xref: /openbmc/qemu/target/arm/cpu.c (revision 719f0f60)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
44 
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     CPUARMState *env = &cpu->env;
49 
50     if (is_a64(env)) {
51         env->pc = value;
52         env->thumb = 0;
53     } else {
54         env->regs[15] = value & ~1;
55         env->thumb = value & 1;
56     }
57 }
58 
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61                                  const TranslationBlock *tb)
62 {
63     ARMCPU *cpu = ARM_CPU(cs);
64     CPUARMState *env = &cpu->env;
65 
66     /*
67      * It's OK to look at env for the current mode here, because it's
68      * never possible for an AArch64 TB to chain to an AArch32 TB.
69      */
70     if (is_a64(env)) {
71         env->pc = tb->pc;
72     } else {
73         env->regs[15] = tb->pc;
74     }
75 }
76 #endif /* CONFIG_TCG */
77 
78 static bool arm_cpu_has_work(CPUState *cs)
79 {
80     ARMCPU *cpu = ARM_CPU(cs);
81 
82     return (cpu->power_state != PSCI_OFF)
83         && cs->interrupt_request &
84         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86          | CPU_INTERRUPT_EXITTB);
87 }
88 
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90                                  void *opaque)
91 {
92     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
93 
94     entry->hook = hook;
95     entry->opaque = opaque;
96 
97     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
98 }
99 
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101                                  void *opaque)
102 {
103     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
104 
105     entry->hook = hook;
106     entry->opaque = opaque;
107 
108     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
109 }
110 
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
112 {
113     /* Reset a single ARMCPRegInfo register */
114     ARMCPRegInfo *ri = value;
115     ARMCPU *cpu = opaque;
116 
117     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118         return;
119     }
120 
121     if (ri->resetfn) {
122         ri->resetfn(&cpu->env, ri);
123         return;
124     }
125 
126     /* A zero offset is never possible as it would be regs[0]
127      * so we use it to indicate that reset is being handled elsewhere.
128      * This is basically only used for fields in non-core coprocessors
129      * (like the pxa2xx ones).
130      */
131     if (!ri->fieldoffset) {
132         return;
133     }
134 
135     if (cpreg_field_is_64bit(ri)) {
136         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137     } else {
138         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
139     }
140 }
141 
142 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
143 {
144     /* Purely an assertion check: we've already done reset once,
145      * so now check that running the reset for the cpreg doesn't
146      * change its value. This traps bugs where two different cpregs
147      * both try to reset the same state field but to different values.
148      */
149     ARMCPRegInfo *ri = value;
150     ARMCPU *cpu = opaque;
151     uint64_t oldvalue, newvalue;
152 
153     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154         return;
155     }
156 
157     oldvalue = read_raw_cp_reg(&cpu->env, ri);
158     cp_reg_reset(key, value, opaque);
159     newvalue = read_raw_cp_reg(&cpu->env, ri);
160     assert(oldvalue == newvalue);
161 }
162 
163 static void arm_cpu_reset(DeviceState *dev)
164 {
165     CPUState *s = CPU(dev);
166     ARMCPU *cpu = ARM_CPU(s);
167     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168     CPUARMState *env = &cpu->env;
169 
170     acc->parent_reset(dev);
171 
172     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
173 
174     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
176 
177     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
181 
182     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
183 
184     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
186     }
187 
188     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189         /* 64 bit CPUs always start in 64 bit mode */
190         env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192         env->pstate = PSTATE_MODE_EL0t;
193         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195         /* Enable all PAC keys.  */
196         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197                                   SCTLR_EnDA | SCTLR_EnDB);
198         /* and to the FP/Neon instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200         /* and to the SVE instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202         /* with reasonable vector length */
203         if (cpu_isar_feature(aa64_sve, cpu)) {
204             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
205         }
206         /*
207          * Enable TBI0 but not TBI1.
208          * Note that this must match useronly_clean_ptr.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
211 
212         /* Enable MTE */
213         if (cpu_isar_feature(aa64_mte, cpu)) {
214             /* Enable tag access, but leave TCF0 as No Effect (0). */
215             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
216             /*
217              * Exclude all tags, so that tag 0 is always used.
218              * This corresponds to Linux current->thread.gcr_incl = 0.
219              *
220              * Set RRND, so that helper_irg() will generate a seed later.
221              * Here in cpu_reset(), the crypto subsystem has not yet been
222              * initialized.
223              */
224             env->cp15.gcr_el1 = 0x1ffff;
225         }
226 #else
227         /* Reset into the highest available EL */
228         if (arm_feature(env, ARM_FEATURE_EL3)) {
229             env->pstate = PSTATE_MODE_EL3h;
230         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
231             env->pstate = PSTATE_MODE_EL2h;
232         } else {
233             env->pstate = PSTATE_MODE_EL1h;
234         }
235         env->pc = cpu->rvbar;
236 #endif
237     } else {
238 #if defined(CONFIG_USER_ONLY)
239         /* Userspace expects access to cp10 and cp11 for FP/Neon */
240         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
241 #endif
242     }
243 
244 #if defined(CONFIG_USER_ONLY)
245     env->uncached_cpsr = ARM_CPU_MODE_USR;
246     /* For user mode we must enable access to coprocessors */
247     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
248     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
249         env->cp15.c15_cpar = 3;
250     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
251         env->cp15.c15_cpar = 1;
252     }
253 #else
254 
255     /*
256      * If the highest available EL is EL2, AArch32 will start in Hyp
257      * mode; otherwise it starts in SVC. Note that if we start in
258      * AArch64 then these values in the uncached_cpsr will be ignored.
259      */
260     if (arm_feature(env, ARM_FEATURE_EL2) &&
261         !arm_feature(env, ARM_FEATURE_EL3)) {
262         env->uncached_cpsr = ARM_CPU_MODE_HYP;
263     } else {
264         env->uncached_cpsr = ARM_CPU_MODE_SVC;
265     }
266     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
267 
268     if (arm_feature(env, ARM_FEATURE_M)) {
269         uint32_t initial_msp; /* Loaded from 0x0 */
270         uint32_t initial_pc; /* Loaded from 0x4 */
271         uint8_t *rom;
272         uint32_t vecbase;
273 
274         if (cpu_isar_feature(aa32_lob, cpu)) {
275             /*
276              * LTPSIZE is constant 4 if MVE not implemented, and resets
277              * to an UNKNOWN value if MVE is implemented. We choose to
278              * always reset to 4.
279              */
280             env->v7m.ltpsize = 4;
281             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
282             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
283             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
284         }
285 
286         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
287             env->v7m.secure = true;
288         } else {
289             /* This bit resets to 0 if security is supported, but 1 if
290              * it is not. The bit is not present in v7M, but we set it
291              * here so we can avoid having to make checks on it conditional
292              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
293              */
294             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
295             /*
296              * Set NSACR to indicate "NS access permitted to everything";
297              * this avoids having to have all the tests of it being
298              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
299              * v8.1M the guest-visible value of NSACR in a CPU without the
300              * Security Extension is 0xcff.
301              */
302             env->v7m.nsacr = 0xcff;
303         }
304 
305         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
306          * that it resets to 1, so QEMU always does that rather than making
307          * it dependent on CPU model. In v8M it is RES1.
308          */
309         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
310         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
311         if (arm_feature(env, ARM_FEATURE_V8)) {
312             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
313             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
314             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315         }
316         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
317             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
318             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319         }
320 
321         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
322             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
323             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
324                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
325         }
326         /* Unlike A/R profile, M profile defines the reset LR value */
327         env->regs[14] = 0xffffffff;
328 
329         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
330         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
331 
332         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
333         vecbase = env->v7m.vecbase[env->v7m.secure];
334         rom = rom_ptr_for_as(s->as, vecbase, 8);
335         if (rom) {
336             /* Address zero is covered by ROM which hasn't yet been
337              * copied into physical memory.
338              */
339             initial_msp = ldl_p(rom);
340             initial_pc = ldl_p(rom + 4);
341         } else {
342             /* Address zero not covered by a ROM blob, or the ROM blob
343              * is in non-modifiable memory and this is a second reset after
344              * it got copied into memory. In the latter case, rom_ptr
345              * will return a NULL pointer and we should use ldl_phys instead.
346              */
347             initial_msp = ldl_phys(s->as, vecbase);
348             initial_pc = ldl_phys(s->as, vecbase + 4);
349         }
350 
351         env->regs[13] = initial_msp & 0xFFFFFFFC;
352         env->regs[15] = initial_pc & ~1;
353         env->thumb = initial_pc & 1;
354     }
355 
356     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
357      * executing as AArch32 then check if highvecs are enabled and
358      * adjust the PC accordingly.
359      */
360     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
361         env->regs[15] = 0xFFFF0000;
362     }
363 
364     /* M profile requires that reset clears the exclusive monitor;
365      * A profile does not, but clearing it makes more sense than having it
366      * set with an exclusive access on address zero.
367      */
368     arm_clear_exclusive(env);
369 
370     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
371 #endif
372 
373     if (arm_feature(env, ARM_FEATURE_PMSA)) {
374         if (cpu->pmsav7_dregion > 0) {
375             if (arm_feature(env, ARM_FEATURE_V8)) {
376                 memset(env->pmsav8.rbar[M_REG_NS], 0,
377                        sizeof(*env->pmsav8.rbar[M_REG_NS])
378                        * cpu->pmsav7_dregion);
379                 memset(env->pmsav8.rlar[M_REG_NS], 0,
380                        sizeof(*env->pmsav8.rlar[M_REG_NS])
381                        * cpu->pmsav7_dregion);
382                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383                     memset(env->pmsav8.rbar[M_REG_S], 0,
384                            sizeof(*env->pmsav8.rbar[M_REG_S])
385                            * cpu->pmsav7_dregion);
386                     memset(env->pmsav8.rlar[M_REG_S], 0,
387                            sizeof(*env->pmsav8.rlar[M_REG_S])
388                            * cpu->pmsav7_dregion);
389                 }
390             } else if (arm_feature(env, ARM_FEATURE_V7)) {
391                 memset(env->pmsav7.drbar, 0,
392                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
393                 memset(env->pmsav7.drsr, 0,
394                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
395                 memset(env->pmsav7.dracr, 0,
396                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
397             }
398         }
399         env->pmsav7.rnr[M_REG_NS] = 0;
400         env->pmsav7.rnr[M_REG_S] = 0;
401         env->pmsav8.mair0[M_REG_NS] = 0;
402         env->pmsav8.mair0[M_REG_S] = 0;
403         env->pmsav8.mair1[M_REG_NS] = 0;
404         env->pmsav8.mair1[M_REG_S] = 0;
405     }
406 
407     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
408         if (cpu->sau_sregion > 0) {
409             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
410             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
411         }
412         env->sau.rnr = 0;
413         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
414          * the Cortex-M33 does.
415          */
416         env->sau.ctrl = 0;
417     }
418 
419     set_flush_to_zero(1, &env->vfp.standard_fp_status);
420     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
421     set_default_nan_mode(1, &env->vfp.standard_fp_status);
422     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
423     set_float_detect_tininess(float_tininess_before_rounding,
424                               &env->vfp.fp_status);
425     set_float_detect_tininess(float_tininess_before_rounding,
426                               &env->vfp.standard_fp_status);
427     set_float_detect_tininess(float_tininess_before_rounding,
428                               &env->vfp.fp_status_f16);
429     set_float_detect_tininess(float_tininess_before_rounding,
430                               &env->vfp.standard_fp_status_f16);
431 #ifndef CONFIG_USER_ONLY
432     if (kvm_enabled()) {
433         kvm_arm_reset_vcpu(cpu);
434     }
435 #endif
436 
437     hw_breakpoint_update_all(cpu);
438     hw_watchpoint_update_all(cpu);
439     arm_rebuild_hflags(env);
440 }
441 
442 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
443                                      unsigned int target_el,
444                                      unsigned int cur_el, bool secure,
445                                      uint64_t hcr_el2)
446 {
447     CPUARMState *env = cs->env_ptr;
448     bool pstate_unmasked;
449     bool unmasked = false;
450 
451     /*
452      * Don't take exceptions if they target a lower EL.
453      * This check should catch any exceptions that would not be taken
454      * but left pending.
455      */
456     if (cur_el > target_el) {
457         return false;
458     }
459 
460     switch (excp_idx) {
461     case EXCP_FIQ:
462         pstate_unmasked = !(env->daif & PSTATE_F);
463         break;
464 
465     case EXCP_IRQ:
466         pstate_unmasked = !(env->daif & PSTATE_I);
467         break;
468 
469     case EXCP_VFIQ:
470         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
471             /* VFIQs are only taken when hypervized.  */
472             return false;
473         }
474         return !(env->daif & PSTATE_F);
475     case EXCP_VIRQ:
476         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
477             /* VIRQs are only taken when hypervized.  */
478             return false;
479         }
480         return !(env->daif & PSTATE_I);
481     default:
482         g_assert_not_reached();
483     }
484 
485     /*
486      * Use the target EL, current execution state and SCR/HCR settings to
487      * determine whether the corresponding CPSR bit is used to mask the
488      * interrupt.
489      */
490     if ((target_el > cur_el) && (target_el != 1)) {
491         /* Exceptions targeting a higher EL may not be maskable */
492         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
493             /*
494              * 64-bit masking rules are simple: exceptions to EL3
495              * can't be masked, and exceptions to EL2 can only be
496              * masked from Secure state. The HCR and SCR settings
497              * don't affect the masking logic, only the interrupt routing.
498              */
499             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
500                 unmasked = true;
501             }
502         } else {
503             /*
504              * The old 32-bit-only environment has a more complicated
505              * masking setup. HCR and SCR bits not only affect interrupt
506              * routing but also change the behaviour of masking.
507              */
508             bool hcr, scr;
509 
510             switch (excp_idx) {
511             case EXCP_FIQ:
512                 /*
513                  * If FIQs are routed to EL3 or EL2 then there are cases where
514                  * we override the CPSR.F in determining if the exception is
515                  * masked or not. If neither of these are set then we fall back
516                  * to the CPSR.F setting otherwise we further assess the state
517                  * below.
518                  */
519                 hcr = hcr_el2 & HCR_FMO;
520                 scr = (env->cp15.scr_el3 & SCR_FIQ);
521 
522                 /*
523                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
524                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
525                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
526                  * when non-secure but only when FIQs are only routed to EL3.
527                  */
528                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
529                 break;
530             case EXCP_IRQ:
531                 /*
532                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
533                  * we may override the CPSR.I masking when in non-secure state.
534                  * The SCR.IRQ setting has already been taken into consideration
535                  * when setting the target EL, so it does not have a further
536                  * affect here.
537                  */
538                 hcr = hcr_el2 & HCR_IMO;
539                 scr = false;
540                 break;
541             default:
542                 g_assert_not_reached();
543             }
544 
545             if ((scr || hcr) && !secure) {
546                 unmasked = true;
547             }
548         }
549     }
550 
551     /*
552      * The PSTATE bits only mask the interrupt if we have not overriden the
553      * ability above.
554      */
555     return unmasked || pstate_unmasked;
556 }
557 
558 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
559 {
560     CPUClass *cc = CPU_GET_CLASS(cs);
561     CPUARMState *env = cs->env_ptr;
562     uint32_t cur_el = arm_current_el(env);
563     bool secure = arm_is_secure(env);
564     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
565     uint32_t target_el;
566     uint32_t excp_idx;
567 
568     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
569 
570     if (interrupt_request & CPU_INTERRUPT_FIQ) {
571         excp_idx = EXCP_FIQ;
572         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
573         if (arm_excp_unmasked(cs, excp_idx, target_el,
574                               cur_el, secure, hcr_el2)) {
575             goto found;
576         }
577     }
578     if (interrupt_request & CPU_INTERRUPT_HARD) {
579         excp_idx = EXCP_IRQ;
580         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
581         if (arm_excp_unmasked(cs, excp_idx, target_el,
582                               cur_el, secure, hcr_el2)) {
583             goto found;
584         }
585     }
586     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
587         excp_idx = EXCP_VIRQ;
588         target_el = 1;
589         if (arm_excp_unmasked(cs, excp_idx, target_el,
590                               cur_el, secure, hcr_el2)) {
591             goto found;
592         }
593     }
594     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
595         excp_idx = EXCP_VFIQ;
596         target_el = 1;
597         if (arm_excp_unmasked(cs, excp_idx, target_el,
598                               cur_el, secure, hcr_el2)) {
599             goto found;
600         }
601     }
602     return false;
603 
604  found:
605     cs->exception_index = excp_idx;
606     env->exception.target_el = target_el;
607     cc->tcg_ops->do_interrupt(cs);
608     return true;
609 }
610 
611 void arm_cpu_update_virq(ARMCPU *cpu)
612 {
613     /*
614      * Update the interrupt level for VIRQ, which is the logical OR of
615      * the HCR_EL2.VI bit and the input line level from the GIC.
616      */
617     CPUARMState *env = &cpu->env;
618     CPUState *cs = CPU(cpu);
619 
620     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
621         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
622 
623     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
624         if (new_state) {
625             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
626         } else {
627             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
628         }
629     }
630 }
631 
632 void arm_cpu_update_vfiq(ARMCPU *cpu)
633 {
634     /*
635      * Update the interrupt level for VFIQ, which is the logical OR of
636      * the HCR_EL2.VF bit and the input line level from the GIC.
637      */
638     CPUARMState *env = &cpu->env;
639     CPUState *cs = CPU(cpu);
640 
641     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
642         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
643 
644     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
645         if (new_state) {
646             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
647         } else {
648             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
649         }
650     }
651 }
652 
653 #ifndef CONFIG_USER_ONLY
654 static void arm_cpu_set_irq(void *opaque, int irq, int level)
655 {
656     ARMCPU *cpu = opaque;
657     CPUARMState *env = &cpu->env;
658     CPUState *cs = CPU(cpu);
659     static const int mask[] = {
660         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
661         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
662         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
663         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
664     };
665 
666     if (level) {
667         env->irq_line_state |= mask[irq];
668     } else {
669         env->irq_line_state &= ~mask[irq];
670     }
671 
672     switch (irq) {
673     case ARM_CPU_VIRQ:
674         assert(arm_feature(env, ARM_FEATURE_EL2));
675         arm_cpu_update_virq(cpu);
676         break;
677     case ARM_CPU_VFIQ:
678         assert(arm_feature(env, ARM_FEATURE_EL2));
679         arm_cpu_update_vfiq(cpu);
680         break;
681     case ARM_CPU_IRQ:
682     case ARM_CPU_FIQ:
683         if (level) {
684             cpu_interrupt(cs, mask[irq]);
685         } else {
686             cpu_reset_interrupt(cs, mask[irq]);
687         }
688         break;
689     default:
690         g_assert_not_reached();
691     }
692 }
693 
694 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
695 {
696 #ifdef CONFIG_KVM
697     ARMCPU *cpu = opaque;
698     CPUARMState *env = &cpu->env;
699     CPUState *cs = CPU(cpu);
700     uint32_t linestate_bit;
701     int irq_id;
702 
703     switch (irq) {
704     case ARM_CPU_IRQ:
705         irq_id = KVM_ARM_IRQ_CPU_IRQ;
706         linestate_bit = CPU_INTERRUPT_HARD;
707         break;
708     case ARM_CPU_FIQ:
709         irq_id = KVM_ARM_IRQ_CPU_FIQ;
710         linestate_bit = CPU_INTERRUPT_FIQ;
711         break;
712     default:
713         g_assert_not_reached();
714     }
715 
716     if (level) {
717         env->irq_line_state |= linestate_bit;
718     } else {
719         env->irq_line_state &= ~linestate_bit;
720     }
721     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
722 #endif
723 }
724 
725 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
726 {
727     ARMCPU *cpu = ARM_CPU(cs);
728     CPUARMState *env = &cpu->env;
729 
730     cpu_synchronize_state(cs);
731     return arm_cpu_data_is_big_endian(env);
732 }
733 
734 #endif
735 
736 static int
737 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
738 {
739   return print_insn_arm(pc | 1, info);
740 }
741 
742 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
743 {
744     ARMCPU *ac = ARM_CPU(cpu);
745     CPUARMState *env = &ac->env;
746     bool sctlr_b;
747 
748     if (is_a64(env)) {
749         /* We might not be compiled with the A64 disassembler
750          * because it needs a C++ compiler. Leave print_insn
751          * unset in this case to use the caller default behaviour.
752          */
753 #if defined(CONFIG_ARM_A64_DIS)
754         info->print_insn = print_insn_arm_a64;
755 #endif
756         info->cap_arch = CS_ARCH_ARM64;
757         info->cap_insn_unit = 4;
758         info->cap_insn_split = 4;
759     } else {
760         int cap_mode;
761         if (env->thumb) {
762             info->print_insn = print_insn_thumb1;
763             info->cap_insn_unit = 2;
764             info->cap_insn_split = 4;
765             cap_mode = CS_MODE_THUMB;
766         } else {
767             info->print_insn = print_insn_arm;
768             info->cap_insn_unit = 4;
769             info->cap_insn_split = 4;
770             cap_mode = CS_MODE_ARM;
771         }
772         if (arm_feature(env, ARM_FEATURE_V8)) {
773             cap_mode |= CS_MODE_V8;
774         }
775         if (arm_feature(env, ARM_FEATURE_M)) {
776             cap_mode |= CS_MODE_MCLASS;
777         }
778         info->cap_arch = CS_ARCH_ARM;
779         info->cap_mode = cap_mode;
780     }
781 
782     sctlr_b = arm_sctlr_b(env);
783     if (bswap_code(sctlr_b)) {
784 #ifdef TARGET_WORDS_BIGENDIAN
785         info->endian = BFD_ENDIAN_LITTLE;
786 #else
787         info->endian = BFD_ENDIAN_BIG;
788 #endif
789     }
790     info->flags &= ~INSN_ARM_BE32;
791 #ifndef CONFIG_USER_ONLY
792     if (sctlr_b) {
793         info->flags |= INSN_ARM_BE32;
794     }
795 #endif
796 }
797 
798 #ifdef TARGET_AARCH64
799 
800 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
801 {
802     ARMCPU *cpu = ARM_CPU(cs);
803     CPUARMState *env = &cpu->env;
804     uint32_t psr = pstate_read(env);
805     int i;
806     int el = arm_current_el(env);
807     const char *ns_status;
808 
809     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810     for (i = 0; i < 32; i++) {
811         if (i == 31) {
812             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813         } else {
814             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815                          (i + 2) % 3 ? " " : "\n");
816         }
817     }
818 
819     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821     } else {
822         ns_status = "";
823     }
824     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825                  psr,
826                  psr & PSTATE_N ? 'N' : '-',
827                  psr & PSTATE_Z ? 'Z' : '-',
828                  psr & PSTATE_C ? 'C' : '-',
829                  psr & PSTATE_V ? 'V' : '-',
830                  ns_status,
831                  el,
832                  psr & PSTATE_SP ? 'h' : 't');
833 
834     if (cpu_isar_feature(aa64_bti, cpu)) {
835         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
836     }
837     if (!(flags & CPU_DUMP_FPU)) {
838         qemu_fprintf(f, "\n");
839         return;
840     }
841     if (fp_exception_el(env, el) != 0) {
842         qemu_fprintf(f, "    FPU disabled\n");
843         return;
844     }
845     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
846                  vfp_get_fpcr(env), vfp_get_fpsr(env));
847 
848     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849         int j, zcr_len = sve_zcr_len_for_el(env, el);
850 
851         for (i = 0; i <= FFR_PRED_NUM; i++) {
852             bool eol;
853             if (i == FFR_PRED_NUM) {
854                 qemu_fprintf(f, "FFR=");
855                 /* It's last, so end the line.  */
856                 eol = true;
857             } else {
858                 qemu_fprintf(f, "P%02d=", i);
859                 switch (zcr_len) {
860                 case 0:
861                     eol = i % 8 == 7;
862                     break;
863                 case 1:
864                     eol = i % 6 == 5;
865                     break;
866                 case 2:
867                 case 3:
868                     eol = i % 3 == 2;
869                     break;
870                 default:
871                     /* More than one quadword per predicate.  */
872                     eol = true;
873                     break;
874                 }
875             }
876             for (j = zcr_len / 4; j >= 0; j--) {
877                 int digits;
878                 if (j * 4 + 4 <= zcr_len + 1) {
879                     digits = 16;
880                 } else {
881                     digits = (zcr_len % 4 + 1) * 4;
882                 }
883                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884                              env->vfp.pregs[i].p[j],
885                              j ? ":" : eol ? "\n" : " ");
886             }
887         }
888 
889         for (i = 0; i < 32; i++) {
890             if (zcr_len == 0) {
891                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892                              i, env->vfp.zregs[i].d[1],
893                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894             } else if (zcr_len == 1) {
895                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896                              ":%016" PRIx64 ":%016" PRIx64 "\n",
897                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899             } else {
900                 for (j = zcr_len; j >= 0; j--) {
901                     bool odd = (zcr_len - j) % 2 != 0;
902                     if (j == zcr_len) {
903                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904                     } else if (!odd) {
905                         if (j > 0) {
906                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
907                         } else {
908                             qemu_fprintf(f, "     [%x]=", j);
909                         }
910                     }
911                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912                                  env->vfp.zregs[i].d[j * 2 + 1],
913                                  env->vfp.zregs[i].d[j * 2],
914                                  odd || j == 0 ? "\n" : ":");
915                 }
916             }
917         }
918     } else {
919         for (i = 0; i < 32; i++) {
920             uint64_t *q = aa64_vfp_qreg(env, i);
921             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922                          i, q[1], q[0], (i & 1 ? "\n" : " "));
923         }
924     }
925 }
926 
927 #else
928 
929 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
930 {
931     g_assert_not_reached();
932 }
933 
934 #endif
935 
936 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
937 {
938     ARMCPU *cpu = ARM_CPU(cs);
939     CPUARMState *env = &cpu->env;
940     int i;
941 
942     if (is_a64(env)) {
943         aarch64_cpu_dump_state(cs, f, flags);
944         return;
945     }
946 
947     for (i = 0; i < 16; i++) {
948         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949         if ((i % 4) == 3) {
950             qemu_fprintf(f, "\n");
951         } else {
952             qemu_fprintf(f, " ");
953         }
954     }
955 
956     if (arm_feature(env, ARM_FEATURE_M)) {
957         uint32_t xpsr = xpsr_read(env);
958         const char *mode;
959         const char *ns_status = "";
960 
961         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962             ns_status = env->v7m.secure ? "S " : "NS ";
963         }
964 
965         if (xpsr & XPSR_EXCP) {
966             mode = "handler";
967         } else {
968             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969                 mode = "unpriv-thread";
970             } else {
971                 mode = "priv-thread";
972             }
973         }
974 
975         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976                      xpsr,
977                      xpsr & XPSR_N ? 'N' : '-',
978                      xpsr & XPSR_Z ? 'Z' : '-',
979                      xpsr & XPSR_C ? 'C' : '-',
980                      xpsr & XPSR_V ? 'V' : '-',
981                      xpsr & XPSR_T ? 'T' : 'A',
982                      ns_status,
983                      mode);
984     } else {
985         uint32_t psr = cpsr_read(env);
986         const char *ns_status = "";
987 
988         if (arm_feature(env, ARM_FEATURE_EL3) &&
989             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
991         }
992 
993         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994                      psr,
995                      psr & CPSR_N ? 'N' : '-',
996                      psr & CPSR_Z ? 'Z' : '-',
997                      psr & CPSR_C ? 'C' : '-',
998                      psr & CPSR_V ? 'V' : '-',
999                      psr & CPSR_T ? 'T' : 'A',
1000                      ns_status,
1001                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1002     }
1003 
1004     if (flags & CPU_DUMP_FPU) {
1005         int numvfpregs = 0;
1006         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007             numvfpregs = 32;
1008         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009             numvfpregs = 16;
1010         }
1011         for (i = 0; i < numvfpregs; i++) {
1012             uint64_t v = *aa32_vfp_dreg(env, i);
1013             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014                          i * 2, (uint32_t)v,
1015                          i * 2 + 1, (uint32_t)(v >> 32),
1016                          i, v);
1017         }
1018         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1019     }
1020 }
1021 
1022 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023 {
1024     uint32_t Aff1 = idx / clustersz;
1025     uint32_t Aff0 = idx % clustersz;
1026     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1027 }
1028 
1029 static void cpreg_hashtable_data_destroy(gpointer data)
1030 {
1031     /*
1032      * Destroy function for cpu->cp_regs hashtable data entries.
1033      * We must free the name string because it was g_strdup()ed in
1034      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035      * from r->name because we know we definitely allocated it.
1036      */
1037     ARMCPRegInfo *r = data;
1038 
1039     g_free((void *)r->name);
1040     g_free(r);
1041 }
1042 
1043 static void arm_cpu_initfn(Object *obj)
1044 {
1045     ARMCPU *cpu = ARM_CPU(obj);
1046 
1047     cpu_set_cpustate_pointers(cpu);
1048     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049                                          g_free, cpreg_hashtable_data_destroy);
1050 
1051     QLIST_INIT(&cpu->pre_el_change_hooks);
1052     QLIST_INIT(&cpu->el_change_hooks);
1053 
1054 #ifndef CONFIG_USER_ONLY
1055     /* Our inbound IRQ and FIQ lines */
1056     if (kvm_enabled()) {
1057         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058          * the same interface as non-KVM CPUs.
1059          */
1060         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061     } else {
1062         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1063     }
1064 
1065     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066                        ARRAY_SIZE(cpu->gt_timer_outputs));
1067 
1068     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069                              "gicv3-maintenance-interrupt", 1);
1070     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071                              "pmu-interrupt", 1);
1072 #endif
1073 
1074     /* DTB consumers generally don't in fact care what the 'compatible'
1075      * string is, so always provide some string and trust that a hypothetical
1076      * picky DTB consumer will also provide a helpful error message.
1077      */
1078     cpu->dtb_compatible = "qemu,unknown";
1079     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1081 
1082     if (tcg_enabled()) {
1083         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1084     }
1085 }
1086 
1087 static Property arm_cpu_gt_cntfrq_property =
1088             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090 
1091 static Property arm_cpu_reset_cbar_property =
1092             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1093 
1094 static Property arm_cpu_reset_hivecs_property =
1095             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096 
1097 static Property arm_cpu_rvbar_property =
1098             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101 static Property arm_cpu_has_el2_property =
1102             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103 
1104 static Property arm_cpu_has_el3_property =
1105             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106 #endif
1107 
1108 static Property arm_cpu_cfgend_property =
1109             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110 
1111 static Property arm_cpu_has_vfp_property =
1112             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113 
1114 static Property arm_cpu_has_neon_property =
1115             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116 
1117 static Property arm_cpu_has_dsp_property =
1118             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119 
1120 static Property arm_cpu_has_mpu_property =
1121             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122 
1123 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125  * the right value for that particular CPU type, and we don't want
1126  * to override that with an incorrect constant value.
1127  */
1128 static Property arm_cpu_pmsav7_dregion_property =
1129             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130                                            pmsav7_dregion,
1131                                            qdev_prop_uint32, uint32_t);
1132 
1133 static bool arm_get_pmu(Object *obj, Error **errp)
1134 {
1135     ARMCPU *cpu = ARM_CPU(obj);
1136 
1137     return cpu->has_pmu;
1138 }
1139 
1140 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141 {
1142     ARMCPU *cpu = ARM_CPU(obj);
1143 
1144     if (value) {
1145         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1146             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147             return;
1148         }
1149         set_feature(&cpu->env, ARM_FEATURE_PMU);
1150     } else {
1151         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152     }
1153     cpu->has_pmu = value;
1154 }
1155 
1156 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1157 {
1158     /*
1159      * The exact approach to calculating guest ticks is:
1160      *
1161      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162      *              NANOSECONDS_PER_SECOND);
1163      *
1164      * We don't do that. Rather we intentionally use integer division
1165      * truncation below and in the caller for the conversion of host monotonic
1166      * time to guest ticks to provide the exact inverse for the semantics of
1167      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168      * it loses precision when representing frequencies where
1169      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170      * provide an exact inverse leads to scheduling timers with negative
1171      * periods, which in turn leads to sticky behaviour in the guest.
1172      *
1173      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174      * cannot become zero.
1175      */
1176     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1178 }
1179 
1180 void arm_cpu_post_init(Object *obj)
1181 {
1182     ARMCPU *cpu = ARM_CPU(obj);
1183 
1184     /* M profile implies PMSA. We have to do this here rather than
1185      * in realize with the other feature-implication checks because
1186      * we look at the PMSA bit to see if we should add some properties.
1187      */
1188     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1190     }
1191 
1192     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1194         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1195     }
1196 
1197     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1198         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1199     }
1200 
1201     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1202         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1203     }
1204 
1205 #ifndef CONFIG_USER_ONLY
1206     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1208          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1209          */
1210         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1211 
1212         object_property_add_link(obj, "secure-memory",
1213                                  TYPE_MEMORY_REGION,
1214                                  (Object **)&cpu->secure_memory,
1215                                  qdev_prop_allow_set_link_before_realize,
1216                                  OBJ_PROP_LINK_STRONG);
1217     }
1218 
1219     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1220         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1221     }
1222 #endif
1223 
1224     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1225         cpu->has_pmu = true;
1226         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1227     }
1228 
1229     /*
1230      * Allow user to turn off VFP and Neon support, but only for TCG --
1231      * KVM does not currently allow us to lie to the guest about its
1232      * ID/feature registers, so the guest always sees what the host has.
1233      */
1234     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235         ? cpu_isar_feature(aa64_fp_simd, cpu)
1236         : cpu_isar_feature(aa32_vfp, cpu)) {
1237         cpu->has_vfp = true;
1238         if (!kvm_enabled()) {
1239             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1240         }
1241     }
1242 
1243     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244         cpu->has_neon = true;
1245         if (!kvm_enabled()) {
1246             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1247         }
1248     }
1249 
1250     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1252         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1253     }
1254 
1255     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1256         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1257         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258             qdev_property_add_static(DEVICE(obj),
1259                                      &arm_cpu_pmsav7_dregion_property);
1260         }
1261     }
1262 
1263     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265                                  qdev_prop_allow_set_link_before_realize,
1266                                  OBJ_PROP_LINK_STRONG);
1267         /*
1268          * M profile: initial value of the Secure VTOR. We can't just use
1269          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270          * the property to be set after realize.
1271          */
1272         object_property_add_uint32_ptr(obj, "init-svtor",
1273                                        &cpu->init_svtor,
1274                                        OBJ_PROP_FLAG_READWRITE);
1275     }
1276     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1277         /*
1278          * Initial value of the NS VTOR (for cores without the Security
1279          * extension, this is the only VTOR)
1280          */
1281         object_property_add_uint32_ptr(obj, "init-nsvtor",
1282                                        &cpu->init_nsvtor,
1283                                        OBJ_PROP_FLAG_READWRITE);
1284     }
1285 
1286     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1287 
1288     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1289         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1290     }
1291 
1292     if (kvm_enabled()) {
1293         kvm_arm_add_vcpu_properties(obj);
1294     }
1295 
1296 #ifndef CONFIG_USER_ONLY
1297     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1298         cpu_isar_feature(aa64_mte, cpu)) {
1299         object_property_add_link(obj, "tag-memory",
1300                                  TYPE_MEMORY_REGION,
1301                                  (Object **)&cpu->tag_memory,
1302                                  qdev_prop_allow_set_link_before_realize,
1303                                  OBJ_PROP_LINK_STRONG);
1304 
1305         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1306             object_property_add_link(obj, "secure-tag-memory",
1307                                      TYPE_MEMORY_REGION,
1308                                      (Object **)&cpu->secure_tag_memory,
1309                                      qdev_prop_allow_set_link_before_realize,
1310                                      OBJ_PROP_LINK_STRONG);
1311         }
1312     }
1313 #endif
1314 }
1315 
1316 static void arm_cpu_finalizefn(Object *obj)
1317 {
1318     ARMCPU *cpu = ARM_CPU(obj);
1319     ARMELChangeHook *hook, *next;
1320 
1321     g_hash_table_destroy(cpu->cp_regs);
1322 
1323     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1324         QLIST_REMOVE(hook, node);
1325         g_free(hook);
1326     }
1327     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1328         QLIST_REMOVE(hook, node);
1329         g_free(hook);
1330     }
1331 #ifndef CONFIG_USER_ONLY
1332     if (cpu->pmu_timer) {
1333         timer_free(cpu->pmu_timer);
1334     }
1335 #endif
1336 }
1337 
1338 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1339 {
1340     Error *local_err = NULL;
1341 
1342     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1343         arm_cpu_sve_finalize(cpu, &local_err);
1344         if (local_err != NULL) {
1345             error_propagate(errp, local_err);
1346             return;
1347         }
1348 
1349         /*
1350          * KVM does not support modifications to this feature.
1351          * We have not registered the cpu properties when KVM
1352          * is in use, so the user will not be able to set them.
1353          */
1354         if (!kvm_enabled()) {
1355             arm_cpu_pauth_finalize(cpu, &local_err);
1356             if (local_err != NULL) {
1357                 error_propagate(errp, local_err);
1358                 return;
1359             }
1360         }
1361     }
1362 
1363     if (kvm_enabled()) {
1364         kvm_arm_steal_time_finalize(cpu, &local_err);
1365         if (local_err != NULL) {
1366             error_propagate(errp, local_err);
1367             return;
1368         }
1369     }
1370 }
1371 
1372 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1373 {
1374     CPUState *cs = CPU(dev);
1375     ARMCPU *cpu = ARM_CPU(dev);
1376     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1377     CPUARMState *env = &cpu->env;
1378     int pagebits;
1379     Error *local_err = NULL;
1380     bool no_aa32 = false;
1381 
1382     /* If we needed to query the host kernel for the CPU features
1383      * then it's possible that might have failed in the initfn, but
1384      * this is the first point where we can report it.
1385      */
1386     if (cpu->host_cpu_probe_failed) {
1387         if (!kvm_enabled()) {
1388             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1389         } else {
1390             error_setg(errp, "Failed to retrieve host CPU features");
1391         }
1392         return;
1393     }
1394 
1395 #ifndef CONFIG_USER_ONLY
1396     /* The NVIC and M-profile CPU are two halves of a single piece of
1397      * hardware; trying to use one without the other is a command line
1398      * error and will result in segfaults if not caught here.
1399      */
1400     if (arm_feature(env, ARM_FEATURE_M)) {
1401         if (!env->nvic) {
1402             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1403             return;
1404         }
1405     } else {
1406         if (env->nvic) {
1407             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1408             return;
1409         }
1410     }
1411 
1412     {
1413         uint64_t scale;
1414 
1415         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1416             if (!cpu->gt_cntfrq_hz) {
1417                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1418                            cpu->gt_cntfrq_hz);
1419                 return;
1420             }
1421             scale = gt_cntfrq_period_ns(cpu);
1422         } else {
1423             scale = GTIMER_SCALE;
1424         }
1425 
1426         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1427                                                arm_gt_ptimer_cb, cpu);
1428         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1429                                                arm_gt_vtimer_cb, cpu);
1430         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1431                                               arm_gt_htimer_cb, cpu);
1432         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1433                                               arm_gt_stimer_cb, cpu);
1434         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1435                                                   arm_gt_hvtimer_cb, cpu);
1436     }
1437 #endif
1438 
1439     cpu_exec_realizefn(cs, &local_err);
1440     if (local_err != NULL) {
1441         error_propagate(errp, local_err);
1442         return;
1443     }
1444 
1445     arm_cpu_finalize_features(cpu, &local_err);
1446     if (local_err != NULL) {
1447         error_propagate(errp, local_err);
1448         return;
1449     }
1450 
1451     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1452         cpu->has_vfp != cpu->has_neon) {
1453         /*
1454          * This is an architectural requirement for AArch64; AArch32 is
1455          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1456          */
1457         error_setg(errp,
1458                    "AArch64 CPUs must have both VFP and Neon or neither");
1459         return;
1460     }
1461 
1462     if (!cpu->has_vfp) {
1463         uint64_t t;
1464         uint32_t u;
1465 
1466         t = cpu->isar.id_aa64isar1;
1467         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1468         cpu->isar.id_aa64isar1 = t;
1469 
1470         t = cpu->isar.id_aa64pfr0;
1471         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1472         cpu->isar.id_aa64pfr0 = t;
1473 
1474         u = cpu->isar.id_isar6;
1475         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1476         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1477         cpu->isar.id_isar6 = u;
1478 
1479         u = cpu->isar.mvfr0;
1480         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1481         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1482         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1483         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1484         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1485         if (!arm_feature(env, ARM_FEATURE_M)) {
1486             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1487             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1488         }
1489         cpu->isar.mvfr0 = u;
1490 
1491         u = cpu->isar.mvfr1;
1492         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1493         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1494         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1495         if (arm_feature(env, ARM_FEATURE_M)) {
1496             u = FIELD_DP32(u, MVFR1, FP16, 0);
1497         }
1498         cpu->isar.mvfr1 = u;
1499 
1500         u = cpu->isar.mvfr2;
1501         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1502         cpu->isar.mvfr2 = u;
1503     }
1504 
1505     if (!cpu->has_neon) {
1506         uint64_t t;
1507         uint32_t u;
1508 
1509         unset_feature(env, ARM_FEATURE_NEON);
1510 
1511         t = cpu->isar.id_aa64isar0;
1512         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1513         cpu->isar.id_aa64isar0 = t;
1514 
1515         t = cpu->isar.id_aa64isar1;
1516         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1517         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1518         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1519         cpu->isar.id_aa64isar1 = t;
1520 
1521         t = cpu->isar.id_aa64pfr0;
1522         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1523         cpu->isar.id_aa64pfr0 = t;
1524 
1525         u = cpu->isar.id_isar5;
1526         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1527         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1528         cpu->isar.id_isar5 = u;
1529 
1530         u = cpu->isar.id_isar6;
1531         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1532         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1533         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1534         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1535         cpu->isar.id_isar6 = u;
1536 
1537         if (!arm_feature(env, ARM_FEATURE_M)) {
1538             u = cpu->isar.mvfr1;
1539             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1540             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1541             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1542             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1543             cpu->isar.mvfr1 = u;
1544 
1545             u = cpu->isar.mvfr2;
1546             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1547             cpu->isar.mvfr2 = u;
1548         }
1549     }
1550 
1551     if (!cpu->has_neon && !cpu->has_vfp) {
1552         uint64_t t;
1553         uint32_t u;
1554 
1555         t = cpu->isar.id_aa64isar0;
1556         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1557         cpu->isar.id_aa64isar0 = t;
1558 
1559         t = cpu->isar.id_aa64isar1;
1560         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1561         cpu->isar.id_aa64isar1 = t;
1562 
1563         u = cpu->isar.mvfr0;
1564         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1565         cpu->isar.mvfr0 = u;
1566 
1567         /* Despite the name, this field covers both VFP and Neon */
1568         u = cpu->isar.mvfr1;
1569         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1570         cpu->isar.mvfr1 = u;
1571     }
1572 
1573     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1574         uint32_t u;
1575 
1576         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1577 
1578         u = cpu->isar.id_isar1;
1579         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1580         cpu->isar.id_isar1 = u;
1581 
1582         u = cpu->isar.id_isar2;
1583         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1584         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1585         cpu->isar.id_isar2 = u;
1586 
1587         u = cpu->isar.id_isar3;
1588         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1589         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1590         cpu->isar.id_isar3 = u;
1591     }
1592 
1593     /* Some features automatically imply others: */
1594     if (arm_feature(env, ARM_FEATURE_V8)) {
1595         if (arm_feature(env, ARM_FEATURE_M)) {
1596             set_feature(env, ARM_FEATURE_V7);
1597         } else {
1598             set_feature(env, ARM_FEATURE_V7VE);
1599         }
1600     }
1601 
1602     /*
1603      * There exist AArch64 cpus without AArch32 support.  When KVM
1604      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1605      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1606      * As a general principle, we also do not make ID register
1607      * consistency checks anywhere unless using TCG, because only
1608      * for TCG would a consistency-check failure be a QEMU bug.
1609      */
1610     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1611         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1612     }
1613 
1614     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1615         /* v7 Virtualization Extensions. In real hardware this implies
1616          * EL2 and also the presence of the Security Extensions.
1617          * For QEMU, for backwards-compatibility we implement some
1618          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1619          * include the various other features that V7VE implies.
1620          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1621          * Security Extensions is ARM_FEATURE_EL3.
1622          */
1623         assert(!tcg_enabled() || no_aa32 ||
1624                cpu_isar_feature(aa32_arm_div, cpu));
1625         set_feature(env, ARM_FEATURE_LPAE);
1626         set_feature(env, ARM_FEATURE_V7);
1627     }
1628     if (arm_feature(env, ARM_FEATURE_V7)) {
1629         set_feature(env, ARM_FEATURE_VAPA);
1630         set_feature(env, ARM_FEATURE_THUMB2);
1631         set_feature(env, ARM_FEATURE_MPIDR);
1632         if (!arm_feature(env, ARM_FEATURE_M)) {
1633             set_feature(env, ARM_FEATURE_V6K);
1634         } else {
1635             set_feature(env, ARM_FEATURE_V6);
1636         }
1637 
1638         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1639          * non-EL3 configs. This is needed by some legacy boards.
1640          */
1641         set_feature(env, ARM_FEATURE_VBAR);
1642     }
1643     if (arm_feature(env, ARM_FEATURE_V6K)) {
1644         set_feature(env, ARM_FEATURE_V6);
1645         set_feature(env, ARM_FEATURE_MVFR);
1646     }
1647     if (arm_feature(env, ARM_FEATURE_V6)) {
1648         set_feature(env, ARM_FEATURE_V5);
1649         if (!arm_feature(env, ARM_FEATURE_M)) {
1650             assert(!tcg_enabled() || no_aa32 ||
1651                    cpu_isar_feature(aa32_jazelle, cpu));
1652             set_feature(env, ARM_FEATURE_AUXCR);
1653         }
1654     }
1655     if (arm_feature(env, ARM_FEATURE_V5)) {
1656         set_feature(env, ARM_FEATURE_V4T);
1657     }
1658     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1659         set_feature(env, ARM_FEATURE_V7MP);
1660     }
1661     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1662         set_feature(env, ARM_FEATURE_CBAR);
1663     }
1664     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1665         !arm_feature(env, ARM_FEATURE_M)) {
1666         set_feature(env, ARM_FEATURE_THUMB_DSP);
1667     }
1668 
1669     /*
1670      * We rely on no XScale CPU having VFP so we can use the same bits in the
1671      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1672      */
1673     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1674            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1675            !arm_feature(env, ARM_FEATURE_XSCALE));
1676 
1677     if (arm_feature(env, ARM_FEATURE_V7) &&
1678         !arm_feature(env, ARM_FEATURE_M) &&
1679         !arm_feature(env, ARM_FEATURE_PMSA)) {
1680         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1681          * can use 4K pages.
1682          */
1683         pagebits = 12;
1684     } else {
1685         /* For CPUs which might have tiny 1K pages, or which have an
1686          * MPU and might have small region sizes, stick with 1K pages.
1687          */
1688         pagebits = 10;
1689     }
1690     if (!set_preferred_target_page_bits(pagebits)) {
1691         /* This can only ever happen for hotplugging a CPU, or if
1692          * the board code incorrectly creates a CPU which it has
1693          * promised via minimum_page_size that it will not.
1694          */
1695         error_setg(errp, "This CPU requires a smaller page size than the "
1696                    "system is using");
1697         return;
1698     }
1699 
1700     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1701      * We don't support setting cluster ID ([16..23]) (known as Aff2
1702      * in later ARM ARM versions), or any of the higher affinity level fields,
1703      * so these bits always RAZ.
1704      */
1705     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1706         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1707                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1708     }
1709 
1710     if (cpu->reset_hivecs) {
1711             cpu->reset_sctlr |= (1 << 13);
1712     }
1713 
1714     if (cpu->cfgend) {
1715         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1716             cpu->reset_sctlr |= SCTLR_EE;
1717         } else {
1718             cpu->reset_sctlr |= SCTLR_B;
1719         }
1720     }
1721 
1722     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1723         /* If the has_el3 CPU property is disabled then we need to disable the
1724          * feature.
1725          */
1726         unset_feature(env, ARM_FEATURE_EL3);
1727 
1728         /* Disable the security extension feature bits in the processor feature
1729          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1730          */
1731         cpu->isar.id_pfr1 &= ~0xf0;
1732         cpu->isar.id_aa64pfr0 &= ~0xf000;
1733     }
1734 
1735     if (!cpu->has_el2) {
1736         unset_feature(env, ARM_FEATURE_EL2);
1737     }
1738 
1739     if (!cpu->has_pmu) {
1740         unset_feature(env, ARM_FEATURE_PMU);
1741     }
1742     if (arm_feature(env, ARM_FEATURE_PMU)) {
1743         pmu_init(cpu);
1744 
1745         if (!kvm_enabled()) {
1746             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1747             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1748         }
1749 
1750 #ifndef CONFIG_USER_ONLY
1751         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1752                 cpu);
1753 #endif
1754     } else {
1755         cpu->isar.id_aa64dfr0 =
1756             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1757         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1758         cpu->pmceid0 = 0;
1759         cpu->pmceid1 = 0;
1760     }
1761 
1762     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1763         /* Disable the hypervisor feature bits in the processor feature
1764          * registers if we don't have EL2. These are id_pfr1[15:12] and
1765          * id_aa64pfr0_el1[11:8].
1766          */
1767         cpu->isar.id_aa64pfr0 &= ~0xf00;
1768         cpu->isar.id_pfr1 &= ~0xf000;
1769     }
1770 
1771 #ifndef CONFIG_USER_ONLY
1772     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1773         /*
1774          * Disable the MTE feature bits if we do not have tag-memory
1775          * provided by the machine.
1776          */
1777         cpu->isar.id_aa64pfr1 =
1778             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1779     }
1780 #endif
1781 
1782     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1783      * to false or by setting pmsav7-dregion to 0.
1784      */
1785     if (!cpu->has_mpu) {
1786         cpu->pmsav7_dregion = 0;
1787     }
1788     if (cpu->pmsav7_dregion == 0) {
1789         cpu->has_mpu = false;
1790     }
1791 
1792     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1793         arm_feature(env, ARM_FEATURE_V7)) {
1794         uint32_t nr = cpu->pmsav7_dregion;
1795 
1796         if (nr > 0xff) {
1797             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1798             return;
1799         }
1800 
1801         if (nr) {
1802             if (arm_feature(env, ARM_FEATURE_V8)) {
1803                 /* PMSAv8 */
1804                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1805                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1806                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1807                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1808                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1809                 }
1810             } else {
1811                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1812                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1813                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1814             }
1815         }
1816     }
1817 
1818     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1819         uint32_t nr = cpu->sau_sregion;
1820 
1821         if (nr > 0xff) {
1822             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1823             return;
1824         }
1825 
1826         if (nr) {
1827             env->sau.rbar = g_new0(uint32_t, nr);
1828             env->sau.rlar = g_new0(uint32_t, nr);
1829         }
1830     }
1831 
1832     if (arm_feature(env, ARM_FEATURE_EL3)) {
1833         set_feature(env, ARM_FEATURE_VBAR);
1834     }
1835 
1836     register_cp_regs_for_features(cpu);
1837     arm_cpu_register_gdb_regs_for_features(cpu);
1838 
1839     init_cpreg_list(cpu);
1840 
1841 #ifndef CONFIG_USER_ONLY
1842     MachineState *ms = MACHINE(qdev_get_machine());
1843     unsigned int smp_cpus = ms->smp.cpus;
1844     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1845 
1846     /*
1847      * We must set cs->num_ases to the final value before
1848      * the first call to cpu_address_space_init.
1849      */
1850     if (cpu->tag_memory != NULL) {
1851         cs->num_ases = 3 + has_secure;
1852     } else {
1853         cs->num_ases = 1 + has_secure;
1854     }
1855 
1856     if (has_secure) {
1857         if (!cpu->secure_memory) {
1858             cpu->secure_memory = cs->memory;
1859         }
1860         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1861                                cpu->secure_memory);
1862     }
1863 
1864     if (cpu->tag_memory != NULL) {
1865         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1866                                cpu->tag_memory);
1867         if (has_secure) {
1868             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1869                                    cpu->secure_tag_memory);
1870         }
1871     }
1872 
1873     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1874 
1875     /* No core_count specified, default to smp_cpus. */
1876     if (cpu->core_count == -1) {
1877         cpu->core_count = smp_cpus;
1878     }
1879 #endif
1880 
1881     if (tcg_enabled()) {
1882         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1883 
1884         /*
1885          * We only support DCZ blocklen that fits on one page.
1886          *
1887          * Architectually this is always true.  However TARGET_PAGE_SIZE
1888          * is variable and, for compatibility with -machine virt-2.7,
1889          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1890          * But even then, while the largest architectural DCZ blocklen
1891          * is 2KiB, no cpu actually uses such a large blocklen.
1892          */
1893         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1894 
1895         /*
1896          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1897          * both nibbles of each byte storing tag data may be written at once.
1898          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1899          */
1900         if (cpu_isar_feature(aa64_mte, cpu)) {
1901             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1902         }
1903     }
1904 
1905     qemu_init_vcpu(cs);
1906     cpu_reset(cs);
1907 
1908     acc->parent_realize(dev, errp);
1909 }
1910 
1911 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1912 {
1913     ObjectClass *oc;
1914     char *typename;
1915     char **cpuname;
1916     const char *cpunamestr;
1917 
1918     cpuname = g_strsplit(cpu_model, ",", 1);
1919     cpunamestr = cpuname[0];
1920 #ifdef CONFIG_USER_ONLY
1921     /* For backwards compatibility usermode emulation allows "-cpu any",
1922      * which has the same semantics as "-cpu max".
1923      */
1924     if (!strcmp(cpunamestr, "any")) {
1925         cpunamestr = "max";
1926     }
1927 #endif
1928     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1929     oc = object_class_by_name(typename);
1930     g_strfreev(cpuname);
1931     g_free(typename);
1932     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1933         object_class_is_abstract(oc)) {
1934         return NULL;
1935     }
1936     return oc;
1937 }
1938 
1939 static Property arm_cpu_properties[] = {
1940     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1941     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1942     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1943                         mp_affinity, ARM64_AFFINITY_INVALID),
1944     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1945     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1946     DEFINE_PROP_END_OF_LIST()
1947 };
1948 
1949 static gchar *arm_gdb_arch_name(CPUState *cs)
1950 {
1951     ARMCPU *cpu = ARM_CPU(cs);
1952     CPUARMState *env = &cpu->env;
1953 
1954     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1955         return g_strdup("iwmmxt");
1956     }
1957     return g_strdup("arm");
1958 }
1959 
1960 #ifndef CONFIG_USER_ONLY
1961 #include "hw/core/sysemu-cpu-ops.h"
1962 
1963 static const struct SysemuCPUOps arm_sysemu_ops = {
1964     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1965     .asidx_from_attrs = arm_asidx_from_attrs,
1966     .write_elf32_note = arm_cpu_write_elf32_note,
1967     .write_elf64_note = arm_cpu_write_elf64_note,
1968     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1969     .legacy_vmsd = &vmstate_arm_cpu,
1970 };
1971 #endif
1972 
1973 #ifdef CONFIG_TCG
1974 static const struct TCGCPUOps arm_tcg_ops = {
1975     .initialize = arm_translate_init,
1976     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1977     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1978     .tlb_fill = arm_cpu_tlb_fill,
1979     .debug_excp_handler = arm_debug_excp_handler,
1980 
1981 #if !defined(CONFIG_USER_ONLY)
1982     .do_interrupt = arm_cpu_do_interrupt,
1983     .do_transaction_failed = arm_cpu_do_transaction_failed,
1984     .do_unaligned_access = arm_cpu_do_unaligned_access,
1985     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1986     .debug_check_watchpoint = arm_debug_check_watchpoint,
1987 #endif /* !CONFIG_USER_ONLY */
1988 };
1989 #endif /* CONFIG_TCG */
1990 
1991 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1992 {
1993     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1994     CPUClass *cc = CPU_CLASS(acc);
1995     DeviceClass *dc = DEVICE_CLASS(oc);
1996 
1997     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1998                                     &acc->parent_realize);
1999 
2000     device_class_set_props(dc, arm_cpu_properties);
2001     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2002 
2003     cc->class_by_name = arm_cpu_class_by_name;
2004     cc->has_work = arm_cpu_has_work;
2005     cc->dump_state = arm_cpu_dump_state;
2006     cc->set_pc = arm_cpu_set_pc;
2007     cc->gdb_read_register = arm_cpu_gdb_read_register;
2008     cc->gdb_write_register = arm_cpu_gdb_write_register;
2009 #ifndef CONFIG_USER_ONLY
2010     cc->sysemu_ops = &arm_sysemu_ops;
2011 #endif
2012     cc->gdb_num_core_regs = 26;
2013     cc->gdb_core_xml_file = "arm-core.xml";
2014     cc->gdb_arch_name = arm_gdb_arch_name;
2015     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2016     cc->gdb_stop_before_watchpoint = true;
2017     cc->disas_set_info = arm_disas_set_info;
2018 
2019 #ifdef CONFIG_TCG
2020     cc->tcg_ops = &arm_tcg_ops;
2021 #endif /* CONFIG_TCG */
2022 }
2023 
2024 #ifdef CONFIG_KVM
2025 static void arm_host_initfn(Object *obj)
2026 {
2027     ARMCPU *cpu = ARM_CPU(obj);
2028 
2029     kvm_arm_set_cpu_features_from_host(cpu);
2030     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2031         aarch64_add_sve_properties(obj);
2032     }
2033     arm_cpu_post_init(obj);
2034 }
2035 
2036 static const TypeInfo host_arm_cpu_type_info = {
2037     .name = TYPE_ARM_HOST_CPU,
2038     .parent = TYPE_AARCH64_CPU,
2039     .instance_init = arm_host_initfn,
2040 };
2041 
2042 #endif
2043 
2044 static void arm_cpu_instance_init(Object *obj)
2045 {
2046     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2047 
2048     acc->info->initfn(obj);
2049     arm_cpu_post_init(obj);
2050 }
2051 
2052 static void cpu_register_class_init(ObjectClass *oc, void *data)
2053 {
2054     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2055 
2056     acc->info = data;
2057 }
2058 
2059 void arm_cpu_register(const ARMCPUInfo *info)
2060 {
2061     TypeInfo type_info = {
2062         .parent = TYPE_ARM_CPU,
2063         .instance_size = sizeof(ARMCPU),
2064         .instance_align = __alignof__(ARMCPU),
2065         .instance_init = arm_cpu_instance_init,
2066         .class_size = sizeof(ARMCPUClass),
2067         .class_init = info->class_init ?: cpu_register_class_init,
2068         .class_data = (void *)info,
2069     };
2070 
2071     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2072     type_register(&type_info);
2073     g_free((void *)type_info.name);
2074 }
2075 
2076 static const TypeInfo arm_cpu_type_info = {
2077     .name = TYPE_ARM_CPU,
2078     .parent = TYPE_CPU,
2079     .instance_size = sizeof(ARMCPU),
2080     .instance_align = __alignof__(ARMCPU),
2081     .instance_init = arm_cpu_initfn,
2082     .instance_finalize = arm_cpu_finalizefn,
2083     .abstract = true,
2084     .class_size = sizeof(ARMCPUClass),
2085     .class_init = arm_cpu_class_init,
2086 };
2087 
2088 static void arm_cpu_register_types(void)
2089 {
2090     type_register_static(&arm_cpu_type_info);
2091 
2092 #ifdef CONFIG_KVM
2093     type_register_static(&host_arm_cpu_type_info);
2094 #endif
2095 }
2096 
2097 type_init(arm_cpu_register_types)
2098