 } 412 413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 414 unsigned int target_el, 415 unsigned int cur_el, bool secure, 416 uint64_t hcr_el2) 417 { 418 CPUARMState *env = cs->env_ptr; 419 bool pstate_unmasked; 420 bool unmasked = false; 421 422 /* 423 * Don't take exceptions if they target a lower EL. 424 * This check should catch any exceptions that would not be taken 425 * but left pending. 426 */ 427 if (cur_el > target_el) { 428 return false; 429 } 430 431 switch (excp_idx) { 432 case EXCP_FIQ: 433 pstate_unmasked = !(env->daif & PSTATE_F); 434 break; 435 436 case EXCP_IRQ: 437 pstate_unmasked = !(env->daif & PSTATE_I); 438 break; 439 440 case EXCP_VFIQ: 441 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 442 /* VFIQs are only taken when hypervized and non-secure. */ 443 return false; 444 } 445 return !(env->daif & PSTATE_F); 446 case EXCP_VIRQ: 447 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 448 /* VIRQs are only taken when hypervized and non-secure. */ 449 return false; 450 } 451 return !(env->daif & PSTATE_I); 452 default: 453 g_assert_not_reached(); 454 } 455 456 /* 457 * Use the target EL, current execution state and SCR/HCR settings to 458 * determine whether the corresponding CPSR bit is used to mask the 459 * interrupt. 460 */ 461 if ((target_el > cur_el) && (target_el != 1)) { 462 /* Exceptions targeting a higher EL may not be maskable */ 463 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 464 /* 465 * 64-bit masking rules are simple: exceptions to EL3 466 * can't be masked, and exceptions to EL2 can only be 467 * masked from Secure state. The HCR and SCR settings 468 * don't affect the masking logic, only the interrupt routing. 469 */ 470 if (target_el == 3 || !secure) { 471 unmasked = true; 472 } 473 } else { 474 /* 475 * The old 32-bit-only environment has a more complicated 476 * masking setup. HCR and SCR bits not only affect interrupt 477 * routing but also change the behaviour of masking. 478 */ 479 bool hcr, scr; 480 481 switch (excp_idx) { 482 case EXCP_FIQ: 483 /* 484 * If FIQs are routed to EL3 or EL2 then there are cases where 485 * we override the CPSR.F in determining if the exception is 486 * masked or not. If neither of these are set then we fall back 487 * to the CPSR.F setting otherwise we further assess the state 488 * below. 489 */ 490 hcr = hcr_el2 & HCR_FMO; 491 scr = (env->cp15.scr_el3 & SCR_FIQ); 492 493 /* 494 * When EL3 is 32-bit, the SCR.FW bit controls whether the 495 * CPSR.F bit masks FIQ interrupts when taken in non-secure 496 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 497 * when non-secure but only when FIQs are only routed to EL3. 498 */ 499 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 500 break; 501 case EXCP_IRQ: 502 /* 503 * When EL3 execution state is 32-bit, if HCR.IMO is set then 504 * we may override the CPSR.I masking when in non-secure state. 505 * The SCR.IRQ setting has already been taken into consideration 506 * when setting the target EL, so it does not have a further 507 * affect here. 508 */ 509 hcr = hcr_el2 & HCR_IMO; 510 scr = false; 511 break; 512 default: 513 g_assert_not_reached(); 514 } 515 516 if ((scr || hcr) && !secure) { 517 unmasked = true; 518 } 519 } 520 } 521 522 /* 523 * The PSTATE bits only mask the interrupt if we have not overriden the 524 * ability above. 525 */ 526 return unmasked || pstate_unmasked; 527 } 528 529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 530 { 531 CPUClass *cc = CPU_GET_CLASS(cs); 532 CPUARMState *env = cs->env_ptr; 533 uint32_t cur_el = arm_current_el(env); 534 bool secure = arm_is_secure(env); 535 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 536 uint32_t target_el; 537 uint32_t excp_idx; 538 539 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 540 541 if (interrupt_request & CPU_INTERRUPT_FIQ) { 542 excp_idx = EXCP_FIQ; 543 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 544 if (arm_excp_unmasked(cs, excp_idx, target_el, 545 cur_el, secure, hcr_el2)) { 546 goto found; 547 } 548 } 549 if (interrupt_request & CPU_INTERRUPT_HARD) { 550 excp_idx = EXCP_IRQ; 551 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 552 if (arm_excp_unmasked(cs, excp_idx, target_el, 553 cur_el, secure, hcr_el2)) { 554 goto found; 555 } 556 } 557 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 558 excp_idx = EXCP_VIRQ; 559 target_el = 1; 560 if (arm_excp_unmasked(cs, excp_idx, target_el, 561 cur_el, secure, hcr_el2)) { 562 goto found; 563 } 564 } 565 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 566 excp_idx = EXCP_VFIQ; 567 target_el = 1; 568 if (arm_excp_unmasked(cs, excp_idx, target_el, 569 cur_el, secure, hcr_el2)) { 570 goto found; 571 } 572 } 573 return false; 574 575 found: 576 cs->exception_index = excp_idx; 577 env->exception.target_el = target_el; 578 cc->do_interrupt(cs); 579 return true; 580 } 581 582 void arm_cpu_update_virq(ARMCPU *cpu) 583 { 584 /* 585 * Update the interrupt level for VIRQ, which is the logical OR of 586 * the HCR_EL2.VI bit and the input line level from the GIC. 587 */ 588 CPUARMState *env = &cpu->env; 589 CPUState *cs = CPU(cpu); 590 591 bool new_state = (env->cp15.hcr_el2 & HCR_VI) || 592 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 593 594 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 595 if (new_state) { 596 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 597 } else { 598 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 599 } 600 } 601 } 602 603 void arm_cpu_update_vfiq(ARMCPU *cpu) 604 { 605 /* 606 * Update the interrupt level for VFIQ, which is the logical OR of 607 * the HCR_EL2.VF bit and the input line level from the GIC. 608 */ 609 CPUARMState *env = &cpu->env; 610 CPUState *cs = CPU(cpu); 611 612 bool new_state = (env->cp15.hcr_el2 & HCR_VF) || 613 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 614 615 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 616 if (new_state) { 617 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 618 } else { 619 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 620 } 621 } 622 } 623 624 #ifndef CONFIG_USER_ONLY 625 static void arm_cpu_set_irq(void *opaque, int irq, int level) 626 { 627 ARMCPU *cpu = opaque; 628 CPUARMState *env = &cpu->env; 629 CPUState *cs = CPU(cpu); 630 static const int mask[] = { 631 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 632 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 633 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 634 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ 635 }; 636 637 if (level) { 638 env->irq_line_state |= mask[irq]; 639 } else { 640 env->irq_line_state &= ~mask[irq]; 641 } 642 643 switch (irq) { 644 case ARM_CPU_VIRQ: 645 assert(arm_feature(env, ARM_FEATURE_EL2)); 646 arm_cpu_update_virq(cpu); 647 break; 648 case ARM_CPU_VFIQ: 649 assert(arm_feature(env, ARM_FEATURE_EL2)); 650 arm_cpu_update_vfiq(cpu); 651 break; 652 case ARM_CPU_IRQ: 653 case ARM_CPU_FIQ: 654 if (level) { 655 cpu_interrupt(cs, mask[irq]); 656 } else { 657 cpu_reset_interrupt(cs, mask[irq]); 658 } 659 break; 660 default: 661 g_assert_not_reached(); 662 } 663 } 664 665 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 666 { 667 #ifdef CONFIG_KVM 668 ARMCPU *cpu = opaque; 669 CPUARMState *env = &cpu->env; 670 CPUState *cs = CPU(cpu); 671 uint32_t linestate_bit; 672 int irq_id; 673 674 switch (irq) { 675 case ARM_CPU_IRQ: 676 irq_id = KVM_ARM_IRQ_CPU_IRQ; 677 linestate_bit = CPU_INTERRUPT_HARD; 678 break; 679 case ARM_CPU_FIQ: 680 irq_id = KVM_ARM_IRQ_CPU_FIQ; 681 linestate_bit = CPU_INTERRUPT_FIQ; 682 break; 683 default: 684 g_assert_not_reached(); 685 } 686 687 if (level) { 688 env->irq_line_state |= linestate_bit; 689 } else { 690 env->irq_line_state &= ~linestate_bit; 691 } 692 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 693 #endif 694 } 695 696 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 697 { 698 ARMCPU *cpu = ARM_CPU(cs); 699 CPUARMState *env = &cpu->env; 700 701 cpu_synchronize_state(cs); 702 return arm_cpu_data_is_big_endian(env); 703 } 704 705 #endif 706 707 static int 708 print_insn_thumb1(bfd_vma pc, disassemble_info *info) 709 { 710 return print_insn_arm(pc | 1, info); 711 } 712 713 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 714 { 715 ARMCPU *ac = ARM_CPU(cpu); 716 CPUARMState *env = &ac->env; 717 bool sctlr_b; 718 719 if (is_a64(env)) { 720 /* We might not be compiled with the A64 disassembler 721 * because it needs a C++ compiler. Leave print_insn 722 * unset in this case to use the caller default behaviour. 723 */ 724 #if defined(CONFIG_ARM_A64_DIS) 725 info->print_insn = print_insn_arm_a64; 726 #endif 727 info->cap_arch = CS_ARCH_ARM64; 728 info->cap_insn_unit = 4; 729 info->cap_insn_split = 4; 730 } else { 731 int cap_mode; 732 if (env->thumb) { 733 info->print_insn = print_insn_thumb1; 734 info->cap_insn_unit = 2; 735 info->cap_insn_split = 4; 736 cap_mode = CS_MODE_THUMB; 737 } else { 738 info->print_insn = print_insn_arm; 739 info->cap_insn_unit = 4; 740 info->cap_insn_split = 4; 741 cap_mode = CS_MODE_ARM; 742 } 743 if (arm_feature(env, ARM_FEATURE_V8)) { 744 cap_mode |= CS_MODE_V8; 745 } 746 if (arm_feature(env, ARM_FEATURE_M)) { 747 cap_mode |= CS_MODE_MCLASS; 748 } 749 info->cap_arch = CS_ARCH_ARM; 750 info->cap_mode = cap_mode; 751 } 752 753 sctlr_b = arm_sctlr_b(env); 754 if (bswap_code(sctlr_b)) { 755 #ifdef TARGET_WORDS_BIGENDIAN 756 info->endian = BFD_ENDIAN_LITTLE; 757 #else 758 info->endian = BFD_ENDIAN_BIG; 759 #endif 760 } 761 info->flags &= ~INSN_ARM_BE32; 762 #ifndef CONFIG_USER_ONLY 763 if (sctlr_b) { 764 info->flags |= INSN_ARM_BE32; 765 } 766 #endif 767 } 768 769 #ifdef TARGET_AARCH64 770 771 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 772 { 773 ARMCPU *cpu = ARM_CPU(cs); 774 CPUARMState *env = &cpu->env; 775 uint32_t psr = pstate_read(env); 776 int i; 777 int el = arm_current_el(env); 778 const char *ns_status; 779 780 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 781 for (i = 0; i < 32; i++) { 782 if (i == 31) { 783 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 784 } else { 785 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 786 (i + 2) % 3 ? " " : "\n"); 787 } 788 } 789 790 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 791 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 792 } else { 793 ns_status = ""; 794 } 795 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 796 psr, 797 psr & PSTATE_N ? 'N' : '-', 798 psr & PSTATE_Z ? 'Z' : '-', 799 psr & PSTATE_C ? 'C' : '-', 800 psr & PSTATE_V ? 'V' : '-', 801 ns_status, 802 el, 803 psr & PSTATE_SP ? 'h' : 't'); 804 805 if (cpu_isar_feature(aa64_bti, cpu)) { 806 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 807 } 808 if (!(flags & CPU_DUMP_FPU)) { 809 qemu_fprintf(f, "\n"); 810 return; 811 } 812 if (fp_exception_el(env, el) != 0) { 813 qemu_fprintf(f, " FPU disabled\n"); 814 return; 815 } 816 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 817 vfp_get_fpcr(env), vfp_get_fpsr(env)); 818 819 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { 820 int j, zcr_len = sve_zcr_len_for_el(env, el); 821 822 for (i = 0; i <= FFR_PRED_NUM; i++) { 823 bool eol; 824 if (i == FFR_PRED_NUM) { 825 qemu_fprintf(f, "FFR="); 826 /* It's last, so end the line. */ 827 eol = true; 828 } else { 829 qemu_fprintf(f, "P%02d=", i); 830 switch (zcr_len) { 831 case 0: 832 eol = i % 8 == 7; 833 break; 834 case 1: 835 eol = i % 6 == 5; 836 break; 837 case 2: 838 case 3: 839 eol = i % 3 == 2; 840 break; 841 default: 842 /* More than one quadword per predicate. */ 843 eol = true; 844 break; 845 } 846 } 847 for (j = zcr_len / 4; j >= 0; j--) { 848 int digits; 849 if (j * 4 + 4 <= zcr_len + 1) { 850 digits = 16; 851 } else { 852 digits = (zcr_len % 4 + 1) * 4; 853 } 854 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 855 env->vfp.pregs[i].p[j], 856 j ? ":" : eol ? "\n" : " "); 857 } 858 } 859 860 for (i = 0; i < 32; i++) { 861 if (zcr_len == 0) { 862 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 863 i, env->vfp.zregs[i].d[1], 864 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 865 } else if (zcr_len == 1) { 866 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 867 ":%016" PRIx64 ":%016" PRIx64 "\n", 868 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], 869 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); 870 } else { 871 for (j = zcr_len; j >= 0; j--) { 872 bool odd = (zcr_len - j) % 2 != 0; 873 if (j == zcr_len) { 874 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); 875 } else if (!odd) { 876 if (j > 0) { 877 qemu_fprintf(f, " [%x-%x]=", j, j - 1); 878 } else { 879 qemu_fprintf(f, " [%x]=", j); 880 } 881 } 882 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 883 env->vfp.zregs[i].d[j * 2 + 1], 884 env->vfp.zregs[i].d[j * 2], 885 odd || j == 0 ? "\n" : ":"); 886 } 887 } 888 } 889 } else { 890 for (i = 0; i < 32; i++) { 891 uint64_t *q = aa64_vfp_qreg(env, i); 892 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 893 i, q[1], q[0], (i & 1 ? "\n" : " ")); 894 } 895 } 896 } 897 898 #else 899 900 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 901 { 902 g_assert_not_reached(); 903 } 904 905 #endif 906 907 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 908 { 909 ARMCPU *cpu = ARM_CPU(cs); 910 CPUARMState *env = &cpu->env; 911 int i; 912 913 if (is_a64(env)) { 914 aarch64_cpu_dump_state(cs, f, flags); 915 return; 916 } 917 918 for (i = 0; i < 16; i++) { 919 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 920 if ((i % 4) == 3) { 921 qemu_fprintf(f, "\n"); 922 } else { 923 qemu_fprintf(f, " "); 924 } 925 } 926 927 if (arm_feature(env, ARM_FEATURE_M)) { 928 uint32_t xpsr = xpsr_read(env); 929 const char *mode; 930 const char *ns_status = ""; 931 932 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 933 ns_status = env->v7m.secure ? "S " : "NS "; 934 } 935 936 if (xpsr & XPSR_EXCP) { 937 mode = "handler"; 938 } else { 939 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 940 mode = "unpriv-thread"; 941 } else { 942 mode = "priv-thread"; 943 } 944 } 945 946 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 947 xpsr, 948 xpsr & XPSR_N ? 'N' : '-', 949 xpsr & XPSR_Z ? 'Z' : '-', 950 xpsr & XPSR_C ? 'C' : '-', 951 xpsr & XPSR_V ? 'V' : '-', 952 xpsr & XPSR_T ? 'T' : 'A', 953 ns_status, 954 mode); 955 } else { 956 uint32_t psr = cpsr_read(env); 957 const char *ns_status = ""; 958 959 if (arm_feature(env, ARM_FEATURE_EL3) && 960 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 961 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 962 } 963 964 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 965 psr, 966 psr & CPSR_N ? 'N' : '-', 967 psr & CPSR_Z ? 'Z' : '-', 968 psr & CPSR_C ? 'C' : '-', 969 psr & CPSR_V ? 'V' : '-', 970 psr & CPSR_T ? 'T' : 'A', 971 ns_status, 972 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 973 } 974 975 if (flags & CPU_DUMP_FPU) { 976 int numvfpregs = 0; 977 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 978 numvfpregs = 32; 979 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 980 numvfpregs = 16; 981 } 982 for (i = 0; i < numvfpregs; i++) { 983 uint64_t v = *aa32_vfp_dreg(env, i); 984 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 985 i * 2, (uint32_t)v, 986 i * 2 + 1, (uint32_t)(v >> 32), 987 i, v); 988 } 989 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 990 } 991 } 992 993 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) 994 { 995 uint32_t Aff1 = idx / clustersz; 996 uint32_t Aff0 = idx % clustersz; 997 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 998 } 999 1000 static void cpreg_hashtable_data_destroy(gpointer data) 1001 { 1002 /* 1003 * Destroy function for cpu->cp_regs hashtable data entries. 1004 * We must free the name string because it was g_strdup()ed in 1005 * add_cpreg_to_hashtable(). It's OK to cast away the 'const' 1006 * from r->name because we know we definitely allocated it. 1007 */ 1008 ARMCPRegInfo *r = data; 1009 1010 g_free((void *)r->name); 1011 g_free(r); 1012 } 1013 1014 static void arm_cpu_initfn(Object *obj) 1015 { 1016 ARMCPU *cpu = ARM_CPU(obj); 1017 1018 cpu_set_cpustate_pointers(cpu); 1019 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, 1020 g_free, cpreg_hashtable_data_destroy); 1021 1022 QLIST_INIT(&cpu->pre_el_change_hooks); 1023 QLIST_INIT(&cpu->el_change_hooks); 1024 1025 #ifndef CONFIG_USER_ONLY 1026 /* Our inbound IRQ and FIQ lines */ 1027 if (kvm_enabled()) { 1028 /* VIRQ and VFIQ are unused with KVM but we add them to maintain 1029 * the same interface as non-KVM CPUs. 1030 */ 1031 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); 1032 } else { 1033 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); 1034 } 1035 1036 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1037 ARRAY_SIZE(cpu->gt_timer_outputs)); 1038 1039 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1040 "gicv3-maintenance-interrupt", 1); 1041 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1042 "pmu-interrupt", 1); 1043 #endif 1044 1045 /* DTB consumers generally don't in fact care what the 'compatible' 1046 * string is, so always provide some string and trust that a hypothetical 1047 * picky DTB consumer will also provide a helpful error message. 1048 */ 1049 cpu->dtb_compatible = "qemu,unknown"; 1050 cpu->psci_version = 1; /* By default assume PSCI v0.1 */ 1051 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1052 1053 if (tcg_enabled()) { 1054 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */ 1055 } 1056 } 1057 1058 static Property arm_cpu_gt_cntfrq_property = 1059 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 1060 NANOSECONDS_PER_SECOND / GTIMER_SCALE); 1061 1062 static Property arm_cpu_reset_cbar_property = 1063 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1064 1065 static Property arm_cpu_reset_hivecs_property = 1066 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1067 1068 static Property arm_cpu_rvbar_property = 1069 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); 1070 1071 #ifndef CONFIG_USER_ONLY 1072 static Property arm_cpu_has_el2_property = 1073 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1074 1075 static Property arm_cpu_has_el3_property = 1076 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1077 #endif 1078 1079 static Property arm_cpu_cfgend_property = 1080 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1081 1082 static Property arm_cpu_has_vfp_property = 1083 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1084 1085 static Property arm_cpu_has_neon_property = 1086 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1087 1088 static Property arm_cpu_has_dsp_property = 1089 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1090 1091 static Property arm_cpu_has_mpu_property = 1092 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1093 1094 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1095 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1096 * the right value for that particular CPU type, and we don't want 1097 * to override that with an incorrect constant value. 1098 */ 1099 static Property arm_cpu_pmsav7_dregion_property = 1100 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1101 pmsav7_dregion, 1102 qdev_prop_uint32, uint32_t); 1103 1104 static bool arm_get_pmu(Object *obj, Error **errp) 1105 { 1106 ARMCPU *cpu = ARM_CPU(obj); 1107 1108 return cpu->has_pmu; 1109 } 1110 1111 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1112 { 1113 ARMCPU *cpu = ARM_CPU(obj); 1114 1115 if (value) { 1116 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1117 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1118 return; 1119 } 1120 set_feature(&cpu->env, ARM_FEATURE_PMU); 1121 } else { 1122 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1123 } 1124 cpu->has_pmu = value; 1125 } 1126 1127 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1128 { 1129 /* 1130 * The exact approach to calculating guest ticks is: 1131 * 1132 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1133 * NANOSECONDS_PER_SECOND); 1134 * 1135 * We don't do that. Rather we intentionally use integer division 1136 * truncation below and in the caller for the conversion of host monotonic 1137 * time to guest ticks to provide the exact inverse for the semantics of 1138 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1139 * it loses precision when representing frequencies where 1140 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1141 * provide an exact inverse leads to scheduling timers with negative 1142 * periods, which in turn leads to sticky behaviour in the guest. 1143 * 1144 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1145 * cannot become zero. 1146 */ 1147 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1148 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1149 } 1150 1151 void arm_cpu_post_init(Object *obj) 1152 { 1153 ARMCPU *cpu = ARM_CPU(obj); 1154 1155 /* M profile implies PMSA. We have to do this here rather than 1156 * in realize with the other feature-implication checks because 1157 * we look at the PMSA bit to see if we should add some properties. 1158 */ 1159 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1160 set_feature(&cpu->env, ARM_FEATURE_PMSA); 1161 } 1162 1163 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1164 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1165 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1166 } 1167 1168 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1169 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1170 } 1171 1172 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1173 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property); 1174 } 1175 1176 #ifndef CONFIG_USER_ONLY 1177 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1178 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1179 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1180 */ 1181 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1182 1183 object_property_add_link(obj, "secure-memory", 1184 TYPE_MEMORY_REGION, 1185 (Object **)&cpu->secure_memory, 1186 qdev_prop_allow_set_link_before_realize, 1187 OBJ_PROP_LINK_STRONG); 1188 } 1189 1190 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1191 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1192 } 1193 #endif 1194 1195 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1196 cpu->has_pmu = true; 1197 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1198 } 1199 1200 /* 1201 * Allow user to turn off VFP and Neon support, but only for TCG -- 1202 * KVM does not currently allow us to lie to the guest about its 1203 * ID/feature registers, so the guest always sees what the host has. 1204 */ 1205 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 1206 ? cpu_isar_feature(aa64_fp_simd, cpu) 1207 : cpu_isar_feature(aa32_vfp, cpu)) { 1208 cpu->has_vfp = true; 1209 if (!kvm_enabled()) { 1210 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); 1211 } 1212 } 1213 1214 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1215 cpu->has_neon = true; 1216 if (!kvm_enabled()) { 1217 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1218 } 1219 } 1220 1221 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1222 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1223 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1224 } 1225 1226 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1227 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1228 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1229 qdev_property_add_static(DEVICE(obj), 1230 &arm_cpu_pmsav7_dregion_property); 1231 } 1232 } 1233 1234 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1235 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1236 qdev_prop_allow_set_link_before_realize, 1237 OBJ_PROP_LINK_STRONG); 1238 /* 1239 * M profile: initial value of the Secure VTOR. We can't just use 1240 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1241 * the property to be set after realize. 1242 */ 1243 object_property_add_uint32_ptr(obj, "init-svtor", 1244 &cpu->init_svtor, 1245 OBJ_PROP_FLAG_READWRITE); 1246 } 1247 1248 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1249 1250 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1251 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1252 } 1253 1254 if (kvm_enabled()) { 1255 kvm_arm_add_vcpu_properties(obj); 1256 } 1257 1258 #ifndef CONFIG_USER_ONLY 1259 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1260 cpu_isar_feature(aa64_mte, cpu)) { 1261 object_property_add_link(obj, "tag-memory", 1262 TYPE_MEMORY_REGION, 1263 (Object **)&cpu->tag_memory, 1264 qdev_prop_allow_set_link_before_realize, 1265 OBJ_PROP_LINK_STRONG); 1266 1267 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1268 object_property_add_link(obj, "secure-tag-memory", 1269 TYPE_MEMORY_REGION, 1270 (Object **)&cpu->secure_tag_memory, 1271 qdev_prop_allow_set_link_before_realize, 1272 OBJ_PROP_LINK_STRONG); 1273 } 1274 } 1275 #endif 1276 } 1277 1278 static void arm_cpu_finalizefn(Object *obj) 1279 { 1280 ARMCPU *cpu = ARM_CPU(obj); 1281 ARMELChangeHook *hook, *next; 1282 1283 g_hash_table_destroy(cpu->cp_regs); 1284 1285 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1286 QLIST_REMOVE(hook, node); 1287 g_free(hook); 1288 } 1289 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1290 QLIST_REMOVE(hook, node); 1291 g_free(hook); 1292 } 1293 #ifndef CONFIG_USER_ONLY 1294 if (cpu->pmu_timer) { 1295 timer_del(cpu->pmu_timer); 1296 timer_deinit(cpu->pmu_timer); 1297 timer_free(cpu->pmu_timer); 1298 } 1299 #endif 1300 } 1301 1302 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1303 { 1304 Error *local_err = NULL; 1305 1306 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1307 arm_cpu_sve_finalize(cpu, &local_err); 1308 if (local_err != NULL) { 1309 error_propagate(errp, local_err); 1310 return; 1311 } 1312 } 1313 } 1314 1315 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1316 { 1317 CPUState *cs = CPU(dev); 1318 ARMCPU *cpu = ARM_CPU(dev); 1319 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1320 CPUARMState *env = &cpu->env; 1321 int pagebits; 1322 Error *local_err = NULL; 1323 bool no_aa32 = false; 1324 1325 /* If we needed to query the host kernel for the CPU features 1326 * then it's possible that might have failed in the initfn, but 1327 * this is the first point where we can report it. 1328 */ 1329 if (cpu->host_cpu_probe_failed) { 1330 if (!kvm_enabled()) { 1331 error_setg(errp, "The 'host' CPU type can only be used with KVM"); 1332 } else { 1333 error_setg(errp, "Failed to retrieve host CPU features"); 1334 } 1335 return; 1336 } 1337 1338 #ifndef CONFIG_USER_ONLY 1339 /* The NVIC and M-profile CPU are two halves of a single piece of 1340 * hardware; trying to use one without the other is a command line 1341 * error and will result in segfaults if not caught here. 1342 */ 1343 if (arm_feature(env, ARM_FEATURE_M)) { 1344 if (!env->nvic) { 1345 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 1346 return; 1347 } 1348 } else { 1349 if (env->nvic) { 1350 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 1351 return; 1352 } 1353 } 1354 1355 { 1356 uint64_t scale; 1357 1358 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 1359 if (!cpu->gt_cntfrq_hz) { 1360 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", 1361 cpu->gt_cntfrq_hz); 1362 return; 1363 } 1364 scale = gt_cntfrq_period_ns(cpu); 1365 } else { 1366 scale = GTIMER_SCALE; 1367 } 1368 1369 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1370 arm_gt_ptimer_cb, cpu); 1371 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1372 arm_gt_vtimer_cb, cpu); 1373 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1374 arm_gt_htimer_cb, cpu); 1375 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1376 arm_gt_stimer_cb, cpu); 1377 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 1378 arm_gt_hvtimer_cb, cpu); 1379 } 1380 #endif 1381 1382 cpu_exec_realizefn(cs, &local_err); 1383 if (local_err != NULL) { 1384 error_propagate(errp, local_err); 1385 return; 1386 } 1387 1388 arm_cpu_finalize_features(cpu, &local_err); 1389 if (local_err != NULL) { 1390 error_propagate(errp, local_err); 1391 return; 1392 } 1393 1394 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1395 cpu->has_vfp != cpu->has_neon) { 1396 /* 1397 * This is an architectural requirement for AArch64; AArch32 is 1398 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 1399 */ 1400 error_setg(errp, 1401 "AArch64 CPUs must have both VFP and Neon or neither"); 1402 return; 1403 } 1404 1405 if (!cpu->has_vfp) { 1406 uint64_t t; 1407 uint32_t u; 1408 1409 t = cpu->isar.id_aa64isar1; 1410 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 1411 cpu->isar.id_aa64isar1 = t; 1412 1413 t = cpu->isar.id_aa64pfr0; 1414 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 1415 cpu->isar.id_aa64pfr0 = t; 1416 1417 u = cpu->isar.id_isar6; 1418 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 1419 cpu->isar.id_isar6 = u; 1420 1421 u = cpu->isar.mvfr0; 1422 u = FIELD_DP32(u, MVFR0, FPSP, 0); 1423 u = FIELD_DP32(u, MVFR0, FPDP, 0); 1424 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 1425 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 1426 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 1427 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 1428 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 1429 cpu->isar.mvfr0 = u; 1430 1431 u = cpu->isar.mvfr1; 1432 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 1433 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 1434 u = FIELD_DP32(u, MVFR1, FPHP, 0); 1435 cpu->isar.mvfr1 = u; 1436 1437 u = cpu->isar.mvfr2; 1438 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 1439 cpu->isar.mvfr2 = u; 1440 } 1441 1442 if (!cpu->has_neon) { 1443 uint64_t t; 1444 uint32_t u; 1445 1446 unset_feature(env, ARM_FEATURE_NEON); 1447 1448 t = cpu->isar.id_aa64isar0; 1449 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 1450 cpu->isar.id_aa64isar0 = t; 1451 1452 t = cpu->isar.id_aa64isar1; 1453 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 1454 cpu->isar.id_aa64isar1 = t; 1455 1456 t = cpu->isar.id_aa64pfr0; 1457 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 1458 cpu->isar.id_aa64pfr0 = t; 1459 1460 u = cpu->isar.id_isar5; 1461 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 1462 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 1463 cpu->isar.id_isar5 = u; 1464 1465 u = cpu->isar.id_isar6; 1466 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 1467 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 1468 cpu->isar.id_isar6 = u; 1469 1470 u = cpu->isar.mvfr1; 1471 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 1472 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 1473 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 1474 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 1475 cpu->isar.mvfr1 = u; 1476 1477 u = cpu->isar.mvfr2; 1478 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 1479 cpu->isar.mvfr2 = u; 1480 } 1481 1482 if (!cpu->has_neon && !cpu->has_vfp) { 1483 uint64_t t; 1484 uint32_t u; 1485 1486 t = cpu->isar.id_aa64isar0; 1487 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 1488 cpu->isar.id_aa64isar0 = t; 1489 1490 t = cpu->isar.id_aa64isar1; 1491 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 1492 cpu->isar.id_aa64isar1 = t; 1493 1494 u = cpu->isar.mvfr0; 1495 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 1496 cpu->isar.mvfr0 = u; 1497 1498 /* Despite the name, this field covers both VFP and Neon */ 1499 u = cpu->isar.mvfr1; 1500 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 1501 cpu->isar.mvfr1 = u; 1502 } 1503 1504 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 1505 uint32_t u; 1506 1507 unset_feature(env, ARM_FEATURE_THUMB_DSP); 1508 1509 u = cpu->isar.id_isar1; 1510 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 1511 cpu->isar.id_isar1 = u; 1512 1513 u = cpu->isar.id_isar2; 1514 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 1515 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 1516 cpu->isar.id_isar2 = u; 1517 1518 u = cpu->isar.id_isar3; 1519 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 1520 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 1521 cpu->isar.id_isar3 = u; 1522 } 1523 1524 /* Some features automatically imply others: */ 1525 if (arm_feature(env, ARM_FEATURE_V8)) { 1526 if (arm_feature(env, ARM_FEATURE_M)) { 1527 set_feature(env, ARM_FEATURE_V7); 1528 } else { 1529 set_feature(env, ARM_FEATURE_V7VE); 1530 } 1531 } 1532 1533 /* 1534 * There exist AArch64 cpus without AArch32 support. When KVM 1535 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1536 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1537 * As a general principle, we also do not make ID register 1538 * consistency checks anywhere unless using TCG, because only 1539 * for TCG would a consistency-check failure be a QEMU bug. 1540 */ 1541 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1542 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1543 } 1544 1545 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1546 /* v7 Virtualization Extensions. In real hardware this implies 1547 * EL2 and also the presence of the Security Extensions. 1548 * For QEMU, for backwards-compatibility we implement some 1549 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1550 * include the various other features that V7VE implies. 1551 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1552 * Security Extensions is ARM_FEATURE_EL3. 1553 */ 1554 assert(!tcg_enabled() || no_aa32 || 1555 cpu_isar_feature(aa32_arm_div, cpu)); 1556 set_feature(env, ARM_FEATURE_LPAE); 1557 set_feature(env, ARM_FEATURE_V7); 1558 } 1559 if (arm_feature(env, ARM_FEATURE_V7)) { 1560 set_feature(env, ARM_FEATURE_VAPA); 1561 set_feature(env, ARM_FEATURE_THUMB2); 1562 set_feature(env, ARM_FEATURE_MPIDR); 1563 if (!arm_feature(env, ARM_FEATURE_M)) { 1564 set_feature(env, ARM_FEATURE_V6K); 1565 } else { 1566 set_feature(env, ARM_FEATURE_V6); 1567 } 1568 1569 /* Always define VBAR for V7 CPUs even if it doesn't exist in 1570 * non-EL3 configs. This is needed by some legacy boards. 1571 */ 1572 set_feature(env, ARM_FEATURE_VBAR); 1573 } 1574 if (arm_feature(env, ARM_FEATURE_V6K)) { 1575 set_feature(env, ARM_FEATURE_V6); 1576 set_feature(env, ARM_FEATURE_MVFR); 1577 } 1578 if (arm_feature(env, ARM_FEATURE_V6)) { 1579 set_feature(env, ARM_FEATURE_V5); 1580 if (!arm_feature(env, ARM_FEATURE_M)) { 1581 assert(!tcg_enabled() || no_aa32 || 1582 cpu_isar_feature(aa32_jazelle, cpu)); 1583 set_feature(env, ARM_FEATURE_AUXCR); 1584 } 1585 } 1586 if (arm_feature(env, ARM_FEATURE_V5)) { 1587 set_feature(env, ARM_FEATURE_V4T); 1588 } 1589 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1590 set_feature(env, ARM_FEATURE_V7MP); 1591 } 1592 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1593 set_feature(env, ARM_FEATURE_CBAR); 1594 } 1595 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1596 !arm_feature(env, ARM_FEATURE_M)) { 1597 set_feature(env, ARM_FEATURE_THUMB_DSP); 1598 } 1599 1600 /* 1601 * We rely on no XScale CPU having VFP so we can use the same bits in the 1602 * TB flags field for VECSTRIDE and XSCALE_CPAR. 1603 */ 1604 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || 1605 !cpu_isar_feature(aa32_vfp_simd, cpu) || 1606 !arm_feature(env, ARM_FEATURE_XSCALE)); 1607 1608 if (arm_feature(env, ARM_FEATURE_V7) && 1609 !arm_feature(env, ARM_FEATURE_M) && 1610 !arm_feature(env, ARM_FEATURE_PMSA)) { 1611 /* v7VMSA drops support for the old ARMv5 tiny pages, so we 1612 * can use 4K pages. 1613 */ 1614 pagebits = 12; 1615 } else { 1616 /* For CPUs which might have tiny 1K pages, or which have an 1617 * MPU and might have small region sizes, stick with 1K pages. 1618 */ 1619 pagebits = 10; 1620 } 1621 if (!set_preferred_target_page_bits(pagebits)) { 1622 /* This can only ever happen for hotplugging a CPU, or if 1623 * the board code incorrectly creates a CPU which it has 1624 * promised via minimum_page_size that it will not. 1625 */ 1626 error_setg(errp, "This CPU requires a smaller page size than the " 1627 "system is using"); 1628 return; 1629 } 1630 1631 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 1632 * We don't support setting cluster ID ([16..23]) (known as Aff2 1633 * in later ARM ARM versions), or any of the higher affinity level fields, 1634 * so these bits always RAZ. 1635 */ 1636 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 1637 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, 1638 ARM_DEFAULT_CPUS_PER_CLUSTER); 1639 } 1640 1641 if (cpu->reset_hivecs) { 1642 cpu->reset_sctlr |= (1 << 13); 1643 } 1644 1645 if (cpu->cfgend) { 1646 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1647 cpu->reset_sctlr |= SCTLR_EE; 1648 } else { 1649 cpu->reset_sctlr |= SCTLR_B; 1650 } 1651 } 1652 1653 if (!cpu->has_el3) { 1654 /* If the has_el3 CPU property is disabled then we need to disable the 1655 * feature. 1656 */ 1657 unset_feature(env, ARM_FEATURE_EL3); 1658 1659 /* Disable the security extension feature bits in the processor feature 1660 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. 1661 */ 1662 cpu->isar.id_pfr1 &= ~0xf0; 1663 cpu->isar.id_aa64pfr0 &= ~0xf000; 1664 } 1665 1666 if (!cpu->has_el2) { 1667 unset_feature(env, ARM_FEATURE_EL2); 1668 } 1669 1670 if (!cpu->has_pmu) { 1671 unset_feature(env, ARM_FEATURE_PMU); 1672 } 1673 if (arm_feature(env, ARM_FEATURE_PMU)) { 1674 pmu_init(cpu); 1675 1676 if (!kvm_enabled()) { 1677 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 1678 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 1679 } 1680 1681 #ifndef CONFIG_USER_ONLY 1682 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 1683 cpu); 1684 #endif 1685 } else { 1686 cpu->isar.id_aa64dfr0 = 1687 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 1688 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 1689 cpu->pmceid0 = 0; 1690 cpu->pmceid1 = 0; 1691 } 1692 1693 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1694 /* Disable the hypervisor feature bits in the processor feature 1695 * registers if we don't have EL2. These are id_pfr1[15:12] and 1696 * id_aa64pfr0_el1[11:8]. 1697 */ 1698 cpu->isar.id_aa64pfr0 &= ~0xf00; 1699 cpu->isar.id_pfr1 &= ~0xf000; 1700 } 1701 1702 #ifndef CONFIG_USER_ONLY 1703 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { 1704 /* 1705 * Disable the MTE feature bits if we do not have tag-memory 1706 * provided by the machine. 1707 */ 1708 cpu->isar.id_aa64pfr1 = 1709 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 1710 } 1711 #endif 1712 1713 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 1714 * to false or by setting pmsav7-dregion to 0. 1715 */ 1716 if (!cpu->has_mpu) { 1717 cpu->pmsav7_dregion = 0; 1718 } 1719 if (cpu->pmsav7_dregion == 0) { 1720 cpu->has_mpu = false; 1721 } 1722 1723 if (arm_feature(env, ARM_FEATURE_PMSA) && 1724 arm_feature(env, ARM_FEATURE_V7)) { 1725 uint32_t nr = cpu->pmsav7_dregion; 1726 1727 if (nr > 0xff) { 1728 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 1729 return; 1730 } 1731 1732 if (nr) { 1733 if (arm_feature(env, ARM_FEATURE_V8)) { 1734 /* PMSAv8 */ 1735 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 1736 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 1737 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1738 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 1739 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 1740 } 1741 } else { 1742 env->pmsav7.drbar = g_new0(uint32_t, nr); 1743 env->pmsav7.drsr = g_new0(uint32_t, nr); 1744 env->pmsav7.dracr = g_new0(uint32_t, nr); 1745 } 1746 } 1747 } 1748 1749 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1750 uint32_t nr = cpu->sau_sregion; 1751 1752 if (nr > 0xff) { 1753 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 1754 return; 1755 } 1756 1757 if (nr) { 1758 env->sau.rbar = g_new0(uint32_t, nr); 1759 env->sau.rlar = g_new0(uint32_t, nr); 1760 } 1761 } 1762 1763 if (arm_feature(env, ARM_FEATURE_EL3)) { 1764 set_feature(env, ARM_FEATURE_VBAR); 1765 } 1766 1767 register_cp_regs_for_features(cpu); 1768 arm_cpu_register_gdb_regs_for_features(cpu); 1769 1770 init_cpreg_list(cpu); 1771 1772 #ifndef CONFIG_USER_ONLY 1773 MachineState *ms = MACHINE(qdev_get_machine()); 1774 unsigned int smp_cpus = ms->smp.cpus; 1775 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 1776 1777 /* 1778 * We must set cs->num_ases to the final value before 1779 * the first call to cpu_address_space_init. 1780 */ 1781 if (cpu->tag_memory != NULL) { 1782 cs->num_ases = 3 + has_secure; 1783 } else { 1784 cs->num_ases = 1 + has_secure; 1785 } 1786 1787 if (has_secure) { 1788 if (!cpu->secure_memory) { 1789 cpu->secure_memory = cs->memory; 1790 } 1791 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 1792 cpu->secure_memory); 1793 } 1794 1795 if (cpu->tag_memory != NULL) { 1796 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 1797 cpu->tag_memory); 1798 if (has_secure) { 1799 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 1800 cpu->secure_tag_memory); 1801 } 1802 } 1803 1804 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 1805 1806 /* No core_count specified, default to smp_cpus. */ 1807 if (cpu->core_count == -1) { 1808 cpu->core_count = smp_cpus; 1809 } 1810 #endif 1811 1812 if (tcg_enabled()) { 1813 int dcz_blocklen = 4 << cpu->dcz_blocksize; 1814 1815 /* 1816 * We only support DCZ blocklen that fits on one page. 1817 * 1818 * Architectually this is always true. However TARGET_PAGE_SIZE 1819 * is variable and, for compatibility with -machine virt-2.7, 1820 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 1821 * But even then, while the largest architectural DCZ blocklen 1822 * is 2KiB, no cpu actually uses such a large blocklen. 1823 */ 1824 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 1825 1826 /* 1827 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 1828 * both nibbles of each byte storing tag data may be written at once. 1829 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 1830 */ 1831 if (cpu_isar_feature(aa64_mte, cpu)) { 1832 assert(dcz_blocklen >= 2 * TAG_GRANULE); 1833 } 1834 } 1835 1836 qemu_init_vcpu(cs); 1837 cpu_reset(cs); 1838 1839 acc->parent_realize(dev, errp); 1840 } 1841 1842 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 1843 { 1844 ObjectClass *oc; 1845 char *typename; 1846 char **cpuname; 1847 const char *cpunamestr; 1848 1849 cpuname = g_strsplit(cpu_model, ",", 1); 1850 cpunamestr = cpuname[0]; 1851 #ifdef CONFIG_USER_ONLY 1852 /* For backwards compatibility usermode emulation allows "-cpu any", 1853 * which has the same semantics as "-cpu max". 1854 */ 1855 if (!strcmp(cpunamestr, "any")) { 1856 cpunamestr = "max"; 1857 } 1858 #endif 1859 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 1860 oc = object_class_by_name(typename); 1861 g_strfreev(cpuname); 1862 g_free(typename); 1863 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || 1864 object_class_is_abstract(oc)) { 1865 return NULL; 1866 } 1867 return oc; 1868 } 1869 1870 /* CPU models. These are not needed for the AArch64 linux-user build. */ 1871 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 1872 1873 static const ARMCPRegInfo cortexa8_cp_reginfo[] = { 1874 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0, 1875 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1876 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 1877 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1878 REGINFO_SENTINEL 1879 }; 1880 1881 static void cortex_a8_initfn(Object *obj) 1882 { 1883 ARMCPU *cpu = ARM_CPU(obj); 1884 1885 cpu->dtb_compatible = "arm,cortex-a8"; 1886 set_feature(&cpu->env, ARM_FEATURE_V7); 1887 set_feature(&cpu->env, ARM_FEATURE_NEON); 1888 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1889 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 1890 set_feature(&cpu->env, ARM_FEATURE_EL3); 1891 cpu->midr = 0x410fc080; 1892 cpu->reset_fpsid = 0x410330c0; 1893 cpu->isar.mvfr0 = 0x11110222; 1894 cpu->isar.mvfr1 = 0x00011111; 1895 cpu->ctr = 0x82048004; 1896 cpu->reset_sctlr = 0x00c50078; 1897 cpu->isar.id_pfr0 = 0x1031; 1898 cpu->isar.id_pfr1 = 0x11; 1899 cpu->isar.id_dfr0 = 0x400; 1900 cpu->id_afr0 = 0; 1901 cpu->isar.id_mmfr0 = 0x31100003; 1902 cpu->isar.id_mmfr1 = 0x20000000; 1903 cpu->isar.id_mmfr2 = 0x01202000; 1904 cpu->isar.id_mmfr3 = 0x11; 1905 cpu->isar.id_isar0 = 0x00101111; 1906 cpu->isar.id_isar1 = 0x12112111; 1907 cpu->isar.id_isar2 = 0x21232031; 1908 cpu->isar.id_isar3 = 0x11112131; 1909 cpu->isar.id_isar4 = 0x00111142; 1910 cpu->isar.dbgdidr = 0x15141000; 1911 cpu->clidr = (1 << 27) | (2 << 24) | 3; 1912 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */ 1913 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */ 1914 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */ 1915 cpu->reset_auxcr = 2; 1916 define_arm_cp_regs(cpu, cortexa8_cp_reginfo); 1917 } 1918 1919 static const ARMCPRegInfo cortexa9_cp_reginfo[] = { 1920 /* power_control should be set to maximum latency. Again, 1921 * default to 0 and set by private hook 1922 */ 1923 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 1924 .access = PL1_RW, .resetvalue = 0, 1925 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) }, 1926 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1, 1927 .access = PL1_RW, .resetvalue = 0, 1928 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) }, 1929 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2, 1930 .access = PL1_RW, .resetvalue = 0, 1931 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) }, 1932 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 1933 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1934 /* TLB lockdown control */ 1935 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2, 1936 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1937 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4, 1938 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP }, 1939 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2, 1940 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1941 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2, 1942 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1943 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2, 1944 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST }, 1945 REGINFO_SENTINEL 1946 }; 1947 1948 static void cortex_a9_initfn(Object *obj) 1949 { 1950 ARMCPU *cpu = ARM_CPU(obj); 1951 1952 cpu->dtb_compatible = "arm,cortex-a9"; 1953 set_feature(&cpu->env, ARM_FEATURE_V7); 1954 set_feature(&cpu->env, ARM_FEATURE_NEON); 1955 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 1956 set_feature(&cpu->env, ARM_FEATURE_EL3); 1957 /* Note that A9 supports the MP extensions even for 1958 * A9UP and single-core A9MP (which are both different 1959 * and valid configurations; we don't model A9UP). 1960 */ 1961 set_feature(&cpu->env, ARM_FEATURE_V7MP); 1962 set_feature(&cpu->env, ARM_FEATURE_CBAR); 1963 cpu->midr = 0x410fc090; 1964 cpu->reset_fpsid = 0x41033090; 1965 cpu->isar.mvfr0 = 0x11110222; 1966 cpu->isar.mvfr1 = 0x01111111; 1967 cpu->ctr = 0x80038003; 1968 cpu->reset_sctlr = 0x00c50078; 1969 cpu->isar.id_pfr0 = 0x1031; 1970 cpu->isar.id_pfr1 = 0x11; 1971 cpu->isar.id_dfr0 = 0x000; 1972 cpu->id_afr0 = 0; 1973 cpu->isar.id_mmfr0 = 0x00100103; 1974 cpu->isar.id_mmfr1 = 0x20000000; 1975 cpu->isar.id_mmfr2 = 0x01230000; 1976 cpu->isar.id_mmfr3 = 0x00002111; 1977 cpu->isar.id_isar0 = 0x00101111; 1978 cpu->isar.id_isar1 = 0x13112111; 1979 cpu->isar.id_isar2 = 0x21232041; 1980 cpu->isar.id_isar3 = 0x11112131; 1981 cpu->isar.id_isar4 = 0x00111142; 1982 cpu->isar.dbgdidr = 0x35141000; 1983 cpu->clidr = (1 << 27) | (1 << 24) | 3; 1984 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */ 1985 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */ 1986 define_arm_cp_regs(cpu, cortexa9_cp_reginfo); 1987 } 1988 1989 #ifndef CONFIG_USER_ONLY 1990 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1991 { 1992 MachineState *ms = MACHINE(qdev_get_machine()); 1993 1994 /* Linux wants the number of processors from here. 1995 * Might as well set the interrupt-controller bit too. 1996 */ 1997 return ((ms->smp.cpus - 1) << 24) | (1 << 23); 1998 } 1999 #endif 2000 2001 static const ARMCPRegInfo cortexa15_cp_reginfo[] = { 2002 #ifndef CONFIG_USER_ONLY 2003 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2, 2004 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read, 2005 .writefn = arm_cp_write_ignore, }, 2006 #endif 2007 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3, 2008 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2009 REGINFO_SENTINEL 2010 }; 2011 2012 static void cortex_a7_initfn(Object *obj) 2013 { 2014 ARMCPU *cpu = ARM_CPU(obj); 2015 2016 cpu->dtb_compatible = "arm,cortex-a7"; 2017 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2018 set_feature(&cpu->env, ARM_FEATURE_NEON); 2019 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2020 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2021 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2022 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2023 set_feature(&cpu->env, ARM_FEATURE_EL2); 2024 set_feature(&cpu->env, ARM_FEATURE_EL3); 2025 set_feature(&cpu->env, ARM_FEATURE_PMU); 2026 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7; 2027 cpu->midr = 0x410fc075; 2028 cpu->reset_fpsid = 0x41023075; 2029 cpu->isar.mvfr0 = 0x10110222; 2030 cpu->isar.mvfr1 = 0x11111111; 2031 cpu->ctr = 0x84448003; 2032 cpu->reset_sctlr = 0x00c50078; 2033 cpu->isar.id_pfr0 = 0x00001131; 2034 cpu->isar.id_pfr1 = 0x00011011; 2035 cpu->isar.id_dfr0 = 0x02010555; 2036 cpu->id_afr0 = 0x00000000; 2037 cpu->isar.id_mmfr0 = 0x10101105; 2038 cpu->isar.id_mmfr1 = 0x40000000; 2039 cpu->isar.id_mmfr2 = 0x01240000; 2040 cpu->isar.id_mmfr3 = 0x02102211; 2041 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but 2042 * table 4-41 gives 0x02101110, which includes the arm div insns. 2043 */ 2044 cpu->isar.id_isar0 = 0x02101110; 2045 cpu->isar.id_isar1 = 0x13112111; 2046 cpu->isar.id_isar2 = 0x21232041; 2047 cpu->isar.id_isar3 = 0x11112131; 2048 cpu->isar.id_isar4 = 0x10011142; 2049 cpu->isar.dbgdidr = 0x3515f005; 2050 cpu->clidr = 0x0a200023; 2051 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2052 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2053 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2054 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */ 2055 } 2056 2057 static void cortex_a15_initfn(Object *obj) 2058 { 2059 ARMCPU *cpu = ARM_CPU(obj); 2060 2061 cpu->dtb_compatible = "arm,cortex-a15"; 2062 set_feature(&cpu->env, ARM_FEATURE_V7VE); 2063 set_feature(&cpu->env, ARM_FEATURE_NEON); 2064 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE); 2065 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER); 2066 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); 2067 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO); 2068 set_feature(&cpu->env, ARM_FEATURE_EL2); 2069 set_feature(&cpu->env, ARM_FEATURE_EL3); 2070 set_feature(&cpu->env, ARM_FEATURE_PMU); 2071 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15; 2072 cpu->midr = 0x412fc0f1; 2073 cpu->reset_fpsid = 0x410430f0; 2074 cpu->isar.mvfr0 = 0x10110222; 2075 cpu->isar.mvfr1 = 0x11111111; 2076 cpu->ctr = 0x8444c004; 2077 cpu->reset_sctlr = 0x00c50078; 2078 cpu->isar.id_pfr0 = 0x00001131; 2079 cpu->isar.id_pfr1 = 0x00011011; 2080 cpu->isar.id_dfr0 = 0x02010555; 2081 cpu->id_afr0 = 0x00000000; 2082 cpu->isar.id_mmfr0 = 0x10201105; 2083 cpu->isar.id_mmfr1 = 0x20000000; 2084 cpu->isar.id_mmfr2 = 0x01240000; 2085 cpu->isar.id_mmfr3 = 0x02102211; 2086 cpu->isar.id_isar0 = 0x02101110; 2087 cpu->isar.id_isar1 = 0x13112111; 2088 cpu->isar.id_isar2 = 0x21232041; 2089 cpu->isar.id_isar3 = 0x11112131; 2090 cpu->isar.id_isar4 = 0x10011142; 2091 cpu->isar.dbgdidr = 0x3515f021; 2092 cpu->clidr = 0x0a200023; 2093 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */ 2094 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */ 2095 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */ 2096 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); 2097 } 2098 2099 #ifndef TARGET_AARCH64 2100 /* 2101 * -cpu max: a CPU with as many features enabled as our emulation supports. 2102 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c; 2103 * this only needs to handle 32 bits, and need not care about KVM. 2104 */ 2105 static void arm_max_initfn(Object *obj) 2106 { 2107 ARMCPU *cpu = ARM_CPU(obj); 2108 2109 cortex_a15_initfn(obj); 2110 2111 /* old-style VFP short-vector support */ 2112 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1); 2113 2114 #ifdef CONFIG_USER_ONLY 2115 /* 2116 * We don't set these in system emulation mode for the moment, 2117 * since we don't correctly set (all of) the ID registers to 2118 * advertise them. 2119 */ 2120 set_feature(&cpu->env, ARM_FEATURE_V8); 2121 { 2122 uint32_t t; 2123 2124 t = cpu->isar.id_isar5; 2125 t = FIELD_DP32(t, ID_ISAR5, AES, 2); 2126 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1); 2127 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1); 2128 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1); 2129 t = FIELD_DP32(t, ID_ISAR5, RDM, 1); 2130 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1); 2131 cpu->isar.id_isar5 = t; 2132 2133 t = cpu->isar.id_isar6; 2134 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1); 2135 t = FIELD_DP32(t, ID_ISAR6, DP, 1); 2136 t = FIELD_DP32(t, ID_ISAR6, FHM, 1); 2137 t = FIELD_DP32(t, ID_ISAR6, SB, 1); 2138 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1); 2139 cpu->isar.id_isar6 = t; 2140 2141 t = cpu->isar.mvfr1; 2142 t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */ 2143 t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */ 2144 cpu->isar.mvfr1 = t; 2145 2146 t = cpu->isar.mvfr2; 2147 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */ 2148 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */ 2149 cpu->isar.mvfr2 = t; 2150 2151 t = cpu->isar.id_mmfr3; 2152 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */ 2153 cpu->isar.id_mmfr3 = t; 2154 2155 t = cpu->isar.id_mmfr4; 2156 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */ 2157 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */ 2158 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */ 2159 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */ 2160 cpu->isar.id_mmfr4 = t; 2161 } 2162 #endif 2163 } 2164 #endif 2165 2166 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */ 2167 2168 static const ARMCPUInfo arm_cpus[] = { 2169 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) 2170 { .name = "cortex-a7", .initfn = cortex_a7_initfn }, 2171 { .name = "cortex-a8", .initfn = cortex_a8_initfn }, 2172 { .name = "cortex-a9", .initfn = cortex_a9_initfn }, 2173 { .name = "cortex-a15", .initfn = cortex_a15_initfn }, 2174 #ifndef TARGET_AARCH64 2175 { .name = "max", .initfn = arm_max_initfn }, 2176 #endif 2177 #ifdef CONFIG_USER_ONLY 2178 { .name = "any", .initfn = arm_max_initfn }, 2179 #endif 2180 #endif 2181 }; 2182 2183 static Property arm_cpu_properties[] = { 2184 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), 2185 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2186 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2187 mp_affinity, ARM64_AFFINITY_INVALID), 2188 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2189 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2190 DEFINE_PROP_END_OF_LIST() 2191 }; 2192 2193 static gchar *arm_gdb_arch_name(CPUState *cs) 2194 { 2195 ARMCPU *cpu = ARM_CPU(cs); 2196 CPUARMState *env = &cpu->env; 2197 2198 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2199 return g_strdup("iwmmxt"); 2200 } 2201 return g_strdup("arm"); 2202 } 2203 2204 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2205 { 2206 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2207 CPUClass *cc = CPU_CLASS(acc); 2208 DeviceClass *dc = DEVICE_CLASS(oc); 2209 2210 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2211 &acc->parent_realize); 2212 2213 device_class_set_props(dc, arm_cpu_properties); 2214 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); 2215 2216 cc->class_by_name = arm_cpu_class_by_name; 2217 cc->has_work = arm_cpu_has_work; 2218 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt; 2219 cc->dump_state = arm_cpu_dump_state; 2220 cc->set_pc = arm_cpu_set_pc; 2221 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb; 2222 cc->gdb_read_register = arm_cpu_gdb_read_register; 2223 cc->gdb_write_register = arm_cpu_gdb_write_register; 2224 #ifndef CONFIG_USER_ONLY 2225 cc->do_interrupt = arm_cpu_do_interrupt; 2226 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; 2227 cc->asidx_from_attrs = arm_asidx_from_attrs; 2228 cc->vmsd = &vmstate_arm_cpu; 2229 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian; 2230 cc->write_elf64_note = arm_cpu_write_elf64_note; 2231 cc->write_elf32_note = arm_cpu_write_elf32_note; 2232 #endif 2233 cc->gdb_num_core_regs = 26; 2234 cc->gdb_core_xml_file = "arm-core.xml"; 2235 cc->gdb_arch_name = arm_gdb_arch_name; 2236 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; 2237 cc->gdb_stop_before_watchpoint = true; 2238 cc->disas_set_info = arm_disas_set_info; 2239 #ifdef CONFIG_TCG 2240 cc->tcg_initialize = arm_translate_init; 2241 cc->tlb_fill = arm_cpu_tlb_fill; 2242 cc->debug_excp_handler = arm_debug_excp_handler; 2243 cc->debug_check_watchpoint = arm_debug_check_watchpoint; 2244 cc->do_unaligned_access = arm_cpu_do_unaligned_access; 2245 #if !defined(CONFIG_USER_ONLY) 2246 cc->do_transaction_failed = arm_cpu_do_transaction_failed; 2247 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address; 2248 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 2249 #endif 2250 } 2251 2252 #ifdef CONFIG_KVM 2253 static void arm_host_initfn(Object *obj) 2254 { 2255 ARMCPU *cpu = ARM_CPU(obj); 2256 2257 kvm_arm_set_cpu_features_from_host(cpu); 2258 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 2259 aarch64_add_sve_properties(obj); 2260 } 2261 arm_cpu_post_init(obj); 2262 } 2263 2264 static const TypeInfo host_arm_cpu_type_info = { 2265 .name = TYPE_ARM_HOST_CPU, 2266 .parent = TYPE_AARCH64_CPU, 2267 .instance_init = arm_host_initfn, 2268 }; 2269 2270 #endif 2271 2272 static void arm_cpu_instance_init(Object *obj) 2273 { 2274 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2275 2276 acc->info->initfn(obj); 2277 arm_cpu_post_init(obj); 2278 } 2279 2280 static void cpu_register_class_init(ObjectClass *oc, void *data) 2281 { 2282 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2283 2284 acc->info = data; 2285 } 2286 2287 void arm_cpu_register(const ARMCPUInfo *info) 2288 { 2289 TypeInfo type_info = { 2290 .parent = TYPE_ARM_CPU, 2291 .instance_size = sizeof(ARMCPU), 2292 .instance_align = __alignof__(ARMCPU), 2293 .instance_init = arm_cpu_instance_init, 2294 .class_size = sizeof(ARMCPUClass), 2295 .class_init = info->class_init ?: cpu_register_class_init, 2296 .class_data = (void *)info, 2297 }; 2298 2299 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2300 type_register(&type_info); 2301 g_free((void *)type_info.name); 2302 } 2303 2304 static const TypeInfo arm_cpu_type_info = { 2305 .name = TYPE_ARM_CPU, 2306 .parent = TYPE_CPU, 2307 .instance_size = sizeof(ARMCPU), 2308 .instance_align = __alignof__(ARMCPU), 2309 .instance_init = arm_cpu_initfn, 2310 .instance_finalize = arm_cpu_finalizefn, 2311 .abstract = true, 2312 .class_size = sizeof(ARMCPUClass), 2313 .class_init = arm_cpu_class_init, 2314 }; 2315 2316 static const TypeInfo idau_interface_type_info = { 2317 .name = TYPE_IDAU_INTERFACE, 2318 .parent = TYPE_INTERFACE, 2319 .class_size = sizeof(IDAUInterfaceClass), 2320 }; 2321 2322 static void arm_cpu_register_types(void) 2323 { 2324 const size_t cpu_count = ARRAY_SIZE(arm_cpus); 2325 2326 type_register_static(&arm_cpu_type_info); 2327 2328 #ifdef CONFIG_KVM 2329 type_register_static(&host_arm_cpu_type_info); 2330 #endif 2331 2332 if (cpu_count) { 2333 size_t i; 2334 2335 type_register_static(&idau_interface_type_info); 2336 for (i = 0; i < cpu_count; ++i) { 2337 arm_cpu_register(&arm_cpus[i]); 2338 } 2339 } 2340 } 2341 2342 type_init(arm_cpu_register_types) 2343